1
|
Xie L, Deng X, Li X, Li X, Wang X, Yan H, Zhao L, Yang D, Luo T, Yang Y, Xiao Z, Lu X. CircMETTL3-156aa reshapes the glycolytic metabolism of macrophages to promote M1 polarization and induce cytokine storms in sHLH. Cell Death Discov 2024; 10:431. [PMID: 39384750 PMCID: PMC11464708 DOI: 10.1038/s41420-024-02202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Persistent macrophage activation and cytokine storms are critical causes for the rapid disease progression and high mortality rate of Secondary Hemophagocytic lymphohistiocytosis (sHLH). Identification of key regulatory factors that govern the activation of macrophages is vital. Plasma exosomal circular RNAs (circRNAs) are considered important biomarkers and potential therapeutic targets for various diseases, however, their function in sHLH is still unclear. In this study, we demonstrated for the first time that circMETTL3, derived from METTL3, is upregulated in sHLH patient plasma exosomes, which may plays an important role in the diagnosis of sHLH. Significantly, we also revealed that a novel peptide encoded by circMETTL3, METTL3-156aa, is an inducer of M1 macrophage polarization, which is responsible for the development of cytokine storms during sHLH. We then identified that METTL3-156aa binding with lactate dehydrogenase A (LDHA) and promotes M1 macrophage polarization by enhancing macrophage glycolysis. Additionally, the glycolysis metabolite lactate upregulates the cleavage factor SRSF10 expression by lactylation. This results in increased splicing of the pre-METTL3 mRNA, leading to an enchance in the production of cirMETTL3. Therefore, our results suggest that the circMETTL3/METTL3-156aa/LDHA/Lactate/SRSF10 axis forms a positive feedback loop and may be a novel therapeutic target for the treatment of sHLH.
Collapse
Affiliation(s)
- Longlong Xie
- Department of Radiology, Hunan Provincial Key Laboratory of Pediatric Orthopedics, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Xiangying Deng
- Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Li
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xun Li
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Xiangyu Wang
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Haipeng Yan
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Yang
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Ting Luo
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Yufan Yang
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Zhenghui Xiao
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China.
| | - Xiulan Lu
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China.
| |
Collapse
|
2
|
Ma J, Yan J, Liu M, Yan C, Tang X, Qiu H, Miao M, Han Y, Li L, Kang L, Xu N, Yu Z, Tan J, Zhu H, Jia X, Zhang Z, Wang M, Dai H, Yu L, Xue S, Wu D, Gong W. Safe and potent anti-CD19 CAR T-cells with shRNA-IL-6 gene silencing element in patients with refractory or relapsed B-cell acute lymphoblastic leukemia. Hemasphere 2024; 8:e70007. [PMID: 39380843 PMCID: PMC11456753 DOI: 10.1002/hem3.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024] Open
Abstract
Severe cytokine release syndrome (sCRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) have limited the widespread use of chimeric antigen receptor T (CAR T)-cell therapy. We designed a novel anti-CD19 CAR (ssCART-19) with a small hairpin RNA (shRNA) element to silence the interleukin-6 (IL-6) gene, hypothesizing it could reduce sCRS and ICANS by alleviating monocyte activation and proinflammatory cytokine release. In a post hoc analysis of two clinical trials, we compared ssCART-19 with common CAR T-cells (cCART-19) in relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL). Among 87 patients, 47 received ssCART-19 and 40 received cCART-19. Grade ≥3 CRS occurred in 14.89% (7/47) of the ssCART-19 group versus 37.5% (15/40) in the cCART-19 group (p = 0.036). ICANS occurred in 4.26% (2/47) of the ssCART-19 group (all grade 1) compared to 15% (2/40) of the cCART-19 group. Patients in the ssCART-19 group showed comparable rates of treatment response (calculated with rates of complete remission and incomplete hematological recovery) were 91.49% (43/47) for ssCART-19 and 85% (34/40) for cCART-19 (p = 0.999). With a median follow-up of 21.9 months, cumulative nonrelapse mortality was 10.4% for ssCART-19 and 13.6% for cCART-19 (p = 0.33). Median overall survival was 37.17 months for ssCART-19 and 32.93 months for cCART-19 (p = 0.40). Median progression-free survival was 24.17 months for ssCART-19 and 9.33 months for cCART-19 (p = 0.23). These data support the safety and efficacy of ssCART-19 for r/r B-ALL, suggesting its potential as a promising therapy.
Collapse
Affiliation(s)
- Jin‐Feng Ma
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of HematologyJining No. 1 People's HospitalJiningChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Jia‐Wei Yan
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Mei‐Jing Liu
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Chun‐Long Yan
- Department of HematologyJining No. 1 People's HospitalJiningChina
| | - Xiao‐Wen Tang
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Hui‐Ying Qiu
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Miao Miao
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Yue Han
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Li‐Min Li
- Department of HematologySouthern University of Science and Technology HospitalShenzhenChina
| | - Li‐Qing Kang
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Nan Xu
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Zhou Yu
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Jing‐Wen Tan
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Hong‐Jia Zhu
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Xu Jia
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Zhi‐Zhi Zhang
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Miao Wang
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Hai‐Ping Dai
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Lei Yu
- Research and Development DepartmentShanghai Unicar‐Therapy Bio‐Medicine Technology Co., Ltd.ShanghaiChina
| | - Sheng‐Li Xue
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - De‐Pei Wu
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Wen‐Jie Gong
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| |
Collapse
|
3
|
Abdalhadi HM, Chatham WW, Alduraibi FK. CAR-T-Cell Therapy for Systemic Lupus Erythematosus: A Comprehensive Overview. Int J Mol Sci 2024; 25:10511. [PMID: 39408836 PMCID: PMC11476835 DOI: 10.3390/ijms251910511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by the production of autoreactive B and T cells and cytokines, leading to chronic inflammation affecting multiple organs. SLE is associated with significant complications that substantially increase morbidity and mortality. Given its complex pathogenesis, conventional treatments for SLE often have significant side effects and limited efficacy, necessitating the exploration of novel therapeutic strategies. One promising approach is the use of chimeric antigen receptor (CAR)-T-cell therapy, which has shown remarkable success in treating refractory hematological malignancies. This review provides a comprehensive analysis of the current use of CAR-T-cell therapy in SLE.
Collapse
Affiliation(s)
- Haneen M. Abdalhadi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Walter W. Chatham
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Nevada, Las Vegas, NV 89102, USA;
| | - Fatima K. Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Medicine, Division of Clinical Immunology and Rheumatology, Harvard Teaching Hospital, Boston, MA 02215, USA
- Department of Medicine, Division of Clinical Immunology and Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| |
Collapse
|
4
|
Wilhelm KB, Vissa A, Groves JT. Differential roles of kinetic on- and off-rates in T-cell receptor signal integration revealed with a modified Fab'-DNA ligand. Proc Natl Acad Sci U S A 2024; 121:e2406680121. [PMID: 39298491 PMCID: PMC11441509 DOI: 10.1073/pnas.2406680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Antibody-derived T-cell receptor (TCR) agonists are commonly used to activate T cells. While antibodies can trigger TCRs regardless of clonotype, they bypass native T cell signal integration mechanisms that rely on monovalent, membrane-associated, and relatively weakly binding ligand in the context of cellular adhesion. Commonly used antibodies and their derivatives bind much more strongly than native peptide major histocompatibility complex (pMHC) ligands bind their cognate TCRs. Because ligand dwell time is a critical parameter that tightly correlates with physiological function of the TCR signaling system, there is a general need, both in research and therapeutics, for universal TCR ligands with controlled kinetic binding parameters. To this end, we have introduced point mutations into recombinantly expressed α-TCRβ H57 Fab to modulate the dwell time of monovalent Fab binding to TCR. When tethered to a supported lipid bilayer via DNA complementation, these monovalent Fab'-DNA ligands activate T cells with potencies well-correlated with their TCR binding dwell time. Single-molecule tracking studies in live T cells reveal that individual binding events between Fab'-DNA ligands and TCRs elicit local signaling responses closely resembling native pMHC. The unique combination of high on- and off-rates of the H57 R97L mutant enables direct observations of cooperative interplay between ligand binding and TCR-proximal condensation of the linker for activation of T cells, which is not readily visualized with pMHC. This work provides insights into how T cells integrate kinetic information from TCR ligands and introduces a method to develop affinity panels for polyclonal T cells, such as cells from a human patient.
Collapse
MESH Headings
- Humans
- Kinetics
- Ligands
- Signal Transduction
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- DNA/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Lymphocyte Activation
- Point Mutation
Collapse
Affiliation(s)
- Kiera B. Wilhelm
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
| | - Anand Vissa
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
| | - Jay T. Groves
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| |
Collapse
|
5
|
Abacar K, Macleod T, Direskeneli H, McGonagle D. How underappreciated autoinflammatory (innate immunity) mechanisms dominate disparate autoimmune disorders. Front Immunol 2024; 15:1439371. [PMID: 39372419 PMCID: PMC11449752 DOI: 10.3389/fimmu.2024.1439371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Historically inflammation against self was considered autoimmune which stems back to the seminal observations by Ehrlich who described serum factors, now known to be autoantibodies produced by B lineage cells that mediate "horror autotoxicus". The 20th century elucidation of B- and T-cell adaptive immune responses cemented the understanding of the key role of adaptive immune responses in mediating pathology against self. However, Mechnikov shared the Nobel Prize for the discovery of phagocytosis, the most rudimentary aspect of innate immunity. Fast forward some 100 years and an immunogenetic understanding of innate immunity led to the categorising of innate immunopathology under the umbrella term 'auto inflammation' and terminology such as "horror autoinflammaticus" to highlight the schism from the classical adaptive immune understanding of autoimmunity. These concepts lead to calls for a two-tiered classification of inflammation against self, but just as innate and adaptive immunity are functionally integrated, so is immunopathology in many settings and the concept of an autoimmune to autoinflammation continuum emerged with overlaps between both. Herein we describe several historically designated disorders of adaptive immunity where innate immunity is key, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD) where the immunopathology phenotype is strongly linked to major histocompatibility complex (MHC) class II associations and responds to drugs that target T-cells. We also consider MHC-I-opathies including psoriasis and Behcet's disease(BD) that are increasingly viewed as archetype CD8 T-cell related disorders. We also briefly review the key role of barrier dysfunction in eczema and ulcerative colitis (UC) where innate tissue permeability barrier dysfunction and microbial dysbiosis contributes to prominent adaptive immune pathological mechanisms. We also highlight the emerging roles of intermediate populations of lymphocytes including gamma delta (γδ) and mucosal-associated invariant T (MAIT) cells that represent a blend of adaptive immune plasticity and innate immune rapid responders that may also determine site specific patterns of inflammation.
