1
|
Papadakos SP, Chatzikalil E, Vakadaris G, Reppas L, Arvanitakis K, Koufakis T, Siakavellas SI, Manolakopoulos S, Germanidis G, Theocharis S. Exploring the Role of GITR/GITRL Signaling: From Liver Disease to Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2609. [PMID: 39061246 PMCID: PMC11275207 DOI: 10.3390/cancers16142609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and presents a continuously growing incidence and high mortality rates worldwide. Besides advances in diagnosis and promising results of pre-clinical studies, established curative therapeutic options for HCC are not currently available. Recent progress in understanding the tumor microenvironment (TME) interactions has turned the scientific interest to immunotherapy, revolutionizing the treatment of patients with advanced HCC. However, the limited number of HCC patients who benefit from current immunotherapeutic options creates the need to explore novel targets associated with improved patient response rates and potentially establish them as a part of novel combinatorial treatment options. Glucocorticoid-induced TNFR-related protein (GITR) belongs to the TNFR superfamily (TNFRSF) and promotes CD8+ and CD4+ effector T-cell function with simultaneous inhibition of Tregs function, when activated by its ligand, GITRL. GITR is currently considered a potential immunotherapy target in various kinds of neoplasms, especially with the concomitant use of programmed cell-death protein-1 (PD-1) blockade. Regarding liver disease, a high GITR expression in liver progenitor cells has been observed, associated with impaired hepatocyte differentiation, and decreased progenitor cell-mediated liver regeneration. Considering real-world data proving its anti-tumor effect and recently published evidence in pre-clinical models proving its involvement in pre-cancerous liver disease, the idea of its inclusion in HCC therapeutic options theoretically arises. In this review, we aim to summarize the current evidence supporting targeting GITR/GITRL signaling as a potential treatment strategy for advanced HCC.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Georgios Vakadaris
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Lampros Reppas
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Spyros I. Siakavellas
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
2
|
Arai T, Kokubo T, Tang R, Abo H, Terui A, Hirakawa J, Akita H, Kawashima H, Hisaka A, Hatakeyama H. Tumor-associated neutrophils and macrophages exacerbate antidrug IgG-mediated anaphylactic reaction against an immune checkpoint inhibitor. J Immunother Cancer 2022; 10:jitc-2022-005657. [PMID: 36543377 PMCID: PMC9772690 DOI: 10.1136/jitc-2022-005657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND With the increased use of immune checkpoint inhibitors (ICIs), side effects and toxicity are a great concern. Anaphylaxis has been identified as a potential adverse event induced by ICIs. Anaphylaxis is a life-threatening medical emergency. However, the mechanisms and factors that can potentially influence the incidence and severity of anaphylaxis in patients with cancer remain unclear. METHODS Healthy, murine colon 26, CT26, breast 4T1, EMT6, and renal RENCA tumor-bearing mice were treated with an anti-PD-L1 antibody (clone 10F.9G2). Symptoms of anaphylaxis were evaluated along with body temperature and mortality. The amounts of antidrug antibody and platelet-activating factor (PAF) in the blood were quantified via ELISA and liquid chromatography-mass spectrometry (LC-MS/MS). Immune cells were analyzed and isolated using a flow cytometer and magnetic-activated cell sorting, respectively. RESULTS Repeated administration of the anti-PD-L1 antibody 10F.9G2 to tumor-bearing mice caused fatal anaphylaxis, depending on the type of tumor model. After administration, antidrug immunoglobulin G (IgG), but not IgE antibodies, were produced, and PAF was released as a chemical mediator during anaphylaxis, indicating that anaphylaxis was caused by an IgG-dependent pathway. Anaphylaxis induced by 10F.9G2 was treated with a PAF receptor antagonist. We identified that neutrophils and macrophages were PAF-producing effector cells during anaphylaxis, and the tumor-bearing models with increased numbers of neutrophils and macrophages showed lethal anaphylaxis after treatment with 10F.9G2. Depletion of both neutrophils and macrophages using clodronate liposomes prevented anaphylaxis in tumor-bearing mice. CONCLUSIONS Thus, increased numbers of neutrophils and macrophages associated with cancer progression may be risk factors for anaphylaxis. These findings may provide useful insights into the mechanism of anaphylaxis following the administration of immune checkpoint inhibitors in human subjects.
