1
|
Keggenhoff FL, Castven D, Becker D, Stojkovic S, Castven J, Zimpel C, Straub BK, Gerber T, Langer H, Hähnel P, Kindler T, Fahrer J, O'Rourke CJ, Ehmer U, Saborowski A, Ma L, Wang XW, Gaiser T, Matter MS, Sina C, Derer S, Lee JS, Roessler S, Kaina B, Andersen JB, Galle PR, Marquardt JU. PARP-1 selectively impairs KRAS-driven phenotypic and molecular features in intrahepatic cholangiocarcinoma. Gut 2024; 73:1712-1724. [PMID: 38857989 PMCID: PMC11420749 DOI: 10.1136/gutjnl-2023-331237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with limited therapeutic options. KRAS mutations are among the most abundant genetic alterations in iCCA associated with poor clinical outcome and treatment response. Recent findings indicate that Poly(ADP-ribose)polymerase1 (PARP-1) is implicated in KRAS-driven cancers, but its exact role in cholangiocarcinogenesis remains undefined. DESIGN PARP-1 inhibition was performed in patient-derived and established iCCA cells using RNAi, CRISPR/Cas9 and pharmacological inhibition in KRAS-mutant, non-mutant cells. In addition, Parp-1 knockout mice were combined with iCCA induction by hydrodynamic tail vein injection to evaluate an impact on phenotypic and molecular features of Kras-driven and Kras-wildtype iCCA. Clinical implications were confirmed in authentic human iCCA. RESULTS PARP-1 was significantly enhanced in KRAS-mutant human iCCA. PARP-1-based interventions preferentially impaired cell viability and tumourigenicity in human KRAS-mutant cell lines. Consistently, loss of Parp-1 provoked distinct phenotype in Kras/Tp53-induced versus Akt/Nicd-induced iCCA and abolished Kras-dependent cholangiocarcinogenesis. Transcriptome analyses confirmed preferential impairment of DNA damage response pathways and replicative stress response mediated by CHK1. Consistently, inhibition of CHK1 effectively reversed PARP-1 mediated effects. Finally, Parp-1 depletion induced molecular switch of KRAS-mutant iCCA recapitulating good prognostic human iCCA patients. CONCLUSION Our findings identify the novel prognostic and therapeutic role of PARP-1 in iCCA patients with activation of oncogenic KRAS signalling.
Collapse
Affiliation(s)
- Friederike L Keggenhoff
- First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Darko Castven
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Diana Becker
- First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stojan Stojkovic
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Jovana Castven
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Carolin Zimpel
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Beate K Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Tissue Biobank of the University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Tiemo Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Harald Langer
- Cardiology Angiology, University Medical Centre, Mannheim, Germany
| | - Patricia Hähnel
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Kindler
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jörg Fahrer
- Department of Chemistry, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Colm J O'Rourke
- Department of Health and Medical Sciences, University of Copenhagen Biotech Research & Innovation Centre, Kobenhavn, Denmark
| | - Ursula Ehmer
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universitat, München, Germany
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Lichun Ma
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, Center for Cancer Research, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Timo Gaiser
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matthias S Matter
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Christian Sina
- Institute of Nutritional Medicine, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jesper B Andersen
- Department of Health and Medical Sciences, University of Copenhagen Biotech Research & Innovation Centre, Kobenhavn, Denmark
| | - Peter R Galle
- First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig Holstein Campus Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Albaqami WF, Alshamrani AA, Almubarak AA, Alotaibi FE, Alotaibi BJ, Alanazi AM, Alotaibi MR, Alhoshani A, As Sobeai HM. Genetic and Epigenetic Biomarkers Associated with Early Relapse in Pediatric Acute Lymphoblastic Leukemia: A Focused Bioinformatics Study on DNA-Repair Genes. Biomedicines 2024; 12:1766. [PMID: 39200230 PMCID: PMC11351110 DOI: 10.3390/biomedicines12081766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Genomic instability is one of the main drivers of tumorigenesis and the development of hematological malignancies. Cancer cells can remedy chemotherapeutic-induced DNA damage by upregulating DNA-repair genes and ultimately inducing therapy resistance. Nevertheless, the association between the DNA-repair genes, drug resistance, and disease relapse has not been well characterized in acute lymphoblastic leukemia (ALL). This study aimed to explore the role of the DNA-repair machinery and the molecular mechanisms by which it is regulated in early- and late-relapsing pediatric ALL patients. We performed secondary data analysis on the Therapeutically Applicable Research to Generate Effective Treatments (TARGET)-ALL expansion phase II trial of 198 relapsed pediatric precursor B-cell ALL. Comprehensive genetic and epigenetic investigations of 147 DNA-repair genes were conducted in the study. Gene expression was assessed using Microarray and RNA-sequencing platforms. Genomic alternations, methylation status, and miRNA transcriptome were investigated for the candidate DNA-repair genes. We identified three DNA-repair genes, ALKBH3, NHEJ1, and PARP1, that were upregulated in early relapsers compared to late relapsers (p < 0.05). Such upregulation at diagnosis was significantly associated with disease-free survival and overall survival in precursor-B-ALL (p < 0.05). Moreover, PARP1 upregulation accompanied a significant downregulation of its targeting miRNA, miR-1301-3p (p = 0.0152), which was strongly linked with poorer disease-free and overall survivals. Upregulation of DNA-repair genes, PARP1 in particular, increases the likelihood of early relapse of precursor-B-ALL in children. The observation that PARP1 was upregulated in early relapsers relative to late relapsers might serve as a valid rationale for proposing alternative treatment approaches, such as using PARP inhibitors with chemotherapy.
Collapse
Affiliation(s)
- Walaa F. Albaqami
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran 31932, Saudi Arabia;
| | - Ali A. Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Ali A. Almubarak
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Faris E. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Basil Jamal Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Abdulrahman M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
- Pharmaceutical Care Division, King Faisal Specialist Hospital & Research Centre, Madinah 42523, Saudi Arabia
| | - Moureq R. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| | - Homood M. As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (F.E.A.); (B.J.A.); (A.M.A.); (M.R.A.); (A.A.)
| |
Collapse
|
3
|
De Mel S, Lee AR, Tan JHI, Tan RZY, Poon LM, Chan E, Lee J, Chee YL, Lakshminarasappa SR, Jaynes PW, Jeyasekharan AD. Targeting the DNA damage response in hematological malignancies. Front Oncol 2024; 14:1307839. [PMID: 38347838 PMCID: PMC10859481 DOI: 10.3389/fonc.2024.1307839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Deregulation of the DNA damage response (DDR) plays a critical role in the pathogenesis and progression of many cancers. The dependency of certain cancers on DDR pathways has enabled exploitation of such through synthetically lethal relationships e.g., Poly ADP-Ribose Polymerase (PARP) inhibitors for BRCA deficient ovarian cancers. Though lagging behind that of solid cancers, DDR inhibitors (DDRi) are being clinically developed for haematological cancers. Furthermore, a high proliferative index characterize many such cancers, suggesting a rationale for combinatorial strategies targeting DDR and replicative stress. In this review, we summarize pre-clinical and clinical data on DDR inhibition in haematological malignancies and highlight distinct haematological cancer subtypes with activity of DDR agents as single agents or in combination with chemotherapeutics and targeted agents. We aim to provide a framework to guide the design of future clinical trials involving haematological cancers for this important class of drugs.
