1
|
Cantero MJ, Bueloni B, Gonzalez Llamazares L, Fiore E, Lameroli L, Atorrasagasti C, Mazzolini G, Malvicini M, Bayo J, García MG. Modified mesenchymal stromal cells by in vitro transcribed mRNA: a therapeutic strategy for hepatocellular carcinoma. Stem Cell Res Ther 2024; 15:208. [PMID: 38992782 PMCID: PMC11241816 DOI: 10.1186/s13287-024-03806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) tropism for tumours allows their use as carriers of antitumoural factors and in vitro transcribed mRNA (IVT mRNA) is a promising tool for effective transient expression without insertional mutagenesis risk. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine with antitumor properties by stimulating the specific immune response. The aim of this work was to generate modified MSCs by IVT mRNA transfection to overexpress GM-CSF and determine their therapeutic effect alone or in combination with doxorubicin (Dox) in a murine model of hepatocellular carcinoma (HCC). METHODS DsRed or GM-CSF IVT mRNAs were generated from a cDNA template designed with specific primers followed by reverse transcription. Lipofectamine was used to transfect MSCs with DsRed (MSC/DsRed) or GM-CSF IVT mRNA (MSC/GM-CSF). Gene expression and cell surface markers were determined by flow cytometry. GM-CSF secretion was determined by ELISA. For in vitro experiments, the J774 macrophage line and bone marrow monocytes from mice were used to test GM-CSF function. An HCC model was developed by subcutaneous inoculation (s.c.) of Hepa129 cells into C3H/HeN mice. After s.c. injection of MSC/GM-CSF, Dox, or their combination, tumour size and mouse survival were evaluated. Tumour samples were collected for mRNA analysis and flow cytometry. RESULTS DsRed expression by MSCs was observed from 2 h to 15 days after IVT mRNA transfection. Tumour growth remained unaltered after the administration of DsRed-expressing MSCs in a murine model of HCC and MSCs expressing GM-CSF maintained their phenotypic characteristic and migration capability. GM-CSF secreted by modified MSCs induced the differentiation of murine monocytes to dendritic cells and promoted a proinflammatory phenotype in the J774 macrophage cell line. In vivo, MSC/GM-CSF in combination with Dox strongly reduced HCC tumour growth in C3H/HeN mice and extended mouse survival in comparison with individual treatments. In addition, the tumours in the MSC/GM-CSF + Dox treated group exhibited elevated expression of proinflammatory genes and increased infiltration of CD8 + T cells and macrophages. CONCLUSIONS Our results showed that IVT mRNA transfection is a suitable strategy for obtaining modified MSCs for therapeutic purposes. MSC/GM-CSF in combination with low doses of Dox led to a synergistic effect by increasing the proinflammatory tumour microenvironment, enhancing the antitumoural response in HCC.
Collapse
Affiliation(s)
- María José Cantero
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Barbara Bueloni
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucrecia Gonzalez Llamazares
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Esteban Fiore
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucia Lameroli
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Catalina Atorrasagasti
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Malvicini
- Cancer Immunobiology Laboratory, IIMT, Universidad Austral - CONICET, Buenos Aires, Argentina
| | - Juan Bayo
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana G García
- Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Taheri M, Tehrani HA, Dehghani S, Alibolandi M, Arefian E, Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle. Med Res Rev 2024; 44:1596-1661. [PMID: 38299924 DOI: 10.1002/med.22023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Targeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging. Therefore, targeting a single hallmark or pathway with a single targeted therapeutic will not be efficient for fighting against tumor heterogeneity. Mesenchymal stem cells (MSCs) possess favorable characteristics for cellular therapy, including their hypoimmune nature, inherent tumor-tropism property, straightforward isolation, and multilineage differentiation potential. MSCs can be loaded with various chemotherapeutics and oncolytic viruses. The combination of these intrinsic features with the possibility of genetic manipulation makes them a versatile tumor delivery vehicle that can be used for in vivo selective tumor delivery of various chemotherapeutic and biological therapeutics. MSCs can be used as biofactory for the local production of chemical or biological anticancer agents at the tumor site. MSC-mediated immunotherapy could facilitate the sustained release of immunotherapeutic agents specifically at the tumor site, and allow for the achievement of therapeutic concentrations without the need for repetitive systemic administration of high therapeutic doses. Despite the enthusiasm evoked by preclinical studies that used MSC in various cancer therapy approaches, the translation of MSCs into clinical applications has faced serious challenges. This manuscript, with a critical viewpoint, reviewed the preclinical and clinical studies that have evaluated MSCs as a selective tumor delivery tool in various cancer therapy approaches, including gene therapy, immunotherapy, and chemotherapy. Then, the novel nanotechnology and bioengineering approaches that can improve the potency of MSC for tumor targeting and overcoming challenges related to their low localization at the tumor sites are discussed.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Gil-Chinchilla JI, Zapata AG, Moraleda JM, García-Bernal D. Bioengineered Mesenchymal Stem/Stromal Cells in Anti-Cancer Therapy: Current Trends and Future Prospects. Biomolecules 2024; 14:734. [PMID: 39062449 PMCID: PMC11275142 DOI: 10.3390/biom14070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are one of the most widely used cell types in advanced therapies due to their therapeutic potential in the regulation of tissue repair and homeostasis, and immune modulation. However, their use in cancer therapy is controversial: they can inhibit cancer cell proliferation, but also potentially promote tumour growth by supporting angiogenesis, modulation of the immune milieu and increasing cancer stem cell invasiveness. This opposite behaviour highlights the need for careful and nuanced use of MSCs in cancer treatment. To optimize their anti-cancer effects, diverse strategies have bioengineered MSCs to enhance their tumour targeting and therapeutic properties or to deliver anti-cancer drugs. In this review, we highlight the advanced uses of MSCs in cancer therapy, particularly as carriers of targeted treatments due to their natural tumour-homing capabilities. We also discuss the potential of MSC-derived extracellular vesicles to improve the efficiency of drug or molecule delivery to cancer cells. Ongoing clinical trials are evaluating the therapeutic potential of these cells and setting the stage for future advances in MSC-based cancer treatment. It is critical to identify the broad and potent applications of bioengineered MSCs in solid tumour targeting and anti-cancer agent delivery to position them as effective therapeutics in the evolving field of cancer therapy.
Collapse
Affiliation(s)
- Jesús I. Gil-Chinchilla
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
| | - Agustín G. Zapata
- Department of Cell Biology, Complutense University, 28040 Madrid, Spain;
| | - Jose M. Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Medicine, University of Murcia, 30120 Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
4
|
Švajger U, Kamenšek U. Interleukins and interferons in mesenchymal stromal stem cell-based gene therapy of cancer. Cytokine Growth Factor Rev 2024; 77:76-90. [PMID: 38508954 DOI: 10.1016/j.cytogfr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The tumor microenvironment is importantly shaped by various cytokines, where interleukins (ILs) and interferons (IFNs) shape the balance of immune activity within tumor niche and associated lymphoid organs. Their importance in activation and tuning of both innate and adaptive immune responses prompted their use in several clinical trials, albeit with limited therapeutic efficacy and risk of toxicity due to systemic administration. Increasing preclinical evidence suggests that local delivery of ILs and IFNs could significantly increase their effectiveness, while simultaneously attenuate the known side effects and issues related to their biological activity. A prominent way to achieve this is to use cell-based delivery vehicles. For this purpose, mesenchymal stromal stem cells (MSCs) are considered an almost ideal candidate. Namely, MSCs can be obtained in large quantities and from obtainable sources (e.g. umbilical cord or adipose tissue), their ex vivo expansion is relatively straightforward compared to other cell types and they possess very low immunogenicity making them suitable for allogeneic use. Importantly, MSCs have shown an intrinsic capacity to respond to tumor-directed chemotaxis. This review provides a focused and detailed discussion on MSC-based gene therapy using ILs and IFNs, engineering techniques and insights on potential future advancements.
Collapse
Affiliation(s)
- Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Šlajmerjeva Ulica 6, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana SI-1000, Slovenia.
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška Cesta 2, Ljubljana SI-1000, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, Ljubljana SI-1000, Slovenia
| |
Collapse
|
5
|
Drzeniek NM, Kahwaji N, Picht S, Dimitriou IM, Schlickeiser S, Moradian H, Geissler S, Schmueck-Henneresse M, Gossen M, Volk HD. In Vitro Transcribed mRNA Immunogenicity Induces Chemokine-Mediated Lymphocyte Recruitment and Can Be Gradually Tailored by Uridine Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308447. [PMID: 38491873 DOI: 10.1002/advs.202308447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Beyond SARS-CoV2 vaccines, mRNA drugs are being explored to overcome today's greatest healthcare burdens, including cancer and cardiovascular disease. Synthetic mRNA triggers immune responses in transfected cells, which can be reduced by chemically modified nucleotides. However, the side effects of mRNA-triggered immune activation on cell function and how different nucleotides, such as the N1-methylpseudouridine (m1Ψ) used in SARS-CoV2 vaccines, can modulate cellular responses is not fully understood. Here, cellular responses toward a library of uridine-modified mRNAs are investigated in primary human cells. Targeted proteomics analyses reveal that unmodified mRNA induces a pro-inflammatory paracrine pattern marked by the secretion of chemokines, which recruit T and B lymphocytes toward transfected cells. Importantly, the magnitude of mRNA-induced changes in cell function varies quantitatively between unmodified, Ψ-, m1Ψ-, and 5moU-modified mRNA and can be gradually tailored, with implications for deliberately exploiting this effect in mRNA drug design. Indeed, both the immunosuppressive effect of stromal cells on T-cell proliferation, and the anti-inflammatory effect of IL-10 mRNA are enhanced by appropriate uridine modification. The results provide new insights into the effects of mRNA drugs on cell function and cell-cell communication and open new possibilities to tailor mRNA-triggered immune activation to the desired pro- or anti-inflammatory application.
