1
|
Murphy WJ. Drilling down interferon in GVHD/GVL. Blood 2023; 141:821-823. [PMID: 36821188 DOI: 10.1182/blood.2022019232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
2
|
Lu C, Ma H, Song L, Wang H, Wang L, Li S, Lagana SM, Sepulveda AR, Hoebe K, Pan SS, Yang YG, Lentzsch S, Mapara MY. IFN-γR/STAT1 signaling in recipient hematopoietic antigen-presenting cells suppresses graft-versus-host disease. J Clin Invest 2023; 133:125986. [PMID: 36445781 PMCID: PMC9888368 DOI: 10.1172/jci125986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
The absence of IFN-γ receptor (IFN-γR) or STAT1 signaling in donor cells has been shown to result in reduced induction of acute graft-versus-host disease (GVHD). In this study, we unexpectedly observed increased activation and expansion of donor lymphocytes in both lymphohematopoietic organs and GVHD target tissues of IFN-γR/STAT1-deficient recipient mice, leading to rapid mortality following the induction of GVHD. LPS-matured, BM-derived Ifngr1-/- Stat1-/- DCs (BMDCs) were more potent allogeneic stimulators and expressed increased levels of MHC II and costimulatory molecules. Similar effects were observed in human antigen-presenting cells (APCs) with knockdown of Stat1 by CRISPR/Cas9 and treatment with a JAK1/2 inhibitor. Furthermore, we demonstrated that the absence of IFN-γR/STAT1 signaling in hematopoietic APCs impaired the presentation of exogenous antigens, while promoting the presentation of endogenous antigens. Thus, the indirect presentation of host antigens to donor lymphocytes was defective in IFN-γR/STAT1-deficient, donor-derived APCs in fully donor chimeric mice. The differential effects of IFN-γR/STAT1 signaling on endogenous and exogenous antigen presentation could provide further insight into the roles of the IFN-γ/STAT1 signaling pathway in the pathogenesis of GVHD, organ rejection, and autoimmune diseases.
Collapse
Affiliation(s)
- Caisheng Lu
- Columbia Center for Translational Immunology and
| | - Huihui Ma
- Columbia Center for Translational Immunology and
| | | | - Hui Wang
- Columbia Center for Translational Immunology and
| | - Lily Wang
- Columbia Center for Translational Immunology and
| | - Shirong Li
- Division of Hematology-Oncology, Columbia University, New York, New York, USA
| | - Stephen M. Lagana
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Antonia R. Sepulveda
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Kasper Hoebe
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA.,Janssen Research and Development, Spring House, Pennsylvania, USA
| | - Samuel S. Pan
- Janssen Research and Development, Spring House, Pennsylvania, USA
| | | | - Suzanne Lentzsch
- Division of Hematology-Oncology, Columbia University, New York, New York, USA
| | - Markus Y. Mapara
- Columbia Center for Translational Immunology and,Division of Hematology-Oncology, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Abstract
Cellular therapies such as allogeneic hematopoietic stem cell transplantation (HSCT) and immune-effector cell therapy (IECT) continue to have a critical role in the treatment of patients with high risk malignancies and hematologic conditions. These therapies are also associated with inflammatory conditions such as graft-versus-host disease (GVHD) and cytokine release syndrome (CRS) which contribute significantly to the morbidity and mortality associated with these therapies. Recent advances in our understanding of the immunological mechanisms that underly GVHD and CRS highlight an important role for Janus kinases (JAK). JAK pathways are important for the signaling of several cytokines and are involved in the activation and proliferation of several immune cell subsets. In this review, we provide an overview of the preclinical and clinical evidence supporting the use of JAK inhibitors for acute and chronic GVHD and CRS.