Collapse
Affiliation(s)
- Sanjay De Mel
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Ainsley Ryan Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joelle Hwee Inn Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Zi Yi Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li Mei Poon
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Esther Chan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Satish R. Lakshminarasappa
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Anand D. Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
5
|
Caracciolo D, Juli G, Riillo C, Coricello A, Vasile F, Pollastri S, Rocca R, Scionti F, Polerà N, Grillone K, Arbitrio M, Staropoli N, Caparello B, Britti D, Loprete G, Costa G, Di Martino MT, Alcaro S, Tagliaferri P, Tassone P. Exploiting DNA Ligase III addiction of multiple myeloma by flavonoid Rhamnetin. Lab Invest 2022; 20:482. [PMID: 36273153 PMCID: PMC9588242 DOI: 10.1186/s12967-022-03705-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022]
Abstract
Background DNA ligases are crucial for DNA repair and cell replication since they catalyze the final steps in which DNA breaks are joined. DNA Ligase III (LIG3) exerts a pivotal role in Alternative-Non-Homologous End Joining Repair (Alt-NHEJ), an error-prone DNA repair pathway often up-regulated in genomically unstable cancer, such as Multiple Myeloma (MM). Based on the three-dimensional (3D) LIG3 structure, we performed a computational screening to identify LIG3-targeting natural compounds as potential candidates to counteract Alt-NHEJ activity in MM. Methods Virtual screening was conducted by interrogating the Phenol Explorer database. Validation of binding to LIG3 recombinant protein was performed by Saturation Transfer Difference (STD)—nuclear magnetic resonance (NMR) experiments. Cell viability was analyzed by Cell Titer-Glo assay; apoptosis was evaluated by flow cytometric analysis following Annexin V-7AAD staining. Alt-NHEJ repair modulation was evaluated using plasmid re-joining assay and Cytoscan HD. DNA Damage Response protein levels were analyzed by Western blot of whole and fractionated protein extracts and immunofluorescence analysis. The mitochondrial DNA (mtDNA) copy number was determined by qPCR. In vivo activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. Results Here, we provide evidence that a natural flavonoid Rhamnetin (RHM), selected by a computational approach, counteracts LIG3 activity and killed Alt-NHEJ-dependent MM cells. Indeed, Nuclear Magnetic Resonance (NMR) showed binding of RHM to LIG3 protein and functional experiments revealed that RHM interferes with LIG3-driven nuclear and mitochondrial DNA repair, leading to significant anti-MM activity in vitro and in vivo. Conclusion Taken together, our findings provide proof of concept that RHM targets LIG3 addiction in MM and may represent therefore a novel promising anti-tumor natural agent to be investigated in an early clinical setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03705-z.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Adriana Coricello
- Department of Health Science, Magna Græcia University, Catanzaro, Italy.,Net4Science Academic Spin-Off, Magna Græcia University, Campus "Salvatore Venuta", Catanzaro, Italy
| | | | - Sara Pollastri
- Department of Chemistry, University of Milan, Milan, Italy
| | - Roberta Rocca
- Department of Health Science, Magna Græcia University, Catanzaro, Italy.,Net4Science Academic Spin-Off, Magna Græcia University, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Francesca Scionti
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | | | - Basilio Caparello
- Presidio Ospedaliero Giovanni Paolo II Lamezia Terme, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | - Giovanni Loprete
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | - Giosuè Costa
- Department of Health Science, Magna Græcia University, Catanzaro, Italy.,Net4Science Academic Spin-Off, Magna Græcia University, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Science, Magna Græcia University, Catanzaro, Italy.,Net4Science Academic Spin-Off, Magna Græcia University, Campus "Salvatore Venuta", Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy. .,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
DNA Polymerase Theta Plays a Critical Role in Pancreatic Cancer Development and Metastasis. Cancers (Basel) 2022; 14:cancers14174077. [PMID: 36077614 PMCID: PMC9454495 DOI: 10.3390/cancers14174077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), due to its genomic heterogeneity and lack of effective treatment, despite decades of intensive research, will become the second leading cause of cancer-related deaths by 2030. Step-wise acquisition of mutations, due to genomic instability, is considered to drive the development of PDAC; the KRAS mutation occurs in 95 to 100% of human PDAC, and is already detectable in early premalignant lesions designated as pancreatic intraepithelial neoplasia (PanIN). This mutation is possibly the key event leading to genomic instability and PDAC development. Our study aimed to investigate the role of the error-prone DNA double-strand breaks (DSBs) repair pathway, alt-EJ, in the presence of the KRAS G12D mutation in pancreatic cancer development. Our findings show that oncogenic KRAS contributes to increasing the expression of Polθ, Lig3, and Mre11, key components of alt-EJ in both mouse and human PDAC models. We further confirm increased catalytic activity of alt-EJ in a mouse and human model of PDAC bearing the KRAS G12D mutation. Subsequently, we focused on estimating the impact of alt-EJ inactivation by polymerase theta (Polθ) deletion on pancreatic cancer development, and survival in genetically engineered mouse models (GEMMs) and cancer patients. Here, we show that even though Polθ deficiency does not fully prevent the development of pancreatic cancer, it significantly delays the onset of PanIN formation, prolongs the overall survival of experimental mice, and correlates with the overall survival of pancreatic cancer patients in the TCGA database. Our study clearly demonstrates the role of alt-EJ in the development of PDAC, and alt-EJ may be an attractive therapeutic target for pancreatic cancer patients.
Collapse
|
7
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
8
|
Cáceres-Gutiérrez RE, Alfaro-Mora Y, Andonegui MA, Díaz-Chávez J, Herrera LA. The Influence of Oncogenic RAS on Chemotherapy and Radiotherapy Resistance Through DNA Repair Pathways. Front Cell Dev Biol 2022; 10:751367. [PMID: 35359456 PMCID: PMC8962660 DOI: 10.3389/fcell.2022.751367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
RAS oncogenes are chief tumorigenic drivers, and their mutation constitutes a universal predictor of poor outcome and treatment resistance. Despite more than 30 years of intensive research since the identification of the first RAS mutation, most attempts to therapeutically target RAS mutants have failed to reach the clinic. In fact, the first mutant RAS inhibitor, Sotorasib, was only approved by the FDA until 2021. However, since Sotorasib targets the KRAS G12C mutant with high specificity, relatively few patients will benefit from this therapy. On the other hand, indirect approaches to inhibit the RAS pathway have revealed very intricate cascades involving feedback loops impossible to overcome with currently available therapies. Some of these mechanisms play different roles along the multistep carcinogenic process. For instance, although mutant RAS increases replicative, metabolic and oxidative stress, adaptive responses alleviate these conditions to preserve cellular survival and avoid the onset of oncogene-induced senescence during tumorigenesis. The resulting rewiring of cellular mechanisms involves the DNA damage response and pathways associated with oxidative stress, which are co-opted by cancer cells to promote survival, proliferation, and chemo- and radioresistance. Nonetheless, these systems become so crucial to cancer cells that they can be exploited as specific tumor vulnerabilities. Here, we discuss key aspects of RAS biology and detail some of the mechanisms that mediate chemo- and radiotherapy resistance of mutant RAS cancers through the DNA repair pathways. We also discuss recent progress in therapeutic RAS targeting and propose future directions for the field.