Collapse
Affiliation(s)
- Takahiro Arai
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomomi Kokubo
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ruiheng Tang
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan,Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hirohito Abo
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ayu Terui
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Jotaro Hirakawa
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Akihiro Hisaka
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroto Hatakeyama
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan,Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Rakké YS, Campos Carrascosa L, van Beek AA, de Ruiter V, van Gemerden RS, Doukas M, Doornebosch PG, Vermaas M, ter Borg S, van der Harst E, Coene PPL, Kliffen M, Grünhagen DJ, Verhoef C, IJzermans JN, Kwekkeboom J, Sprengers D. GITR Ligation Improves Anti-PD1-Mediated Restoration of Human MMR-Proficient Colorectal Carcinoma Tumor-Derived T Cells. Cell Mol Gastroenterol Hepatol 2022; 15:77-97. [PMID: 36155259 PMCID: PMC9672455 DOI: 10.1016/j.jcmgh.2022.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS In contrast to mismatch repair deficient colorectal carcinoma (CRC), MMR proficient (pMMR) CRC does not respond to immune checkpoint blockade. We studied immune checkpoint stimulation via glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) on ex vivo functionality of human tumor-infiltrating lymphocytes (TIL) isolated from pMMR primary CRC and liver metastases (CRLM). METHODS Using lymphocytes from resected tumor, adjacent tissues, and peripheral blood mononuclear cells (PBMC) of 132 pMMR primary CRC or CRLM patients, we determined GITR expression and the in vitro T-cell agonistic activity of recombinant GITR ligation. RESULTS Here, we show that GITR was overexpressed on TIL when compared with other stimulatory immune checkpoints (4-1BB, OX40). Its expression was enhanced in TIL compared with PBMC and adjacent tissues. Among CD4+ TIL, GITR expression was primarily expressed by CD45RA- FoxP3hi activated regulatory T cells. Within CD8+ TIL, GITR was predominantly expressed on functionally exhausted and putative tumor-reactive CD103+ CD39+ TIL. Strikingly, recombinant GITRL reinvigorated ex vivo TIL responses by significantly enhancing CD4+ and CD8+ TIL numbers. Dual treatment with GITRL and nivolumab (anti-PD1) enhanced CD8+ TIL expansion compared with GITRL monotherapy. Moreover, GITRL/anti-PD1 dual therapy further improved anti-PD1-mediated reinvigoration of interferon gamma secretion by exhausted CD8 TIL from primary CRC. CONCLUSIONS GITR is overexpressed on CD4+ and CD8+ TIL from pMMR CRC and CRLM. Agonistic targeting of GITR enhances ex vivo human TIL functionality and may therefore be a promising approach for novel monotherapy or combined immunotherapies in primary pMRR CRC and CRLM.
Collapse
Affiliation(s)
- Yannick S. Rakké
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Lucia Campos Carrascosa
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Adriaan A. van Beek
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Valeska de Ruiter
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Rachelle S. van Gemerden
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | | | - Maarten Vermaas
- Department of Surgery, IJsselland Hospital, Capelle aan den IJssel, the Netherlands
| | | | | | | | - Mike Kliffen
- Department of Pathology, Maasstad Hospital, Rotterdam, the Netherlands
| | - Dirk J. Grünhagen
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Cornelis Verhoef
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jan N.M. IJzermans
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Cortellino S, Raveane A, Chiodoni C, Delfanti G, Pisati F, Spagnolo V, Visco E, Fragale G, Ferrante F, Magni S, Iannelli F, Zanardi F, Casorati G, Bertolini F, Dellabona P, Colombo MP, Tripodo C, Longo VD. Fasting renders immunotherapy effective against low-immunogenic breast cancer while reducing side effects. Cell Rep 2022; 40:111256. [PMID: 36001966 DOI: 10.1016/j.celrep.2022.111256] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Immunotherapy is improving the prognosis and survival of cancer patients, but despite encouraging outcomes in different cancers, the majority of tumors are resistant to it, and the immunotherapy combinations are often accompanied by severe side effects. Here, we show that a periodic fasting-mimicking diet (FMD) can act on the tumor microenvironment and increase the efficacy of immunotherapy (anti-PD-L1 and anti-OX40) against the poorly immunogenic triple-negative breast tumors (TNBCs) by expanding early exhausted effector T cells, switching the cancer metabolism from glycolytic to respiratory, and reducing collagen deposition. Furthermore, FMD reduces the occurrence of immune-related adverse events (irAEs) by preventing the hyperactivation of the immune response. These results indicate that FMD cycles have the potential to enhance the efficacy of anti-cancer immune responses, expand the portion of tumors sensitive to immunotherapy, and reduce its side effects.
Collapse
Affiliation(s)
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Claudia Chiodoni
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pisati
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | - Euplio Visco
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | | | - Serena Magni
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Fabio Iannelli
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy; Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario P Colombo
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Claudio Tripodo
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy; University of Palermo School of Medicine, Palermo, Italy
| | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milan 20139, Italy; Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
5
|
Cheu JWS, Wong CCL. Mechanistic Rationales Guiding Combination Hepatocellular Carcinoma Therapies Involving Immune Checkpoint Inhibitors. Hepatology 2021; 74:2264-2276. [PMID: 33811765 DOI: 10.1002/hep.31840] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers because of late symptom manifestation leading to delayed diagnosis, which limits patients with HCC in terms of receiving curative surgical treatment. There are only a few therapeutic options for patients with advanced HCC. The emergence of immune checkpoint inhibitors (ICIs) brings HCC treatment to a stage at which nivolumab, an anti-programmed cell death protein 1 monoclonal antibody, achieves a 20% response rate. However, the large proportion of unresponsive patients drives the exploration of therapeutic strategies to improve ICIs' efficacy. Recent preclinical and clinical studies have suggested that ICIs, when used in combinations or when used with other cancer therapies, might elicit synergistic antitumor effects. However, the mechanistic rationales guiding different drug combinations to maximize this synergy remain largely ambiguous. In this review, we discuss different drug combinations used in HCC and the underlying mechanistic rationales, aiming to enhance the understanding of how these treatments can achieve synergy. This knowledge sets the foundation for the development of more effective and promising combination therapies for HCC.