Collapse
Affiliation(s)
- Amer Assal
- Department of Medicine, Bone Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY, United States
| | - Markus Y. Mapara
- Department of Medicine, Bone Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
4
|
Bates PD, Rakhmilevich AL, Cho MM, Bouchlaka MN, Rao SL, Hales JM, Orentas RJ, Fry TJ, Gilles SD, Sondel PM, Capitini CM. Combining Immunocytokine and Ex Vivo Activated NK Cells as a Platform for Enhancing Graft-Versus-Tumor Effects Against GD2 + Murine Neuroblastoma. Front Immunol 2021; 12:668307. [PMID: 34489927 PMCID: PMC8417312 DOI: 10.3389/fimmu.2021.668307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Cell Line, Tumor
- Combined Modality Therapy
- Cytokines/pharmacology
- Female
- Gangliosides/antagonists & inhibitors
- Gangliosides/immunology
- Gangliosides/metabolism
- Graft vs Tumor Effect
- Hematopoietic Stem Cell Transplantation
- Immunotherapy, Adoptive
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Lymphocyte Activation/drug effects
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neuroblastoma/immunology
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/therapy
- Mice
Collapse
Affiliation(s)
- Paul D. Bates
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Alexander L. Rakhmilevich
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Monica M. Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Myriam N. Bouchlaka
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Seema L. Rao
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Joanna M. Hales
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rimas J. Orentas
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Terry J. Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Paul M. Sondel
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
5
|
Hess NJ, Brown ME, Capitini CM. GVHD Pathogenesis, Prevention and Treatment: Lessons From Humanized Mouse Transplant Models. Front Immunol 2021; 12:723544. [PMID: 34394131 PMCID: PMC8358790 DOI: 10.3389/fimmu.2021.723544] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 01/14/2023] Open
Abstract
Graft-vs-host disease (GVHD) is the most common cause of non-relapse mortality following allogeneic hematopoietic stem cell transplantation (HSCT) despite advances in conditioning regimens, HLA genotyping and immune suppression. While murine studies have yielded important insights into the cellular responses of GVHD, differences between murine and human biology has hindered the translation of novel therapies into the clinic. Recently, the field has expanded the ability to investigate primary human T cell responses through the transplantation of human T cells into immunodeficient mice. These xenogeneic HSCT models benefit from the human T cell receptors, CD4 and CD8 proteins having cross-reactivity to murine MHC in addition to several cytokines and co-stimulatory proteins. This has allowed for the direct assessment of key factors in GVHD pathogenesis to be investigated prior to entering clinical trials. In this review, we will summarize the current state of clinical GVHD research and discuss how xenogeneic HSCT models will aid in advancing the current pipeline of novel GVHD prophylaxis therapies into the clinic.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
6
|
Jamali A, Kenyon B, Ortiz G, Abou-Slaybi A, Sendra VG, Harris DL, Hamrah P. Plasmacytoid dendritic cells in the eye. Prog Retin Eye Res 2020; 80:100877. [PMID: 32717378 DOI: 10.1016/j.preteyeres.2020.100877] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subpopulation of immune cells, distinct from classical dendritic cells. pDCs are generated in the bone marrow and following development, they typically home to secondary lymphoid tissues. While peripheral tissues are generally devoid of pDCs during steady state, few tissues, including the lung, kidney, vagina, and in particular ocular tissues harbor resident pDCs. pDCs were originally appreciated for their potential to produce large quantities of type I interferons in viral immunity. Subsequent studies have now unraveled their pivotal role in mediating immune responses, in particular in the induction of tolerance. In this review, we summarize our current knowledge on pDCs in ocular tissues in both mice and humans, in particular in the cornea, limbus, conjunctiva, choroid, retina, and lacrimal gland. Further, we will review our current understanding on the significance of pDCs in ameliorating inflammatory responses during herpes simplex virus keratitis, sterile inflammation, and corneal transplantation. Moreover, we describe their novel and pivotal neuroprotective role, their key function in preserving corneal angiogenic privilege, as well as their potential application as a cell-based therapy for ocular diseases.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Abdo Abou-Slaybi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Victor G Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