Collapse
Affiliation(s)
- Rodrigo E. Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Yair Alfaro-Mora
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marco A. Andonegui
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- *Correspondence: Luis A. Herrera, ; José Díaz-Chávez,
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- *Correspondence: Luis A. Herrera, ; José Díaz-Chávez,
| |
Collapse
|
9
|
Krysztofiak A, Szymonowicz K, Hlouschek J, Xiang K, Waterkamp C, Larafa S, Goetting I, Vega-Rubin-de-Celis S, Theiss C, Matschke V, Hoffmann D, Jendrossek V, Matschke J. Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown. iScience 2021; 24:103366. [PMID: 34825138 PMCID: PMC8603201 DOI: 10.1016/j.isci.2021.103366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer bioenergetics fuel processes necessary to maintain viability and growth under stress conditions. We hypothesized that cancer metabolism supports the repair of radiation-induced DNA double-stranded breaks (DSBs). We combined the systematic collection of metabolic and radiobiological data from a panel of irradiated cancer cell lines with mathematical modeling and identified a common metabolic response with impact on the DSB repair kinetics, including a mitochondrial shutdown followed by compensatory glycolysis and resumption of mitochondrial function. Combining ionizing radiation (IR) with inhibitors of the compensatory glycolysis or mitochondrial respiratory chain slowed mitochondrial recovery and DNA repair kinetics, offering an opportunity for therapeutic intervention. Mathematical modeling allowed us to generate new hypotheses on general and individual mechanisms of the radiation response with relevance to DNA repair and on metabolic vulnerabilities induced by cancer radiotherapy. These discoveries will guide future mechanistic studies for the discovery of metabolic targets for overcoming intrinsic or therapy-induced radioresistance.
Collapse
Affiliation(s)
- Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Julian Hlouschek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Kexu Xiang
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christoph Waterkamp
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, 45117 Essen, Germany
| | - Safa Larafa
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Isabell Goetting
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Silvia Vega-Rubin-de-Celis
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, 45117 Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
10
|
A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing. Nat Commun 2021; 12:6512. [PMID: 34764240 PMCID: PMC8586238 DOI: 10.1038/s41467-021-26788-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Recent studies have reported that genome editing by CRISPR–Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next demonstrate that similar to p53, wildtype KRAS may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing KRAS-mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations. CRISPR-Cas9 gene editing can induce a p53 mediated damage response. Here the authors investigate the possibility of selection of pre-existing cancer driver mutations during CRISPR-Cas9 knockout based gene editing and identify KRAS mutants that may confer a selected advantage to edited cells.
Collapse
|
11
|
Yang L, Shen C, Estrada-Bernal A, Robb R, Chatterjee M, Sebastian N, Webb A, Mo X, Chen W, Krishnan S, Williams TM. Oncogenic KRAS drives radioresistance through upregulation of NRF2-53BP1-mediated non-homologous end-joining repair. Nucleic Acids Res 2021; 49:11067-11082. [PMID: 34606602 PMCID: PMC8565339 DOI: 10.1093/nar/gkab871] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
KRAS-activating mutations are oncogenic drivers and are correlated with radioresistance of multiple cancers, including colorectal cancer, but the underlying precise molecular mechanisms remain elusive. Herein we model the radiosensitivity of isogenic HCT116 and SW48 colorectal cancer cell lines bearing wild-type or various mutant KRAS isoforms. We demonstrate that KRAS mutations indeed lead to radioresistance accompanied by reduced radiotherapy-induced mitotic catastrophe and an accelerated release from G2/M arrest. Moreover, KRAS mutations result in increased DNA damage response and upregulation of 53BP1 with associated increased non-homologous end-joining (NHEJ) repair. Remarkably, KRAS mutations lead to activation of NRF2 antioxidant signaling to increase 53BP1 gene transcription. Furthermore, genetic silencing or pharmacological inhibition of KRAS, NRF2 or 53BP1 attenuates KRAS mutation-induced radioresistance, especially in G1 phase cells. These findings reveal an important role for a KRAS-induced NRF2-53BP1 axis in the DNA repair and survival of KRAS-mutant tumor cells after radiotherapy, and indicate that targeting NRF2, 53BP1 or NHEJ may represent novel strategies to selectively abrogate KRAS mutation-mediated radioresistance.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Changxian Shen
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Adriana Estrada-Bernal
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Ryan Robb
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Moumita Chatterjee
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Nikhil Sebastian
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Amy Webb
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Xiaokui Mo
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Wei Chen
- The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | | | - Terence M Williams
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
12
|
Valikhani M, Rahimian E, Ahmadi SE, Chegeni R, Safa M. Involvement of classic and alternative non-homologous end joining pathways in hematologic malignancies: targeting strategies for treatment. Exp Hematol Oncol 2021; 10:51. [PMID: 34732266 PMCID: PMC8564991 DOI: 10.1186/s40164-021-00242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal translocations are the main etiological factor of hematologic malignancies. These translocations are generally the consequence of aberrant DNA double-strand break (DSB) repair. DSBs arise either exogenously or endogenously in cells and are repaired by major pathways, including non-homologous end-joining (NHEJ), homologous recombination (HR), and other minor pathways such as alternative end-joining (A-EJ). Therefore, defective NHEJ, HR, or A-EJ pathways force hematopoietic cells toward tumorigenesis. As some components of these repair pathways are overactivated in various tumor entities, targeting these pathways in cancer cells can sensitize them, especially resistant clones, to radiation or chemotherapy agents. However, targeted therapy-based studies are currently underway in this area, and furtherly there are some biological pitfalls, clinical issues, and limitations related to these targeted therapies, which need to be considered. This review aimed to investigate the alteration of DNA repair elements of C-NHEJ and A-EJ in hematologic malignancies and evaluate the potential targeted therapies against these pathways.
Collapse
Affiliation(s)
- Mohsen Valikhani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences, Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Roux B, Vaganay C, Vargas JD, Alexe G, Benaksas C, Pardieu B, Fenouille N, Ellegast JM, Malolepsza E, Ling F, Sodaro G, Ross L, Pikman Y, Conway AS, Tang Y, Wu T, Anderson DJ, Le Moigne R, Zhou HJ, Luciano F, Hartigan CR, Galinsky I, DeAngelo DJ, Stone RM, Auberger P, Schenone M, Carr SA, Guirouilh-Barbat J, Lopez B, Khaled M, Lage K, Hermine O, Hemann MT, Puissant A, Stegmaier K, Benajiba L. Targeting acute myeloid leukemia dependency on VCP-mediated DNA repair through a selective second-generation small-molecule inhibitor. Sci Transl Med 2021; 13:eabg1168. [PMID: 33790022 PMCID: PMC8672851 DOI: 10.1126/scitranslmed.abg1168] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
The development and survival of cancer cells require adaptive mechanisms to stress. Such adaptations can confer intrinsic vulnerabilities, enabling the selective targeting of cancer cells. Through a pooled in vivo short hairpin RNA (shRNA) screen, we identified the adenosine triphosphatase associated with diverse cellular activities (AAA-ATPase) valosin-containing protein (VCP) as a top stress-related vulnerability in acute myeloid leukemia (AML). We established that AML was the most responsive disease to chemical inhibition of VCP across a panel of 16 cancer types. The sensitivity to VCP inhibition of human AML cell lines, primary patient samples, and syngeneic and xenograft mouse models of AML was validated using VCP-directed shRNAs, overexpression of a dominant-negative VCP mutant, and chemical inhibition. By combining mass spectrometry-based analysis of the VCP interactome and phospho-signaling studies, we determined that VCP is important for ataxia telangiectasia mutated (ATM) kinase activation and subsequent DNA repair through homologous recombination in AML. A second-generation VCP inhibitor, CB-5339, was then developed and characterized. Efficacy and safety of CB-5339 were validated in multiple AML models, including syngeneic and patient-derived xenograft murine models. We further demonstrated that combining DNA-damaging agents, such as anthracyclines, with CB-5339 treatment synergizes to impair leukemic growth in an MLL-AF9-driven AML murine model. These studies support the clinical testing of CB-5339 as a single agent or in combination with standard-of-care DNA-damaging chemotherapy for the treatment of AML.