Collapse
Affiliation(s)
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|
6
|
Galstyan A, Markman JL, Shatalova ES, Chiechi A, Korman AJ, Patil R, Klymyshyn D, Tourtellotte WG, Israel LL, Braubach O, Ljubimov VA, Mashouf LA, Ramesh A, Grodzinski ZB, Penichet ML, Black KL, Holler E, Sun T, Ding H, Ljubimov AV, Ljubimova JY. Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun 2019; 10:3850. [PMID: 31462642 PMCID: PMC6713723 DOI: 10.1038/s41467-019-11719-3] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 08/01/2019] [Indexed: 02/01/2023] Open
Abstract
Brain glioma treatment with checkpoint inhibitor antibodies to cytotoxic T-lymphocyte-associated antigen 4 (a-CTLA-4) and programmed cell death-1 (a-PD-1) was largely unsuccessful due to their inability to cross blood-brain barrier (BBB). Here we describe targeted nanoscale immunoconjugates (NICs) on natural biopolymer scaffold, poly(β-L-malic acid), with covalently attached a-CTLA-4 or a-PD-1 for systemic delivery across the BBB and activation of local brain anti-tumor immune response. NIC treatment of mice bearing intracranial GL261 glioblastoma (GBM) results in an increase of CD8+ T cells, NK cells and macrophages with a decrease of regulatory T cells (Tregs) in the brain tumor area. Survival of GBM-bearing mice treated with NIC combination is significantly longer compared to animals treated with single checkpoint inhibitor-bearing NICs or free a-CTLA-4 and a-PD-1. Our study demonstrates trans-BBB delivery of tumor-targeted polymer-conjugated checkpoint inhibitors as an effective GBM treatment via activation of both systemic and local privileged brain tumor immune response.
Collapse
Affiliation(s)
- Anna Galstyan
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Janet L Markman
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Ekaterina S Shatalova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Antonella Chiechi
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Alan J Korman
- Bristol-Myers Squibb, 700 Bay Road, Redwood City, CA, 94063, USA
| | - Rameshwar Patil
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Dmytro Klymyshyn
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., ST 8719, West Hollywood, CA, 90048, USA.,Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Liron L Israel
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Oliver Braubach
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Vladimir A Ljubimov
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Leila A Mashouf
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Arshia Ramesh
- University of California, Los Angeles (UCLA), 621 Charles E Young Dr S, Los Angeles, CA, 90095, USA
| | - Zachary B Grodzinski
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,The Molecular Biology Institute, University of California, Los Angeles (UCLA), 611 Charles E Young Dr E, Los Angeles, CA, 90095, USA.,AIDS Institute, University of California, Los Angeles (UCLA), 10940 Wilshire Blvd Suite 960, Los Angeles, CA, 90024, USA.,The California NanoSystems Institute, University of California, Los Angeles (UCLA), 570 Westwood Plaza Building 114, Los Angeles, CA, 90095, USA
| | - Keith L Black
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA.,Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, D-93040, Germany
| | - Tao Sun
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Hui Ding
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Alexander V Ljubimov
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA
| | - Julia Y Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AHSP, Los Angeles, CA, 90048, USA. .,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
7
|
Richards DM, Marschall V, Billian-Frey K, Heinonen K, Merz C, Redondo Müller M, Sefrin JP, Schröder M, Sykora J, Fricke H, Hill O, Gieffers C, Thiemann M. HERA-GITRL activates T cells and promotes anti-tumor efficacy independent of FcγR-binding functionality. J Immunother Cancer 2019; 7:191. [PMID: 31324216 PMCID: PMC6642547 DOI: 10.1186/s40425-019-0671-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022] Open
Abstract