Collapse
Affiliation(s)
- Kerem Abacar
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Macleod
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
| | - Haner Direskeneli
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
6
|
Tanabe S, Furui Y, Saito S, Okura E, Ide Y, Takezawa Y, Maruyama Y, Sakamoto K, Hirabayashi K, Tanaka M, Yanagisawa R, Nakazawa Y. Paediatric acute lymphoblastic leukaemia-associated haemophagocytic lymphohistiocytosis develops during prednisolone prephase. Br J Haematol 2024. [PMID: 39248176 DOI: 10.1111/bjh.19755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Affiliation(s)
- Sota Tanabe
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yu Furui
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eri Okura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuichiro Ide
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Yuka Takezawa
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Yuta Maruyama
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenichi Sakamoto
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Koichi Hirabayashi
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Miyuki Tanaka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryu Yanagisawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
- Division of Blood Transfusion, Shinshu University Hospital, Matsumoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
7
|
Gandhi M, Sharma B, Nair S, Vaidya ADB. Current Insights into CAR T-Cell-Based Therapies for Myelodysplastic Syndrome. Pharm Res 2024; 41:1757-1773. [PMID: 39187686 DOI: 10.1007/s11095-024-03761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Myelodysplastic syndromes (MDS) are due to defective hematopoiesis in bone marrow characterized by cytopenia and dysplasia of blood cells, with a varying degree of risk of acute myeloid leukemia (AML). Currently, the only potentially curative strategy is hematopoietic stem cell transplantation (HSCT). Many patients are ineligible for HSCT, due to late diagnosis, presence of co-morbidities, old age and complications likely due to graft-versus-host disease (GvHD). As a consequence, patients with MDS are often treated conservatively with blood transfusions, chemotherapy, immunotherapy etc. based on the grade and manifestations of MDS. The development of chimeric antigen receptor (CAR)-T cell therapy has revolutionized immunotherapy for hematological malignancies, as evidenced by a large body of literature. However, resistance and toxicity associated with it are also a challenge. Hence, there is an urgent need to develop new strategies for immunological and hematopoetic management of MDS. Herein, we discuss current limitations of CAR T-cell therapy and summarize novel approaches to mitigate this. Further, we discuss the in vivo activation of tumor-specific T cells, immune check inhibitors (ICI) and other approaches to normalize the bone marrow milieu for the management of MDS.
Collapse
Affiliation(s)
- Manav Gandhi
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Bhirisha Sharma
- University of Mumbai, Santa Cruz (East), Mumbai, 400055, India
| | - Sujit Nair
- Viridis Biopharma Pvt. Ltd, Mumbai, 400022, India.
- Phytoveda Pvt. Ltd, Mumbai, 400022, India.
| | - Ashok D B Vaidya
- Kasturba Health Society-Medical Research Centre, Vile Parle (West), Mumbai, 400056, India
| |
Collapse
|
8
|
Kurnik M, Peter F, Matej P. Tocilizumab and CytoSorb for delayed severe cytokine release syndrome after ipilimumab plus nivolumab immunotherapy. Immunotherapy 2024; 16:791-801. [PMID: 39016056 PMCID: PMC11457641 DOI: 10.1080/1750743x.2024.2370180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Cytokine release syndrome (CRS) is immune dysregulation phenomenon that is associated with immune checkpoint inhibitors. It is still difficult to distinguish CRS from other dangerous, acute and life-threatening medical disorders.We present a case of delayed grade 4 CRS following treatment of lung adenocarcinoma with ipilimumab plus nivolumab that warranted intensive care level treatment with abundant fluid resuscitation, two-tire vasopressor support, high-flow nasal oxygenation, corticosteroids in high dosages, as well as sustained low-efficiency daily diafiltration with CytoSorb hemadsorption and tocilizumab. Initial treatment of presumed septic shock of unknown origin did not yield results.After initiation of corticosteroids and particularly CytoSorb hemadsorption and tocilizumab, prompt clinical and laboratory improvement was observed.
Collapse
Affiliation(s)
- Marko Kurnik
- General Hospital Celje, Department of Internal Intensive Medicine, Celje, Slovenia
| | - Fazarinc Peter
- General Hospital Celje, Department of Hematology & Oncology, Celje, Slovenia
| | - Podbregar Matej
- General Hospital Celje, Department of Internal Intensive Medicine, Celje, Slovenia
- University of Ljubljana, Medical Faculty, Ljubljana, Slovenia
| |
Collapse
|
9
|
Hughes AD, Teachey DT, Diorio C. Riding the storm: managing cytokine-related toxicities in CAR-T cell therapy. Semin Immunopathol 2024; 46:5. [PMID: 39012374 PMCID: PMC11252192 DOI: 10.1007/s00281-024-01013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/18/2024] [Indexed: 07/17/2024]
Abstract
The advent of chimeric antigen receptor T cells (CAR-T) has been a paradigm shift in cancer immunotherapeutics, with remarkable outcomes reported for a growing catalog of malignancies. While CAR-T are highly effective in multiple diseases, salvaging patients who were considered incurable, they have unique toxicities which can be life-threatening. Understanding the biology and risk factors for these toxicities has led to targeted treatment approaches which can mitigate them successfully. The three toxicities of particular interest are cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and immune effector cell-associated hemophagocytic lymphohistiocytosis (HLH)-like syndrome (IEC-HS). Each of these is characterized by cytokine storm and hyperinflammation; however, they differ mechanistically with regard to the cytokines and immune cells that drive the pathophysiology. We summarize the current state of the field of CAR-T-associated toxicities, focusing on underlying biology and how this informs toxicity management and prevention. We also highlight several emerging agents showing promise in preclinical models and the clinic. Many of these established and emerging agents do not appear to impact the anti-tumor function of CAR-T, opening the door to additional and wider CAR-T applications.
Collapse
Affiliation(s)
- Andrew D Hughes
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Caroline Diorio
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Immune Dysregulation Frontier Program, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Liu Y, Feng TT, Tong W, Guo Z, Li X, Kong Q, Xiang ZG. The transcriptome of MHV-infected RAW264.7 cells offers an alternative model for macrophage innate immunity research. Animal Model Exp Med 2024. [PMID: 38992966 DOI: 10.1002/ame2.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/15/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Macrophages are the primary innate immune cells encountered by the invading coronaviruses, and their abilities to initiate inflammatory reactions, to maintain the immunity homeostasis by differential polarization, to train the innate immune system by epigenic modification have been reported in laboratory animal research. METHODS In the current in vitro research, murine macrophage RAW 264.7 cell were infected by mouse hepatitis virus, a coronavirus existed in mouse. At 3-, 6-, 12-, 24-, and 48-h post infection (hpi.), the attached cells were washed with PBS and harvested in Trizol reagent. Then The harvest is subjected to transcriptome sequencing. RESULTS The transcriptome analysis showed the immediate (3 hpi.) up regulation of DEGs related to inflammation, like Il1b and Il6. DEGs related to M2 differential polarization, like Irf4 showed up regulation at 24 hpi., the late term after viral infection. In addition, DEGs related to metabolism and histone modification, like Ezh2 were detected, which might correlate with the trained immunity of macrophages. CONCLUSIONS The current in vitro viral infection study showed the key innated immunity character of macrophages, which suggested the replacement value of viral infection cells model, to reduce the animal usage in preclinical research.
Collapse
Affiliation(s)
- Yun Liu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Ting-Ting Feng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Wei Tong
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Zhi Guo
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Xia Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Qi Kong
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, P.R. China
| | - Zhi-Guang Xiang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, P.R. China
| |
Collapse
|
11
|
Braun A, Otoukesh S, Tinajero J, Marcucci G, Aldoss I. Blinatumomab-induced macrophage activating syndrome (MAS) in adult with B-cell acute lymphoblastic leukemia (B-ALL). Ann Hematol 2024; 103:2541-2543. [PMID: 38789590 PMCID: PMC11224095 DOI: 10.1007/s00277-024-05795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Blinatumomab as a single agent has demonstrated superiority over salvage chemotherapy in patients with relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL), with manageable safety and efficacy. Though known to have anticipated drug toxicities including cytokine release syndrome (CRS) and neurotoxicity, there is only one prior report of macrophage activating syndrome (MAS) due to blinatumomab. Case Presentation: We report the first case of blinatumomab-induced MAS in an adult. The patient presented with fever, cough, and weakness on the second cycle of blinatumomab. Complete blood count was notable for severe leukopenia, with comprehensive metabolic panel notable for elevated alkaline phosphatase, AST, ALT, LDH, and hyperferritinemia consistent with MAS. The patient was already in MRD-negative remission at presentation with MAS. She responded rapidly to withholding the drug and administration of both tocilizumab and dexamethasone. She was able to restart therapy with blinatumomab dosed at 9 mcg/day with no recurrence of symptoms. Though MAS is not an expected association with blinatumomab, the risk for CRS is. Secondary MAS in this case likely shares a mechanism with other hyperinflammatory conditions. Management includes holding the offending agent, like blinatumomab, and administering tocilizumab and dexamethasone. Future research will be needed to predict which patients are at highest risk to develop MAS after similar T-cell therapies.
Collapse
Affiliation(s)
- Adam Braun
- Hematology and HCT, City of Hope Comprehensive Cancer Center, Duarte, USA.
| | - Salman Otoukesh
- Hematology and HCT, City of Hope Comprehensive Cancer Center, Duarte, USA
| | - Jose Tinajero
- Hematology and HCT, City of Hope Comprehensive Cancer Center, Duarte, USA
| | - Guido Marcucci
- Hematology and HCT, City of Hope Comprehensive Cancer Center, Duarte, USA
| | - Ibrahim Aldoss
- Hematology and HCT, City of Hope Comprehensive Cancer Center, Duarte, USA
| |
Collapse
|
12
|
Géraud A, Hueso T, Laparra A, Bige N, Ouali K, Cauquil C, Stoclin A, Danlos FX, Hollebecque A, Ribrag V, Gazzah A, Goldschmidt V, Baldini C, Suzzoni S, Bahleda R, Besse B, Barlesi F, Lambotte O, Massard C, Marabelle A, Castilla-Llorente C, Champiat S, Michot JM. Reactions and adverse events induced by T-cell engagers as anti-cancer immunotherapies, a comprehensive review. Eur J Cancer 2024; 205:114075. [PMID: 38733717 DOI: 10.1016/j.ejca.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
T-cell engagers (TCE) are cancer immunotherapies that have recently demonstrated meaningful benefit for patients with hematological malignancies and solid tumors. The anticipated widespread use of T cell engagers poses implementation challenges and highlights the need for guidance to anticipate, mitigate, and manage adverse events. By mobilizing T-cells directly at the contact of tumor cells, TCE mount an obligatory and immediate anti-tumor immune response that could result in diverse reactions and adverse events. Cytokine release syndrome (CRS) is the most common reaction and is largely confined to the first drug administrations during step-up dosage. Cytokine release syndrome should be distinguished from infusion related reaction by clinical symptoms, timing to occurrence, pathophysiological aspects, and clinical management. Other common reactions and adverse events with TCE are immune effector Cell-Associated Neurotoxicity Syndrome (ICANS), infections, tumor flare reaction and cytopenias. The toxicity profiles of TCE and CAR-T cells have commonalities and distinctions that we sum-up in this review. As compared with CAR-T cells, TCE are responsible for less frequently severe CRS or ICANS. This review recapitulates terminology, pathophysiology, severity grading system and management of reactions and adverse events related to TCE.