Collapse
Affiliation(s)
- Blandine Roux
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Camille Vaganay
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | | | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Chaima Benaksas
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Bryann Pardieu
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Nina Fenouille
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Jana M Ellegast
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Edyta Malolepsza
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Frank Ling
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Gaetano Sodaro
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amy S Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Tony Wu
- Cleave Therapeutics Inc., San Francisco, CA 94105, USA
| | | | | | - Han-Jie Zhou
- Cleave Therapeutics Inc., San Francisco, CA 94105, USA
| | | | - Christina R Hartigan
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Patrick Auberger
- C3M, INSERM U1065, Team Cell Death, Differentiation, Inflammation and Cancer, 06204 Nice, France
| | - Monica Schenone
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016 and CNRS UMR 8104, Institut Cochin, 75014 Paris, France
| | - Bernard Lopez
- Université de Paris, INSERM U1016 and CNRS UMR 8104, Institut Cochin, 75014 Paris, France
| | - Mehdi Khaled
- INSERM U1186, Gustave-Roussy Cancer Center, Université Paris-Saclay, 94805 Villejuif, France
| | - Kasper Lage
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Olivier Hermine
- Université de Paris, INSERM U1163 and CNRS 8254, Institut Imagine, Hôpital Necker, APHP, 75015 Paris, France
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alexandre Puissant
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France.
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lina Benajiba
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France.
| |
Collapse
|
14
|
Caracciolo D, Riillo C, Di Martino MT, Tagliaferri P, Tassone P. Alternative Non-Homologous End-Joining: Error-Prone DNA Repair as Cancer's Achilles' Heel. Cancers (Basel) 2021; 13:cancers13061392. [PMID: 33808562 PMCID: PMC8003480 DOI: 10.3390/cancers13061392] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer onset and progression lead to a high rate of DNA damage, due to replicative and metabolic stress. To survive in this dangerous condition, cancer cells switch the DNA repair machinery from faithful systems to error-prone pathways, strongly increasing the mutational rate that, in turn, supports the disease progression and drug resistance. Although DNA repair de-regulation boosts genomic instability, it represents, at the same time, a critical cancer vulnerability that can be exploited for synthetic lethality-based therapeutic intervention. We here discuss the role of the error-prone DNA repair, named Alternative Non-Homologous End Joining (Alt-NHEJ), as inducer of genomic instability and as a potential therapeutic target. We portray different strategies to drug Alt-NHEJ and discuss future challenges for selecting patients who could benefit from Alt-NHEJ inhibition, with the aim of precision oncology. Abstract Error-prone DNA repair pathways promote genomic instability which leads to the onset of cancer hallmarks by progressive genetic aberrations in tumor cells. The molecular mechanisms which foster this process remain mostly undefined, and breakthrough advancements are eagerly awaited. In this context, the alternative non-homologous end joining (Alt-NHEJ) pathway is considered a leading actor. Indeed, there is experimental evidence that up-regulation of major Alt-NHEJ components, such as LIG3, PolQ, and PARP1, occurs in different tumors, where they are often associated with disease progression and drug resistance. Moreover, the Alt-NHEJ addiction of cancer cells provides a promising target to be exploited by synthetic lethality approaches for the use of DNA damage response (DDR) inhibitors and even as a sensitizer to checkpoint-inhibitors immunotherapy by increasing the mutational load. In this review, we discuss recent findings highlighting the role of Alt-NHEJ as a promoter of genomic instability and, therefore, as new cancer’s Achilles’ heel to be therapeutically exploited in precision oncology.
Collapse
|
15
|
Alvisi MF, Ganzinelli M, Linardou H, Caiola E, Lo Russo G, Cecere FL, Bettini AC, Psyrri A, Milella M, Rulli E, Fabbri A, De Maglie M, Romanelli P, Murray S, Ndembe G, Broggini M, Garassino MC, Marabese M. Predicting the Role of DNA Polymerase β Alone or with KRAS Mutations in Advanced NSCLC Patients Receiving Platinum-Based Chemotherapy. J Clin Med 2020; 9:jcm9082438. [PMID: 32751518 PMCID: PMC7465625 DOI: 10.3390/jcm9082438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/17/2023] Open
Abstract
Clinical data suggest that only a subgroup of non-small cell lung cancer (NSCLC) patients has long-term benefits after front-line platinum-based therapy. We prospectively investigate whether KRAS status and DNA polymerase β expression could help identify patients responding to platinum compounds. Prospectively enrolled, advanced NSCLC patients treated with a first-line regimen containing platinum were genotyped for KRAS and centrally evaluated for DNA polymerase β expression. Overall survival (OS), progression-free survival (PFS), and the objective response rate (ORR) were recorded. Patients with KRAS mutations had worse OS (hazard ratio (HR): 1.37, 95% confidence interval (95% CI): 0.70–2.27). Negative DNA polymerase β staining identified a subgroup with worse OS than patients expressing the protein (HR: 1.43, 95% CI: 0.57–3.57). The addition of KRAS to the analyses further worsened the prognosis of patients with negative DNA polymerase β staining (HR: 1.67, 95% CI: 0.52–5.56). DNA polymerase β did not influence PFS and ORR. KRAS may have a negative role in platinum-based therapy responses in NSCLC, but its impact is limited. DNA polymerase β, when not expressed, might indicate a group of patients with poor outcomes. KRAS mutations in tumors not expressing DNA polymerase β further worsens survival. Therefore, these two biomarkers together might well identify patients for whom alternatives to platinum-based chemotherapy should be used.
Collapse
Affiliation(s)
- Maria Francesca Alvisi
- Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (M.F.A.); (E.R.)
| | - Monica Ganzinelli
- Unit of Thoracic Oncology, Medical Oncology Department 1, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.G.); (G.L.R.); (M.C.G.)
| | - Helena Linardou
- 4th Oncology Department, Metropolitan Hospital, 18547 Athens, Greece;
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (E.C.); (G.N.)
| | - Giuseppe Lo Russo
- Unit of Thoracic Oncology, Medical Oncology Department 1, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.G.); (G.L.R.); (M.C.G.)
| | - Fabiana Letizia Cecere
- Division of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | | | - Amanda Psyrri
- Section of Oncology, Department of Internal Medicine, Attikon Hospital, National Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Michele Milella
- Department of Medicine, Section of Medical Oncology, University and Hospital Trust of Verona, 37126 Verona, Italy;
| | - Eliana Rulli
- Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (M.F.A.); (E.R.)
| | - Alessandra Fabbri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Marcella De Maglie
- Mouse & Animal Pathology Lab, Fondazione Filarete, 20139 Milan, Italy; (M.D.M.); (P.R.)
- Department of Veterinary Medicine, University of Milan, 20122 Milan, Italy
| | - Pierpaolo Romanelli
- Mouse & Animal Pathology Lab, Fondazione Filarete, 20139 Milan, Italy; (M.D.M.); (P.R.)
- Department of Veterinary Medicine, University of Milan, 20122 Milan, Italy
| | | | - Gloriana Ndembe
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (E.C.); (G.N.)
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (E.C.); (G.N.)
- Correspondence: (M.B.); (M.M.); Tel.: +39-0239014585 (M.B.); +39-0239014236 (M.M.)
| | - Marina Chiara Garassino
- Unit of Thoracic Oncology, Medical Oncology Department 1, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.G.); (G.L.R.); (M.C.G.)
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (E.C.); (G.N.)
- Correspondence: (M.B.); (M.M.); Tel.: +39-0239014585 (M.B.); +39-0239014236 (M.M.)
| |
Collapse
|
16
|
Wu HZ, Xiao JQ, Xiao SS, Cheng Y. KRAS: A Promising Therapeutic Target for Cancer Treatment. Curr Top Med Chem 2019; 19:2081-2097. [PMID: 31486755 DOI: 10.2174/1568026619666190905164144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most commonly mutated oncogene in human cancer. The developments of many cancers depend on sustained expression and signaling of KRAS, which makes KRAS a high-priority therapeutic target. Scientists have not successfully developed drugs that target KRAS, although efforts have been made last three decades. In this review, we highlight the emerging experimental strategies of impairing KRAS membrane localization and the direct targeting of KRAS. We also conclude the combinatorial therapies and RNA interference technology for the treatment of KRAS mutant cancers. Moreover, the virtual screening approach to discover novel KRAS inhibitors and synthetic lethality interactors of KRAS are discussed in detail.