Background Glucocorticoid-induced TNFR-related protein (TNFRSF18, GITR, CD357), expressed by T cells, and its ligand (TNFSF18, GITRL), expressed by myeloid populations, provide co-stimulatory signals that boost T cell activity. Due to the important role that GITR plays in regulating immune functions, agonistic stimulation of GITR is a promising therapeutic concept. Multiple strategies to induce GITR signaling have been investigated. The limited clinical efficacy of antibody-based GITR agonists results from structural and functional characteristics of antibodies that are unsuitable for stimulating the well-defined trimeric members of the TNFRSF. Methods To overcome limitations of antibody-based TNFRSF agonists, we have developed HERA-GITRL, a fully human hexavalent TNF receptor agonist (HERA) targeting GITR and mimicking the natural signaling concept. HERA-GITRL is composed of a trivalent but single-chain GITRL-receptor-binding-domain (scGITRL-RBD) unit fused to an IgG1 derived silenced Fc-domain serving as dimerization scaffold. A specific mouse surrogate, mmHERA-GITRL, was also generated to examine in vivo activity in respective mouse tumor models. Results For functional characterization of HERA-GITRL in vitro, human immune cells were isolated from healthy-donor blood and stimulated with anti-CD3 antibody in the presence of HERA-GITRL. Consistently, HERA-GITRL increased the activity of T cells, including proliferation and differentiation, even in the presence of regulatory T cells. In line with these findings, mmHERA-GITRL enhanced antigen-specific clonal expansion of both CD4+ (OT-II) and CD8+ (OT-I) T cells in vivo while having no effect on non-specific T cells. In addition, mmHERA-GITRL showed single-agent anti-tumor activity in two subcutaneous syngeneic colon cancer models (CT26wt and MC38-CEA). Importantly, this activity is independent of its FcγR-binding functionality, as both mmHERA-GITRL with a functional Fc- and a silenced Fc-domain showed similar tumor growth inhibition. Finally, in a direct in vitro comparison to a bivalent clinical benchmark anti-GITR antibody and a trivalent GITRL, only the hexavalent HERA-GITRL showed full biological activity independent of additional crosslinking. Conclusion In this manuscript, we describe the development of HERA-GITRL, a true GITR agonist with a clearly defined mechanism of action. By clustering six receptor chains in a spatially well-defined manner, HERA-GITRL induces potent agonistic activity without being dependent on additional FcγR-mediated crosslinking. Electronic supplementary material The online version of this article (10.1186/s40425-019-0671-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M Richards
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | | | - Katharina Billian-Frey
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Karl Heinonen
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Christian Merz
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | | | - Julian P Sefrin
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Matthias Schröder
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Jaromir Sykora
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | | | - Oliver Hill
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Christian Gieffers
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Meinolf Thiemann
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Narumi K, Miyakawa R, Shibasaki C, Henmi M, Mizoguchi Y, Ueda R, Hashimoto H, Hiraoka N, Yoshida T, Aoki K. Local Administration of GITR Agonistic Antibody Induces a Stronger Antitumor Immunity than Systemic Delivery. Sci Rep 2019; 9:5562. [PMID: 30944344 PMCID: PMC6447616 DOI: 10.1038/s41598-019-41724-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
An anti-glucocorticoid induced TNF receptor (GITR) agonistic antibody (Ab) induces an antitumor immunity with both stimulation of effector T cells and inhibition of regulatory T cell activity. To enhance GITR Ab-mediated tumor immunity, we focused on the intratumoral route, since a tumor-localized high concentration of Ab would confer activation of only tumor-infiltrating T cells. First, in a murine colon cancer model, we showed that the intratumoral delivery of Ab significantly increased the number of effector T cells infiltrated into tumors, and suppressed tumor growth more effectively than the intraperitoneal and intravenous injections did. Then, we found that the injection of Ab into the peritumoral area induced a systemic antitumor immunity at a similar level to the intratumoral injection. Therefore, we hypothesized that the transfer of locally administrated Ab into tumor-draining lymph nodes (TDLNs) plays an important role in inducing an effective immunity. In fact, intratumorally or peritumorally injected Ab was detected in TDLNs, and resection of Ab-injected TDLNs significantly reduced GITR Ab-mediated systemic tumor immunity. Intratumoral injection showed less number of auto-reactive T cells in the spleen than the intraperitoneal injection did. Intratumoral delivery of GITR Ab is a promising approach to induce an effective immunity compared to the systemic delivery.