7
|
Zhu F, Qiu T, Zhu S, Zhao K, Chen C, Qiao J, Pan B, Yan Z, Chen W, Liu Q, Wu Q, Cao J, Sang W, Zeng L, Sun H, Li Z, Xu K. TIRC7 inhibits Th1 cells by upregulating the expression of CTLA‑4 and STAT3 in mice with acute graft‑versus‑host disease. Oncol Rep 2020; 44:43-54. [PMID: 32319655 PMCID: PMC7254953 DOI: 10.3892/or.2020.7588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/18/2020] [Indexed: 11/05/2022] Open
Abstract
In a previous study, it was demonstrated that T‑cell immune response cDNA 7 (TIRC7) levels reflect the efficacy of treatment of patients with acute graft‑versus‑host disease (GVHD). However, the pathogenesis of TIRC7 in acute GVHD remains poorly understood. Lymphocytes from patients with acute GVHD were selected as targeT cells, and the effects of TIRC7 on cytotoxic T lymphocyte antigen‑4 (CTLA‑4), T cell activation and cytokine secretion were observed by electroporation. A mouse model of acute GVHD was established; anti‑TIRC7 and anti‑CTLA‑4 monoclonal antibodies were intraperitoneally injected into recipient mice. Then, the effects of TIRC7 and CTLA‑4 on T cell activation and acute GVHD were monitored. After TIRC7 expression was downregulated, CTLA‑4 levels were decreased and STAT3 phosphorylation was reduced; conversely, the activation capacity of T lymphocytes was elevated, and the secretion of interferon‑γ and other cytokines was increased. The mice in the TIRC7 + CTLA‑4 co‑administration group exhibited the lowest acute GVHD scores, with the longest average survival time and shortest recovery time of hematopoietic reconstitution. In conclusion, the results indicated that TIRC7 may positively regulate the function of CTLA‑4 and inhibit T cell activation, thus suppressing the development and progression of acute GVHD.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Tingting Qiu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Shengyun Zhu
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Kai Zhao
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Chong Chen
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jianlin Qiao
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Bin Pan
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhiling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Qiong Liu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Qingyun Wu
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Lingyu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Haiying Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
8
|
Snyder KJ, Zitzer NC, Gao Y, Choe HK, Sell NE, Neidemire-Colley L, Ignaci A, Kale C, Devine RD, Abad MG, Pietrzak M, Wang M, Lin H, Zhang YW, Behbehani GK, Jackman JE, Garzon R, Vaddi K, Baiocchi RA, Ranganathan P. PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease. JCI Insight 2020; 5:131099. [PMID: 32191634 DOI: 10.1172/jci.insight.131099] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a T cell-mediated immunological disorder and the leading cause of nonrelapse mortality in patients who receive allogeneic hematopoietic cell transplants. Based on recent observations that protein arginine methyltransferase 5 (PRMT5) and arginine methylation are upregulated in activated memory T cells, we hypothesized that PRMT5 is involved in the pathogenesis of aGVHD. Here, we show that PRMT5 expression and enzymatic activity were upregulated in activated T cells in vitro and in T cells from mice developing aGVHD after allogeneic transplant. PRMT5 expression was also upregulated in T cells of patients who developed aGVHD after allogeneic hematopoietic cell transplant compared with those who did not develop aGVHD. PRMT5 inhibition using a selective small-molecule inhibitor (C220) substantially reduced mouse and human allogeneic T cell proliferation and inflammatory IFN-γ and IL-17 cytokine production. Administration of PRMT5 small-molecule inhibitors substantially improves survival, reducing disease incidence and clinical severity in mouse models of aGVHD without adversely affecting engraftment. Importantly, we show that PRMT5 inhibition retained the beneficial graft-versus-leukemia effect by maintaining cytotoxic CD8+ T cell responses. Mechanistically, we show that PRMT5 inhibition potently reduced STAT1 phosphorylation as well as transcription of proinflammatory genes, including interferon-stimulated genes and IL-17. Additionally, PRMT5 inhibition deregulates the cell cycle in activated T cells and disrupts signaling by affecting ERK1/2 phosphorylation. Thus, we have identified PRMT5 as a regulator of T cell responses and as a therapeutic target in aGVHD.