Collapse
Affiliation(s)
- Hai-Zhou Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Jia-Qi Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Song-Shu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
17
|
Datta S, Sinha D. EGCG maintained Nrf2-mediated redox homeostasis and minimized etoposide resistance in lung cancer cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
18
|
Ibrahim OM, As Sobeai HM, Grant SG, Latimer JJ. Nucleotide excision repair is a predictor of early relapse in pediatric acute lymphoblastic leukemia. BMC Med Genomics 2018; 11:95. [PMID: 30376844 PMCID: PMC6208034 DOI: 10.1186/s12920-018-0422-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Nucleotide Excision Repair (NER) is a major pathway of mammalian DNA repair that is associated with drug resistance and has not been well characterized in acute lymphoblastic leukemia (ALL). The objective of this study was to explore the role of NER in relapsed ALL patients. We hypothesized that increased expression of NER genes was associated with drug resistance and relapse in ALL. METHODS We performed secondary data analysis on two sets of pediatric ALL patients that all ultimately relapsed, and who had matched diagnosis-relapse gene expression microarray data (GSE28460 and GSE18497). GSE28460 included 49 precursor-B-ALL patients, and GSE18497 included 27 precursor-B-ALL and 14 T-ALL patients. Microarray data were processed using the Plier 16 algorithm and the 20 canonical NER genes were extracted. Comparisons were made between time of diagnosis and relapse, and between early and late relapsing subgroups. The Chi-square test was used to evaluate whether NER gene expression was altered at the level of the entire pathway and individual gene expression was compared using t-tests. RESULTS We found that gene expression of the NER pathway was significantly increased upon relapse in patients that took 3 years or greater to relapse (late relapsers, P = .007), whereas no such change was evident in patients that relapsed in less than 3 years (early relapsers, P = .180). Moreover, at diagnosis, the NER gene expression of the early relapsing subpopulation was already significantly elevated over that of the late relapsing group (P < .001). This pattern was validated by an 'NER score' established by averaging the relative expression of the 20 canonical NER genes. The NER score at diagnosis was found to be significantly associated with disease-free survival in precursor-B-ALL (P < .001). CONCLUSION Patients are over two times more likely to undergo early relapse if they have a high NER score at diagnosis, hazard ratio 2.008, 95% CI (1.256-3.211). The NER score may provide a underlying mechanism for "time to remission", a known prognostic factor in ALL, and a rationale for differential treatment.
Collapse
Affiliation(s)
- Omar M. Ibrahim
- Department of Pharmaceutical Sciences, College of Pharmacy, 3200 S University Drive, Fort Lauderdale, FL 33328 USA
- AutoNation Institute for Breast and Solid Tumor Cancer Research, 3301 College Avenue, Fort Lauderdale, FL 33314 USA
| | - Homood M. As Sobeai
- Department of Pharmaceutical Sciences, College of Pharmacy, 3200 S University Drive, Fort Lauderdale, FL 33328 USA
- AutoNation Institute for Breast and Solid Tumor Cancer Research, 3301 College Avenue, Fort Lauderdale, FL 33314 USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2475, Riyadh, 11451 Saudi Arabia
| | - Stephen G. Grant
- AutoNation Institute for Breast and Solid Tumor Cancer Research, 3301 College Avenue, Fort Lauderdale, FL 33314 USA
- Department of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328 USA
| | - Jean J. Latimer
- Department of Pharmaceutical Sciences, College of Pharmacy, 3200 S University Drive, Fort Lauderdale, FL 33328 USA
- AutoNation Institute for Breast and Solid Tumor Cancer Research, 3301 College Avenue, Fort Lauderdale, FL 33314 USA
| |
Collapse
|
19
|
SIRT1 inhibition impairs non-homologous end joining DNA damage repair by increasing Ku70 acetylation in chronic myeloid leukemia cells. Oncotarget 2017; 7:13538-50. [PMID: 26646449 PMCID: PMC4924659 DOI: 10.18632/oncotarget.6455] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/14/2015] [Indexed: 12/20/2022] Open
Abstract
Most chemotherapeutic agents for leukemia are DNA damaging agents. However, DNA lesions can be repaired by activities of DNA repair systems. Increasing evidence have shown that enhanced DNA damage repair capacity contributes to chemotherapy resistance in leukemia cells. Thus, targeting DNA repair mechanisms is a promising strategy for novel leukemia treatment. SIRT1 expressions were downregulated by lentivirus-delivered SIRT1 shRNA in myeloid leukemia cells. SIRT1 mRNA and protein levels were analyzed by real-time PCR and Western blot, respectively. Flow cytometry was carried out to analyze cell cycle progression, apoptosis and DNA damage repair efficiency. DNA damage levels were assessed by alkaline comet assay, and H2AX phosphorylation was analyzed by immunoblotting and immunofluorescence. A mouse leukemia model was established by transplanting lentivirus-infected K562 cells containing SIRT1 shRNA into sublethally irradiated NOD/SCID mice, and tumorigenesis was evaluated by detecting tumor weights and mice survival. SIRT1 expressions were upregulated in myeloid leukemic patients. Downregulation of SIRT1 by RNAi promoted etoposide-induced DNA damage in myeloid leukemia cells accompanied by reduced NHEJ activity, and increased Ku70 acetylation. Furthermore, SIRT1 knockdown resulted in cell cycle arrest, induction of apoptosis and reduction of K562 cell proliferation accompanied by enhanced p53 and FOXO1 acetylation in K562 cells after etoposide treatment. Importantly, SIRT1 downregulation reduced the tumorigenesis ability of K562 cells in mouse xenografts following chemotherapy treatment. These results revealed that SIRT1 promotes the NHEJ repair pathway by deacetylating Ku70 in K562 cells, suggesting that SIRT1 is a novel therapeutic target for treating myeloid leukemia.
Collapse
|
20
|
Molecular genetics and cellular events of K-Ras-driven tumorigenesis. Oncogene 2017; 37:839-846. [PMID: 29059163 PMCID: PMC5817384 DOI: 10.1038/onc.2017.377] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/11/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Cellular transformation and the accumulation of genomic instability are the two key events required for tumorigenesis. K-Ras (Kirsten-rat sarcoma viral oncogene homolog) is a prominent oncogene that has been proven to drive tumorigenesis. K-Ras also modulates numerous genetic regulatory mechanisms and forms a large tumorigenesis network. In this review, we track the genetic aspects of K-Ras signaling networks and assemble the sequence of cellular events that constitute the tumorigenesis process, such as regulation of K-Ras expression (which is influenced by miRNA, small nucleolar RNA and lncRNA), activation of K-Ras (mutations), generation of reactive oxygen species (ROS), induction of DNA damage and apoptosis, induction of DNA damage repair pathways and ROS detoxification systems, cellular transformation after apoptosis by the blebbishield emergency program and the accumulation of genomic/chromosomal instability that leads to tumorigenesis.