Collapse
Affiliation(s)
- Kenta Narumi
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Reina Miyakawa
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Chihiro Shibasaki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Marina Henmi
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukihiro Mizoguchi
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryosuke Ueda
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hisayoshi Hashimoto
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Nobuyoshi Hiraoka
- Department of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazunori Aoki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
9
|
Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease. Nat Rev Drug Discov 2018; 17:823-844. [DOI: 10.1038/nrd.2018.148] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Herzyk DJ, Haggerty HG. Cancer Immunotherapy: Factors Important for the Evaluation of Safety in Nonclinical Studies. AAPS JOURNAL 2018; 20:28. [DOI: 10.1208/s12248-017-0184-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
|
11
|
Scirka B, Szurek E, Pietrzak M, Rempala G, Kisielow P, Ignatowicz L, Miazek A. Anti-GITR Antibody Treatment Increases TCR Repertoire Diversity of Regulatory but not Effector T Cells Engaged in the Immune Response Against B16 Melanoma. Arch Immunol Ther Exp (Warsz) 2017. [PMID: 28638937 PMCID: PMC5688217 DOI: 10.1007/s00005-017-0479-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crosslinking of glucocorticoid-induced TNF family-related receptor (GITR) with agonist antibodies restores cancer immunity by enhancing effector T cell (Teff) responses while interfering with intra-tumor regulatory T cell (Treg) stability and/or accumulation. However, how anti-GITR antibody infusion changes T cell receptor (TCR) repertoire of Teffs and Tregs engaged in anti-tumor immune response is unclear. Here, we used a transgenic mouse model (TCRmini) where T cells express naturally generated but limited TCR repertoire to trace the fate of individual T cells recognizing B16 melanoma in tumor-bearing mice, treated or non-treated with an anti-GITR monoclonal antibody DTA-1. Analysis of TCRs of CD4+ T cells from these mice revealed that the TCR repertoire of dominant tumor-reactive Teff clones remained rather similar in treated and non-treated mice. In contrast, both tumor-associated and peripheral TCR repertoire of Tregs, which were mostly distinct from that of Teffs, underwent DTA-1 mediated remodeling characterized by depletion of dominant clones and an emergence of more diverse, low-frequency clones bearing increased numbers of TCRs shared with Teffs. We conclude that the DTA-1 infusion eliminates activated Tregs engaged in the initial maintenance of tolerogenic niche for tumor growth, but over time, it favors tumor replenishment by Tregs expressing an array of TCRs able to compete with Teffs for recognition of the same tumor antigens which may prevent its complete eradication.
Collapse
Affiliation(s)
- Bozena Scirka
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland
| | - Edyta Szurek
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Maciej Pietrzak
- Mathematical Biosciences Institute, College of Public Health, Ohio State University, Columbus, OH, USA
| | - Grzegorz Rempala
- Mathematical Biosciences Institute, College of Public Health, Ohio State University, Columbus, OH, USA
| | - Pawel Kisielow
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland
| | - Leszek Ignatowicz
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland. .,Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA, USA.
| | - Arkadiusz Miazek
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland. .,Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
12
|
Belmar NA, Chan SW, Fox MI, Samayoa JA, Stickler MM, Tran NN, Akamatsu Y, Hollenbaugh D, Harding FA, Alvarez HM. Murinization and H Chain Isotype Matching of the Anti-GITR Antibody DTA-1 Reduces Immunogenicity-Mediated Anaphylaxis in C57BL/6 Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:4502-4512. [PMID: 28446565 DOI: 10.4049/jimmunol.1601512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/27/2017] [Indexed: 11/19/2022]
Abstract
Recent advances in immuno-oncology have shown that the immune system can be activated to induce long-term, durable antitumor responses. For immuno-oncology drug development, immune activation is often explored using rat Abs in immunocompetent mouse models. Although these models can be used to show efficacy, antidrug immune responses to experimental protein-based therapeutics can arise. Immunogenicity of surrogate Abs may therefore represent an important obstacle to the evaluation of the antitumor efficacy of immunomodulator Abs in syngeneic models. A recent publication has shown that anti-glucocorticoid-induced TNFR family-related protein agonistic Ab DTA-1 (rat or murinized IgG2a) can induce the development of anaphylaxis in C57BL/6 mice upon repeated i.p. dosing because of an anti-idiotypic anti-drug Ab immune response. This study was undertaken to address the impact of the immunogenicity derived from the Fc and variable domains. To this end, chimerized (rat V domains/mouse constant regions) and murinized (95% mouse sequence) DTA-1-based surrogate Abs with a murine IgG2c H chain isotype were created. Chimerization and murinization of DTA-1 did not affect receptor binding and glucocorticoid-induced TNFR family-related protein-induced T cell agonistic properties. Similar in vivo antitumor efficacy and intratumoral CD8+/regulatory T cells were also observed. Finally, treatment of C57BL/6 mice with the chimerized and murinized DTA-1 Abs on a C57BL/6-matched IgG2c isotype resulted in reduced development and severity of anaphylaxis as measured by decline of body temperature, behavioral effects, serum IL-4, IgE, and anti-drug Ab levels. These results suggest that careful murinization and selection of a strain-matched H chain isotype are critical to generate ideal surrogate Abs for testing immuno-oncology mechanisms in vivo.