Collapse
Affiliation(s)
- Norman M Drzeniek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Nourhan Kahwaji
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Samira Picht
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT; graduate school 203 of the German Excellence Initiative), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ioanna Maria Dimitriou
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT; graduate school 203 of the German Excellence Initiative), Augustenburger Platz 1, 13353, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Stephan Schlickeiser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- CheckImmune GmbH, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hanieh Moradian
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hans-Dieter Volk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- CheckImmune GmbH, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
6
|
Nia GE, Nikpayam E, Farrokhi M, Bolhassani A, Meuwissen R. Advances in cell-based delivery of oncolytic viruses as therapy for lung cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200788. [PMID: 38596310 PMCID: PMC10976516 DOI: 10.1016/j.omton.2024.200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Lung cancer's intractability is enhanced by its frequent resistance to (chemo)therapy and often high relapse rates that make it the leading cause of cancer death worldwide. Improvement of therapy efficacy is a crucial issue that might lead to a significant advance in the treatment of lung cancer. Oncolytic viruses are desirable combination partners in the developing field of cancer immunotherapy due to their direct cytotoxic effects and ability to elicit an immune response. Systemic oncolytic virus administration through intravenous injection should ideally lead to the highest efficacy in oncolytic activity. However, this is often hampered by the prevalence of host-specific, anti-viral immune responses. One way to achieve more efficient systemic oncolytic virus delivery is through better protection against neutralization by several components of the host immune system. Carrier cells, which can even have innate tumor tropism, have shown their appropriateness as effective vehicles for systemic oncolytic virus infection through circumventing restrictive features of the immune system and can warrant oncolytic virus delivery to tumors. In this overview, we summarize promising results from studies in which carrier cells have shown their usefulness for improved systemic oncolytic virus delivery and better oncolytic virus therapy against lung cancer.
Collapse
Affiliation(s)
- Giti Esmail Nia
- Faculty of Allied Medicine, Cellular and Molecular Research Centre, Iran University of Medical Science, Tehran, Iran
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Elahe Nikpayam
- Department of Regenerative and Cancer Biology, Albany Medical College, Albany, NY, USA
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ralph Meuwissen
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
- Ege University Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
| |
Collapse
|
7
|
Xue Y, Zhang Y, Zhong Y, Du S, Hou X, Li W, Li H, Wang S, Wang C, Yan J, Kang DD, Deng B, McComb DW, Irvine DJ, Weiss R, Dong Y. LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing. Nat Commun 2024; 15:739. [PMID: 38272900 PMCID: PMC10811230 DOI: 10.1038/s41467-024-45094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Adipose stem cells (ASCs) have attracted considerable attention as potential therapeutic agents due to their ability to promote tissue regeneration. However, their limited tissue repair capability has posed a challenge in achieving optimal therapeutic outcomes. Herein, we conceive a series of lipid nanoparticles to reprogram ASCs with durable protein secretion capacity for enhanced tissue engineering and regeneration. In vitro studies identify that the isomannide-derived lipid nanoparticles (DIM1T LNP) efficiently deliver RNAs to ASCs. Co-delivery of self-amplifying RNA (saRNA) and E3 mRNA complex (the combination of saRNA and E3 mRNA is named SEC) using DIM1T LNP modulates host immune responses against saRNAs and facilitates the durable production of proteins of interest in ASCs. The DIM1T LNP-SEC engineered ASCs (DS-ASCs) prolong expression of hepatocyte growth factor (HGF) and C-X-C motif chemokine ligand 12 (CXCL12), which show superior wound healing efficacy over their wild-type and DIM1T LNP-mRNA counterparts in the diabetic cutaneous wound model. Overall, this work suggests LNPs as an effective platform to engineer ASCs with enhanced protein generation ability, expediting the development of ASCs-based cell therapies.
Collapse
Affiliation(s)
- Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yichen Zhong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenqing Li
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siyu Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chang Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Kang H, Feng J, Peng Y, Liu Y, Yang Y, Wu Y, Huang J, Jie Y, Chen B, He Y. Human mesenchymal stem cells derived from adipose tissue showed a more robust effect than those from the umbilical cord in promoting corneal graft survival by suppressing lymphangiogenesis. Stem Cell Res Ther 2023; 14:328. [PMID: 37957770 PMCID: PMC10644560 DOI: 10.1186/s13287-023-03559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown promising potential in allograft survival. However, few reports have focused on comparing the immunosuppressive capacity of MSCs from different sources and administered via different routes in inhibiting transplant rejection. Moreover, virtually nothing is known about the role of MSCs in the regulation of graft neovascularization and lymphangiogenesis. In this study, we compared the efficacy of human adipose MSCs (hAD-MSCs) and human umbilical cord MSCs (hUC-MSCs) in vitro and in corneal transplantation models to explore the underlying molecular mechanisms and provide a powerful strategy for future clinical applications. METHODS hAD-MSCs and hUC-MSCs were generated, and their self-renewal and multi-differentiation abilities were evaluated. The inhibitory effect of human MSCs (hMSCs) was examined by T-cell proliferation assays with or without transwell in vitro. Two MSCs from different sources were separately adoptively transferred in mice corneal transplantation (5 × 105 or 1 × 106/mouse) via topical subconjunctival or intravenous (IV) routes. Allograft survival was evaluated every other day, and angiogenesis and lymphomagenesis were quantitatively analyzed by immunofluorescence staining. The RNA expression profiles of hMSCs were revealed by RNA sequencing (RNA-seq) and verified by quantitative real-time PCR (qRT‒PCR), western blotting or ELISA. The function of the differentially expressed gene FAS was verified by a T-cell apoptosis assay. RESULTS hAD-MSCs induced stronger immunosuppression in vitro than hUC-MSCs. The inhibitory effect of hUC-MSCs but not hAD-MSCs was mediated by cell-cell contact-dependent mechanisms. Systemic administration of a lower dose of hAD-MSCs showed better performance in prolonging corneal allograft survival than hUC-MSCs, while subconjunctival administration of hMSCs was safer and further prolonged corneal allograft survival. Both types of hMSCs could inhibit corneal neovascularization, while hAD-MSCs showed greater superiority in suppressing graft lymphangiogenesis. RNA-seq analysis and confirmation experiments revealed the superior performance of hAD-MSCs in allografts based on the lower expression of vascular endothelial growth factor C (VEGF-C) and higher expression of FAS. CONCLUSIONS The remarkable inhibitory effects on angiogenesis/lymphangiogenesis and immunological transplantation effects support the development of hAD-MSCs as a cell therapy against corneal transplant rejection. Topical administration of hMSCs was a safer and more effective route for application than systemic administration.
Collapse
Affiliation(s)
- Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Jianing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
- Shanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, China
| | - Yingqian Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yalei Yang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Jian Huang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ying Jie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yan He
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Kováč J, Priščáková P, Gbelcová H, Heydari A, Žiaran S. Bioadhesive and Injectable Hydrogels and Their Correlation with Mesenchymal Stem Cells Differentiation for Cartilage Repair: A Mini-Review. Polymers (Basel) 2023; 15:4228. [PMID: 37959908 PMCID: PMC10648146 DOI: 10.3390/polym15214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Injectable bioadhesive hydrogels, known for their capacity to carry substances and adaptability in processing, offer great potential across various biomedical applications. They are especially promising in minimally invasive stem cell-based therapies for treating cartilage damage. This approach harnesses readily available mesenchymal stem cells (MSCs) to differentiate into chondrocytes for cartilage regeneration. In this review, we investigate the relationship between bioadhesion and MSC differentiation. We summarize the fundamental principles of bioadhesion and discuss recent trends in bioadhesive hydrogels. Furthermore, we highlight their specific applications in conjunction with stem cells, particularly in the context of cartilage repair. The review also encompasses a discussion on testing methods for bioadhesive hydrogels and direct techniques for differentiating MSCs into hyaline cartilage chondrocytes. These approaches are explored within both clinical and laboratory settings, including the use of genetic tools. While this review offers valuable insights into the interconnected aspects of these topics, it underscores the need for further research to fully grasp the complexities of their relationship.
Collapse
Affiliation(s)
- Ján Kováč
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Petra Priščáková
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Gbelcová
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Abolfazl Heydari
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
| | - Stanislav Žiaran
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbová 5, 833 05 Bratislava, Slovakia
| |
Collapse
|
10
|
Selich A, Fleischauer J, Roepke T, Weisskoeppel L, Galla M, von Kaisenberg C, Maus UA, Schambach A, Rothe M. Inflammation-inducible promoters to overexpress immune inhibitory factors by MSCs. Stem Cell Res Ther 2023; 14:270. [PMID: 37742038 PMCID: PMC10518110 DOI: 10.1186/s13287-023-03501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are excessively investigated in the context of inflammation-driven diseases, but the clinical results are often moderate. MSCs are naturally activated by inflammatory signals, which lead to the secretion of immune inhibitory factors in inflamed tissues. Many work groups try to improve the therapeutic outcome of MSCs by genetic modification and the constitutive overexpression of immune modulatory transgenes. However, the ectopic secretion of immune inhibitory transgenes increases the chances of infections, and constitutive transgene expression is not necessary for chronic diseases undergoing different inflammatory stages. METHODS We designed and tested inflammation-induced promoters to control transgene expression from integrating lentiviral vectors in human umbilical cord MSCs. Therefore, we investigated different combinations of general transcription factor elements to achieve a minimal promoter with low basal activity. The best candidates were combined with interferon-induced GAS or ISRE DNA motifs. The constructs with the highest transgene expression upon addition of pro-inflammatory cytokines were compared to vectorized promoters from inflammation-induced genes (CD317, CXCL9, CXCL10, CXCL11 and IDO1). Finally, we investigated IL10 as a potential immune inhibitory transgene by transcriptome analyses, ELISA and in an acute lung injury mouse model. RESULTS The synthetic promoters achieved a high and specific transgene expression upon IFN-γ addition. However, the CXCL11 promoter showed synergistic activity upon IFN-γ, TNF-α and IL1-β treatment and surpassed the transgene expression height of all tested promoters in the study. We observed in transcriptome analyses that IL10 has no effect on MSCs and in ELISA that IL10 is only secreted by our genetically modified and activated CXCL11-IL10-MSCs. Finally, transplanted CXCL11-IL10-MSCs increased CD19+ and CD4+ lymphoid cells, and decreased CD11b+ Ly6g myeloid cells in an ALI mouse model. CONCLUSION These results provide new insights into MSC inflammatory activation and the subsequent translation into a tool for a tailored expression of transgenes in inflammatory microenvironments. The newly developed promoter elements are potentially interesting for other inflamed tissues, and can be combined with other elements or used in other cell types.