Collapse
|
21
|
Nickoloff JA, Jones D, Lee SH, Williamson EA, Hromas R. Drugging the Cancers Addicted to DNA Repair. J Natl Cancer Inst 2017; 109:3832892. [PMID: 28521333 PMCID: PMC5436301 DOI: 10.1093/jnci/djx059] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dennie Jones
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth A Williamson
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| | - Robert Hromas
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|
22
|
Barwe SP, Quagliano A, Gopalakrishnapillai A. Eviction from the sanctuary: Development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia. Semin Oncol 2017; 44:101-112. [PMID: 28923207 DOI: 10.1053/j.seminoncol.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 02/04/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant hematological disease afflicting hematopoiesis in the bone marrow. While 80%-90% of patients diagnosed with ALL will achieve complete remission at some point during treatment, ALL is associated with high relapse rate, with a 5-year overall survival rate of 68%. The initial remission failure and the high rate of relapse can be attributed to intrinsic chemoprotective mechanisms that allow persistence of ALL cells despite therapy. These mechanisms are mediated, at least in part, through the engagement of cell adhesion molecules (CAMs) within the bone marrow microenvironment. This review assembles CAMs implicated in protection of leukemic cells from chemotherapy. Such studies are limited in ALL. Therefore, CAMs that are associated with poor outcomes or are overexpressed in ALL and have been shown to be involved in chemoprotection in other hematological cancers are also included. It is likely that these molecules play parallel roles in ALL because the CAMs identified to be a factor in ALL chemoresistance also work similarly in other hematological malignancies. We review the signaling mechanisms activated by the engagement of CAMs that provide protection from chemotherapy. Development of targeted therapies against CAMs could improve outcome and raise the overall cure rate in ALL.
Collapse
Affiliation(s)
- Sonali P Barwe
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE.
| | - Anthony Quagliano
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE
| | | |
Collapse
|
23
|
Nieborowska-Skorska M, Sullivan K, Dasgupta Y, Podszywalow-Bartnicka P, Hoser G, Maifrede S, Martinez E, Di Marcantonio D, Bolton-Gillespie E, Cramer-Morales K, Lee J, Li M, Slupianek A, Gritsyuk D, Cerny-Reiterer S, Seferynska I, Stoklosa T, Bullinger L, Zhao H, Gorbunova V, Piwocka K, Valent P, Civin CI, Muschen M, Dick JE, Wang JC, Bhatia S, Bhatia R, Eppert K, Minden MD, Sykes SM, Skorski T. Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. J Clin Invest 2017; 127:2392-2406. [PMID: 28481221 DOI: 10.1172/jci90825] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/07/2017] [Indexed: 02/02/2023] Open
Abstract
Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase-mediated (DNA-PK-mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK-deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK-deficient quiescent leukemia cells and BRCA/DNA-PK-deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients.
Collapse
Affiliation(s)
- Margaret Nieborowska-Skorska
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Katherine Sullivan
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Yashodhara Dasgupta
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | | | - Grazyna Hoser
- The Center of Postgraduate Medical Education, Laboratory of Flow Cytometry, Warsaw, Poland
| | - Silvia Maifrede
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Esteban Martinez
- Research Institute of Fox Chase Cancer Center, Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Daniela Di Marcantonio
- Research Institute of Fox Chase Cancer Center, Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Elisabeth Bolton-Gillespie
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Kimberly Cramer-Morales
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Jaewong Lee
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Min Li
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Artur Slupianek
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Daniel Gritsyuk
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Sabine Cerny-Reiterer
- Medical University of Vienna and Ludwig Boltzmann-Cluster Oncology, and Department of Internal Medicine I, Division of Hematology and Hemostaseology, Vienna, Austria
| | - Ilona Seferynska
- Department of Hematology, Institute of Hematology and Blood Transfusion, Warsaw, Poland
| | - Tomasz Stoklosa
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Lars Bullinger
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Huaqing Zhao
- Temple University Lewis Katz School of Medicine, Department of Clinical Sciences, Philadelphia, Pennsylvania, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | | - Peter Valent
- Medical University of Vienna and Ludwig Boltzmann-Cluster Oncology, and Department of Internal Medicine I, Division of Hematology and Hemostaseology, Vienna, Austria
| | - Curt I Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Markus Muschen
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jean Cy Wang
- Princess Margaret Cancer Centre, UHN, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Medical Oncology and Hematology, UHN, Toronto, Ontario, Canada
| | | | - Ravi Bhatia
- Division of Hematology-Oncology, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama, USA
| | - Kolja Eppert
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Mark D Minden
- Princess Margaret Cancer Center, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Stephen M Sykes
- Research Institute of Fox Chase Cancer Center, Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Tomasz Skorski
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Nilles N, Fahrenkrog B. Taking a Bad Turn: Compromised DNA Damage Response in Leukemia. Cells 2017; 6:cells6020011. [PMID: 28471392 PMCID: PMC5492015 DOI: 10.3390/cells6020011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
Genomic integrity is of outmost importance for the survival at the cellular and the organismal level and key to human health. To ensure the integrity of their DNA, cells have evolved maintenance programs collectively known as the DNA damage response. Particularly challenging for genome integrity are DNA double-strand breaks (DSB) and defects in their repair are often associated with human disease, including leukemia. Defective DSB repair may not only be disease-causing, but further contribute to poor treatment outcome and poor prognosis in leukemia. Here, we review current insight into altered DSB repair mechanisms identified in leukemia. While DSB repair is somewhat compromised in all leukemic subtypes, certain key players of DSB repair are particularly targeted: DNA-dependent protein kinase (DNA-PK) and Ku70/80 in the non-homologous end-joining pathway, as well as Rad51 and breast cancer 1/2 (BRCA1/2), key players in homologous recombination. Defects in leukemia-related DSB repair may not only arise from dysfunctional repair components, but also indirectly from mutations in key regulators of gene expression and/or chromatin structure, such as p53, the Kirsten ras oncogene (K-RAS), and isocitrate dehydrogenase 1 and 2 (IDH1/2). A detailed understanding of the basis for defective DNA damage response (DDR) mechanisms for each leukemia subtype may allow to further develop new treatment methods to improve treatment outcome and prognosis for patients.
Collapse
Affiliation(s)
- Nadine Nilles
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
25
|
Kalimutho M, Bain AL, Mukherjee B, Nag P, Nanayakkara DM, Harten SK, Harris JL, Subramanian GN, Sinha D, Shirasawa S, Srihari S, Burma S, Khanna KK. Enhanced dependency of KRAS-mutant colorectal cancer cells on RAD51-dependent homologous recombination repair identified from genetic interactions in Saccharomyces cerevisiae. Mol Oncol 2017; 11:470-490. [PMID: 28173629 PMCID: PMC5527460 DOI: 10.1002/1878-0261.12040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/08/2023] Open
Abstract
Activating KRAS mutations drive colorectal cancer tumorigenesis and influence response to anti‐EGFR‐targeted therapy. Despite recent advances in understanding Ras signaling biology and the revolution in therapies for melanoma using BRAF inhibitors, no targeted agents have been effective in KRAS‐mutant cancers, mainly due to activation of compensatory pathways. Here, by leveraging the largest synthetic lethal genetic interactome in yeast, we identify that KRAS‐mutated colorectal cancer cells have augmented homologous recombination repair (HRR) signaling. We found that KRAS mutation resulted in slowing and stalling of the replication fork and accumulation of DNA damage. Moreover, we found that KRAS‐mutant HCT116 cells have an increase in MYC‐mediated RAD51 expression with a corresponding increase in RAD51 recruitment to irradiation‐induced DNA double‐strand breaks (DSBs) compared to genetically complemented isogenic cells. MYC depletion using RNA interference significantly reduced IR‐induced RAD51 foci formation and HRR. On the contrary, overexpression of either HA‐tagged wild‐type (WT) MYC or phospho‐mutant S62A increased RAD51 protein levels and hence IR‐induced RAD51 foci. Likewise, depletion of RAD51 selectively induced apoptosis in HCT116‐mutant cells by increasing DSBs. Pharmacological inhibition targeting HRR signaling combined with PARP inhibition selectivity killed KRAS‐mutant cells. Interestingly, these differences were not seen in a second isogenic pair of KRAS WT and mutant cells (DLD‐1), likely due to their nondependency on the KRAS mutation for survival. Our data thus highlight a possible mechanism by which KRAS‐mutant‐dependent cells drive HRR in vitro by upregulating MYC‐RAD51 expression. These data may offer a promising therapeutic vulnerability in colorectal cancer cells harboring otherwise nondruggable KRAS mutations, which warrants further investigation in vivo.