Collapse
Affiliation(s)
- Nicole A Belmar
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Sarah W Chan
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Melvin I Fox
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Josue A Samayoa
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Marcia M Stickler
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Ninian N Tran
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Yoshiko Akamatsu
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Diane Hollenbaugh
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Fiona A Harding
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| | - Hamsell M Alvarez
- Oncology Biologics Department, AbbVie Biotherapeutics Inc., Redwood City, CA 94063
| |
Collapse
|
13
|
Mahne AE, Mauze S, Joyce-Shaikh B, Xia J, Bowman EP, Beebe AM, Cua DJ, Jain R. Dual Roles for Regulatory T-cell Depletion and Costimulatory Signaling in Agonistic GITR Targeting for Tumor Immunotherapy. Cancer Res 2016; 77:1108-1118. [DOI: 10.1158/0008-5472.can-16-0797] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/14/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
|
14
|
Redeker A, Arens R. Improving Adoptive T Cell Therapy: The Particular Role of T Cell Costimulation, Cytokines, and Post-Transfer Vaccination. Front Immunol 2016; 7:345. [PMID: 27656185 PMCID: PMC5011476 DOI: 10.3389/fimmu.2016.00345] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
Adoptive cellular therapy (ACT) is a form of immunotherapy whereby antigen-specific T cells are isolated or engineered, expanded ex vivo, and transferred back to patients. Clinical benefit after ACT has been obtained in treatment of infection, various hematological malignancies, and some solid tumors; however, due to poor functionality and persistence of the transferred T cells, the efficacy of ACT in the treatment of most solid tumors is often marginal. Hence, much effort is undertaken to improve T cell function and persistence in ACT and significant progress is being made. Herein, we will review strategies to improve ACT success rates in the treatment of cancer and infection. We will deliberate on the most favorable phenotype for the tumor-specific T cells that are infused into patients and on how to obtain T cells bearing this phenotype by applying novel ex vivo culture methods. Moreover, we will discuss T cell function and persistence after transfer into patients and how these factors can be manipulated by means of providing costimulatory signals, cytokines, blocking antibodies to inhibitory molecules, and vaccination. Incorporation of these T cell stimulation strategies and combinations of the different treatment modalities are likely to improve clinical response rates further.
Collapse
Affiliation(s)
- Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
15
|
Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity. Proc Natl Acad Sci U S A 2016; 113:6248-53. [PMID: 27185917 DOI: 10.1073/pnas.1604765113] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Expression of the transcription factor Helios by Tregs ensures stable expression of a suppressive and anergic phenotype in the face of intense inflammatory responses, whereas Helios-deficient Tregs display diminished lineage stability, reduced FoxP3 expression, and production of proinflammatory cytokines. Here we report that selective Helios deficiency within CD4 Tregs leads to enhanced antitumor immunity through induction of an unstable phenotype and conversion of intratumoral Tregs into T effector cells within the tumor microenvironment. Induction of an unstable Treg phenotype is associated with enhanced production of proinflammatory cytokines by tumor-infiltrating but not systemic Tregs and significantly delayed tumor growth. Ab-dependent engagement of Treg surface receptors that result in Helios down-regulation also promotes conversion of intratumoral but not systemic Tregs into T effector cells and leads to enhanced antitumor immunity. These findings suggest that selective instability and conversion of intratumoral CD4 Tregs through genetic or Ab-based targeting of Helios may represent an effective approach to immunotherapy.
Collapse
|
16
|
Brunn ND, Mauze S, Gu D, Wiswell D, Ueda R, Hodges D, Beebe AM, Zhang S, Escandon E. The Role of Anti-Drug Antibodies in the Pharmacokinetics, Disposition, Target Engagement, and Efficacy of a GITR Agonist Monoclonal Antibody in Mice. ACTA ACUST UNITED AC 2015; 356:574-86. [DOI: 10.1124/jpet.115.229864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022]
|
17
|
Yu N, Fu S, Xu Z, Liu Y, Hao J, Zhang A, Wang B. Synergistic antitumor responses by combined GITR activation and sunitinib in metastatic renal cell carcinoma. Int J Cancer 2015; 138:451-62. [PMID: 26239999 DOI: 10.1002/ijc.29713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Sunitinib, a multitargeted tyrosine kinase inhibitor, is the frontline therapy for renal and gastrointestinal cancers. In view of its well-documented proapoptotic and immunoadjuvant properties, we speculate that combination of Sunitinib and immunotherapy would provide a synergistic antitumor effect. Here, we report that a remarkably synergistic antitumor responses elicited by the combined treatment of Sunitinib and an agonistic antibody against glucocorticoid-induced TNFR related protein (GITR) in a model of metastatic renal cell carcinoma. Sunitinib significantly increased the infiltration, activation, and proliferation and/or cytotoxicity of CD8(+) T cells and NK cells in liver metastatic foci when combined with the anti (α)-GITR agonist, which was associated with treatment-induced prominent upregulation of Th1-biased immune genes in the livers from mice receiving combined therapy versus single treatment. Sunitinib/α-GITR treatment also markedly promoted the maturation, activation and cytokine production of liver-resident macrophages and DCs compared with that achieved by α-GITR or Sunitinib treatment alone in mice. Cell depletion experiments demonstrated that CD8(+) T cells, NK cells and macrophage infiltrating liver metastatic foci all contribute to the antitumor effect induced by combined treatment. Furthermore, mechanistic investigation revealed that Sunitinib treatment reprograms tumor-associated macrophages toward classically activated or "M1" polarization upon GITR stimulation and consequently mounts an antitumor CD8(+) T and NK cell response via inhibiting STAT3 activity. Thus, our findings provide a proof of concept that Sunitinib can synergize with α-GITR treatment to remodel the tumor immune microenvironment to trigger regressions of an established metastatic cancer.