Collapse
Affiliation(s)
- Arthur Géraud
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Thomas Hueso
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Ariane Laparra
- Gustave Roussy, Departement Interdisciplinaire d'Organisation des Parcours Patients, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Naike Bige
- Gustave Roussy, Service de réanimation et de soins intensifs, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Kaissa Ouali
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Cécile Cauquil
- Hôpital Universitaire du Kremlin Bicêtre, Service de Neurologie, 94270 Le Kremlin-Bicêtre, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Annabelle Stoclin
- Gustave Roussy, Service de réanimation et de soins intensifs, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - François-Xavier Danlos
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Antoine Hollebecque
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Vincent Ribrag
- Gustave Roussy, Department Hématologie, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Anas Gazzah
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Vincent Goldschmidt
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Capucine Baldini
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Steve Suzzoni
- Gustave Roussy, Department of Pharmacy, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Rastislav Bahleda
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Benjamin Besse
- Gustave Roussy, Department de Médecine Oncologique, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Fabrice Barlesi
- Gustave Roussy, Department de Médecine Oncologique, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Olivier Lambotte
- Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; Hôpital Universitaire du Kremlin Bicêtre, Service de Médecine Interne, 94270 Le Kremlin-Bicêtre, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Christophe Massard
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Aurélien Marabelle
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Cristina Castilla-Llorente
- Gustave Roussy, Department Hématologie, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Stéphane Champiat
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Jean-Marie Michot
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France.
| |
Collapse
|
13
|
Mikami H, Feng S, Matsuda Y, Ishii S, Naoi S, Azuma Y, Nagano H, Asanuma K, Kayukawa Y, Tsunenari T, Kamikawaji S, Iwabuchi R, Shinozuka J, Yamazaki M, Kuroi H, Ho SSW, Gan SW, Chichili P, Pang CL, Yeo CY, Shimizu S, Hironiwa N, Kinoshita Y, Shimizu Y, Sakamoto A, Muraoka M, Takahashi N, Kawa T, Shiraiwa H, Mimoto F, Kashima K, Kamata-Sakurai M, Ishikawa S, Aburatani H, Kitazawa T, Igawa T. Engineering CD3/CD137 Dual Specificity into a DLL3-Targeted T-Cell Engager Enhances T-Cell Infiltration and Efficacy against Small-Cell Lung Cancer. Cancer Immunol Res 2024; 12:719-730. [PMID: 38558120 DOI: 10.1158/2326-6066.cir-23-0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Small-cell lung cancer (SCLC) is an aggressive cancer for which immune checkpoint inhibitors (ICI) have had only limited success. Bispecific T-cell engagers are promising therapeutic alternatives for ICI-resistant tumors, but not all patients with SCLC are responsive. Herein, to integrate CD137 costimulatory function into a T-cell engager format and thereby augment therapeutic efficacy, we generated a CD3/CD137 dual-specific Fab and engineered a DLL3-targeted trispecific antibody (DLL3 trispecific). The CD3/CD137 dual-specific Fab was generated to competitively bind to CD3 and CD137 to prevent DLL3-independent cross-linking of CD3 and CD137, which could lead to systemic T-cell activation. We demonstrated that DLL3 trispecific induced better tumor growth control and a marked increase in the number of intratumoral T cells compared with a conventional DLL3-targeted bispecific T-cell engager. These findings suggest that DLL3 trispecific can exert potent efficacy by inducing concurrent CD137 costimulation and provide a promising therapeutic option for SCLC.
Collapse
Affiliation(s)
- Hirofumi Mikami
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Shu Feng
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yutaka Matsuda
- Project & Lifecycle Management Unit, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| | - Shinya Ishii
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Sotaro Naoi
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yumiko Azuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Hiroaki Nagano
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kentaro Asanuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yoko Kayukawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shogo Kamikawaji
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Ryutaro Iwabuchi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Junko Shinozuka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaki Yamazaki
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Haruka Kuroi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Siok Wan Gan
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | | | - Chai Ling Pang
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Chiew Ying Yeo
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Shun Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Naoka Hironiwa
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yasuko Kinoshita
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yuichiro Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Akihisa Sakamoto
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaru Muraoka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Tatsuya Kawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Futa Mimoto
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kenji Kashima
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| |
Collapse
|
14
|
Bucci L, Hagen M, Rothe T, Raimondo MG, Fagni F, Tur C, Wirsching A, Wacker J, Wilhelm A, Auger JP, Pachowsky M, Eckstein M, Alivernini S, Zoli A, Krönke G, Uderhardt S, Bozec A, D'Agostino MA, Schett G, Grieshaber-Bouyer R. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat Med 2024; 30:1593-1601. [PMID: 38671240 DOI: 10.1038/s41591-024-02964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Bispecific T cell engagers (BiTEs) kill B cells by engaging T cells. BiTEs are highly effective in acute lymphoblastic leukemia. Here we treated six patients with multidrug-resistant rheumatoid arthritis (RA) with the CD19xCD3 BiTE blinatumomab under compassionate use. Low doses of blinatumomab led to B cell depletion and concomitant decrease of T cells, documenting their engager function. Treatment was safe, with brief increase in body temperature and acute phase proteins during first infusion but no signs of clinically relevant cytokine-release syndrome. Blinatumomab led to a rapid decline in RA clinical disease activity in all patients, improved synovitis in ultrasound and FAPI-PET-CT and reduced autoantibodies. High-dimensional flow cytometry analysis of B cells documented an immune reset with depletion of activated memory B cells, which were replaced by nonclass-switched IgD-positive naïve B cells. Together, these data suggest the feasibility and potential for BiTEs to treat RA. This approach warrants further exploration on other B-cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Laura Bucci
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melanie Hagen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Rothe
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria Gabriella Raimondo
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carlo Tur
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Rheumatology, Fondazione Policlinico Universitario A Gemelli, IRCSS, Catholic University of Sacred Heart, Rome, Italy
| | - Andreas Wirsching
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jochen Wacker
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Artur Wilhelm
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Rheumatology, Charite, Berlin, Germany
| | - Jean-Philippe Auger
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Milena Pachowsky
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus Eckstein
- Department of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefano Alivernini
- Department of Rheumatology, Fondazione Policlinico Universitario A Gemelli, IRCSS, Catholic University of Sacred Heart, Rome, Italy
| | - Angelo Zoli
- Department of Rheumatology, Fondazione Policlinico Universitario A Gemelli, IRCSS, Catholic University of Sacred Heart, Rome, Italy
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Rheumatology, Charite, Berlin, Germany
| | - Stefan Uderhardt
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria-Antonietta D'Agostino
- Department of Rheumatology, Fondazione Policlinico Universitario A Gemelli, IRCSS, Catholic University of Sacred Heart, Rome, Italy
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Department of Rheumatology, Fondazione Policlinico Universitario A Gemelli, IRCSS, Catholic University of Sacred Heart, Rome, Italy.
- Karolinska Institutet, Stockholm, Sweden.
| | - Ricardo Grieshaber-Bouyer
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
15
|
Suwanchiwasiri K, Phanthaphol N, Somboonpatarakun C, Yuti P, Sujjitjoon J, Luangwattananun P, Maher J, Yenchitsomanus PT, Junking M. Bispecific T cell engager-armed T cells targeting integrin ανβ6 exhibit enhanced T cell redirection and antitumor activity in cholangiocarcinoma. Biomed Pharmacother 2024; 175:116718. [PMID: 38744221 DOI: 10.1016/j.biopha.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Advanced cholangiocarcinoma (CCA) presents a clinical challenge due to limited treatment options, necessitating exploration of innovative therapeutic approaches. Bispecific T cell engager (BTE)-armed T cell therapy shows promise in hematological and solid malignancies, offering potential advantages in safety over continuous BTE infusion. In this context, we developed a novel BTE, targeting CD3 on T cells and integrin αvβ6, an antigen elevated in various epithelial malignancies, on cancer cells. The novel BTE was generated by fusing an integrin αvβ6-binding peptide (A20) to an anti-CD3 (OKT3) single-chain variable fragment (scFv) through a G4S peptide linker (A20/αCD3 BTE). T cells were then armed with A20/αCD3 BTE (A20/αCD3-armed T cells) and assessed for antitumor activity. Our results highlight the specific binding of A20/αCD3 BTE to CD3 on T cells and integrin αvβ6 on target cells, effectively redirecting T cells towards these targets. After co-culture, A20/αCD3-armed T cells exhibited significantly heightened cytotoxicity against integrin αvβ6-expressing target cells compared to unarmed T cells in both KKU-213A cells and A375.β6 cells. Moreover, in a five-day co-culture, A20/αCD3-armed T cells demonstrated superior cytotoxicity against KKU-213A spheroids compared to unarmed T cells. Importantly, A20/αCD3-armed T cells exhibited an increased proportion of the effector memory T cell (Tem) subset, upregulation of T cell activation markers, enhanced T cell proliferation, and increased cytolytic molecule/cytokine production, when compared to unarmed T cells in an integrin αvβ6-dependent manner. These findings support the potential of A20/αCD3-armed T cells as a novel therapeutic approach for integrin αvβ6-expressing cancers.
Collapse
Affiliation(s)
- Kwanpirom Suwanchiwasiri
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattaporn Phanthaphol
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; School of Cardiovascular and Medical Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Chalermchai Somboonpatarakun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, Guy's Cancer Centre, Great Maze Pond, London, United Kingdom
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
16
|
Rodriguez-Otero P, Usmani S, Cohen AD, van de Donk NWCJ, Leleu X, Gállego Pérez-Larraya J, Manier S, Nooka AK, Mateos MV, Einsele H, Minnema M, Cavo M, Derman BA, Puig N, Gay F, Ho PJ, Chng WJ, Kastritis E, Gahrton G, Weisel K, Nagarajan C, Schjesvold F, Mikhael J, Costa L, Raje NS, Zamagni E, Hájek R, Weinhold N, Yong K, Ye JC, Sidhana S, Merlini G, Martin T, Lin Y, Chari A, Popat R, Kaufman JL. International Myeloma Working Group immunotherapy committee consensus guidelines and recommendations for optimal use of T-cell-engaging bispecific antibodies in multiple myeloma. Lancet Oncol 2024; 25:e205-e216. [PMID: 38697166 DOI: 10.1016/s1470-2045(24)00043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 05/04/2024]
Abstract
Multiple myeloma remains an incurable disease, despite the development of numerous drug classes and combinations that have contributed to improved overall survival. Immunotherapies directed against cancer cell-surface antigens, such as chimeric antigen receptor (CAR) T-cell therapy and T-cell-redirecting bispecific antibodies, have recently received regulatory approvals and shown unprecedented efficacy. However, these immunotherapies have unique mechanisms of action and toxicities that are different to previous treatments for myeloma, so experiences from clinical trials and early access programmes are essential for providing specific recommendations for management of patients, especially as these agents become available across many parts of the world. Here, we provide expert consensus clinical practice guidelines for the use of bispecific antibodies for the treatment of myeloma. The International Myeloma Working Group is also involved in the collection of prospective real-time data of patients treated with such immunotherapies, with the aim of learning continuously and adapting clinical practices to optimise the management of patients receiving immunotherapies.