Collapse
Affiliation(s)
- Katiri J Snyder
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Hannah K Choe
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Natalie E Sell
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Anora Ignaci
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Charuta Kale
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Raymond D Devine
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Min Wang
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Hong Lin
- Prelude Therapeutics, Wilmington, Delaware, USA
| | | | - Gregory K Behbehani
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Kris Vaddi
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| |
Collapse
|
9
|
Chrisikos TT, Zhou Y, Slone N, Babcock R, Watowich SS, Li HS. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Mol Immunol 2019; 110:24-39. [PMID: 29549977 PMCID: PMC6139080 DOI: 10.1016/j.molimm.2018.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/04/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are the principal antigen-presenting cells of the immune system and play key roles in controlling immune tolerance and activation. As such, DCs are chief mediators of tumor immunity. DCs can regulate tolerogenic immune responses that facilitate unchecked tumor growth. Importantly, however, DCs also mediate immune-stimulatory activity that restrains tumor progression. For instance, emerging evidence indicates the cDC1 subset has important functions in delivering tumor antigens to lymph nodes and inducing antigen-specific lymphocyte responses to tumors. Moreover, DCs control specific therapeutic responses in cancer including those resulting from immune checkpoint blockade. DC generation and function is influenced profoundly by cytokines, as well as their intracellular signaling proteins including STAT transcription factors. Regardless, our understanding of DC regulation in the cytokine-rich tumor microenvironment is still developing and must be better defined to advance cancer treatment. Here, we review literature focused on the molecular control of DCs, with a particular emphasis on cytokine- and STAT-mediated DC regulation. In addition, we highlight recent studies that delineate the importance of DCs in anti-tumor immunity and immune therapy, with the overall goal of improving knowledge of tumor-associated factors and intrinsic DC signaling cascades that influence DC function in cancer.
Collapse
Affiliation(s)
- Taylor T Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie Slone
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rachel Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Dang N, Lin Y, Rutgeerts O, Sagaert X, Billiau AD, Waer M, Sprangers B. Solid Tumor–Induced Immune Regulation Alters the GvHD/GvT Paradigm after Allogenic Bone Marrow Transplantation. Cancer Res 2019; 79:2709-2721. [DOI: 10.1158/0008-5472.can-18-3143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
|
11
|
STAT3 Expression in Host Myeloid Cells Controls Graft-versus-Host Disease Severity. Biol Blood Marrow Transplant 2017; 23:1622-1630. [PMID: 28694183 DOI: 10.1016/j.bbmt.2017.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/27/2017] [Indexed: 02/04/2023]
Abstract
Professional antigen-presenting cells (APCs) are important modulators of acute graft-versus-host disease (GVHD). Although dendritic cells (DCs) are the most potent APC subset, other myeloid cells, especially macrophages (MFs) and neutrophils, recently have been shown to play a role in the severity of GVHD. The critical molecular mechanisms that determine the functions of myeloid cells in GVHD are unclear, however. Signal transducer and activator of transcription 3 (STAT3) is a master transcription factor that plays a crucial role in regulating immunity, but its role in MF biology and in acute GVHD remains unknown. To determine the impact of myeloid cell-specific expression of STAT3 on the severity of acute GVHD, we used myeloid cell-specific STAT3-deficient LysM-Cre/STAT3fl/- animals as recipients and donors in well-characterized experimental models of acute GVHD. We found that reduced expression of STAT3 in myeloid cells from the hosts, but not the donors, increased inflammation, increased donor T cell activation, and exacerbated GVHD. Our data demonstrate that STAT3 in host myeloid cells, such as MFs, dampens acute GVHD.
Collapse
|
12
|
Lamarthée B, Malard F, Saas P, Mohty M, Gaugler B. Interleukin-22 in Graft-Versus-Host Disease after Allogeneic Stem Cell Transplantation. Front Immunol 2016; 7:148. [PMID: 27148267 PMCID: PMC4836046 DOI: 10.3389/fimmu.2016.00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/04/2016] [Indexed: 01/20/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential curative treatment for hematologic malignancies and non-malignant diseases. Because of the lower toxicity of reduced intensity conditioning, the number of transplants is in constant increase. However, allo-HSCT is still limited by complications, such as graft-versus-host disease (GVHD), which is associated with important morbidity and mortality. Acute GVHD is an exacerbated inflammatory response that leads to the destruction of healthy host tissues by donor immune cells. Recently, the contribution of innate immunity in GVHD triggering has been investigated by several groups and resulted in the identification of new cellular and molecular effectors involved in GVHD pathogenesis. Interleukin-22 (IL-22) is produced by both immune and adaptive cells and has both protective and inflammatory properties. Its role in GVHD processes has been investigated, and the data suggest that its effect depends on the timing, the target tissue, and the origin of the producing cells (donor/host). In this review, we discuss the role of IL-22 in allo-HSCT and GVHD.