Collapse
Affiliation(s)
- Nengwang Yu
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Shuai Fu
- Shandong Cancer Hospital & Institute, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital, Jinan, Shandong, China
| | - Yi Liu
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Junwen Hao
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Aimin Zhang
- Department of Urology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| | - Baocheng Wang
- Department of Oncology, General Hospital of Jinan Military Command, Jinan, Shandong, China
| |
Collapse
|
18
|
Mall C, Sckisel GD, Proia DA, Mirsoian A, Grossenbacher SK, Pai CCS, Chen M, Monjazeb AM, Kelly K, Blazar BR, Murphy WJ. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. Oncoimmunology 2015; 5:e1075114. [PMID: 27057446 DOI: 10.1080/2162402x.2015.1075114] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 02/09/2023] Open
Abstract
Monoclonal antibodies (mAbs) targeting coinhibitory molecules such as PD-1, PD-L1 and CTLA-4 are increasingly used as targets of therapeutic intervention against cancer. While these targets have led to a critical paradigm shift in treatments for cancer, these approaches are also plagued with limitations owing to cancer immune evasion mechanisms and adverse toxicities associated with continuous treatment. It has been difficult to reproduce and develop interventions to these limitations preclinically due to poor reagent efficacy and reagent xenogenecity not seen in human trials. In this study, we investigated adverse effects of repeated administration of PD-1 and PD-L1 mAbs in the murine 4T1 mammary carcinoma model. We observed rapid and fatal hypersensitivity reactions in tumor bearing mice within 30-60 min after 4-5 administrations of PD-L1 or PD-1 mAb but not CTLA-4 antibody treatment. These events occurred only in mice bearing the highly inflammatory 4T1 tumor and did not occur in mice bearing non-inflammatory tumors. We observed that mortality was associated with systemic accumulation of IgG1 antibodies, antibodies specific to the PD-1 mAb, and accumulation of Gr-1high neutrophils in lungs which have been implicated in the IgG mediated pathway of anaphylaxis. Anti-PD-1 associated toxicities were alleviated when PD-1 blockade was combined with the therapeutic HSP90 inhibitor, ganetespib, which impaired immune responses toward the xenogeneic PD-1 mAb. This study highlights a previously uncharacterized fatal hypersensitivity exacerbated by the PD-1/PD-L1 axis in the broadly used 4T1 tumor model as well as an interesting relationship between this particular class of checkpoint blockade and tumor-dependent immunomodulation.
Collapse
Affiliation(s)
- Christine Mall
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Gail D Sckisel
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | | | - Annie Mirsoian
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Steven K Grossenbacher
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Chien-Chun Steven Pai
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Mingyi Chen
- Department of Pathology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Karen Kelly
- Department of Internal Medicine, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Masonic Cancer Center , Minneapolis, MN, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
19
|
Wang N, Feng Y, Zeng L, Zhao Z, Chen T. Functionalized Multiwalled Carbon Nanotubes as Carriers of Ruthenium Complexes to Antagonize Cancer Multidrug Resistance and Radioresistance. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14933-14945. [PMID: 26107995 DOI: 10.1021/acsami.5b03739] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multidrug resistance and radioresistance are major obstacles for successful cancer therapy. Due to the unique characteristics of high surface area, improved cellular uptake, and the possibility to be easily bound with therapeutics, carbon nanotubes (CNTs) have attracted increasing attention as potential nanodrug delivery systems. In this study, a CNT-based radiosensitive nanodrug delivery system was rationally designed to antagonize the multidrug resistance in hepatocellular carcinoma. The nanosystem was loaded with a potent anticancer ruthenium polypyridyl complex (RuPOP) via π-π interaction and formation of a hydrogen bond. The functionalized nanosystem (RuPOP@MWCNTs) enhanced the cellular uptake of RuPOP in liver cancer cells, especially drug-resistant R-HepG2 cells, through endocytosis. Consistently, the selective cellular uptake endowed the nanosystem amplified anticancer efficacy against R-HepG2 cells but not in normal cells. Interestingly, RuPOP@MWCNTs significantly enhanced the anticancer efficacy of clinically used X-ray against R-HepG2 cells through induction of apoptosis and G0/G1 cell cycle arrest, with the involvement of ROS overproduction, which activated several downstream signaling pathways, including DNA damage-mediated p53 phosphorylation, activation of p38, and inactivation of AKT and ERK. Moreover, the nanosystem also effectively reduces the toxic side effects of loaded drugs and prolongs the blood circulation in vivo. Taken together, the results demonstrate the rational design of functionalized carbon nanotubes and their application as effective nanomedicine to overcome cancer multidrug resistance.