Collapse
Affiliation(s)
- Anton Selich
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany
| | - Jenni Fleischauer
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany
| | - Tina Roepke
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Luisa Weisskoeppel
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany
| | - Melanie Galla
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany
| | | | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Partner Site BREATH, Hannover, Germany
| | - Axel Schambach
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Rothe
- Hannover Medical School, Institute of Experimental Hematology, Building J11, HBZ, Level 01, Room, 6540, Hannover, Germany.
| |
Collapse
|
11
|
Ye T, Liu X, Zhong X, Yan R, Shi P. Nongenetic surface engineering of mesenchymal stromal cells with polyvalent antibodies to enhance targeting efficiency. Nat Commun 2023; 14:5806. [PMID: 37726299 PMCID: PMC10509227 DOI: 10.1038/s41467-023-41609-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
Systemic infusion is a prevalent administration method for mesenchymal stromal cells (MSCs) in clinical trials. However, the inability to deliver a large number of therapeutic cells to diseased tissue is a substantial barrier. Here, we demonstrate that surface engineering of MSCs with polyvalent antibodies can effectively improve the targeting efficiency of MSCs to diseased tissue. The polyvalent antibody is directly synthesized on the cell surface via DNA template-directed biomolecule assembly. The data show that engineered MSCs exhibit superior adhesion to inflamed endothelium in vitro and in vivo. In female mouse models of acute inflammation and inflammatory bowel disease, engineered MSCs show enhanced targeting efficiency and therapeutic efficacy in damaged tissues. Notably, the entire procedure for polyvalent functionalization only requires the simple mixing of cells and solutions under physiological conditions within a few hours, which significantly reduces preparation processes and manufacturing costs and minimizes the impact on the cells. Thus, our study provides a strategy for improved MSC-based regenerative medicine.
Collapse
Affiliation(s)
- Tenghui Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Xi Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Xianghua Zhong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Ran Yan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Peng Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
12
|
Yao C, Zhang D, Wang H, Zhang P. Recent Advances in Cell Membrane Coated-Nanoparticles as Drug Delivery Systems for Tackling Urological Diseases. Pharmaceutics 2023; 15:1899. [PMID: 37514085 PMCID: PMC10384516 DOI: 10.3390/pharmaceutics15071899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Recent studies have revealed the functional roles of cell membrane coated-nanoparticles (CMNPs) in tackling urological diseases, including cancers, inflammation, and acute kidney injury. Cells are a fundamental part of pathology to regulate nearly all urological diseases, and, therefore, naturally derived cell membranes inherit the functional role to enhance the biopharmaceutical performance of their encapsulated nanoparticles on drug delivery. In this review, methods for CMNP synthesis and surface engineering are summarized. The application of different types of CMNPs for tackling urological diseases is updated, including cancer cell membrane, stem cell membrane, immune cell membrane, erythrocytes cell membranes, and extracellular vesicles, and their potential for clinical use is discussed.
Collapse
Affiliation(s)
- Cenchao Yao
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
13
|
Yang Y, Cheng N, Luo Q, Shao N, Ma X, Chen J, Luo L, Xiao Z. How Nanotherapeutic Platforms Play a Key Role in Glioma? A Comprehensive Review of Literature. Int J Nanomedicine 2023; 18:3663-3694. [PMID: 37427368 PMCID: PMC10327925 DOI: 10.2147/ijn.s414736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastoma (GBM), a highly aggressive form of brain cancer, is considered one of the deadliest cancers, and even with the most advanced medical treatments, most affected patients have a poor prognosis. However, recent advances in nanotechnology offer promising avenues for the development of versatile therapeutic and diagnostic nanoplatforms that can deliver drugs to brain tumor sites through the blood-brain barrier (BBB). Despite these breakthroughs, the use of nanoplatforms in GBM therapy has been a subject of great controversy due to concerns over the biosafety of these nanoplatforms. In recent years, biomimetic nanoplatforms have gained unprecedented attention in the biomedical field. With advantages such as extended circulation times, and improved immune evasion and active targeting compared to conventional nanosystems, bionanoparticles have shown great potential for use in biomedical applications. In this prospective article, we endeavor to comprehensively review the application of bionanomaterials in the treatment of glioma, focusing on the rational design of multifunctional nanoplatforms to facilitate BBB infiltration, promote efficient accumulation in the tumor, enable precise tumor imaging, and achieve remarkable tumor suppression. Furthermore, we discuss the challenges and future trends in this field. Through careful design and optimization of nanoplatforms, researchers are paving the way toward safer and more effective therapies for GBM patients. The development of biomimetic nanoplatform applications for glioma therapy is a promising avenue for precision medicine, which could ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
14
|
Zeng YX, Chou KY, Hwang JJ, Wang HS. The effects of IL-1β stimulated human umbilical cord mesenchymal stem cells on polarization and apoptosis of macrophages in rheumatoid arthritis. Sci Rep 2023; 13:10612. [PMID: 37391581 PMCID: PMC10313744 DOI: 10.1038/s41598-023-37741-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
Macrophages play an important role in the pathogenesis of rheumatoid arthritis (RA), in which the functions of pro-inflammatory macrophages (M1) and anti-inflammatory macrophages (M2) are different. Our previous studies have demonstrated that interleukin-1β (IL-1β) stimulated human umbilical cord mesenchymal stem cells (hUCMSCs) increase the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and initiate breast cancer cell apoptosis via ligand to death receptor 4 (DR4) and DR5. In this study, we examined the effect of IL-1β stimulated hUCMSCs (IL-1β-hUCMSCs) on immunoregulation of M1 and M2 macrophages in vitro and in the RA mouse model. The results showed that IL-1β-hUCMSCs increased macrophage polarization into M2 macrophages and enhanced apoptosis of M1 macrophages in vitro. Moreover, the intravenous injected IL-1β-hUCMSCs in RA mice rehabilitated the imbalance of M1/M2 ratio and thus demonstrated the potential to reduce inflammation in RA. This study advances our knowledge of the underlying immunoregulatory mechanisms involved in IL-1β-hUCMSCs to induce M1 macrophage apoptosis and promote the anti-inflammatory polarization of M2 macrophages and demonstrates the potential of IL-1β-hUCMSCs to reduce inflammation in RA.
Collapse
Affiliation(s)
- Ying-Xuan Zeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Kuang-Yi Chou
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan, ROC
| | - Jeng-Jong Hwang
- Department of Medical Imaging, Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
15
|
Goyal P, Malviya R. Advances in nuclei targeted delivery of nanoparticles for the management of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188881. [PMID: 36965678 DOI: 10.1016/j.bbcan.2023.188881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
A carrier is inserted into the appropriate organelles (nucleus) in successful medication transport, crucial to achieving very effective illness treatment. Cell-membrane targeting is the major focus of using nuclei to localize delivery. It has been demonstrated that high quantities of anticancer drugs can be injected directly into the nuclei of cancer cells, causing the cancer cells to die and increasing the effectiveness of chemotherapy. There are several effective ways to functionalize Nanoparticles (NPs), including changing their chemical makeup or attaching functional groups to their surface to increase their ability to target organelles. To cause tumor cells to apoptosis, released medicines must engage with molecular targets on particular organelles when their concentration is high enough. Targeted medication delivery studies will increasingly focus on organelle-specific delivery.
Collapse
Affiliation(s)
- Priyanshi Goyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
16
|
Li Y, Wang M, Hong S. Live-Cell Glycocalyx Engineering. Chembiochem 2023; 24:e202200707. [PMID: 36642971 DOI: 10.1002/cbic.202200707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023]
Abstract
A heavy layer of glycans forms a brush matrix bound to the outside of all the cells in our bodies; it is referred to as the "sugar forest" or glycocalyx. Beyond the increased appreciation of the glycocalyx over the past two decades, recent advances in engineering the glycocalyx on live cells have spurred the creation of cellular drugs and novel medical treatments. The development of new tools and techniques has empowered scientists to manipulate the structures and functions of cell-surface glycans on target cells and endow target cells with desired properties. Herein, we provide an overview of live-cell glycocalyx engineering strategies for controlling the cell-surface molecular repertory to suit therapeutic applications, even though the realm of this field remains young and largely unexplored.
Collapse
Affiliation(s)
- Yuxin Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Health Science Center, Beijing, 100191, China
| | - Mingzhen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Health Science Center, Beijing, 100191, China
| | - Senlian Hong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Health Science Center, Beijing, 100191, China
| |
Collapse
|
17
|
Zhao C, Pan Y, Yu G, Zhao XZ, Chen X, Rao L. Vesicular Antibodies: Shedding Light on Antibody Therapeutics with Cell Membrane Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207875. [PMID: 36721058 DOI: 10.1002/adma.202207875] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Indexed: 06/18/2023]
Abstract
The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody-based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody-based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular-antibody-based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane-coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next-generation antibodies for enhanced therapeutics.
Collapse
Affiliation(s)
- Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xing-Zhong Zhao
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Centre for Translational Medicine, Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
18
|
Drzeniek NM, Kahwaji N, Schlickeiser S, Reinke P, Geißler S, Volk HD, Gossen M. Immuno-engineered mRNA combined with cell adhesive niche for synergistic modulation of the MSC secretome. Biomaterials 2023; 294:121971. [PMID: 36634491 DOI: 10.1016/j.biomaterials.2022.121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
In vitro transcribed (IVT-)mRNA has entered center stage for vaccine development due to its immune co-stimulating properties. Given the widely demonstrated safety of IVT-mRNA-based vaccines, we aimed to adopt IVT-mRNA encoding VEGF for secretory phenotype modulation of therapeutic cells. However, we observed that the immunogenicity of IVT-mRNA impairs the endogenous secretion of pro-angiogenic mediators from transfected mesenchymal stromal cells, instead inducing anti-angiogenic chemokines. This inflammatory secretome modulation limits the application potential of unmodified IVT-mRNA for cell therapy manufacturing, pro-angiogenic therapy and regenerative medicine. To uncouple immunogenicity from the protein expression functionality, we immuno-engineered IVT-mRNA with different chemically modified ribonucleotides. 5-Methoxy-uridine-modification of IVT-mRNA rescued the endogenous secretome pattern of transfected cells and prolonged secretion of IVT-mRNA-encoded VEGF. We found that high secretion of IVT-mRNA-encoded protein further depends on optimized cell adhesion. Cell encapsulation in a collagen-hyaluronic acid hydrogel increased secretion of IVT-mRNA-encoded VEGF and augmented the endogenous secretion of supporting pro-angiogenic mediators, such as HGF. Integrating minimally immunogenic mRNA technology with predesigned matrix-derived cues allows for the synergistic combination of multiple dimensions of cell manipulation and opens routes for biomaterial-based delivery of mRNA-engineered cell products. Such multimodal systems could present a more biologically relevant way to therapeutically address complex multifactorial processes such as tissue ischemia, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Norman Michael Drzeniek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT; Graduate School 203 of the German Excellence Initiative), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nourhan Kahwaji
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Stephan Schlickeiser
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sven Geißler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute (JWI), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hans-Dieter Volk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany.