Collapse
Affiliation(s)
| | - Saad Usmani
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Adam D Cohen
- University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | | | - Xavier Leleu
- Centre Hospitalier Universitaire Poitiers, Poitiers, France
| | - Jaime Gállego Pérez-Larraya
- Department of Neurology, Clínica Universidad de Navarra, Cancer Center Clinica Universidad de Navarra, CCUN, Pamplona, Spain
| | - Salomon Manier
- Centre Hospitalier Universitaire Lille, Universite de Lille, Lille, France
| | - Ajay K Nooka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Maria Victoria Mateos
- University Hospital of Salamanca/IBSAL/Cancer Research Center-IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Hermann Einsele
- Universitätsklinikum Würzburg, Department of Internal Medicine II, Würzburg, Germany
| | - Monique Minnema
- Department of Hematology, University Medical Center, Utrecht, Netherlands
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy; Dipartimento di Scieze Mediche e Chirurgiche, Universitá di Bologna, Bologna, Italy
| | - Benjamin A Derman
- Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Noemi Puig
- University Hospital of Salamanca/IBSAL/Cancer Research Center-IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Torino, Italy
| | - P Joy Ho
- Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW, Australia
| | - Wee-Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gösta Gahrton
- Department of Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Katja Weisel
- Universitätsklinikum Hamburg-Eppendorf, Medizinische Klinik und Poliklinik, Hamburg, Germany
| | - Chandramouli Nagarajan
- Department of Haematology, Singapore General Hospital and SingHealth Duke NUS Blood Cancer Center, Singapore
| | - Fredik Schjesvold
- Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, Oslo, Norway; KG Jebsen Center for B Cell Malignancies, University of Oslo, Oslo, Norway
| | - Joseph Mikhael
- Translational Genomics Research Institute, City of Hope Cancer Center, Phoenix, AZ, USA; International Myeloma Foundation, Studio City, CA, USA
| | - Luciano Costa
- Department of Medicine, Division of Hematology and Oncology, University of Wisconsin, Madison, WI, USA
| | - Noopur S Raje
- Department of Medical Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy; Dipartimento di Scieze Mediche e Chirurgiche, Universitá di Bologna, Bologna, Italy
| | - Roman Hájek
- Department of Hemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Niels Weinhold
- Department of Medicine V, Multiple Myeloma Section, University Hospital Heidelberg, Heidelberg, Germany
| | - Kwee Yong
- University College London Hospitals, London, UK
| | | | - Surbhi Sidhana
- Stanford University School of Medicine, Stanford, CA, USA
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Tom Martin
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Yi Lin
- Mayo Clinic, Rochester, MN, USA
| | - Ajai Chari
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Rakesh Popat
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jonathan L Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
Wilhelm KB, Vissa A, Groves JT. Differential Roles of Kinetic On- and Off-Rates in T-Cell Receptor Signal Integration Revealed with a Modified Fab'-DNA Ligand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587588. [PMID: 38617215 PMCID: PMC11014569 DOI: 10.1101/2024.04.01.587588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Antibody-derived T-cell receptor (TCR) agonists are commonly used to activate T cells. While antibodies can trigger TCRs regardless of clonotype, they bypass native T cell signal integration mechanisms that rely on monovalent, membrane-associated, and relatively weakly-binding ligand in the context of cellular adhesion. Commonly used antibodies and their derivatives bind much more strongly than native peptide-MHC (pMHC) ligands bind their cognate TCRs. Because ligand dwell time is a critical parameter that tightly correlates with physiological function of the TCR signaling system, there is a general need, both in research and therapeutics, for universal TCR ligands with controlled kinetic binding parameters. To this end, we have introduced point mutations into recombinantly expressed α-TCRβ H57 Fab to modulate the dwell time of monovalent Fab binding to TCR. When tethered to a supported lipid bilayer via DNA complementation, these monovalent Fab'-DNA ligands activate T cells with potencies well-correlated with their TCR binding dwell time. Single-molecule tracking studies in live T cells reveal that individual binding events between Fab'-DNA ligands and TCRs elicit local signaling responses closely resembling native pMHC. The unique combination of high on- and off-rate of the H57 R97L mutant enables direct observations of cooperative interplay between ligand binding and TCR-proximal condensation of the linker for activation of T cells (LAT), which is not readily visualized with pMHC. This work provides insights into how T cells integrate kinetic information from synthetic ligands and introduces a method to develop affinity panels for polyclonal T cells, such as cells from a human patient.
Collapse
Affiliation(s)
- Kiera B Wilhelm
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| | - Anand Vissa
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| | - Jay T Groves
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| |
Collapse
|
18
|
Mirfakhraie R, Dehaghi BK, Ghorbi MD, Ghaffari-Nazari H, Mohammadian M, Salimi M, Ardakani MT, Parkhideh S. All about blinatumomab: the bispecific T cell engager immunotherapy for B cell acute lymphoblastic leukemia. Hematol Transfus Cell Ther 2024; 46:192-200. [PMID: 37604766 DOI: 10.1016/j.htct.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/07/2023] [Indexed: 08/23/2023] Open
Abstract
INTRODUCTION B cell acute lymphoblastic leukemia-lymphoma (B-ALL) accounts for approximately 75% of ALL cases and is observed in children and adults. Recent advances in disease diagnosis, stratification and prognostication have led to a better characterization of different subgroups of ALL. Notwithstanding the significant improvement in the complete remission rate of B-ALL, patients with minimal residual disease (MRD) and relapsed/refractory (R/R) settings suffer from poor outcomes. HYPOTHESIS However, novel therapies, such as agents targeting tyrosine kinases or the CD20 molecule, combination therapies and improved supportive care, have changed the treatment landscape of B-ALL. METHOD AND RESULTS Meanwhile, blinatumomab has been FDA-approved for MRD-positive or R/R B-ALL patients. Blinatumomab is a bispecific T cell engager containing the CD3 and CD19 that recognize domains redirecting cytotoxic T cells to lyse B cells. Promising outcomes, including long-term overall survival and improved MRD-negative response rates, have been reported in patients who received this drug. Adding blinatumomab to new ALL regimens seems promising for achieving better outcomes in poor prognosis B-ALL patients. Nevertheless, the neurotoxicity and cytokine release syndrome are the two major adverse events following the blinatumomab therapy. CONCLUSION This review summarizes the function and effectiveness of blinatumomab in R/R and MRD positive B-ALL patients. Furthermore, blinatumomab's positive and negative aspects as a novel therapy for B-ALL patients have been briefly discussed.
Collapse
Affiliation(s)
- Reza Mirfakhraie
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahmoud Dehghani Ghorbi
- Department of Internal Medicine, Imam Hossein Hospital, School of Medicine Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Haniyeh Ghaffari-Nazari
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maria Tavakoli Ardakani
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Xu S, He K. Hemophagocytic lymphohistiocytosis after solid organ transplantation: A challenge for clinicians. Transpl Immunol 2024; 83:102007. [PMID: 38307154 DOI: 10.1016/j.trim.2024.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare inflammatory disorder with a high mortality rate and a wide range of symptoms. Solid organ transplantation, which provides patients with a unique immunosuppressive state, is a less common predisposing factor for HLH. HLH after solid organ transplantation (HLH-SOT) is very rare and fatal. It is hard to diagnose and treat and extremely understudied. The use of immunosuppressants makes the situation of HLH-SOT more complex. This review summarizes the existing literature on HLH after solid organ transplantation and describes its triggers and symptoms, focusing on its diagnosis and treatment. We performed a literature search of case reports, case series, letters to the editor, and clinical quizzes describing patients with HLH after solid organ transplantation (HLH-SOT). We provide recommendations on the diagnosis protocol and treatment strategy based on the existing evidence.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China.
| |
Collapse
|
20
|
Kegyes D, Ghiaur G, Bancos A, Tomuleasa C, Gale RP. Immune therapies of B-cell acute lymphoblastic leukaemia in children and adults. Crit Rev Oncol Hematol 2024; 196:104317. [PMID: 38437908 DOI: 10.1016/j.critrevonc.2024.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/26/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
B-cell acute lymphoblastic leukaemia (B-cell ALL) is a common haematologic cancer in children and adults. About 10 percent of children and 50 percent of adults fail to achieve a histological complete remission or subsequently relapse despite current anti-leukaemia drug therapies and/or haematopoietic cell transplants. Several new immune therapies including monoclonal antibodies and chimeric antigen receptor (CAR)-T-cells are proved safe and effective in this setting. We review data on US Food and Drug Administration (FDA)-approved immune therapies for B-cell ALL in children and adults including blinatumomab, inotuzumab ozogamicin, tisagenlecleucel, and brexucabtagene autoleucel. We also summarize pharmaco-dynamics, pharmaco-kinetics, and pharmaco-economics of these interventions.
Collapse
Affiliation(s)
- David Kegyes
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania; Academy of Romanian Scientists, Bucharest, Romania
| | - Gabriel Ghiaur
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Leukemia, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Anamaria Bancos
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania; Academy of Romanian Scientists, Bucharest, Romania.
| | - Robert Peter Gale
- Centre for Haematology, Imperial College of Science, Technology and Medicine, London, UK; Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Hematology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
21
|
Li T, Niu M, Zhou J, Wu K, Yi M. The enhanced antitumor activity of bispecific antibody targeting PD-1/PD-L1 signaling. Cell Commun Signal 2024; 22:179. [PMID: 38475778 PMCID: PMC10935874 DOI: 10.1186/s12964-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The programmed cell death 1 (PD-1) signaling pathway, a key player in immune checkpoint regulation, has become a focal point in cancer immunotherapy. In the context of cancer, upregulated PD-L1 on tumor cells can result in T cell exhaustion and immune evasion, fostering tumor progression. The advent of PD-1/PD-L1 inhibitor has demonstrated clinical success by unleashing T cells from exhaustion. Nevertheless, challenges such as resistance and adverse effects have spurred the exploration of innovative strategies, with bispecific antibodies (BsAbs) emerging as a promising frontier. BsAbs offer a multifaceted approach to cancer immunotherapy by simultaneously targeting PD-L1 and other immune regulatory molecules. We focus on recent advancements in PD-1/PD-L1 therapy with a particular emphasis on the development and potential of BsAbs, especially in the context of solid tumors. Various BsAb products targeting PD-1 signaling are discussed, highlighting their unique mechanisms of action and therapeutic potential. Noteworthy examples include anti-TGFβ × PD-L1, anti-CD47 × PD-L1, anti-VEGF × PD-L1, anti-4-1BB × PD-L1, anti-LAG-3 × PD-L1, and anti-PD-1 × CTLA-4 BsAbs. Besides, we summarize ongoing clinical studies evaluating the efficacy and safety of these innovative BsAb agents. By unraveling the intricacies of the tumor microenvironment and harnessing the synergistic effects of anti-PD-1/PD-L1 BsAbs, there exists the potential to elevate the precision and efficacy of cancer immunotherapy, ultimately enabling the development of personalized treatment strategies tailored to individual patient profiles.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
22
|
Nguyen TTT, Kim YT, Jeong G, Jin M. Immunopathology of and potential therapeutics for secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome: a translational perspective. Exp Mol Med 2024; 56:559-569. [PMID: 38448692 PMCID: PMC10984945 DOI: 10.1038/s12276-024-01182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 03/08/2024] Open
Abstract
Secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (sHLH/MAS) is a life-threatening immune disorder triggered by rheumatic disease, infections, malignancies, or medications. Characterized by the presence of hemophagocytic macrophages and a fulminant cytokine storm, sHLH/MAS leads to hyperferritinemia and multiorgan failure and rapidly progresses to death. The high mortality rate and the lack of specific treatments necessitate the development of a new drug. However, the complex and largely unknown immunopathologic mechanisms of sHLH/MAS, which involve dysfunction of various immune cells, diverse etiologies, and different clinical contexts make this effort challenging. This review introduces the terminology, diagnosis, and clinical features of sHLH/MAS. From a translational perspective, this review focuses on the immunopathological mechanisms linked to various etiologies, emphasizing potential drug targets, including key molecules and signaling pathways. We also discuss immunomodulatory biologics, existing drugs under clinical evaluation, and novel therapies in clinical trials. This systematic review aims to provide insights and highlight opportunities for the development of novel sHLH/MAS therapeutics.