Collapse
Affiliation(s)
- Baptiste Lamarthée
- Centre de Recherche Saint Antoine, INSERM UMR 938, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Florent Malard
- Centre de Recherche Saint Antoine, INSERM UMR 938, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Philippe Saas
- INSERM UMR1098, Besançon, France; UMR 1098, SFR FED 4234, Université de Bourgogne Franche-Comté, Besançon, France; UMR 1098, Etablissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Mohamad Mohty
- Centre de Recherche Saint Antoine, INSERM UMR 938, Paris, France; Université Pierre et Marie Curie, Paris, France; Service d'Hématologie Clinique, Hôpital Saint-Antoine, Paris, France
| | - Béatrice Gaugler
- Centre de Recherche Saint Antoine, INSERM UMR 938, Paris, France; Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
13
|
Lamarthée B, Malard F, Gamonet C, Bossard C, Couturier M, Renauld JC, Mohty M, Saas P, Gaugler B. Donor interleukin-22 and host type I interferon signaling pathway participate in intestinal graft-versus-host disease via STAT1 activation and CXCL10. Mucosal Immunol 2016; 9:309-21. [PMID: 26153763 DOI: 10.1038/mi.2015.61] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/28/2015] [Indexed: 02/04/2023]
Abstract
Acute graft-versus-host disease (aGVHD) remains a major complication following allogeneic hematopoietic cell transplantation, limiting the success of this therapy. We previously reported that interleukin-22 (IL-22) participates to aGVHD development, but the underlying mechanisms of its contribution remain poorly understood. In this study, we analyzed the mechanism of the pathological function of IL-22 in intestinal aGVHD. Ex-vivo colon culture experiments indicated that IL-22 was able to induce Th1-like inflammation via signal transducer and activator of transcription factor-1 (STAT1) and CXCL10 induction in the presence of type I interferon (IFN). To evaluate a potential synergy between IL-22 and type I IFN in aGVHD, we transplanted recipient mice, either wild-type (WT) or type I IFN receptor deficient (IFNAR(-/-)), with bone marrow cells and WT or IL-22 deficient (IL-22(-/-)) T cells. We observed a decreased GVHD severity in IFNAR(-/-) recipient of IL-22(-/-) T cells, which was associated with a lower level of STAT1 activation and reduced CXCL10 expression in the large intestine. Finally, immunohistochemistry staining of STAT1 performed on gastrointestinal biopsies of 20 transplanted patients showed exacerbated STAT1 activation in gastrointestinal tissues of patients with aGVHD as compared with those without aGVHD. Thus, interfering with both IL-22 and type I IFN signaling may provide a novel approach to limit aGVHD.
Collapse
Affiliation(s)
- B Lamarthée
- INSERM UMR1098, Besançon, France
- Université de Bourgogne Franche-Comté, UMR 1098, SFR FED 4234, Besançon, France
- EFS Bourgogne Franche-Comté, UMR 1098, Besançon, France
| | - F Malard
- Centre de Recherche Saint-Antoine, INSERM UMRs938, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Service d'Hématologie Clinique, Hôpital Saint-Antoine, Paris, France
| | - C Gamonet
- INSERM UMR1098, Besançon, France
- Université de Bourgogne Franche-Comté, UMR 1098, SFR FED 4234, Besançon, France
- EFS Bourgogne Franche-Comté, UMR 1098, Besançon, France
| | - C Bossard
- EA4273 Biometadys, Faculté de médecine, Université de Nantes, Nantes, France
- Service d'Anatomie et Cytologie Pathologique, CHU de Nantes, Nantes, France
| | - M Couturier
- INSERM UMR1098, Besançon, France
- Université de Bourgogne Franche-Comté, UMR 1098, SFR FED 4234, Besançon, France
- EFS Bourgogne Franche-Comté, UMR 1098, Besançon, France