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
19
|
Kirkham AM, Bailey AJM, Shorr R, Lalu MM, Fergusson DA, Allan DS. Systematic review and meta-analysis of randomized controlled trials of mesenchymal stromal cells to treat coronavirus disease 2019: is it too late? Cytotherapy 2023; 25:341-352. [PMID: 36333234 PMCID: PMC9556962 DOI: 10.1016/j.jcyt.2022.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Evidence regarding the extent that mesenchymal stromal cells (MSCs) may improve clinical outcomes in patients with coronavirus disease 2019 (COVID-19) has been limited by marked inter-study heterogeneity, inconsistent product characterization and appreciable risk of bias (RoB). Given the evolution of treatment options and trajectory of the pandemic, an updated analysis of high-quality evidence from randomized controlled trials is needed for a timely and conclusive understanding of the effectiveness of MSCs. METHODS A systematic literature search through March 30, 2022, identified all English language, full-text randomized controlled trials examining the use of MSCs in the treatment of COVID-19. RESULTS Eight studies were identified (316 patients, 165 administered MSCs and 151 controls). Controls evolved significantly over time with a broad range of comparison treatments. All studies reported mortality at study endpoint. Random effects meta-analysis revealed that MSCs decreased relative risk of death (risk ratio, 0.63, 95% confidence interval, 0.42-0.94, P = 0.02, I2 = 14%) with no significant difference in absolute risk of death. MSCs decreased length of hospital stay and C-reactive protein levels and increased odds of clinical improvement at study endpoint compared with controls. Rates of adverse events and severe adverse events were similar between MSC and control groups. Only two (25%) studies reported all four International Society for Cell & Gene Therapy criteria for MSC characterization. Included studies had low (n = 7) or some (n = 1) concerns regarding RoB. CONCLUSIONS MSCs may reduce risk of death in patients with severe or critical COVID-19 and improve secondary clinical outcomes. Variable outcome reporting, inconsistent product characterization and variable control group treatments remain barriers to higher-quality evidence and may constrain clinical usage. A master protocol is proposed and appears necessary for accelerated translation of higher-quality evidence for future applications of MSC therapy.
Collapse
Affiliation(s)
- Aidan M Kirkham
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Adrian J M Bailey
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Risa Shorr
- Medical Information and Learning Services, The Ottawa Hospital, Ottawa, Canada
| | - Manoj M Lalu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada; Department of Anesthesiology and Pain Medicine, University of Ottawa, Ottawa, Canada; Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada; Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada; Department of Anesthesia, The Ottawa Hospital, Ottawa, Canada
| | - Dean A Fergusson
- Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada; Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - David S Allan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada; Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada; Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, Canada.
| |
Collapse
|
20
|
Testa C, Oliveto S, Jacchetti E, Donnaloja F, Martinelli C, Pinoli P, Osellame R, Cerullo G, Ceri S, Biffo S, Raimondi MT. Whole transcriptomic analysis of mesenchymal stem cells cultured in Nichoid micro-scaffolds. Front Bioeng Biotechnol 2023; 10:945474. [PMID: 36686258 PMCID: PMC9852851 DOI: 10.3389/fbioe.2022.945474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are known to be ideal candidates for clinical applications where not only regenerative potential but also immunomodulation ability is fundamental. Over the last years, increasing efforts have been put into the design and fabrication of 3D synthetic niches, conceived to emulate the native tissue microenvironment and aiming at efficiently controlling the MSC phenotype in vitro. In this panorama, our group patented an engineered microstructured scaffold, called Nichoid. It is fabricated through two-photon polymerization, a technique enabling the creation of 3D structures with control of scaffold geometry at the cell level and spatial resolution beyond the diffraction limit, down to 100 nm. The Nichoid's capacity to maintain higher levels of stemness as compared to 2D substrates, with no need for adding exogenous soluble factors, has already been demonstrated in MSCs, neural precursors, and murine embryonic stem cells. In this work, we evaluated how three-dimensionality can influence the whole gene expression profile in rat MSCs. Our results show that at only 4 days from cell seeding, gene activation is affected in a significant way, since 654 genes appear to be differentially expressed (392 upregulated and 262 downregulated) between cells cultured in 3D Nichoids and in 2D controls. The functional enrichment analysis shows that differentially expressed genes are mainly enriched in pathways related to the actin cytoskeleton, extracellular matrix (ECM), and, in particular, cell adhesion molecules (CAMs), thus confirming the important role of cell morphology and adhesions in determining the MSC phenotype. In conclusion, our results suggest that the Nichoid, thanks to its exclusive architecture and 3D cell adhesion properties, is not only a useful tool for governing cell stemness but could also be a means for controlling immune-related MSC features specifically involved in cell migration.
Collapse
Affiliation(s)
- Carolina Testa
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Stefania Oliveto
- Department of Bioscience (DBS), University of Milan, Milano, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Pietro Pinoli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Roberto Osellame
- Institute of Photonics and Nanotechnology (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Giulio Cerullo
- Institute of Photonics and Nanotechnology (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Stefano Ceri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Stefano Biffo
- Department of Bioscience (DBS), University of Milan, Milano, Italy
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| |
Collapse
|
21
|
Achón Buil B, Tackenberg C, Rust R. Editing a gateway for cell therapy across the blood-brain barrier. Brain 2022; 146:823-841. [PMID: 36397727 PMCID: PMC9976985 DOI: 10.1093/brain/awac393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Stem cell therapy has been shown to improve stroke outcomes in animal models and is currently advancing towards clinical practice. However, uncertainty remains regarding the optimal route for cell delivery to the injured brain. Local intracerebral injections are effective in precisely delivering cells into the stroke cavity but carry the risk of damaging adjacent healthy tissue. Systemic endovascular injections, meanwhile, are minimally invasive, but most injected cells do not cross CNS barriers and become mechanically trapped in peripheral organs. Although the blood-brain barrier and the blood-CSF barrier tightly limit the entrance of cells and molecules into the brain parenchyma, immune cells can cross these barriers especially under pathological conditions, such as stroke. Deciphering the cell surface signature and the molecular mechanisms underlying this pathophysiological process holds promise for improving the targeted delivery of systemic injected cells to the injured brain. In this review, we describe experimental approaches that have already been developed in which (i) cells are either engineered to express cell surface proteins mimicking infiltrating immune cells; or (ii) cell grafts are preconditioned with hypoxia or incubated with pharmacological agents or cytokines. Modified cell grafts can be complemented with strategies to temporarily increase the permeability of the blood-brain barrier. Although these approaches could significantly enhance homing of stem cells into the injured brain, cell entrapment in off-target organs remains a non-negligible risk. Recent developments in safety-switch systems, which enable the precise elimination of transplanted cells on the administration of a drug, represent a promising strategy for selectively removing stem cells stuck in untargeted organs. In sum, the techniques described in this review hold great potential to substantially improve efficacy and safety of future cell therapies in stroke and may be relevant to other brain diseases.
Collapse
Affiliation(s)
- Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ruslan Rust
- Correspondence to: Ruslan Rust Institute for Regenerative Medicine Wagistrasse 12, 8952 Schlieren Zurich, Switzerland E-mail:
| |
Collapse
|
22
|
Liu T, Gao C, Gu D, Tang H. Cell-based carrier for targeted hitchhiking delivery. Drug Deliv Transl Res 2022; 12:2634-2648. [PMID: 35499717 DOI: 10.1007/s13346-022-01149-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Drug delivery systems aim at improving drug transport efficiency and therapeutic efficacy by rational design, and current research on conventional delivery systems brings new developments for disease treatment. Recently, studies on cell-based drug delivery systems are rapidly emerging, which shows great advantages in comparison to conventional drug delivery system. The system uses cells as carriers to delivery conventional drugs or nanomedicines and shows good biocompatibility and enhanced targeting efficiency, beneficial from self component and its physiological function. The construction methodology of cell-based carrier determines the effect on the physiological functions of transporting cell and affects its clinical application. There are different strategies to prepare cell-based carrier, such as direct internalization or surface conjugation of drugs or drug loaded materials. Thus, it is necessary to fully understand the advantages and disadvantages of different strategies for constructing cell-based carrier and then to seek the appropriate construction methodology for achieving better therapeutic results based on disease characterization. We here summarize the application of different types of cell-based carriers reported in recent years and further discuss their applications in disease therapy and the dilemmas faced in clinical translation. We hope that this summary can accelerate the process of clinical translation by promoting the technology development of cell-based carrier.
Collapse
Affiliation(s)
- Tonggong Liu
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.,Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Cheng Gao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Huanwen Tang
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
23
|
Unlocking the promise of mRNA therapeutics. Nat Biotechnol 2022; 40:1586-1600. [PMID: 36329321 DOI: 10.1038/s41587-022-01491-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
The extraordinary success of mRNA vaccines against coronavirus disease 2019 (COVID-19) has renewed interest in mRNA as a means of delivering therapeutic proteins. Early clinical trials of mRNA therapeutics include studies of paracrine vascular endothelial growth factor (VEGF) mRNA for heart failure and of CRISPR-Cas9 mRNA for a congenital liver-specific storage disease. However, a series of challenges remains to be addressed before mRNA can be established as a general therapeutic modality with broad relevance to both rare and common diseases. An array of new technologies is being developed to surmount these challenges, including approaches to optimize mRNA cargos, lipid carriers with inherent tissue tropism and in vivo percutaneous delivery systems. The judicious integration of these advances may unlock the promise of biologically targeted mRNA therapeutics, beyond vaccines and other immunostimulatory agents, for the treatment of diverse clinical indications.