Collapse
Affiliation(s)
- Tram T T Nguyen
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Yoon Tae Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Geunyeol Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mirim Jin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
23
|
Robertson IB, Mulvaney R, Dieckmann N, Vantellini A, Canestraro M, Amicarella F, O'Dwyer R, Cole DK, Harper S, Dushek O, Kirk P. Tuning the potency and selectivity of ImmTAC molecules by affinity modulation. Clin Exp Immunol 2024; 215:105-119. [PMID: 37930865 PMCID: PMC10847821 DOI: 10.1093/cei/uxad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
T-cell-engaging bispecifics have great clinical potential for the treatment of cancer and infectious diseases. The binding affinity and kinetics of a bispecific molecule for both target and T-cell CD3 have substantial effects on potency and specificity, but the rules governing these relationships are not fully understood. Using immune mobilizing monoclonal TCRs against cancer (ImmTAC) molecules as a model, we explored the impact of altering affinity for target and CD3 on the potency and specificity of the redirected T-cell response. This class of bispecifics binds specific target peptides presented by human leukocyte antigen on the cell surface via an affinity-enhanced T-cell receptor and can redirect T-cell activation with an anti-CD3 effector moiety. The data reveal that combining a strong affinity TCR with an intermediate affinity anti-CD3 results in optimal T-cell activation, while strong affinity of both targeting and effector domains significantly reduces maximum cytokine release. Moreover, by optimizing the affinity of both parts of the molecule, it is possible to improve the selectivity. These results could be effectively modelled based on kinetic proofreading with limited signalling. This model explained the experimental observation that strong binding at both ends of the molecules leads to reduced activity, through very stable target-bispecific-effector complexes leading to CD3 entering a non-signalling dark state. These findings have important implications for the design of anti-CD3-based bispecifics with optimal biophysical parameters for both activity and specificity.
Collapse
Affiliation(s)
- Ian B Robertson
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Rachel Mulvaney
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Nele Dieckmann
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Alessio Vantellini
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Martina Canestraro
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | | | - Ronan O'Dwyer
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - David K Cole
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Stephen Harper
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Peter Kirk
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| |
Collapse
|
24
|
Martin GH, Gonon A, Martin-Jeantet P, Renart-Depontieu F, Biesova Z, Cifuentes A, Mukherjee A, Thisted T, Doerner A, Campbell DO, Bourré L, van der Horst EH, Rezza A, Thiam K. Myeloid and dendritic cells enhance therapeutics-induced cytokine release syndrome features in humanized BRGSF-HIS preclinical model. Front Immunol 2024; 15:1357716. [PMID: 38384461 PMCID: PMC10880010 DOI: 10.3389/fimmu.2024.1357716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Objectives Despite their efficacy, some immunotherapies have been shown to induce immune-related adverse events, including the potentially life-threatening cytokine release syndrome (CRS), calling for reliable and translational preclinical models to predict potential safety issues and investigate their rescue. Here, we tested the reliability of humanized BRGSF mice for the assessment of therapeutics-induced CRS features in preclinical settings. Methods BRGSF mice reconstituted with human umbilical cord blood CD34+ cells (BRGSF-CBC) were injected with anti-CD3 antibody (OKT3), anti-CD3/CD19 bispecific T-cell engager Blinatumomab, or VISTA-targeting antibody. Human myeloid and dendritic cells' contribution was investigated in hFlt3L-boosted BRGSF-CBC mice. OKT3 treatment was also tested in human PBMC-reconstituted BRGSF mice (BRGSF-PBMC). Cytokine release, immune cell distribution, and clinical signs were followed. Results OKT3 injection in BRGSF-CBC mice induced hallmark features of CRS, specifically inflammatory cytokines release, modifications of immune cell distribution and activation, body weight loss, and temperature drop. hFlt3L-boosted BRGSF-CBC mice displayed enhanced CRS features, revealing a significant role of myeloid and dendritic cells in this process. Clinical CRS-managing treatment Infliximab efficiently attenuated OKT3-induced toxicity. Comparison of OKT3 treatment's effect on BRGSF-CBC and BRGSF-PBMC mice showed broadened CRS features in BRGSF-CBC mice. CRS-associated features were also observed in hFlt3L-boosted BRGSF-CBC mice upon treatment with other T-cell or myeloid-targeting compounds. Conclusions These data show that BRGSF-CBC mice represent a relevant model for the preclinical assessment of CRS and CRS-managing therapies. They also confirm a significant role of myeloid and dendritic cells in CRS development and exhibit the versatility of this model for therapeutics-induced safety assessment.
Collapse
|
25
|
De Togni E, Cole O, Abboud R. Janus kinase inhibition in the treatment and prevention of graft-versus-host disease. Front Immunol 2024; 15:1304065. [PMID: 38380328 PMCID: PMC10877010 DOI: 10.3389/fimmu.2024.1304065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a significant cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). For many years, corticosteroids have been the mainstay treatment for GVHD, but cases of steroid-refractory GVHD and the severe adverse effects of high-dose corticosteroids have increased the need for preventative and therapeutic strategies for GVHD. Due to the nature of alloreactive T cells, GVHD is inherently linked to the graft-versus-leukemia (GVL) effect, the therapeutic driving force behind stem cell transplantation. A considerable clinical challenge is to preserve GVL while suppressing GVHD. The field of GVHD research has greatly expanded over the past decades, including advancements in T cell modulation and depletion, antibody therapies, chemotherapeutics, cellular therapies, and Janus kinase inhibition. In this review, we discuss current approaches and advances in the prophylaxis and treatment of GVHD with a focus on new emerging advancements in Janus kinase inhibitor therapy.
Collapse
Affiliation(s)
- Elisa De Togni
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Oladipo Cole
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ramzi Abboud
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
26
|
Lantz J, Pham N, Jones C, Reed D, El Chaer F, Keng M. Blinatumomab in Practice. Curr Hematol Malig Rep 2024; 19:1-8. [PMID: 38060085 DOI: 10.1007/s11899-023-00714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Acute lymphoblastic leukemia (ALL) is a rare hematologic neoplasm in adults, with most cases defined by pathology related to abnormal B cell proliferation known as B-cell ALL. The course is challenging, with less-than-optimal survival outcomes, even with aggressive multiagent chemotherapy and consideration for stem cell transplantation. Novel therapies focused on targetable pathways are being investigated to improve outcomes while simultaneously decreasing toxicity. In our review, we aim to evaluate the utilization of blinatumomab in B-cell ALL and provide insight on how this guides our management. RECENT FINDINGS Blinatumomab is a bispecific T-cell engager (BiTE) immunotherapy that neutralizes malignant cells by instigating CD3-positive T cells to target CD19-positive B cells. However, this therapy targets both malignant and non-malignant lymphocytes with potentially severe side effects such as cytokine release syndrome or neurotoxicity. Evidence evaluating utilization in the relapsed or refractory setting has been most supported; however, newer trials have also indicated improved survival in the frontline treatment of B-cell ALL. As this therapy is relatively new, the treatment team may include members who are less experienced with the typical treatment course and drug mechanics. This review synthesized available data investigating the effectiveness of blinatumomab effectiveness and its adverse events in addition to providing guidance on safe administration methods utilizing a multidisciplinary healthcare team. When care is coordinated in these settings, serious side effects can be recognized early, allowing for necessary intervention leading to improved quality of life and overall survival. Future research will continue to evaluate blinatumomab in different lines of therapy and expand its way into community settings.
Collapse
Affiliation(s)
- Jeffrey Lantz
- Division of Hematology and Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Natalie Pham
- Division of Internal Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Caroline Jones
- Department of Pharmacy, University of Virginia Health System, Charlottesville, VA, USA
| | - Daniel Reed
- Division of Hematology and Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Firas El Chaer
- Division of Hematology and Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Michael Keng
- Division of Hematology and Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
27
|
Russell-Smith A, Murphy L, Nguyen A, Blauer-Peterson C, Terpenning M, Cao F, Li S, Bancroft T, Webb N, Dorman S, Shah R. Real-world use of inotuzumab ozogamicin is associated with lower health care costs than blinatumomab in patients with acute lymphoblastic leukemia in the first relapsed/refractory setting. J Comp Eff Res 2024; 13:e230142. [PMID: 38099517 PMCID: PMC10842295 DOI: 10.57264/cer-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Aim: To compare all-cause and acute lymphoblastic leukemia (ALL)-related healthcare resource utilization (HCRU) and costs among patients receiving inotuzumab ozogamicin (InO) and blinatumomab (Blina) for ALL in the first relapsed/refractory (R/R) setting. Patients & methods: We studied retrospective claims for adult commercial and Medicare Advantage enrollees with ALL receiving InO (n = 29) or Blina (n = 23) from 1 January 2015 to 16 February 2021. Mean per-patient-per-month (PPPM) HCRU and total costs were described and multivariable-adjusted PPPM total all-cause and ALL-related predicted costs were calculated. Results: Mean monthly ALL-related hospitalizations were the same for patients receiving InO and Blina (PPPM = 0.8 stays); however, the length of ALL-related hospital stay was almost twice as long among patients receiving Blina versus InO (ALL-related: InO = 7.6 days; Blina = 14.1 days; p = 0.346). In multivariable models, total ALL-related costs were 43% lower for InO compared with Blina (PPPM costs: InO = $93,767; Blina = $163,470; p = 0.021). Conclusion: In the first R/R setting, patients who used InO had significantly lower all-cause and ALL-related costs compared with patients who used Blina, in part driven by hospitalization patterns.
Collapse
Affiliation(s)
| | - Louise Murphy
- Optum, Eden Prairie, MN 55344, USA
- Author for correspondence: Tel;
| | | | | | | | - Feng Cao
- Optum, Eden Prairie, MN 55344, USA
| | | | | | | | - Stephanie Dorman
- Global Medical Affairs, Pfizer Inc, Kirkland QC, H9J 2M5, Canada
| | | |
Collapse
|
28
|
Wang L, Leach V, Muthusamy N, Byrd J, Long M. A CD3 humanized mouse model unmasked unique features of T-cell responses to bispecific antibody treatment. Blood Adv 2024; 8:470-481. [PMID: 37871327 PMCID: PMC10837186 DOI: 10.1182/bloodadvances.2023010971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
ABSTRACT T-cell bispecific antibodies (T-BsAbs) such as blinatumomab hold great promise for cancer immunotherapy. A better understanding of the in vivo immune response induced by T-BsAbs is crucial to improving their efficacy and safety profile. However, such efforts are hindered by the limitations of current preclinical models. To address this, we developed a syngeneic murine model with humanized CD3 and target antigen (CD20). This model enables the development of disseminated leukemia with a high tumor burden, which mirrors clinical findings in human patients with relapsed/refractory acute lymphoblastic leukemia. Treatment of this model with T-BsAbs results in cytokine release syndrome, with cytokine profiles and levels reflecting observations made in human patients. This model also faithfully recapitulates the dynamics of T-cell activation seen in human patients, including the temporary disappearance of T cells from the bloodstream. During this phase, T cells are sequestered in secondary lymphoid organs and undergo activation. Clinical correlative studies that rely primarily on peripheral blood samples are likely to overlook this critical activation stage, leading to a substantial underestimation of the extent of T-cell activation. Furthermore, we demonstrate that surface expression of the T-BsAb target antigen by leukemia cells triggers a swift immune response, promoting their own rejection. Humanizing the target antigen in the recipient mice is crucial to facilitate tolerance induction and successful establishment of high tumor burden. Our findings underscore the importance of meticulously optimized syngeneic murine models for investigating T-BsAb-induced immune responses and for translational research aimed at improving efficacy and safety.