Collapse
Affiliation(s)
- Ni Wang
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yanxian Feng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lilan Zeng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhennan Zhao
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Pedroza-Gonzalez A, Zhou G, Singh SP, Boor PP, Pan Q, Grunhagen D, de Jonge J, Tran TK, Verhoef C, IJzermans JN, Janssen HLA, Biermann K, Kwekkeboom J, Sprengers D. GITR engagement in combination with CTLA-4 blockade completely abrogates immunosuppression mediated by human liver tumor-derived regulatory T cells ex vivo. Oncoimmunology 2015; 4:e1051297. [PMID: 26587321 DOI: 10.1080/2162402x.2015.1051297] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/01/2015] [Accepted: 05/09/2015] [Indexed: 02/08/2023] Open
Abstract
In liver cancer tumor-infiltrating regulatory T cells (Ti-Treg) are potent suppressors of tumor-specific T-cell responses and express high levels of the Treg-associated molecules cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and glucocorticoid-induced tumor necrosis factor receptor (GITR). In this study, we have evaluated the capacity of GITR-ligation, CTLA-4-blockade and a combination of both treatments to alleviate immunosuppression mediated by Ti-Treg. Using ex vivo isolated cells from individuals with hepatocellular carcinoma (HCC) or liver metastases from colorectal cancer (LM-CRC) we show that treatment with a soluble form of the natural ligand of GITR (GITRL), or with blocking antibodies to CTLA-4, reduces the suppression mediated by human liver tumor-infiltrating CD4+Foxp3+ Treg, thereby restoring proliferation and cytokine production by effector T cells. Importantly, combined treatment with low doses of both molecules exhibited stronger recovery of T cell function compared with either treatment alone. Our data suggest that in patients with primary and secondary liver cancer both GITR-ligation and anti-CTLA-4 mAb can improve the antitumor immunity by abrogating Ti-Treg mediated suppression.
Collapse
Affiliation(s)
- Alexander Pedroza-Gonzalez
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands ; Laboratory of Immunology Research, Medicine; Faculty of Higher Studies Iztacala; National Autonomous University of Mexico; FES-Iztacala, UNAM ; Mexico City, Mexico
| | - Guoying Zhou
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Simar Pal Singh
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Patrick Pc Boor
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Dirk Grunhagen
- Department of Surgery; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Tc Khe Tran
- Department of Surgery; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Cornelis Verhoef
- Department of Surgery; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Jan Nm IJzermans
- Department of Surgery; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Harry LA Janssen
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology; Erasmus MC-University Medical Center ; Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| |
Collapse
|
21
|
Karasuyama H, Yamanishi Y. Basophils have emerged as a key player in immunity. Curr Opin Immunol 2014; 31:1-7. [PMID: 25086241 DOI: 10.1016/j.coi.2014.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 01/18/2023]
Abstract
Basophils had long been neglected in immunological studies, because of their paucity and phenotypic similarity with tissue-resident mast cells. However, recent development of analytical tools has cast new light on this neglected minority, and revealed previously unappreciated roles of basophils, distinct from those of mast cells, in various immune responses. Primary function of basophils appears to be the protection against infections with parasites, including ticks and helminths. This is why basophils are evolutionally conserved well in many animal species, albeit a small number. Nevertheless, basophils sometimes exert host-deleterious functions in immunological disorders such as allergy. Here we summarize recent advance in our understanding of basophil ontogeny and their in vivo roles under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hajime Karasuyama
- Department of Immune Regulation, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo 113-8519, Japan; JST, CREST, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo 113-8519, Japan.
| | - Yoshinori Yamanishi
- Department of Immune Regulation, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo 113-8519, Japan
| |
Collapse
|
22
|
Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clin Transl Immunology 2014; 3:e22. [PMID: 25505970 PMCID: PMC4232074 DOI: 10.1038/cti.2014.18] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023] Open
Abstract
The current excitement surrounding cancer immunotherapy stems particularly from clinical data involving agents mediating immune checkpoint receptor blockade, which have induced unprecedented efficacy against a range of tumours compared with previous immunotherapeutic approaches. However, an important consideration in targeting checkpoint receptors has been the emergence of associated toxicities termed immune-related adverse events (irAEs). In light of the clinical benefits observed after co-blockade of checkpoint receptors and data from preclinical mouse models, there is now a strong rationale to combine different checkpoint receptors together, with other immunotherapies or more conventional therapies to assess if clinical benefits to cancer patients can be further improved. However, one may predict the frequency and severity of irAEs will increase with combinations, which may result in premature therapy cessation, thus limiting the realization of such an approach. In addition, there is a limit to how many different combination therapies that can be tested in a timely manner given the legal, regulatory and budgetary issues associated with conducting clinical trials. Thus, there is a need to develop preclinical mouse models that more accurately inform us as to which immunotherapies might combine best to provide the optimal therapeutic index (maximal anti-tumour efficacy and low level irAEs) in different cancer settings. In this review we will discuss the irAEs observed in patients after checkpoint blockade and discuss which mouse models of cancer can be appropriate to assess the development of tumour immunity and irAEs following combination cancer immunotherapies.
Collapse
|