Collapse
|
24
|
Genetically engineered and enucleated human mesenchymal stromal cells for the targeted delivery of therapeutics to diseased tissue. Nat Biomed Eng 2022; 6:882-897. [PMID: 34931077 PMCID: PMC9207157 DOI: 10.1038/s41551-021-00815-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/07/2021] [Indexed: 02/05/2023]
Abstract
Targeting the delivery of therapeutics specifically to diseased tissue enhances their efficacy and decreases their side effects. Here we show that mesenchymal stromal cells with their nuclei removed by density-gradient centrifugation following the genetic modification of the cells for their display of chemoattractant receptors and endothelial-cell-binding molecules are effective vehicles for the targeted delivery of therapeutics. The enucleated cells neither proliferate nor permanently engraft in the host, yet retain the organelles for energy and protein production, undergo integrin-regulated adhesion to inflamed endothelial cells, and actively home to chemokine gradients established by diseased tissues. In mouse models of acute inflammation and of pancreatitis, systemically administered enucleated cells expressing two types of chemokine receptor and an endothelial adhesion molecule enhanced the delivery of an anti-inflammatory cytokine to diseased tissue (with respect to unmodified stromal cells and to exosomes derived from bone-marrow-derived stromal cells), attenuating inflammation and ameliorating disease pathology. Enucleated cells retain most of the cells' functionality, yet acquire the cargo-carrying characteristics of cell-free delivery systems, and hence represent a versatile delivery vehicle and therapeutic system.
Collapse
|
25
|
Qureischi M, Mohr J, Arellano-Viera E, Knudsen SE, Vohidov F, Garitano-Trojaola A. mRNA-based therapies: Preclinical and clinical applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:1-54. [PMID: 36064262 DOI: 10.1016/bs.ircmb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
At the fundamental level, messenger RNA (mRNA)-based therapeutics involves the delivery of in vitro-transcribed (IVT) mRNA into the cytoplasm of a target cell, where it is translated into the desired protein. IVT mRNA presents various advantages compared to DNA and recombinant protein-based approaches that make it ideal for a broad range of therapeutic applications. IVT mRNA, which is translated in the cytoplasm after transfection into cells, can encode virtually any target protein. Notably, it does not enter the nucleus, which avoids its integration into the genome and the risk of insertional mutagenesis. The large-scale production of IVT mRNA is less complex than production of recombinant proteins, and Good Manufacturing Practice-compliant mRNA production is easily scalable, ideally poising mRNA for not only off-the-shelf, but more personalized treatment approaches. IVT mRNA's safety profile, pharmacokinetics, and pharmacodynamics, including its inherent immunostimulatory capacity, can be optimized for different therapeutic applications by harnessing a wide array of optimized sequence elements, chemical modifications, purification techniques, and delivery methods. The value of IVT mRNA was recently proved during the COVID-19 pandemic when mRNA-based vaccines outperformed the efficacy of established technologies, and millions of doses were rapidly deployed. In this review, we will discuss chemical modifications of IVT mRNA and highlight numerous preclinical and clinical applications including vaccines for cancer and infectious diseases, cancer immunotherapy, protein replacement, gene editing, and cell reprogramming.
Collapse
|
26
|
Immunotherapy by mesenchymal stromal cell delivery of oncolytic viruses for treating metastatic tumors. Mol Ther Oncolytics 2022; 25:78-97. [PMID: 35434272 PMCID: PMC8989711 DOI: 10.1016/j.omto.2022.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as a very promising anti-cancer therapeutic strategy in the past decades. However, despite their pre-clinical promise, many OV clinical evaluations for cancer therapy have highlighted the continued need for their improved delivery and targeting. Mesenchymal stromal cells (MSCs) have emerged as excellent candidate vehicles for the delivery of OVs due to their tumor-homing properties and low immunogenicity. MSCs can enhance OV delivery by protecting viruses from rapid clearance following administration and also by more efficiently targeting tumor sites, consequently augmenting the therapeutic potential of OVs. MSCs can function as “biological factories,” enabling OV amplification within these cells to promote tumor lysis following MSC-OV arrival at the tumor site. MSC-OVs can promote enhanced safety profiles and therapeutic effects relative to OVs alone. In this review we explore the general characteristics of MSCs as delivery tools for cancer therapeutic agents. Furthermore, we discuss the potential of OVs as immune therapeutics and highlight some of the promising applications stemming from combining MSCs to achieve enhanced delivery and anti-tumor effectiveness of OVs at different pre-clinical and clinical stages. We further provide potential pitfalls of the MSC-OV platform and the strategies under development for enhancing the efficacy of these emerging therapeutics.
Collapse
|
27
|
Padmakumar A, Koyande NP, Rengan AK. The Role of Hitchhiking in Cancer Therapeutics – A review. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ananya Padmakumar
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| | - Navami Prabhakar Koyande
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| |
Collapse
|
28
|
Imran M, Akhileshwar Jha L, Hasan N, Shrestha J, Pangeni R, Parvez N, Mohammed Y, Kumar Jha S, Raj Paudel K. “Nanodecoys”- Future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm 2022; 621:121790. [DOI: 10.1016/j.ijpharm.2022.121790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
|
29
|
Chan LY, Dass SA, Tye GJ, Imran SAM, Wan Kamarul Zaman WS, Nordin F. CAR-T Cells/-NK Cells in Cancer Immunotherapy and the Potential of MSC to Enhance Its Efficacy: A Review. Biomedicines 2022; 10:biomedicines10040804. [PMID: 35453554 PMCID: PMC9024487 DOI: 10.3390/biomedicines10040804] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The chimeric antigen receptor (CAR) plays a dynamic role in targeting tumour-associated antigens in cancer cells. This novel therapeutic discovery combines fragments of monoclonal antibodies with the signalling and co-stimulatory domains that have been modified to its current fourth generation. CAR has been widely implemented in T-cells and natural killer (NK) cells immunotherapy. The significant advancement in CAR technology is evident based on numerous ongoing clinical trials on CAR-T/-NK cells and successful CAR-related products such as Kymriah (Novartis) and Yescarta (Kite Pharma, Gilead). Another important cell-based therapy is the engineering of mesenchymal stem cells (MSC). Researchers have been exploring MSCs and their innate homing abilities to tumour sites and secretion cytokines that bridge both CAR and MSC technologies as a therapeutic agent. This combination allows for both therapies to overcome each one’s flaw as an immunotherapy intervention. Herein, we have provided a concise review on the background of CAR and its applications in different cancers, as well as MSCs’ unique ability as delivery vectors for cancer therapy and the possibility of enhancing the CAR-immune cells’ activity. Hence, we have highlighted throughout this review the synergistic effects of both interventions.
Collapse
Affiliation(s)
- Ler Yie Chan
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
- INTEC Education College, Jalan Senangin Satu 17/2A, Seksyen 17, Shah Alam 40200, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia; (S.A.D.); (G.J.T.)
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia; (S.A.D.); (G.J.T.)
| | - Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
- Correspondence: ; Tel.: +60-3-91457670
| |
Collapse
|
30
|
Szewc M, Radzikowska-Bűchner E, Wdowiak P, Kozak J, Kuszta P, Niezabitowska E, Matysiak J, Kubiński K, Masłyk M. MSCs as Tumor-Specific Vectors for the Delivery of Anticancer Agents-A Potential Therapeutic Strategy in Cancer Diseases: Perspectives for Quinazoline Derivatives. Int J Mol Sci 2022; 23:2745. [PMID: 35269887 PMCID: PMC8911180 DOI: 10.3390/ijms23052745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered to be a powerful tool in the treatment of various diseases. Scientists are particularly interested in the possibility of using MSCs in cancer therapy. The research carried out so far has shown that MSCs possess both potential pro-oncogenic and anti-oncogenic properties. It has been confirmed that MSCs can regulate tumor cell growth through a paracrine mechanism, and molecules secreted by MSCs can promote or block a variety of signaling pathways. These findings may be crucial in the development of new MSC-based cell therapeutic strategies. The abilities of MSCs such as tumor tropism, deep migration and immune evasion have evoked considerable interest in their use as tumor-specific vectors for small-molecule anticancer agents. Studies have shown that MSCs can be successfully loaded with chemotherapeutic drugs such as gemcitabine and paclitaxel, and can release them at the site of primary and metastatic neoplasms. The inhibitory effect of MSCs loaded with anti-cancer agents on the proliferation of cancer cells has also been observed. However, not all known chemotherapeutic agents can be used in this approach, mainly due to their cytotoxicity towards MSCs and insufficient loading and release capacity. Quinazoline derivatives appear to be an attractive choice for this therapeutic solution due to their biological and pharmacological properties. There are several quinazolines that have been approved for clinical use as anticancer drugs by the US Food and Drug Administration (FDA). It gives hope that the synthesis of new quinazoline derivatives and the development of methods of their application may contribute to the establishment of highly effective therapies for oncological patients. However, a deeper understanding of interactions between MSCs and tumor cells, and the exploration of the possibilities of using quinazoline derivatives in MSC-based therapy is necessary to achieve this goal. The aim of this review is to discuss the prospects for using MSC-based cell therapy in cancer treatment and the potential use of quinazolines in this procedure.
Collapse
Affiliation(s)
- Monika Szewc
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Elżbieta Radzikowska-Bűchner
- Department of Plastic, Reconstructive and Maxillary Surgery, Central Clinical Hospital MSWiA, 02-507 Warsaw, Poland;
| | - Paulina Wdowiak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Joanna Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Piotr Kuszta
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Ewa Niezabitowska
- Department of Urology and Urological Oncology, Multidisciplinary Hospital in Lublin, 20-400 Lublin, Poland;
| | - Joanna Matysiak
- Department of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Konrad Kubiński
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| | - Maciej Masłyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| |
Collapse
|
31
|
Litvinova LS, Shupletsova VV, Khaziakhmatova OG, Daminova AG, Kudryavtseva VL, Yurova KA, Malashchenko VV, Todosenko NM, Popova V, Litvinov RI, Korotkova EI, Sukhorukov GB, Gow AJ, Weissman D, Atochina-Vasserman EN, Khlusov IA. Human Mesenchymal Stem Cells as a Carrier for a Cell-Mediated Drug Delivery. Front Bioeng Biotechnol 2022; 10:796111. [PMID: 35284410 PMCID: PMC8909129 DOI: 10.3389/fbioe.2022.796111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
A number of preclinical and clinical studies have demonstrated the efficiency of mesenchymal stromal cells to serve as an excellent base for a cell-mediated drug delivery system. Cell-based targeted drug delivery has received much attention as a system to facilitate the uptake a nd transfer of active substances to specific organs and tissues with high efficiency. Human mesenchymal stem cells (MSCs) are attracting increased interest as a promising tool for cell-based therapy due to their high proliferative capacity, multi-potency, and anti-inflammatory and immunomodulatory properties. In particular, these cells are potentially suitable for use as encapsulated drug transporters to sites of inflammation. Here, we studied the in vitro effects of incorporating synthetic polymer microcapsules at various microcapsule-to-cell ratios on the morphology, ultrastructure, cytokine profile, and migration ability of human adipose-derived MSCs at various time points post-phagocytosis. The data show that under appropriate conditions, human MSCs can be efficiently loaded with synthesized microcapsules without damaging the cell’s structural integrity with unexpressed cytokine secretion, retained motility, and ability to migrate through 8 μm pores. Thus, the strategy of using human MSCs as a delivery vehicle for transferring microcapsules, containing bioactive material, across the tissue–blood or tumor–blood barriers to facilitate the treatment of stroke, cancer, or inflammatory diseases may open a new therapeutic perspective.