Collapse
Affiliation(s)
- Lingling Wang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Vincent Leach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - John Byrd
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Meixiao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
29
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
30
|
Qidwai T. Cytokine storm in COVID-19 and malaria: Annals of pro-inflammatory cytokines. Cytokine 2024; 173:156420. [PMID: 37976701 DOI: 10.1016/j.cyto.2023.156420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Infectious diseases are affecting the people worldwide. Mostly, infectious agents activate excessive production of cytokines so called cytokine storm. Among the infectious diseases COVID-19 is one of the deadliest diseases affecting individuals all over the world, moreover, Plasmodium falciparum malaria and HIV are major killers. An excessive pro-inflammatory response is one of the major causes of pathological conditions in these diseases. It is important to investigate the pathophysiology in the infectious diseases such as COVID-19, malaria and HIV as there is no concrete therapy against them so far. Exploration of excessive pro-inflammation could be important for therapeutic intervention. In this article, an attempt has been made to analyze the pathological conditions arise due to excessive inflammatory response in COVID-19, malaria and other infectious diseases. Targeting excessive pro-inflammatory response/cytokine storm in infectious diseases could be a useful strategy.
Collapse
Affiliation(s)
- Tabish Qidwai
- Faculty of Biotechnology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Uttar Pradesh 225003, India.
| |
Collapse
|
31
|
Behrens EM. Cytokines in Cytokine Storm Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:173-183. [PMID: 39117815 DOI: 10.1007/978-3-031-59815-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
As the eponymous mediators of the cytokine storm syndrome, cytokines are a pleomorphic and diverse set of soluble molecules that activate or suppress immune functions in a wide variety of ways. The relevant cytokines for each CSS are likely a result of differing combinations of environmental triggers and host susceptibilities. Because cytokines or their receptors may be specifically targeted by biologic therapeutics, understanding which cytokines are relevant for disease initiation and propagation for each unique CSS is of major clinical importance. This chapter will review what is known about the role of cytokines across the spectrum of CSS.
Collapse
Affiliation(s)
- Edward M Behrens
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
van der Wulp W, Remst DFG, Kester MGD, Hagedoorn RS, Parren PWHI, van Kasteren SI, Schuurman J, Hoeben RC, Ressing ME, Bleijlevens B, Heemskerk MHM. Antibody-mediated delivery of viral epitopes to redirect EBV-specific CD8 + T-cell immunity towards cancer cells. Cancer Gene Ther 2024; 31:58-68. [PMID: 37945970 PMCID: PMC10794138 DOI: 10.1038/s41417-023-00681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Antibody-mediated delivery of immunogenic epitopes to redirect virus-specific CD8+ T-cells towards cancer cells is an emerging and promising new therapeutic strategy. These so-called antibody-epitope conjugates (AECs) rely on the proteolytic release of the epitopes close to the tumor surface for presentation by HLA class I molecules to eventually redirect and activate virus-specific CD8+ T-cells towards tumor cells. We fused the immunogenic EBV-BRLF1 epitope preceded by a protease cleavage site to the C-terminus of the heavy and/or light chains of cetuximab and trastuzumab. We evaluated these AECs and found that, even though all AECs were able to redirect the EBV-specific T-cells, AECs with an epitope fused to the C-terminus of the heavy chain resulted in higher levels of T-cell activation compared to AECs with the same epitope fused to the light chain of an antibody. We observed that all AECs were depending on the presence of the antibody target, that the level of T-cell activation correlated with expression levels of the antibody target, and that our AECs could efficiently deliver the BRLF1 epitope to cancer cell lines from different origins (breast, ovarian, lung, and cervical cancer and a multiple myeloma). Moreover, in vivo, the AECs efficiently reduced tumor burden and increased the overall survival, which was prolonged even further in combination with immune checkpoint blockade. We demonstrate the potential of these genetically fused AECs to redirect the potent EBV-specific T-cells towards cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Willemijn van der Wulp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander I van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | | | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike E Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
33
|
Zoref-Lorenz A, Lehmberg K, Jordan M. Hemophagocytic Lymphohistiocytosis in the Context of Hematological Malignancies and Solid Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:429-440. [PMID: 39117831 DOI: 10.1007/978-3-031-59815-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) has been described for decades in association with malignancies (M-HLH). While its mechanism is unknown, M-HLH has a poor prognosis, ranging from 10% to 30% overall survival. Mature T-cell lymphomas, diffuse large B-cell lymphoma, and Hodgkin lymphoma, with or without viral co-triggers such as Epstein-Barr virus, are among the most frequent underlying entities. Most M-HLH cases occur at the presentation of malignancy, but they may also occur during therapy as a result of immune compromise from chemotherapy (HLH in the context of immune compromise, IC-HLH) and (typically) disordered response to infection or after immune-activating therapies (Rx-HLH, also known as cytokine release syndrome, CRS). IC-HLH typically occurs months after diagnosis in the context of fungal, bacterial, or viral infection, though it may occur without an apparent trigger. Rx-HLH can be associated with checkpoint blockade, chimeric antigen receptor T-cell therapy, or bispecific T-cell engaging therapy. Until recently, M-HLH diagnosis and treatment strategies were extrapolated from familial HLH (F-HLH), though optimized diagnostic and therapeutic treatment strategies are emerging.
Collapse
Affiliation(s)
- Adi Zoref-Lorenz
- Hematology Institute, Meir Medical Center, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Michael Jordan
- Divisions of Immunobiology and Bone Marrow Transplantation/Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
34
|
Barrett D. IL-6 Blockade in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:565-572. [PMID: 39117839 DOI: 10.1007/978-3-031-59815-9_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Interleukin-6 (IL-6) is a pro-inflammatory cytokine elevated in cytokine storm syndromes, including hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS). It is also elevated in cytokine release syndrome (CRS) after immune activating cancer therapies such as chimeric antigen receptor (CAR) T-cells or bispecific T-cell engagers (BITEs) and in some patients after infection with SARS-CoV-2. The interaction of IL-6 with its receptor complex can happen in several forms, making effectively blocking this cytokine's effects clinically challenging. Fortunately, effective clinical agents targeting the IL-6 receptor (tocilizumab) and IL-6 directly (siltuximab) have been developed and are approved for use in humans. IL-6 blockade has now been used to safely and effectively treat several cytokine storm syndromes (CSS). Other methods of investigation in effective IL-6 blockade are underway.
Collapse
Affiliation(s)
- David Barrett
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Schulert GS, Zhang K. Genetics of Acquired Cytokine Storm Syndromes : Secondary HLH Genetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:103-119. [PMID: 39117810 DOI: 10.1007/978-3-031-59815-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Secondary hemophagocytic lymphohistiocytosis (sHLH) has historically been defined as a cytokine storm syndrome (CSS) occurring in the setting of triggers leading to strong and dysregulated immunological activation, without known genetic predilection. However, recent studies have suggested that existing underlying genetic factors may synergize with particular diseases and/or environmental triggers (including infection, autoimmune/autoinflammatory disorder, certain biologic therapies, or malignant transformation), leading to sHLH. With the recent advances in genetic testing technology, more patients are examined for genetic variations in primary HLH (pHLH)-associated genes, including through whole exome and whole genome sequencing. This expanding genetic and genomic evidence has revealed HLH as a more complex phenomenon, resulting from specific immune challenges in patients with a susceptible genetic background. Rather than a simple, binary definition of pHLH and sHLH, HLH represents a spectrum of diseases, from a severe complication of common infections (EBV, influenza) to early onset familial diseases that can only be cured by transplantation.
Collapse
Affiliation(s)
- Grant S Schulert
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Kejian Zhang
- Sema4 and Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
36
|
Montgomery H, Luo MX, Baker S, Lim MY. An Unusual Case of Hyperhemolysis Syndrome and Delayed Hemolytic Transfusion Reaction due to Anti-Jk(a) and Anti-P1 Antibodies. Case Rep Med 2023; 2023:5290115. [PMID: 38188902 PMCID: PMC10771918 DOI: 10.1155/2023/5290115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Background Hyperhemolysis syndrome (HS) is a severe hemolytic transfusion reaction that can cause hemoglobin and hematocrit levels to drop below pretransfusion levels, leading to severe anemia. HS most commonly occurs in patients with a pre-existing hemoglobinopathy such as sickle cell disease (SCD) or beta-thalassemia. Methods We report a case of HS, occurring in the absence of hemoglobinopathy, making the diagnosis challenging. The patient reported was also affected by a CIC-rearranged sarcoma. As part of the workup, the patient received a bone marrow biopsy for suspected hemophagocytic lymphohistiocytosis. Results This provided a rare biopsy specimen to correlate reticulocytopenia with marked erythroid hyperplasia in the marrow, supporting the hypothesis of reticulocyte destruction as a contributing cause of anemia in these patients. This patient had demonstrable alloantibodies to the Jk(a) and P1 antigens as potential triggers for HS. Conclusions It is vital that a diagnosis of HS be correctly made in these patients with severe anemia, as blood transfusions generally lead to worsening of their conditions.
Collapse
Affiliation(s)
| | - Matthew X. Luo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Steven Baker
- Department of Transfusion Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ming Y. Lim
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
37
|
Gremese E, Tolusso B, Bruno D, Paglionico AM, Perniola S, Ferraccioli G, Alivernini S. COVID-19 illness: Different comorbidities may require different immunological therapeutic targets. Eur J Clin Invest 2023; 53:e14096. [PMID: 37724937 DOI: 10.1111/eci.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/02/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND The SARS-CoV-2 pandemic has led to more than 6,870.000 deaths worldwide. Despite recent therapeutic advances, deaths in Intensive Care Units still range between 34 and 72%, comprising substantial unmet need as we move to an endemic phase. The general agreement is that in the first few days of infection, antiviral drugs and neutralizing monoclonal antibodies should be adopted. When the patient is hospitalized and develops severe pneumonia, progressing to a systemic disease, immune modifying therapy with corticosteroids is indicated. Such interventions, however, are less effective in the context of comorbidities (e.g., diabetes, hypertension, heart failure, atrial fibrillation, obesity and central nervous system-CNS diseases) which are by themselves associated with poor outcomes. Such comorbidities comprise common and some distinct underlying inflammatory pathobiology regulated by differential cytokine taxonomy. METHODS Searching in the PubMed database, literature pertaining to the biology underlying the different comorbidities, and the data from the studies related to various immunological treatments for the Covid-19 disease were carefully analyzed. RESULTS Several experimental and clinical data have demonstrated that hypertension and atrial fibrillation present an IL-6 dependent signature, whereas diabetes, obesity, heart failure and CNS diseases may exhibit an IL-1a/b predominant signature. Distinct selective cytokine targeting may offer advantage in treating severe COVID-19 illness based on single or multiple associated comorbidities. When the patient does not immediately respond, a broader target range through JAKs pathway inhibitors may be indicated. CONCLUSIONS Herein, we discuss the biological background associated with distinct comorbidities which might impact the SARS-CoV-2 infection course and how these should to be addressed to improve the current therapeutic outcome.