| | - J-C Renauld
- Ludwig Institute for Cancer Research and Experimental Medicine Unit, Université Catholique de Louvain, Brussels, Belgium
| | - M Mohty
- Centre de Recherche Saint-Antoine, INSERM UMRs938, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Service d'Hématologie Clinique, Hôpital Saint-Antoine, Paris, France
| | - P Saas
- INSERM UMR1098, Besançon, France
- Université de Bourgogne Franche-Comté, UMR 1098, SFR FED 4234, Besançon, France
- EFS Bourgogne Franche-Comté, UMR 1098, Besançon, France
| | - B Gaugler
- INSERM UMR1098, Besançon, France
- Université de Bourgogne Franche-Comté, UMR 1098, SFR FED 4234, Besançon, France
- EFS Bourgogne Franche-Comté, UMR 1098, Besançon, France
| |
Collapse
|
14
|
Murine allogeneic CD19 CAR T cells harbor potent antileukemic activity but have the potential to mediate lethal GVHD. Blood 2015; 127:1361-70. [PMID: 26660684 DOI: 10.1182/blood-2015-08-664250] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) persisting or relapsing following bone marrow transplantation (BMT) has a dismal prognosis. Success with chimeric antigen receptor (CAR) T cells offers an opportunity to treat these patients with leukemia-redirected donor-derived T cells, which may be more functional than T cells derived from patients with leukemia but have the potential to mediate graft-versus-host disease (GVHD). We, together with others, have previously demonstrated tumor-specific T-cell dysfunction in the allogeneic environment. Here, we studied CAR T-cell function following BMT using an immunocompetent murine model of minor mismatched allogeneic transplantation followed by donor-derived CD19-CAR T cells. Allogeneic donor-derived CD19-CAR T cells eliminated residual ALL with equal potency to those administered after syngeneic BMT. Surprisingly, allogeneic CAR T cells mediated lethal acute GVHD with early mortality, which is atypical for this minor mismatch model. We demonstrated that both allogeneic and syngeneic CAR T cells show initial expansion as effector T cells, with a higher peak but rapid deletion of allogeneic CAR T cells. Interestingly, CAR-mediated acute GVHD was only seen in the presence of leukemia, suggesting CAR-target interactions induced GVHD. Indeed, serum interleukin (IL)-6 was elevated only in the presence of both leukemia and CAR T cells, and IL-6 neutralization ameliorated the severity of GVHD in a delayed donor lymphocyte infusion model. Finally, allogeneic CD4(+) CAR T cells were responsible for GVHD, which correlated with their ability to produce IL-6 upon CAR stimulation. Altogether, we demonstrate that donor-derived allogeneic CAR T cells are active but have the capacity to drive GVHD.
Collapse
|
15
|
Plasmacytoid dendritic cells in allogeneic hematopoietic cell transplantation: benefit or burden? Bone Marrow Transplant 2015; 51:333-43. [PMID: 26642333 DOI: 10.1038/bmt.2015.301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 11/09/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) bridge innate and adaptive immune responses and have important roles in hematopoietic engraftment, GvHD and graft-versus-leukemia responses following allogeneic hematopoietic cell transplantation (HCT). In addition, pDCs mediate antiviral immunity, particularly as they are the body's primary cellular source of type I interferon. Given their pleiotropic roles, pDCs have emerged as cells that critically impact transplant outcomes, including overall survival. In this article, we will review the pre-clinical and clinical literature, supporting the crucial roles that pDCs assume as key immune effector cells during HCT.