Collapse
Affiliation(s)
- L. S. Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. V. Shupletsova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - O. G. Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - A. G. Daminova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC KSC of RAS, Kazan, Russia
- Interdisciplinary Center for Analytical Microscopy, Kazan Federal University, Kazan, Russia
| | - V. L. Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - K. A. Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. V. Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - N. M. Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - V. Popova
- School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - R. I. Litvinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - E. I. Korotkova
- School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - G. B. Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - A. J. Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - D. Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - E. N. Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: E. N. Atochina-Vasserman,
| | - I. A. Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Department of Morphology and General Pathology, Siberian State Medical University, Tomsk, Russia
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
32
|
Wu H, Peng Z, Xu Y, Sheng Z, Liu Y, Liao Y, Wang Y, Wen Y, Yi J, Xie C, Chen X, Hu J, Yan B, Wang H, Yao X, Fu W, Ouyang H. Engineered adipose-derived stem cells with IGF-1-modified mRNA ameliorates osteoarthritis development. Stem Cell Res Ther 2022; 13:19. [PMID: 35033199 PMCID: PMC8760691 DOI: 10.1186/s13287-021-02695-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA), a prevalent degenerative disease characterized by degradation of extracellular matrix (ECM), still lacks effective disease-modifying therapy. Mesenchymal stem cells (MSCs) transplantation has been regarded as the most promising approach for OA treatment while engrafting cells alone might not be adequate for effective regeneration. Genetic modification has been used to optimize MSC-based therapy; however, there are still significant limitations that prevent the clinical translation of this therapy including low efficacy and safety concerns. Recently, chemically modified mRNA (modRNA) represents a promising alternative for the gene-enhanced MSC therapy. In this regard, we hypothesized that adipose derived stem cells (ADSCs) engineered with modRNA encoding insulin-like growth factor 1 (IGF-1) were superior to native ADSCs on ameliorating OA development. METHODS Mouse ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IGF-1 modRNA engineered ADSCs (named as IGF-1-ADSCs) on chondrocytes. Finally, we evaluated the cell retention and chondroprotective effect of IGF-1-ADSCs in vivo using fluorescent labeling, histology and immunohistochemistry. RESULTS modRNA transfected mouse ADSCs with high efficiency (85 ± 5%) and the IGF-1 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IGF-1 protein. In vitro, IGF-1-ADSCs induced increased anabolic markers expression of chondrocytes in inflammation environment compared to untreated ADSCs. In a murine OA model, histological and immunohistochemical analysis of knee joints harvested at 4 weeks and 8 weeks after OA induction suggested IGF-1-ADSCs had superior therapeutic effect over native ADSCs demonstrated by lower histological OARSI score and decreased loss of cartilage ECM. CONCLUSIONS These findings collectively supported the therapeutic potential of IGF-1-ADSCs for clinical OA management and cartilage repair.
Collapse
Affiliation(s)
- Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Peng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Xu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zixuan Sheng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanshan Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Wen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Junzhi Yi
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingqian Yan
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 310003, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 310003, China
| | - Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 310003, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China. .,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
33
|
Xue Y, Baig R, Dong Y. Recent advances of biomaterials in stem cell therapies. NANOTECHNOLOGY 2022; 33:10.1088/1361-6528/ac4520. [PMID: 34933291 PMCID: PMC10068913 DOI: 10.1088/1361-6528/ac4520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Stem cells have been utilized as 'living drugs' in clinics for decades. Their self-renewal, differentiation, and immunomodulating properties provide potential solutions for a variety of malignant diseases and disorders. However, the pathological environment may diminish the therapeutic functions and survival of the transplanted stem cells, causing failure in clinical translation. To overcome these challenges, researchers have developed biomaterial-based strategies that facilitatein vivotracking, functional engineering, and protective delivery of stem cells, paving the way for next-generation stem cell therapies. In this perspective, we briefly overview different types of stem cells and the major clinical challenges and summarize recent progress of biomaterials applied to boost stem cell therapies.
Collapse
Affiliation(s)
- Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States of America
| | - Rafia Baig
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States of America
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States of America
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, United States of America
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States of America
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States of America
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, United States of America
| |
Collapse
|
34
|
Nakanishi H, Itaka K. Synthetic mRNA for ex vivo therapeutic applications. Drug Metab Pharmacokinet 2022; 44:100447. [DOI: 10.1016/j.dmpk.2022.100447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/06/2023]
|
35
|
Yao X, Ma Y, Zhou W, Liao Y, Jiang Z, Lin J, He Q, Wu H, Wei W, Wang X, Björklund M, Ouyang H. In-cytoplasm mitochondrial transplantation for mesenchymal stem cells engineering and tissue regeneration. Bioeng Transl Med 2022; 7:e10250. [PMID: 35111950 PMCID: PMC8780934 DOI: 10.1002/btm2.10250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022] Open
Abstract
Stem cell therapies are unsatisfactory due to poor cell survival and engraftment. Stem cell used for therapy must be properly "tuned" for a harsh in vivo environment. Herein, we report that transfer of exogenous mitochondria (mito) to adipose-derived mesenchymal stem cells (ADSCs) can effectively boost their energy levels, enabling efficient cell engraftment. Importantly, the entire process of exogeneous mitochondrial endocytosis is captured by high-content live-cell imaging. Mitochondrial transfer leads to acutely enhanced bioenergetics, with nearly 17% of higher adenosine 5'-triphosphate (ATP) levels in ADSCs treated with high mitochondrial dosage and further results in altered secretome profiles of ADSCs. Mitochondrial transfer also induced the expression of 334 mRNAs in ADSCs, which are mainly linked to signaling pathways associated with DNA replication and cell division. We hypothesize that increase in ATP and cyclin-dependent kinase 1 and 2 expression might be responsible for promoting enhanced proliferation, migration, and differentiation of ADSCs in vitro. More importantly, mito-transferred ADSCs display prolonged cell survival, engraftment and horizontal transfer of exogenous mitochondria to surrounding cells in a full-thickness skin defect rat model with improved skin repair compared with nontreated ADSCs. These results demonstrate that intracellular mitochondrial transplantation is a promising strategy to engineer stem cells for tissue regeneration.
Collapse
Affiliation(s)
- Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Yuanzhu Ma
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Zongsheng Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Mikael Björklund
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- Department of Sports MedicineZhejiang University School of MedicineHangzhouChina
- China Orthopedic Regenerative Medicine Group (CORMed)HangzhouChina
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
36
|
Huang P, Zhang C, Delawary M, Korchak JA, Suda K, Zubair AC. Development and evaluation of IL-6 overexpressing mesenchymal stem cells (MSCs). J Tissue Eng Regen Med 2021; 16:244-253. [PMID: 34890489 DOI: 10.1002/term.3274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Mesenchymal stem/stromal cell (MSC) therapy has been investigated in multiple diseases and conditions. Although the mechanisms of MSC-based therapies are not fully understood, we and others have shown interleukin 6 (IL-6) to be an important factor in MSC function. IL-6 contributes to many biological events, such as immune response, neurogenesis, and bone remodeling. In our study, we tested the feasibility of engineering MSCs by IL-6 mRNA transfection (eMSCs-IL6) and evaluated the optimal time to harvest them after transfection. We then assessed the functional characteristics of eMSCs-IL6. Quantitative real-time PCR and ELISA results have shown that mature IL-6 mRNA was efficiently transfected into MSCs using a lipofectamine based method. The IL-6 mRNA and protein overexpression peaked after 1 day of transfection and the secreted IL-6 protein was sustained for at least 6 days. A short time course experiment demonstrated that 4 h after transfection was the best time point to harvest and freeze eMSCs-IL6 for future studies. In addition, eMSCs-IL6 maintained their characteristics as defined by International Society for Cell & Gene Therapy. The immunosuppressive capacity of conditioned culture medium (CCM) from eMSCs-IL6 (CCM-IL6) was significantly enhanced compared to naïve MSCs conditioned culture medium (CCM-control). Our studies established for the first time the feasibility of efficiently generating IL-6 overexpressing MSCs which have enhanced immunosuppressive capacity. This is providing a novel approach to improve the efficacy of MSCs for potential application in regenerative medicine.
Collapse
Affiliation(s)
- Peng Huang
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Cuiping Zhang
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Mina Delawary
- Cell Therapy Research Laboratories, Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Jennifer A Korchak
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Koji Suda
- Cell Therapy Research Laboratories, Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Abba C Zubair
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
37
|
Guo M, Xia C, Wu Y, Zhou N, Chen Z, Li W. Research Progress on Cell Membrane-Coated Biomimetic Delivery Systems. Front Bioeng Biotechnol 2021; 9:772522. [PMID: 34869288 PMCID: PMC8636778 DOI: 10.3389/fbioe.2021.772522] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023] Open
Abstract
Cell membrane-coated biomimetic nanoplatforms have many inherent properties, such as bio-interfacing abilities, self-identification, and signal transduction, which enable the biomimetic delivery system to escape immune clearance and opsonization. This can also maximize the drug delivery efficiency of synthetic nanoparticles (NPs) and functional cell membranes. As a new type of delivery system, cell membrane-coated biomimetic delivery systems have broadened the prospects for biomedical applications. In this review, we summarize research progress on cell membrane biomimetic technology from three aspects, including sources of membrane, modifications, and applications, then analyze their limitations and propose future research directions.
