1
|
Hussen BM, Sulaiman SHA, Abdullah SR, Hidayat HJ, Khudhur ZO, Eslami S, Samsami M, Taheri M. MiRNA-155: A double-edged sword in colorectal cancer progression and drug resistance mechanisms. Int J Biol Macromol 2025; 299:140134. [PMID: 39842591 DOI: 10.1016/j.ijbiomac.2025.140134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide due to its aggressive nature and drug resistance, which limit traditional treatment effectiveness. Recent studies highlight the role of microRNAs (miRNAs) in tumorigenesis, metastasis, and chemotherapy resistance, with miRNA-155 emerging as a key player in CRC. miRNA-155 exerts dual effects, inducing drug resistance while serving as a potential therapeutic target. It regulates a wide array of mRNA transcripts associated with apoptosis, cell cycle regulation, and DNA repair, impacting various cellular pathways. Overexpression of miRNA-155 is linked to resistance against multiple chemotherapeutic drugs, promoting tumor cell survival, proliferation, and the epithelial-mesenchymal transition (EMT) process by repressing tumor suppressors and activating oncogenes. Additionally, miRNA-155 holds promise as a diagnostic and prognostic marker due to its association with CRC patient survival rates. However, its regulatory mechanisms across CRC subtypes remain unclear. This study provides insights into miRNA-155's role in CRC, focusing on its involvement in therapeutic resistance and potential as a therapeutic target. We also explore its significance as a prognostic biomarker and emphasize its therapeutic applications based on evidence from human, in vivo, in vitro, and clinical studies.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Seerwan Hamad Ameen Sulaiman
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-, Erbil, Kurdistan Region, Iraq
| | | | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lambaren K, Trac N, Fehrenbach D, Madhur M, Chung EJ. T Cell-Targeting Nanotherapies for Atherosclerosis. Bioconjug Chem 2025. [PMID: 39979082 DOI: 10.1021/acs.bioconjchem.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Cardiovascular diseases remain the leading cause of mortality worldwide. Specifically, atherosclerosis is a primary cause of acute cardiac events. However, current therapies mainly focus on lipid-lowering versus addressing the underlying inflammatory response that leads to its development and progression. Nanoparticle-mediated drug delivery offers a promising approach for targeting and regulating these inflammatory responses. In atherosclerotic lesions, inflammatory cascades result in increased T helper (Th) 1 and Th17 activity and reduced T regulatory activation. The regulation of T cell responses is critical in preventing the inflammatory imbalance in atherosclerosis, making them a key therapeutic target for nanotherapy to achieve precise atherosclerosis treatment. By functionalizing nanoparticles with targeting modalities, therapeutic agents can be delivered specifically to immune cells in atherosclerotic lesions. In this Review, we outline the role of T cells in atherosclerosis, examine current nanotherapeutic strategies for targeting T cells and modulating their differentiation, and provide perspectives for the development of nanoparticles specifically tailored to target T cells for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Karla Lambaren
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Noah Trac
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Daniel Fehrenbach
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Meena Madhur
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Eun Ji Chung
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
- Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Huang B, Guo F, Chen J, Lu L, Gao S, Yang C, Wu H, Luo W, Pan Q. Regulation of B-cell function by miRNAs impacting Systemic lupus erythematosus progression. Gene 2025; 933:149011. [PMID: 39427831 DOI: 10.1016/j.gene.2024.149011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease marked by abnormal B-cell proliferation and increased autoantibodies. miRNAs play a crucial role in regulating B-cell dysfunction and SLE pathology. miRNAs influence DNA methylation, B-cell activation, and gene expression, contributing to SLE pathogenesis. miRNAs impact B cells through key processes like proliferation, differentiation, tolerance, and apoptosis. miRNAs also exacerbate inflammation and immune responses by modulating Interleukin 4 (IL-4), IL-6, and interferon cytokines. Autophagy, a key degradation mechanism, is also regulated by specific miRNAs that impact SLE pathology. This article explores the role of multiple miRNAs in regulating B-cell development, proliferation, survival, and immune responses, influencing SLE pathogenesis. miRNAs like miR-23a, the miR-17 ∼ 92 family, and miR-125b/miR-221 affect B-cell development by regulating transcription factors, signaling pathways, and cell cycle genes. miRNAs such as miR-181a-5p and miR-23a-5p are differentially regulated across developmental stages, emphasizing their complex regulatory roles in B-cell biology. This article synthesizes miRNA-B cell interactions to offer new strategies and directions for SLE diagnosis and treatment.