Collapse
Affiliation(s)
- Elisa Gremese
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Barbara Tolusso
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Dario Bruno
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Anna Maria Paglionico
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Simone Perniola
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | | | - Stefano Alivernini
- Catholic University of the Sacred Heart, Rome, Italy
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Rheumatology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
38
|
Kausar MA, Anwar S, El-Horany HES, Khan FH, Tyagi N, Najm MZ, Sadaf, Eisa AA, Dhara C, Gantayat S. Journey of CAR T‑cells: Emphasising the concepts and advancements in breast cancer (Review). Int J Oncol 2023; 63:130. [PMID: 37830150 PMCID: PMC10622179 DOI: 10.3892/ijo.2023.5578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Cancer is the primary and one of the most prominent causes of the rising global mortality rate, accounting for nearly 10 million deaths annually. Specific methods have been devised to cure cancerous tumours. Effective therapeutic approaches must be developed, both at the cellular and genetic level. Immunotherapy offers promising results by providing sustained remission to patients with refractory malignancies. Genetically modified T‑lymphocytic cells have emerged as a novel therapeutic approach for the treatment of solid tumours, haematological malignancies, and relapsed/refractory B‑lymphocyte malignancies as a result of recent clinical trial findings; the treatment is referred to as chimeric antigen receptor T‑cell therapy (CAR T‑cell therapy). Leukapheresis is used to remove T‑lymphocytes from the leukocytes, and CARs are created through genetic engineering. Without the aid of a major histocompatibility complex, these genetically modified receptors lyse malignant tissues by interacting directly with the carcinogen. Additionally, the outcomes of preclinical and clinical studies reveal that CAR T‑cell therapy has proven to be a potential therapeutic contender against metastatic breast cancer (BCa), triple‑negative, and HER 2+ve BCa. Nevertheless, unique toxicities, including (cytokine release syndrome, on/off‑target tumour recognition, neurotoxicities, anaphylaxis, antigen escape in BCa, and the immunosuppressive tumour microenvironment in solid tumours, negatively impact the mechanism of action of these receptors. In this review, the potential of CAR T‑cell immunotherapy and its method of destroying tumour cells is explored using data from preclinical and clinical trials, as well as providing an update on the approaches used to reduce toxicities, which may improve or broaden the effectiveness of the therapies used in BCa.
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | - Farida Habib Khan
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Department of Community and Family Medicine, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | | | - Sadaf
- Department of Biotechnology, Jamia Millia Islamia, Okhla, New Delhi 110025, India
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia
| | - Chandrajeet Dhara
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122003, Haryana
| | - Saumyatika Gantayat
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122003, Haryana
| |
Collapse
|
39
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
40
|
Morè S, Corvatta L, Manieri VM, Morsia E, Poloni A, Offidani M. Novel Immunotherapies and Combinations: The Future Landscape of Multiple Myeloma Treatment. Pharmaceuticals (Basel) 2023; 16:1628. [PMID: 38004493 PMCID: PMC10675193 DOI: 10.3390/ph16111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
In multiple myeloma impressive outcomes have improved with the introduction of new therapeutic approaches, mainly those including naked monoclonal antibodies such as daratumumab and isatuximab. However, moving to earlier lines of therapy with effective anti-myeloma drugs led to an increase in the number of patients who developed multi-refractoriness to them early on. Currently, triple- or multi-refractory MM represents an unmet medical need, and their management remains a complicated challenge. The recent approval of new immunotherapeutic approaches such as conjugated monoclonal antibodies, bispecific antibodies, and CAR T cells could be a turning point for these heavily pretreated patients. Nevertheless, several issues regarding their use are unsolved, such as how to select patients for each strategy or how to sequence these therapies within the MM therapeutic landscape. Here we provide an overview of the most recent data about approved conjugated monoclonal antibody belantamab, mafodotin, bispecific antibody teclistamab, and other promising compounds under development, mainly focusing on the ongoing clinical trials with monoclonal antibody combination approaches in advanced and earlier phases of MM treatment.
Collapse
Affiliation(s)
- Sonia Morè
- Clinica di Ematologia Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Laura Corvatta
- U.O.C. Medicina, Ospedale Profili, 60044 Fabriano, Italy
| | | | - Erika Morsia
- Clinica di Ematologia Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Clinica di Ematologia Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Massimo Offidani
- Clinica di Ematologia Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| |
Collapse
|
41
|
Yang Y, Zhang Y, Xing X, Xu G, Lin X, Wang Y, Chen M, Wang C, Zhang B, Han W, Hu X. IL-6 translation is a therapeutic target of human cytokine release syndrome. J Exp Med 2023; 220:e20230577. [PMID: 37584653 PMCID: PMC10432851 DOI: 10.1084/jem.20230577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T therapies have achieved remarkable success for treating hematologic malignancies, yet are often accompanied by severe cytokine release syndrome (CRS). Here, an accidental clinical observation raised the possibility that metoprolol, an FDA-approved β1 adrenergic receptor blocker widely used for cardiovascular conditions, may alleviate CAR T-induced CRS. Metoprolol effectively blocked IL-6 production in human monocytes through unexpected mechanisms of action of targeting IL-6 protein translation but not IL6 mRNA expression. Mechanistically, metoprolol diminished IL-6 protein synthesis via attenuating eEF2K-eEF2 axis-regulated translation elongation. Furthermore, an investigator-initiated phase I/II clinical trial demonstrated a favorable safety profile of metoprolol in CRS management and showed that metoprolol significantly alleviated CAR T-induced CRS without compromising CAR T efficacy. These results repurposed metoprolol, a WHO essential drug, as a potential therapeutic for CRS and implicated IL-6 translation as a mechanistic target of metoprolol, opening venues for protein translation-oriented drug developments for human inflammatory diseases.
Collapse
Affiliation(s)
- Yuzhuo Yang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Yajing Zhang
- Department of Bio-Therapeutic, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Xiaoyan Xing
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Gang Xu
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Yao Wang
- Department of Bio-Therapeutic, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Meixia Chen
- Department of Bio-Therapeutic, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Chunmeng Wang
- Department of Bio-Therapeutic, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Weidong Han
- Department of Bio-Therapeutic, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
42
|
Yang C, Nguyen J, Yen Y. Complete spectrum of adverse events associated with chimeric antigen receptor (CAR)-T cell therapies. J Biomed Sci 2023; 30:89. [PMID: 37864230 PMCID: PMC10590030 DOI: 10.1186/s12929-023-00982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have been approved by FDA to treat relapsed or refractory hematological malignancies. However, the adverse effects of CAR-T cell therapies are complex and can be challenging to diagnose and treat. In this review, we summarize the major adverse events, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and CAR T-cell associated HLH (carHLH), and discuss their pathophysiology, symptoms, grading, and diagnosis systems, as well as management. In a future outlook, we also provide an overview of measures and modifications to CAR-T cells that are currently being explored to limit toxicity.
Collapse
Affiliation(s)
- Chieh Yang
- Department of Internal Medicine, School of Medicine, University of California Riverside, Riverside, CA USA
| | - John Nguyen
- Covina Discovery Center, Theragent Inc., Covina, CA USA
| | - Yun Yen
- College of Medical Technology, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
43
|
Li A, Feng R. [CAR-T cell therapy-related long-term cytopenias]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:870-875. [PMID: 38049346 PMCID: PMC10694071 DOI: 10.3760/cma.j.issn.0253-2727.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 12/06/2023]
Affiliation(s)
- A Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - R Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
44
|
Flerlage T, Fan K, Qin Y, Agulnik A, Arias AV, Cheng C, Elbahlawan L, Ghafoor S, Hurley C, McArthur J, Morrison RR, Zhou Y, Park HJ, Carcillo JA, Hines MR. Mortality Risk Factors in Pediatric Onco-Critical Care Patients and Machine Learning Derived Early Onco-Critical Care Phenotypes in a Retrospective Cohort. Crit Care Explor 2023; 5:e0976. [PMID: 37780176 PMCID: PMC10538916 DOI: 10.1097/cce.0000000000000976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVES To use supervised and unsupervised statistical methodology to determine risk factors associated with mortality in critically ill pediatric oncology patients to identify patient phenotypes of interest for future prospective study. DESIGN This retrospective cohort study included nonsurgical pediatric critical care admissions from January 2017 to December 2018. We determined the prevalence of multiple organ failure (MOF), ICU mortality, and associated factors. Consensus k-means clustering analysis was performed using 35 bedside admission variables for early, onco-critical care phenotype development. SETTING Single critical care unit in a subspeciality pediatric hospital. INTERVENTION None. PATIENTS There were 364 critical care admissions in 324 patients with underlying malignancy, hematopoietic cell transplant, or immunodeficiency reviewed. MEASUREMENTS Prevalence of multiple organ failure, ICU mortality, determination of early onco-critical care phenotypes. MAIN RESULTS ICU mortality was 5.2% and was increased in those with MOF (18.4% MOF, 1.7% single organ failure [SOF], 0.6% no organ failure; p ≤ 0.0001). Prevalence of MOF was 23.9%. Significantly increased ICU mortality risk was associated with day 1 MOF (hazards ratio [HR] 2.27; 95% CI, 1.10-6.82; p = 0.03), MOF during ICU admission (HR 4.16; 95% CI, 1.09-15.86; p = 0.037), and with invasive mechanical ventilation requirement (IMV; HR 5.12; 95% CI, 1.31-19.94; p = 0.018). Four phenotypes were derived (PedOnc1-4). PedOnc1 and 2 represented patient groups with low mortality and SOF. PedOnc3 was enriched in patients with sepsis and MOF with mortality associated with liver and renal dysfunction. PedOnc4 had the highest frequency of ICU mortality and MOF characterized by acute respiratory failure requiring invasive mechanical ventilation at admission with neurologic dysfunction and/or severe sepsis. Notably, most of the mortality in PedOnc4 was early (i.e., within 72 hr of ICU admission). CONCLUSIONS Mortality was lower than previously reported in critically ill pediatric oncology patients and was associated with MOF and IMV. These findings were further validated and expanded by the four derived nonsynonymous computable phenotypes. Of particular interest for future prospective validation and correlative biological study was the PedOnc4 phenotype, which was composed of patients with hypoxic respiratory failure requiring IMV with sepsis and/or neurologic dysfunction at ICU admission.
Collapse
Affiliation(s)
- Tim Flerlage
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN
| | - Kimberly Fan
- Division of Critical Care, Department of Pediatrics, MD Anderson Cancer Center, Houston, TX
| | - Yidi Qin
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Asya Agulnik
- Department of Global Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - Anita V Arias
- Division of Critical Care, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Division of Critical Care, Department Biostatistics, St Jude Children's Research Hospital, Memphis, TN
| | - Lama Elbahlawan
- Division of Critical Care, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - Saad Ghafoor
- Division of Critical Care, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - Caitlin Hurley
- Division of Critical Care, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - Jennifer McArthur
- Division of Critical Care, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - R Ray Morrison
- Division of Critical Care, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - Yinmei Zhou
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN
| | - H J Park
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Joseph A Carcillo
- Division of Pediatric Critical Care, Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Melissa R Hines
- Division of Critical Care, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
45
|
Konrad CV, Iversen EF, Gunst JD, Monrad I, Holleufer A, Hartmann R, Østergaard LJ, Søgaard OS, Schleimann MH, Tolstrup M. Redirector of Vaccine-induced Effector Responses (RoVER) for specific killing of cellular targets. EBioMedicine 2023; 96:104785. [PMID: 37672868 PMCID: PMC10485592 DOI: 10.1016/j.ebiom.2023.104785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND In individuals with malignancy or HIV-1 infection, antigen-specific cytotoxic T lymphocytes (CTLs) often display an exhausted phenotype with impaired capacity to eliminate the disease. Existing cell-based immunotherapy strategies are often limited by the requirement for adoptive transfer of CTLs. We have developed an immunotherapy technology in which potent CTL responses are generated in vivo by vaccination and redirected to eliminate target cells using a bispecific Redirector of Vaccine-induced Effector Responses (RoVER). METHODS Following Yellow fever (YF) 17D vaccination of 51 healthy volunteers (NCT04083430), single-epitope YF-specific CTL responses were quantified by tetramer staining and multi-parameter flow cytometry. RoVER-mediated redirection of YF-specific CTLs to kill antigen-expressing Raji-Env cells, autologous CD19+ B cells or CD4+ T cells infected in vitro with a full-length HIV-1-eGFP was assessed in cell killing assays. Moreover, secreted IFN-γ, granzyme B, and TNF-α were analyzed by mesoscale multiplex assays. FINDINGS YF-17D vaccination induced strong epitope-specific CTL responses in the study participants. In cell killing assays, RoVER-mediated redirection of YF-specific CTLs to autologous CD19+ B cells or HIV-1-infected CD4+ cells resulted in 58% and 53% killing at effector to target ratio 1:1, respectively. INTERPRETATION We have developed an immunotherapy technology in which epitope-specific CTLs induced by vaccination can be redirected to kill antigen-expressing target cells by RoVER linking. The RoVER technology is highly specific and can be adapted to recognize various cell surface antigens. Importantly, this technology obviates the need for adoptive transfer of CTLs. FUNDING This work was funded by the Novo Nordisk Foundation (Hallas Møller NNF10OC0054577).