Collapse
Affiliation(s)
- Mengyu Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenjie Xia
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nong Zhou
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of Three Gorges Reservoir Area's Medicinal Herbs, College of Food and Biology Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
38
|
Li Q, Lian Y, Deng Y, Chen J, Wu T, Lai X, Zheng B, Qiu C, Peng Y, Li W, Xiang AP, Zhang X, Ren J. mRNA-engineered mesenchymal stromal cells expressing CXCR2 enhances cell migration and improves recovery in IBD. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:222-236. [PMID: 34513306 PMCID: PMC8413681 DOI: 10.1016/j.omtn.2021.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown significant heterogeneity in terms of therapeutic efficacy for inflammatory bowel disease (IBD) treatment, which may be due to an insufficient number of MSCs homing to the damaged tissue of the colon. Engineering MSCs with specific chemokine receptors can enhance the homing ability by lentiviral transduction. However, the unclear specific chemokine profile related to IBD and the safety concerns of viral-based gene delivery limit its application. Thus, a new strategy to modify MSCs to express specific chemokine receptors using mRNA engineering is developed to evaluate the homing ability of MSCs and its therapeutic effects for IBD. We found that CXCL2 and CXCL5 were highly expressed in the inflammatory colon, while MSCs minimally expressed the corresponding receptor CXCR2. Transient expression of CXCR2 in MSC was constructed and exhibited significantly enhanced migration to the inflamed colons, leading to a robust anti-inflammatory effect and high efficacy. Furthermore, the high expression of semaphorins7A on MSCs were found to induce the macrophages to produce IL-10, which may play a critical therapeutic role. This study demonstrated that the specific chemokine receptor CXCR2 mRNA-engineered MSCs not only improves the therapeutic efficacy of IBD but also provides an efficient and safe MSC modification strategy.
Collapse
Affiliation(s)
- Qiaojia Li
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yufan Lian
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yiwen Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jieying Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Tao Wu
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Xinqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Bowen Zheng
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Chen Qiu
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| | - Yanwen Peng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou 510630, China
| | - Jie Ren
- Department of Medical Ultrasonic, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, China
| |
Collapse
|
39
|
Metsiou DN, Kozaniti FK, Deligianni DD. Engineering Breast Cancer Cells and hUMSCs Microenvironment in 2D and 3D Scaffolds: A Mechanical Study Approach of Stem Cells in Anticancer Therapy. Bioengineering (Basel) 2021; 8:bioengineering8110189. [PMID: 34821755 PMCID: PMC8615245 DOI: 10.3390/bioengineering8110189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Cell biomechanics plays a major role as a promising biomarker for early cancer diagnosis and prognosis. In the present study, alterations in modulus of elasticity, cell membrane roughness, and migratory potential of MCF-7 (ER+) and SKBR-3 (HER2+) cancer cells were elucidated prior to and post treatment with conditioned medium from human umbilical mesenchymal stem cells (hUMSCs-CM) during static and dynamic cell culture. Moreover, the therapeutic potency of hUMSCs-CM on cancer cell’s viability, migratory potential, and F-actin quantified intensity was addressed in 2D surfaces and 3D scaffolds. Interestingly, alterations in ER+ cancer cells showed a positive effect of treatment upon limiting cell viability, motility, and potential for migration. Moreover, increased post treatment cell stiffness indicated rigid cancer cells with confined cell movement and cytoskeletal alterations with restricted lamellipodia formation, which enhanced these results. On the contrary, the cell viability and the migratory potential were not confined post treatment with hUMSCs-CM on HER2+ cells, possibly due to their intrinsic aggressiveness. The increased post treatment cell viability and the decreased cell stiffness indicated an increased potency for cell movement. Hence, the therapy had no efficacy on HER2+ cells.
Collapse
|
40
|
Zhang C, Delawary M, Huang P, Korchak JA, Suda K, Zubair AC. IL-10 mRNA Engineered MSCs Demonstrate Enhanced Anti-Inflammation in an Acute GvHD Model. Cells 2021; 10:3101. [PMID: 34831324 PMCID: PMC8621791 DOI: 10.3390/cells10113101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are used in various studies to induce immunomodulatory effects in clinical conditions associated with immune dysregulation such as graft versus host disease (GvHD). However, most of these clinical trials failed to go beyond early phase 2 studies because of limited efficacy. Various methods have been assessed to increase the potency of MSCs. IL-10 is an anti-inflammatory cytokine that is known to modulate immune responses in GvHD. In this study, we evaluated the feasibility of transfecting IL-10 mRNA to enhance MSC therapeutic potential. IL-10 mRNA engineered MSCs (eMSCs-IL10) maintained high levels of IL-10 expression even after freezing and thawing. IL-10 mRNA transfection did not appear to alter MSC intrinsic characteristics. eMSCs-IL10 significantly suppressed T cell proliferation relative to naïve MSCs in vitro. In a mouse model for GvHD, eMSCs-IL10 induced a decrease in plasma level of potent pro-inflammatory cytokines and inhibited CD4+ and CD8+ T cell proliferation in the spleen. In summary, our studies demonstrate the feasibility of potentiating MSCs to enhance their immunomodulatory effects by IL-10 mRNA transfection. The use of non-viral transfection may generate a safe and potent MSC product for treatment of clinical conditions associated with immune dysregulation such as GvHD.
Collapse
Affiliation(s)
- Cuiping Zhang
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA; (C.Z.); (P.H.); (J.A.K.)
| | - Mina Delawary
- Cell Therapy Research Laboratories, Daiichi Sankyo, Co., Ltd., Tokyo 1408710, Japan; (M.D.); (K.S.)
| | - Peng Huang
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA; (C.Z.); (P.H.); (J.A.K.)
| | - Jennifer A. Korchak
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA; (C.Z.); (P.H.); (J.A.K.)
| | - Koji Suda
- Cell Therapy Research Laboratories, Daiichi Sankyo, Co., Ltd., Tokyo 1408710, Japan; (M.D.); (K.S.)
| | - Abba C. Zubair
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL 32224, USA; (C.Z.); (P.H.); (J.A.K.)
| |
Collapse
|
41
|
Xuan X, Tian C, Zhao M, Sun Y, Huang C. Mesenchymal stem cells in cancer progression and anticancer therapeutic resistance. Cancer Cell Int 2021; 21:595. [PMID: 34736460 PMCID: PMC8570012 DOI: 10.1186/s12935-021-02300-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence indicates that the tumor microenvironment appears to play an increasingly important role in cancer progression and therapeutic resistance. Several types of cells within the tumor stroma had distinct impacts on cancer progression, either promoting or inhibiting cancer cell growth. Mesenchymal stem cells (MSCs) are a distinct type of cells that is linked to tumor development. MSCs are recognized for homing to tumor locations and promoting or inhibiting cancer cell proliferation, angiogenesis and metastasis. Moreover, emerging studies suggests that MSCs are also involved in therapeutic resistance. In this review, we analyzed the existing researches and elaborate on the functions of MSCs in cancer progression and anticancer therapeutic resistance, demonstrating that MSCs may be a viable cancer therapeutic target.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Chunxia Tian
- Department of Cardiology, Hubei Provincial Hospital of TCM, Wuhan, 430022, Hubei, China
| | - Mengjie Zhao
- Department of Dermatology, Zhongnan Hospital, Wuhan University, Wuhan, 430022, Hubei, China.
| | - Yanhong Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
42
|
Jo JI, Emi T, Tabata Y. Design of a Platelet-Mediated Delivery System for Drug-Incorporated Nanospheres to Enhance Anti-Tumor Therapeutic Effect. Pharmaceutics 2021; 13:pharmaceutics13101724. [PMID: 34684017 PMCID: PMC8540062 DOI: 10.3390/pharmaceutics13101724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/25/2023] Open
Abstract
The objective of this study is to construct a platelet-mediated delivery system for drug-incorporated nanospheres. Nanospheres of poly(lactic-co-glycolic acid) (PLGA-NS) with different sizes and surface properties were prepared by changing the preparation parameters, such as the type of polymer surfactant, the concentration of polymer surfactant and PLGA, and the stirring rate. When incubated with platelets, PLGA-NS prepared with poly(vinyl alcohol) suppressed the platelet activation. Scanning electron microscopic and flow cytometry examinations revealed that platelets associated with PLGA-NS (platelet hybrids, PH) had a similar appearance and biological properties to those of the original platelets. In addition, the PH with PLGA-NS specifically adhered onto the substrate pre-coated with fibrin to a significantly great extent compared with PLGA-NS alone. When applied in an in vitro model of tumor tissue which was composed of an upper chamber pre-coated with fibrin and a lower chamber culturing tumor cells, the PH with PLGA-NS incorporating an anti-tumor drug were delivered to the tumor cells through the specific adhesion onto the upper chamber and, consequently, drug release from the upper chamber took place, resulting in the growth suppression of tumor cells. It is concluded that the drug delivery system based on PH is promising for tumor treatment.
Collapse
|
43
|
Ghollasi M, Ghasembaglou S, Rahban D, Korani M, Motallebnezhad M, Asadi M, Zarredar H, Salimi A. Prospects for Manipulation of Mesenchymal Stem Cells in Tumor Therapy: Anti-Angiogenesis Property on the Spotlight. Int J Stem Cells 2021; 14:351-365. [PMID: 34456189 PMCID: PMC8611310 DOI: 10.15283/ijsc20146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/01/2021] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
The interactions between the tumor microenvironment and the tumor cells confers a condition that accelerate or decelerate the development of tumor. Of these cells, mesenchymal stem cells (MSCs) have the potential to modulate the tumor cells. MSCs have been established with double functions, whereby contribute to a tumorigenic or anti-tumor setting. Clinical studies have indicated the potential of MSCs to be used as tool in treating the human cancer cells. One of the advantageous features of MSCs that make them as a well-suited tool for cancer therapy is the natural tumor-trophic migration potential. A key specification of the tumor development has been stablished to be angiogenesis. As a result, manipulation of angiogenesis has become an attractive approach for cancer therapy. This review article will seek to clarify the anti-angiogenesis strategy in modulating the MSCs to treat the tumor cells.