Collapse
|
16
|
Zhu F, Zhong XM, Qiao J, Liu Q, Sun HY, Chen W, Zhao K, Wu QY, Cao J, Sang W, Yan ZL, Zeng LY, Li ZY, Xu KL. Cytotoxic T Lymphocyte Antigen-4 Down-Regulates T Helper 1 Cells by Increasing Expression of Signal Transducer and Activator of Transcription 3 in Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2015; 22:212-219. [PMID: 26555814 DOI: 10.1016/j.bbmt.2015.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/03/2015] [Indexed: 11/28/2022]
Abstract
Numerous previous studies have suggested that cytotoxic T lymphocyte antigen-4 (CTLA-4) plays an important role in acute graft-versus-host disease (GVHD). How CTLA-4 acts in regulating acute GVHD remains unknown, however. In the present study, we found that, compared with healthy controls, CTLA-4 plasma and relative mRNA levels in patients with acute GVHD were initially decreased and then markedly elevated after 28 days of treatment. CTLA-4 levels were higher in patients with grade I-II acute GVHD compared with those with grade III-IV acute GVHD both before and after treatment. Up-regulation of CTLA-4 significantly increased the luciferase activity and degree of phosphorylation of signal transducer and activator of transcription 3 (STAT3). Meanwhile, T cell activation was significantly inhibited, and levels of IFN-γ, IL-17, and IL-22 decreased. These findings suggest that CTLA-4 might be involved in the pathogenesis of acute GVHD, and may down-regulate T helper 1 cells by increasing STAT3 expression in acute GVHD.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiao-Min Zhong
- Department of Oncology, Affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jianlin Qiao
- Laboratory of Transplant Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qiong Liu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hai-Ying Sun
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wei Chen
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Kai Zhao
- Laboratory of Transplant Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qing-Yun Wu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Laboratory of Transplant Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wei Sang
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhi-Ling Yan
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Laboratory of Transplant Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Kai-Lin Xu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Laboratory of Transplant Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
17
|
Gonçalves MV, Yamamoto M, Kimura EYS, Colturato VAR, de Souza MP, Mauad M, Ikoma MV, Novis Y, Rocha V, Ginani VC, Wanderley de Oliveira Felix OM, Seber A, Kerbauy FR, Hamerschlak N, Orfao A, Rodrigues CA. Low Counts of Plasmacytoid Dendritic Cells after Engraftment Are Associated with High Early Mortality after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant 2015; 21:1223-9. [PMID: 25792371 DOI: 10.1016/j.bbmt.2015.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells that drive immune responses and tolerance and are divided in different subsets: myeloid DCs (mDCs: lineage-; HLA-DR+, 11c+), plasmacytoid dendritic cells (pDCs: HLA-DR+, CD123+), and monocyte-derived DCs (moDC: lineage-, 11c+, 16+). After hematopoietic stem cell transplantation (HSCT), low DC counts in the recipients' peripheral blood (PB) have been associated with worse outcomes, but the relevance of DC graft content remains unclear, and there are few data in the setting of unrelated donor HSCT. We evaluated the DC graft content and monitored DC recovery in PB from 111 HSCT recipients (median age, 17 years; range 1 to 74), who received bone marrow (46%), umbilical cord blood (32%), or PB (22%) from unrelated (81%) or related donors (19%). In 86 patients with sustained allogeneic recovery, patients with higher counts of all DC subsets (pDC, mDC, and moDC) 3 weeks after engraftment had lower incidence of nonrelapse mortality (NMR) and acute graft-versus-host disease (aGVHD) and better survival. pDC counts were associated with more striking results: patients with higher pDC counts had much lower incidences of NRM (3% versus 47%, P < .0001), lower incidence of aGVHD (24% versus 67%, P < .0001), and better overall survival (92% versus 45%, P < .0001). In contrast, higher pDC counts in the graft was associated with an increased risk of aGVHD (55% versus 26%, P = .02). Our results indicate that DC counts are closely correlated with HSCT outcomes and warrant further prospective evaluation and possible early therapeutic interventions to ameliorate severe aGVHD and decrease mortality.
Collapse
Affiliation(s)
| | - Mihoko Yamamoto
- Disciplina de Hematologia e Hemoterapia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Yana Novis
- Centro de Oncologia, Hospital Sírio Libanês, São Paulo, Brazil
| | - Vanderson Rocha
- Eurocord/Saint-Louis Hospital, Paris, France; Churchill Hospital, Oxford University Hospital, Oxford, United Kingdom
| | | | | | | | - Fabio Rodrigues Kerbauy
- Disciplina de Hematologia e Hemoterapia, Universidade Federal de São Paulo, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Alberto Orfao
- Centro de Investigación del Cáncer (CIC,I BMCC USAL-CSIC); Servicio General de Citometría, Departamento de Medicina, IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Celso Arrais Rodrigues
- Disciplina de Hematologia e Hemoterapia, Universidade Federal de São Paulo, São Paulo, Brazil; Centro de Oncologia, Hospital Sírio Libanês, São Paulo, Brazil
| |
Collapse
|
18
|
Bringing out the DCs' softer side in GVHD. Blood 2014; 124:1852-3. [PMID: 25606629 DOI: 10.1182/blood-2014-08-592568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|