Collapse
Affiliation(s)
- Murugan Kalimutho
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Natural Sciences, Griffith University, Nathan, Australia
| | - Amanda L Bain
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bipasha Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Purba Nag
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Natural Sciences, Griffith University, Nathan, Australia
| | - Devathri M Nanayakkara
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sarah K Harten
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Janelle L Harris
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Goutham N Subramanian
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Debottam Sinha
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Natural Sciences, Griffith University, Nathan, Australia
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Japan
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Sandeep Burma
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
26
|
Chao MP, Gentles AJ, Chatterjee S, Lan F, Reinisch A, Corces MR, Xavy S, Shen J, Haag D, Chanda S, Sinha R, Morganti RM, Nishimura T, Ameen M, Wu H, Wernig M, Wu JC, Majeti R. Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease. Cell Stem Cell 2017; 20:329-344.e7. [PMID: 28089908 DOI: 10.1016/j.stem.2016.11.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/21/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
Abstract
Understanding the relative contributions of genetic and epigenetic abnormalities to acute myeloid leukemia (AML) should assist integrated design of targeted therapies. In this study, we generated induced pluripotent stem cells (iPSCs) from AML patient samples harboring MLL rearrangements and found that they retained leukemic mutations but reset leukemic DNA methylation/gene expression patterns. AML-iPSCs lacked leukemic potential, but when differentiated into hematopoietic cells, they reacquired the ability to give rise to leukemia in vivo and reestablished leukemic DNA methylation/gene expression patterns, including an aberrant MLL signature. Epigenetic reprogramming was therefore not sufficient to eliminate leukemic behavior. This approach also allowed us to study the properties of distinct AML subclones, including differential drug susceptibilities of KRAS mutant and wild-type cells, and predict relapse based on increased cytarabine resistance of a KRAS wild-type subclone. Overall, our findings illustrate the value of AML-iPSCs for investigating the mechanistic basis and clonal properties of human AML.
Collapse
Affiliation(s)
- Mark P Chao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Department of Medicine, Division of Hematology, Stanford Medicine, CA 94305, USA.
| | - Andrew J Gentles
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Stanford Center for Cancer Systems Biology, Stanford Medicine, CA 94305, USA
| | - Susmita Chatterjee
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Feng Lan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Andreas Reinisch
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - M Ryan Corces
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Seethu Xavy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Jinfeng Shen
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Daniel Haag
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Soham Chanda
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Rachel M Morganti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Mohamed Ameen
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Haodi Wu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA
| | - Joseph C Wu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University, CA 94305, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA 94305, USA; Department of Medicine, Division of Hematology, Stanford Medicine, CA 94305, USA
| |
Collapse
|
27
|
DNA damage response in patients with pediatric Acute Lymphoid Leukemia during induction therapy. Leuk Res 2017; 54:59-65. [PMID: 28109975 DOI: 10.1016/j.leukres.2017.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Predicting the individual response to chemotherapy is a crucial challenge in cancer treatment. DNA damage caused by antitumor therapies evokes different repair mechanisms responses, such as Nucleotide Excision Repair (NER), whose components are being studied as prognosis biomarkers and target therapies. However, few reports have addressed DNA damages in pediatric Acute Lymphoid Leukemia (ALL). Hence, we conducted an observational follow-up study with pediatric patients to assess DNA damage (by Comet Assay) and gene expression from NER pathway during chemotherapy induction. Bone marrow samples from diagnosis, 15th(D15) and 35th (D35) days of the treatment were collected from 28 patients with ALL. There was no increase in damage index. However, there was a reduction of cells with low damages on D35 compared with diagnosis. NER pathway expression remained the same, however, in a single patient, a significant decrease was observed, maybe due to silencing or downregulation of repair pathways. DNA damage levels and repair may influence the clinical outcome, being involved in drug resistance and risk of relapse. In pediatric ALL, we analyzed for the first time DNA damage and repair behavior in BM samples. Monitoring patient's outcomes will help to access the implication of our findings in survival and relapse rates.
Collapse
|
28
|
Wang P, Ma D, Wang J, Fang Q, Gao R, Wu W, Cao L, Hu X, Zhao J, Li Y. INPP4B-mediated DNA repair pathway confers resistance to chemotherapy in acute myeloid leukemia. Tumour Biol 2016; 37:12513-12523. [PMID: 27342972 DOI: 10.1007/s13277-016-5111-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022] Open
Abstract
INPP4B has been recently shown to be a poor prognostic marker and confer chemo- or radio-resistance in AML cells, whereas, the underlying mechanisms remain unclear. Herein, we aimed to explore the possible mechanisms mediated the resistance to chemotherapy in AML. We found that INPP4B-mediated resistance to genotoxic drug, cytarabine, was accompanied by lower p-H2AX accumulation in KG-1 cells, and INPP4B knockdown evidently sensitized KG-1 cells to cytarabine, meanwhile, p-H2AX expression was increased dramatically. Then, we observed that INPP4B knockdown inhibited the loss of p-H2AX expression after cytarabine removal in INPP4B-silenced KG-1 cells, whereas, in control KG-1 cells, the expression of p-H2AX was reduced in a time-dependent manner. Next, INPP4B knockdown can significantly downregulate ATM expression and subsequently inhibit the activation of ATM downstream targets of p-ATM, p-BRCA1, p-ATR, and p-RAD51. Furthermore, nuclear localization of p65 was inhibited after INPP4B knockdown, and reactivation of p65 can rescue the INPP4B knockdown-induced inhibition of ATM, p-ATM, p-BRCA1, p-ATR, and p-RAD51. Finally, INPP4B expression was positively correlated with ATM expression in AML cells, both INPP4B knockdown and KU55933 can significantly sensitize primary myeloid leukemic cells to cytarabine treatment.Collectively, these data suggest that enhanced ATM-dependent DNA repair is involved in resistance to chemotherapy in INPP4Bhigh AML, which could be mediated by p65 nuclear translocation, combination chemotherapy with INPP4B or DNA repair pathway inhibition represents a promising strategy in INPP4Bhigh AML.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,Department of Pharmacy, Affiliated BaiYun Hospital of Guizhou Medical University, Guiyang, 550014, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China. .,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China. .,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Qin Fang
- Department of Pharmacy, Affiliated BaiYun Hospital of Guizhou Medical University, Guiyang, 550014, China.,Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Rui Gao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Weibing Wu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Lu Cao
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xiuying Hu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jiangyuan Zhao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Key Laboratory of Hematological Disease Diagnostic and Treat Centre of GuiZhou Province, Guiyang, 550004, China.,GuiZhou Province Hematopoietic Stem Cell Transplantation Center, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
29
|
Muvarak N, Kelley S, Robert C, Baer MR, Perrotti D, Gambacorti-Passerini C, Civin C, Scheibner K, Rassool FV. c-MYC Generates Repair Errors via Increased Transcription of Alternative-NHEJ Factors, LIG3 and PARP1, in Tyrosine Kinase-Activated Leukemias. Mol Cancer Res 2015; 13:699-712. [PMID: 25828893 DOI: 10.1158/1541-7786.mcr-14-0422] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/07/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Leukemias expressing the constitutively activated tyrosine kinases (TK) BCR-ABL1 and FLT3/ITD activate signaling pathways that increase genomic instability through generation of reactive oxygen species (ROS), DNA double-strand breaks (DSB), and error-prone repair. The nonhomologous end-joining (NHEJ) pathway is a major pathway for DSB repair and is highly aberrant in TK-activated leukemias; an alternative form of NHEJ (ALT-NHEJ) predominates, evidenced by increased expression of DNA ligase IIIα (LIG3) and PARP1, increased frequency of large genomic deletions, and repair using DNA sequence microhomologies. This study, for the first time, demonstrates that the TK target c-MYC plays a role in transcriptional activation and subsequent expression of LIG3 and PARP1 and contributes to the increased error-prone repair observed in TK-activated leukemias. c-MYC negatively regulates microRNAs miR-150 and miR-22, which demonstrate an inverse correlation with LIG3 and PARP1 expression in primary and cultured leukemia cells and chronic myelogenous leukemia human patient samples. Notably, inhibition of c-MYC and overexpression of miR-150 and -22 decreases ALT-NHEJ activity. Thus, BCR-ABL1 or FLT3/ITD induces c-MYC expression, leading to genomic instability via augmented expression of ALT-NHEJ repair factors that generate repair errors. IMPLICATIONS In the context of TK-activated leukemias, c-MYC contributes to aberrant DNA repair through downstream targets LIG3 and PARP1, which represent viable and attractive therapeutic targets.