Collapse
Affiliation(s)
- Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shahram Ghasembaglou
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Dariush Rahban
- Department of Nanomedicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Korani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
45
|
Momeni A, Eagler L, Lo CY, Weil BR, Canty JM, Lang JK, Neelamegham S. Neutrophils aid cellular therapeutics by enhancing glycoengineered stem cell recruitment and retention at sites of inflammation. Biomaterials 2021; 276:121048. [PMID: 34343858 DOI: 10.1016/j.biomaterials.2021.121048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
The efficacy of cell-based therapies relies on targeted payload delivery and enhanced cell retention. In vitro and in vivo studies suggest that the glycoengineering of mesenchymal and cardiosphere-derived cells (CDCs) may enhance such recruitment at sites of injury. We evaluated the role of blood cells in amplifying this recruitment. Thus, the human α(1,3)fucosyltransferase FUT7 was stably expressed in CDCs, sometimes with P-selectin glycoprotein ligand-1 (PSGL-1/CD162). Such FUT7 over-expression resulted in cell-surface sialyl Lewis-X (sLeX) expression, at levels comparable to blood neutrophils. Whereas FUT7 was sufficient for CDC recruitment on substrates bearing E-selectin under flow, PSGL-1 co-expression was necessary for P-/L-selectin binding. In both cone-plate viscometer and flow chamber studies, chemokine driven neutrophil activation promoted the adhesion of glycoengineered-CDCs to blood cells. Here, blood neutrophils activated upon contact with IL-1β stimulated endothelial cells, amplified glycoengineered-CDC recruitment. In vivo, local inflammation in a mouse ear elicited both glycoengineered-CDC and peripheral blood neutrophil homing to the inflamed site. Glycoengineering CDCs also resulted in enhanced (~16%) cell retention at 24 h in a murine myocardial infarction model, with CDCs often co-localized with blood neutrophils. Overall, peripheral blood neutrophils, activated at sites of injury, may enhance recruitment of glycoengineered cellular therapeutics via secondary capture mechanisms.
Collapse
Affiliation(s)
- Arezoo Momeni
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Lisa Eagler
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Veterans Affairs Western New York Health Care System, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Chi Y Lo
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Brian R Weil
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - John M Canty
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Veterans Affairs Western New York Health Care System, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Jennifer K Lang
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Veterans Affairs Western New York Health Care System, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Sriram Neelamegham
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA; Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
46
|
Liang YH, Wu JM, Teng JW, Hung E, Wang HS. Embelin downregulated cFLIP in breast cancer cell lines facilitate anti-tumor effect of IL-1β-stimulated human umbilical cord mesenchymal stem cells. Sci Rep 2021; 11:14720. [PMID: 34282169 PMCID: PMC8289868 DOI: 10.1038/s41598-021-94006-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death for women. In breast cancer treatment, targeted therapy would be more effective and less harmful than radiotherapy or systemic chemotherapy. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in cancer cells but not in normal cells. Mesenchymal stem cells have shown great therapeutic potential in cancer therapy owing to their ability of homing to tumor sites and secreting many kinds of anti-tumor proteins including TRAIL. In this study, we found that IL-1β-stimulated human umbilical cord-derived mesenchymal stem cells (hUCMSCs) enhance the expression of membrane-bound and soluble TRAIL. Cellular FADD-like IL-1β-converting enzyme inhibitory protein (cFLIP) is an important regulator in TRAIL-mediated apoptosis and relates to TRAIL resistance in cancer cells. Previous studies have shown that embelin, which is extracted from Embelia ribes, can increase the TRAIL sensitivity of cancer cells by reducing cFLIP expression. Here we have demonstrated that cFLIPL is correlated with TRAIL-resistance and that embelin effectively downregulates cFLIPL in breast cancer cells. Moreover, co-culture of IL-1β-stimulated hUCMSCs with embelin-treated breast cancer cells could effectively induce apoptosis in breast cancer cells. The combined effects of embelin and IL-1β-stimulated hUCMSCs may provide a new therapeutic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Ya-Han Liang
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Jiann-Ming Wu
- General Surgery Division, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Jui-Wen Teng
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Eric Hung
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Hwai-Shi Wang
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
47
|
Eiro N, Fraile M, Fernández-Francos S, Sánchez R, Costa LA, Vizoso FJ. Importance of the origin of mesenchymal (stem) stromal cells in cancer biology: "alliance" or "war" in intercellular signals. Cell Biosci 2021; 11:109. [PMID: 34112253 PMCID: PMC8194017 DOI: 10.1186/s13578-021-00620-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a central role in the intercellular signaling within the tumor microenvironment (TME), exchanging signals with cancer cells and tumor stromal cells, such as cancer-associated fibroblasts and inflammatory mononuclear cells. Research attributes both pro-tumor and anti-tumor actions to MSCs; however, evidence indicates that MSCs specific effect on the tumor depends on the source of the MSCs and the type of tumor. There are consistent data proving that MSCs from reproductive tissues, such as the uterus, umbilical cord or placenta, have potent anti-tumor effects and tropism towards tumor tissues. More interestingly, products derived from MSCs, such as secretome or extracellular vesicles, seem to reproduce the effects of their parental cells, showing a potential advantage for clinical treatments by avoiding the drawbacks associated with cell therapy. Given these perspectives, it appears necessary new research to optimize the production, safety and antitumor potency of the products derived from the MSCs suitable for oncological therapies.
Collapse
Affiliation(s)
- Noemi Eiro
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain.
| | - Maria Fraile
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Silvia Fernández-Francos
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Rosario Sánchez
- Department of Surgery, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain
| | - Luis A Costa
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Francisco J Vizoso
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain. .,Department of Surgery, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain.
| |
Collapse
|
48
|
Li YS, Wu HH, Jiang XC, Zhang TY, Zhou Y, Huang LL, Zhi P, Tabata Y, Gao JQ. Active stealth and self-positioning biomimetic vehicles achieved effective antitumor therapy. J Control Release 2021; 335:515-526. [PMID: 34058269 DOI: 10.1016/j.jconrel.2021.05.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/15/2021] [Accepted: 05/22/2021] [Indexed: 01/27/2023]
Abstract
Mesenchymal stem cells (MSCs) are recognized as promising drug delivery vehicles. However, the limitation of drug loading capacity and safety considerations are two obstacles to the further application of MSCs. Here, we report MSC membrane-coated mesoporous silica nanoparticles (MSN@M) that maintain the active stealth and self-positioning drug delivery abilities of MSCs and resolve issues related to MSCs-mediated drug delivery. MSN@M was established through uniformly integrating MSC membrane onto a mesoporous silica nanoparticle (MSN) core by sonication. Reduced clearance of phagocytes mediated by CD47 marker on MSC membrane was observed in vitro, which explained the only ~ 25% clearance rate of MSN@M compared with MSN in vivo within 24 h. MSN@M also showed stronger tumor targeting and penetration ability compared with MSN in HepG2 tumor bearing mice. Simultaneously, MSN@M exhibited strong capacity for drug loading and sustained drug release ability of MSN when loaded with doxorubicin (DOX), the drug loading of MSN@M increased ~ 5 folds compared with MSC membrane. In HepG2 xenograft mice, DOX-loaded MSN@M effectively inhibited the growth of tumors and decreased the side effects of treatment by decreasing the exposure of other tissues to DOX. Consequently, our MSN@M may serve as alternative vehicles for MSCs and provide more options for antitumor treatment.
Collapse
Affiliation(s)
- Yao-Sheng Li
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hong-Hui Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xin-Chi Jiang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Tian-Yuan Zhang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yi Zhou
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ling-Ling Huang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Pei Zhi
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jian-Qing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Cancer Center of Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
49
|
Su Y, Zhang T, Huang T, Gao J. Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements. Int J Pharm 2021; 600:120477. [PMID: 33737099 DOI: 10.1016/j.ijpharm.2021.120477] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently emerged as a promising living carrier for targeted drug delivery. A wealth of literature has shown evidence for great advances in MSCs-based drug delivery system (MSCs-DDS) in the treatment of various diseases. Nevertheless, as this field of study rapidly advances, several challenges associated with this delivery strategy have arisen, mainly due to the inherent limitations of MSCs. To this end, several novel technologies are being developed in parallel to improve the efficiency or safety of this system. In this review, we introduce recent advances and summarize the present challenges of MSCs-DDS. We also highlight some potential technologies to improve MSCs-DDS, including nanotechnology, genome engineering technology, and biomimetic technology. Finally, prospects for application of artificially improved MSCs-DDS are addressed. The technologies summarized in this review provide a general guideline for the improvement of MSCs-DDS.
Collapse
Affiliation(s)
- Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
50
|
García-Bernal D, García-Arranz M, Yáñez RM, Hervás-Salcedo R, Cortés A, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante Ó, Bueren JA, García-Olmo D, Moraleda JM, Segovia JC, Zapata AG. The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Front Cell Dev Biol 2021; 9:650664. [PMID: 33796536 PMCID: PMC8007911 DOI: 10.3389/fcell.2021.650664] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) currently constitute the most frequently used cell type in advanced therapies with different purposes, most of which are related with inflammatory processes. Although the therapeutic efficacy of these cells has been clearly demonstrated in different disease animal models and in numerous human phase I/II clinical trials, only very few phase III trials using MSCs have demonstrated the expected potential therapeutic benefit. On the other hand, diverse controversial issues on the biology and clinical applications of MSCs, including their specific phenotype, the requirement of an inflammatory environment to induce immunosuppression, the relevance of the cell dose and their administration schedule, the cell delivery route (intravascular/systemic vs. local cell delivery), and the selected cell product (i.e., use of autologous vs. allogeneic MSCs, freshly cultured vs. frozen and thawed MSCs, MSCs vs. MSC-derived extracellular vesicles, etc.) persist. In the current review article, we have addressed these issues with special emphasis in the new approaches to improve the properties and functional capabilities of MSCs after distinct cell bioengineering strategies.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano García-Arranz
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Rosa M Yáñez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Rosario Hervás-Salcedo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Alfonso Cortés
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - María Fernández-García
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Miriam Hernando-Rodríguez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Óscar Quintana-Bustamante
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Juan A Bueren
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Damián García-Olmo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Jose M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - José C Segovia
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Agustín G Zapata
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Complutense University, Madrid, Spain
| |
Collapse
|