Collapse
Affiliation(s)
- Christina V Konrad
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Emma F Iversen
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark
| | - Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Ida Monrad
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Andreas Holleufer
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Lars J Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Mariane H Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark.
| |
Collapse
|
46
|
Tian Z, Shi C, Yang G, Allen JK, Shi Q, Al-Shami A, Olson JW, Smith MG, Chang Q, Kaur J, You J, Lofton TE, Gonzalez MA, Zhang Q, Zha D, Tasian SK, Jain N, Konopleva MY, Heffernan T, Molldrem JJ. Preclinical development of 1B7/CD3, a novel anti-TSLPR bispecific antibody that targets CRLF2-rearranged Ph-like B-ALL. Leukemia 2023; 37:2006-2016. [PMID: 37634013 PMCID: PMC10539166 DOI: 10.1038/s41375-023-02010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Patients harboring CRLF2-rearranged B-lineage acute lymphocytic leukemia (B-ALL) face a 5-year survival rate as low as 20%. While significant gains have been made to position targeted therapies for B-ALL treatment, continued efforts are needed to develop therapeutic options with improved duration of response. Here, first we have demonstrated that patients with CRLF2-rearranged Ph-like ALL harbor elevated thymic stromal lymphopoietin receptor (TSLPR) expression, which is comparable with CD19. Then we present and evaluate the anti-tumor characteristics of 1B7/CD3, a novel CD3-redirecting bispecific antibody (BsAb) that co-targets TSLPR. In vitro, 1B7/CD3 exhibits optimal binding to both human and cynomolgus CD3 and TSLPR. Further, 1B7/CD3 was shown to induce potent T cell activation and tumor lytic activity in both cell lines and primary B-ALL patient samples. Using humanized cell- or patient-derived xenograft models, 1B7/CD3 treatment was shown to trigger dose-dependent tumor remission or growth inhibition across donors as well as induce T cell activation and expansion. Pharmacokinetic studies in murine models revealed 1B7/CD3 to exhibit a prolonged half-life. Finally, toxicology studies using cynomolgus monkeys found that the maximum tolerated dose of 1B7/CD3 was ≤1 mg/kg. Overall, our preclinical data provide the framework for the clinical evaluation of 1B7/CD3 in patients with CRLF2-rearranged B-ALL.
Collapse
Grants
- U01 CA232486 NCI NIH HHS
- U01 CA243072 NCI NIH HHS
- AbbVie, Genentech, F. Hoffman LaRoche, Stemline Therapeutics, Collectis, Calithera, AstraZeneca, Sanofi, Forty Seven, Eli Lilly, Ablynx, Agios, Allogene, Precision Biosciences, Daiichi Sankyo, Rafael Pharmaceutical, Novartis
Collapse
Affiliation(s)
- Ze Tian
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Chunhua Shi
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guojun Yang
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason K Allen
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Shi
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amin Al-Shami
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jill Wardell Olson
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melinda G Smith
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Chang
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jasbir Kaur
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junping You
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy E Lofton
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle A Gonzalez
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - DongXing Zha
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Nitin Jain
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Y Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy Heffernan
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jeffrey J Molldrem
- ORBIT Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Hematopoietic Biology & Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
47
|
Benevenuta C, Mussinatto I, Orsi C, Timeus FS. Secondary hemophagocytic lymphohistiocytosis in children (Review). Exp Ther Med 2023; 26:423. [PMID: 37602304 PMCID: PMC10433411 DOI: 10.3892/etm.2023.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/16/2023] [Indexed: 08/22/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening condition characterized by hyperinflammation in an uncontrolled and ineffective immune response. Despite great improvement in diagnosis and treatment, it still represents a challenge in clinical management, with poor prognosis in the absence of an aggressive therapeutic approach. The present literature review focuses on secondary HLH at pediatric age, which represents a heterogeneous group in terms of etiology and therapeutic approach. It summarizes the most recent evidence on epidemiology, pathophysiology, diagnosis, treatment and prognosis, and provides a detailed description and comparison of the major subtypes of secondary HLH. Finally, it addresses the open questions with a focus on diagnosis and new treatment insights.
Collapse
Affiliation(s)
- Chiara Benevenuta
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| | - Ilaria Mussinatto
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| | - Cecilia Orsi
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| | - Fabio S. Timeus
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| |
Collapse
|
48
|
Hassel JC, Berking C, Forschner A, Gebhardt C, Heinzerling L, Meier F, Ochsenreither S, Siveke J, Hauschild A, Schadendorf D. Practical guidelines for the management of adverse events of the T cell engager bispecific tebentafusp. Eur J Cancer 2023; 191:112986. [PMID: 37595494 DOI: 10.1016/j.ejca.2023.112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023]
Abstract
Tebentafusp is a new T cell receptor bispecific fusion protein and the first approved treatment option for human leucocyte antigen-A*02:01 (HLA-A*02:01) metastatic uveal melanoma, with a proven benefit in overall survival versus the investigator's choice. As a first-in-class therapeutic option, this Immune mobilising monoclonal T cell receptor Against Cancer (ImmTAC) is associated with a new adverse event (AE) profile. Based on clinical experience, a national expert group discussed recommendations for tebentafusp treatment, focusing on AE management. Further topics included prerequisites for initiating tebentafusp treatment, appropriate treatment setting, and patient selection criteria. To provide guidance for treating physicians, the resulting recommendations are summarised including a model standard operating procedure for AE management. Patients in good clinical condition and with a low tumour burden are good candidates for tebentafusp treatment, particularly if treated as early as possible after the diagnosis of metastatic disease. The safety profile of tebentafusp is manageable and includes two major pathologies: cytokine release syndrome (CRS) and skin-related events. Postdose monitoring should thus focus on pyrexia and hypotension as the first symptoms of cytokine release. To minimise the risk of hypotension associated with CRS, patients should receive intravenous fluids before starting treatment. The monitoring of liver values is crucial, as patients may experience an increase in transaminases, which can even manifest as tumour lysis syndrome.
Collapse
Affiliation(s)
- Jessica C Hassel
- Department of Dermatology, National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
| | - Carola Berking
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen-EMN, Ulmenweg 18, 91054 Erlangen, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tuebingen, Liebermeisterstr. 25, 72076 Tuebingen, Germany
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, Skin Cancer Center, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Frauenlobstr. 9-11, 80337 Munich, Germany; Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases and Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Sebastian Ochsenreither
- Department of Hematology, Oncology and Tumor Immunology, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Charité-Comprehensive Cancer Center, Charitéplatz 1, 10117 Berlin, Germany
| | - Jens Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Hufelandstr. 55, 45147 Essen, Germany; Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein (UKSH), Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Dirk Schadendorf
- Department of Dermatology, Comprehensive Cancer Center (Westdeutsches Tumorzentrum), German Cancer Consortium (DKTK, partner site Essen) and University Hospital Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
49
|
Pontoriero A, Critelli P, Chillari F, Ferrantelli G, Sciacca M, Brogna A, Parisi S, Pergolizzi S. Modulation of Radiation Doses and Chimeric Antigen Receptor T Cells: A Promising New Weapon in Solid Tumors-A Narrative Review. J Pers Med 2023; 13:1261. [PMID: 37623511 PMCID: PMC10455986 DOI: 10.3390/jpm13081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Tumor behavior is determined by its interaction with the tumor microenvironment (TME). Chimeric antigen receptor (CART) cell therapy represents a new form of cellular immunotherapy (IT). Immune cells present a different sensitivity to radiation therapy (RT). RT can affect tumor cells both modifying the TME and inducing DNA damage, with different effects depending on the low and high doses delivered, and can favor the expression of CART cells. CART cells are patients' T cells genetically engineered to recognize surface structure and to eradicate cancer cells. High-dose radiation therapy (HDRT, >10-20 Gy/fractions) converts immunologically "cold" tumors into "hot" ones by inducing necrosis and massive inflammation and death. LDRT (low-dose radiation therapy, >5-10 Gy/fractions) increases the expansion of CART cells and leads to non-immunogenetic death. An innovative approach, defined as the LATTICE technique, combines a high dose in higher FDG- uptake areas and a low dose to the tumor periphery. The association of RT and immune checkpoint inhibitors increases tumor immunogenicity and immune response both in irradiated and non-irradiated sites. The aim of this narrative review is to clarify the knowledge, to date, on CART cell therapy and its possible association with radiation therapy in solid tumors.
Collapse
Affiliation(s)
- Antonio Pontoriero
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Paola Critelli
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Federico Chillari
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Giacomo Ferrantelli
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Miriam Sciacca
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Anna Brogna
- Radiotherapy Unit, Medical Physics Unit, A.O.U. “G. Martino”, 98125 Messina, Italy;
| | - Silvana Parisi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| |
Collapse
|
50
|
Zheng Z, Li S, Liu M, Chen C, Zhang L, Zhou D. Fine-Tuning through Generations: Advances in Structure and Production of CAR-T Therapy. Cancers (Basel) 2023; 15:3476. [PMID: 37444586 DOI: 10.3390/cancers15133476] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising form of immunotherapy that has seen significant advancements in the past few decades. It involves genetically modifying T cells to target cancer cells expressing specific antigens, providing a novel approach to treating various types of cancer. However, the initial success of first-generation CAR-T cells was limited due to inadequate proliferation and undesirable outcomes. Nonetheless, significant progress has been made in CAR-T cell engineering, leading to the development of the latest fifth-generation CAR-T cells that can target multiple antigens and overcome individual limitations. Despite these advancements, some shortcomings prevent the widespread use of CAR-T therapy, including life-threatening toxicities, T-cell exhaustion, and inadequate infiltration for solid tumors. Researchers have made considerable efforts to address these issues by developing new strategies for improving CAR-T cell function and reducing toxicities. This review provides an overview of the path of CAR-T cell development and highlights some of the prominent advances in its structure and manufacturing process, which include the strategies to improve antigen recognition, enhance T-cell activation and persistence, and overcome immune escape. Finally, the review briefly covers other immune cells for cancer therapy and ends with the discussion on the broad prospects of CAR-T in the treatment of various diseases, not just hematological tumors, and the challenges that need to be addressed for the widespread clinical application of CAR-T cell therapies.
Collapse
Affiliation(s)
- Zhibo Zheng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Siyuan Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mohan Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chuyan Chen
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100730, China
| | - Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|