Collapse
Affiliation(s)
- Nidal Muvarak
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shannon Kelley
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Carine Robert
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R Baer
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Danilo Perrotti
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland. Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | | | - Curt Civin
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kara Scheibner
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
30
|
Deregulation of DNA double-strand break repair in multiple myeloma: implications for genome stability. PLoS One 2015. [PMID: 25790254 DOI: 10.1371/journal.pone.0121581.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by frequent chromosome abnormalities. However, the molecular basis for this genome instability remains unknown. Since both impaired and hyperactive double strand break (DSB) repair pathways can result in DNA rearrangements, we investigated the functionality of DSB repair in MM cells. Repair kinetics of ionizing-radiation (IR)-induced DSBs was similar in MM and normal control lymphoblastoid cell lines, as revealed by the comet assay. However, four out of seven MM cell lines analyzed exhibited a subset of persistent DSBs, marked by γ-H2AX and Rad51 foci that elicited a prolonged G2/M DNA damage checkpoint activation and hypersensitivity to IR, especially in the presence of checkpoint inhibitors. An analysis of the proteins involved in DSB repair in MM cells revealed upregulation of DNA-PKcs, Artemis and XRCC4, that participate in non-homologous end joining (NHEJ), and Rad51, involved in homologous recombination (HR). Accordingly, activity of both NHEJ and HR were elevated in MM cells compared to controls, as determined by in vivo functional assays. Interestingly, levels of proteins involved in a highly mutagenic, translocation-promoting, alternative NHEJ subpathway (Alt-NHEJ) were also increased in all MM cell lines, with the Alt-NHEJ protein DNA ligase IIIα, also overexpressed in several plasma cell samples isolated from MM patients. Overactivation of the Alt-NHEJ pathway was revealed in MM cells by larger deletions and higher sequence microhomology at repair junctions, which were reduced by chemical inhibition of the pathway. Taken together, our results uncover a deregulated DSB repair in MM that might underlie the characteristic genome instability of the disease, and could be therapeutically exploited.
Collapse
|
31
|
Herrero AB, San Miguel J, Gutierrez NC. Deregulation of DNA double-strand break repair in multiple myeloma: implications for genome stability. PLoS One 2015; 10:e0121581. [PMID: 25790254 PMCID: PMC4366222 DOI: 10.1371/journal.pone.0121581] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/18/2015] [Indexed: 11/23/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by frequent chromosome abnormalities. However, the molecular basis for this genome instability remains unknown. Since both impaired and hyperactive double strand break (DSB) repair pathways can result in DNA rearrangements, we investigated the functionality of DSB repair in MM cells. Repair kinetics of ionizing-radiation (IR)-induced DSBs was similar in MM and normal control lymphoblastoid cell lines, as revealed by the comet assay. However, four out of seven MM cell lines analyzed exhibited a subset of persistent DSBs, marked by γ-H2AX and Rad51 foci that elicited a prolonged G2/M DNA damage checkpoint activation and hypersensitivity to IR, especially in the presence of checkpoint inhibitors. An analysis of the proteins involved in DSB repair in MM cells revealed upregulation of DNA-PKcs, Artemis and XRCC4, that participate in non-homologous end joining (NHEJ), and Rad51, involved in homologous recombination (HR). Accordingly, activity of both NHEJ and HR were elevated in MM cells compared to controls, as determined by in vivo functional assays. Interestingly, levels of proteins involved in a highly mutagenic, translocation-promoting, alternative NHEJ subpathway (Alt-NHEJ) were also increased in all MM cell lines, with the Alt-NHEJ protein DNA ligase IIIα, also overexpressed in several plasma cell samples isolated from MM patients. Overactivation of the Alt-NHEJ pathway was revealed in MM cells by larger deletions and higher sequence microhomology at repair junctions, which were reduced by chemical inhibition of the pathway. Taken together, our results uncover a deregulated DSB repair in MM that might underlie the characteristic genome instability of the disease, and could be therapeutically exploited.
Collapse
Affiliation(s)
- Ana B. Herrero
- Servicio de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Jesús San Miguel
- Clínica Universidad de Navarra, Centro de Investigaciones Médicas Aplicadas (CIMA), Pamplona, Spain
| | - Norma C. Gutierrez
- Servicio de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
- * E-mail:
| |
Collapse
|
32
|
Grabocka E, Commisso C, Bar-Sagi D. Molecular pathways: targeting the dependence of mutant RAS cancers on the DNA damage response. Clin Cancer Res 2014; 21:1243-7. [PMID: 25424849 DOI: 10.1158/1078-0432.ccr-14-0650] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Of the genes mutated in cancer, RAS remains the most elusive to target. Recent technological advances and discoveries have greatly expanded our knowledge of the biology of oncogenic Ras and its role in cancer. As such, it has become apparent that a property that intimately accompanies RAS-driven tumorigenesis is the dependence of RAS-mutant cells on a number of nononcogenic signaling pathways. These dependencies arise as a means of adaptation to Ras-driven intracellular stresses and represent unique vulnerabilities of mutant RAS cancers. A number of studies have highlighted the dependence of mutant RAS cancers on the DNA damage response and identified the molecular pathways that mediate this process, including signaling from wild-type Ras isoforms, ATR/Chk1, and DNA damage repair pathways. Here, we review these findings, and we discuss the combinatorial use of DNA-damaging chemotherapy with blockade of wild-type H- and N-Ras signaling by farnesyltransferase inhibitors, Chk1 inhibitors, or small-molecule targeting DNA damage repair as potential strategies through which the dependence of RAS cancers on the DNA damage response can be harnessed for therapeutic intervention.
Collapse
Affiliation(s)
- Elda Grabocka
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York.
| | - Cosimo Commisso
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| |
Collapse
|
33
|
Jekimovs C, Bolderson E, Suraweera A, Adams M, O’Byrne KJ, Richard DJ. Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising. Front Oncol 2014; 4:86. [PMID: 24795863 PMCID: PMC4001069 DOI: 10.3389/fonc.2014.00086] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/08/2014] [Indexed: 01/09/2023] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell's genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.
Collapse
Affiliation(s)
- Christian Jekimovs
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amila Suraweera
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark Adams
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth J. O’Byrne
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|