Collapse
Affiliation(s)
- Bitang Huang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Fengbiao Guo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jiaxuan Chen
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lu Lu
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Shenglan Gao
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chunlong Yang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Han Wu
- Clinical Laboratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Wenying Luo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Qingjun Pan
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
4
|
Dubois N, Van Morckhoven D, Tilleman L, Van Nieuwerburgh F, Bron D, Lagneaux L, Stamatopoulos B. Extracellular vesicles from chronic lymphocytic leukemia cells promote leukemia aggressiveness by inducing the differentiation of monocytes into nurse-like cells via an RNA-dependent mechanism. Hemasphere 2025; 9:e70068. [PMID: 39822586 PMCID: PMC11735956 DOI: 10.1002/hem3.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 01/19/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells receive several stimuli from surrounding cells, such as B-cell receptor (BCR) stimulation, and can manipulate their microenvironment via extracellular vesicle (EV) release. Here, we investigated the small RNA content (microRNA and YRNA) of CLL-EVs from leukemic cells cultured with/without BCR stimulation. We highlight an increase of miR-155-5p, miR-146a-5p, and miR-132-3p in EVs and in cells after BCR stimulation (p < 0.05, n = 25). CLL-EVs were preferentially internalized by monocytes (p = 0.0019, n = 6) and able to deliver microRNAs and the hY4 RNA. Furthermore, BCR CLL-EV induced modifications in monocytes (shape change, microRNA and gene expression, secretome) suggesting nurse-like cell (NLC) differentiation, the tumor-associated macrophages of CLL. Functionally, monocytes treated with BCR CLL-EVs protect CLL cells from spontaneous apoptosis by pro-survival cytokine production and induce their migration as well as the migration of other immune cells. We finally reported by transfection experiments that hY4 is able to induce the expression of CCL24, a key gene in M2 macrophage differentiation. In conclusion, we showed that BCR stimulation modifies the small RNA content of CLL-EVs and that the addition of leukemic EVs to monocytes leads to monocyte differentiation into NLCs establishing a protective microenvironment that supports leukemic cell survival.
Collapse
Affiliation(s)
- Nathan Dubois
- Laboratory of Clinical Cell TherapyUniversité Libre de Bruxelles (ULB), Jules Bordet InstituteBrusselsBelgium
| | - David Van Morckhoven
- Laboratory of Clinical Cell TherapyUniversité Libre de Bruxelles (ULB), Jules Bordet InstituteBrusselsBelgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical BiotechnologyGhent UniversityGhentBelgium
- NXTGNTGhent UniversityGhentBelgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical BiotechnologyGhent UniversityGhentBelgium
- NXTGNTGhent UniversityGhentBelgium
| | - Dominique Bron
- Laboratory of Clinical Cell TherapyUniversité Libre de Bruxelles (ULB), Jules Bordet InstituteBrusselsBelgium
- Department of HematologyJules Bordet InstituteBrusselsBelgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell TherapyUniversité Libre de Bruxelles (ULB), Jules Bordet InstituteBrusselsBelgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell TherapyUniversité Libre de Bruxelles (ULB), Jules Bordet InstituteBrusselsBelgium
| |
Collapse
|
5
|
Du Z, Wang J, Liu Q, Yang D, Sun X, Huang L, Huang P, Tang X, Miller H, Westerberg L, Akihiko Y, Yang L, Du X, Liu C. SHIP-1 regulates the differentiation and function of Tregs via inhibiting mTORC1 activity. Cell Mol Life Sci 2024; 82:10. [PMID: 39709321 DOI: 10.1007/s00018-024-05470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 12/23/2024]
Abstract
Cell metabolism is crucial for orchestrating the differentiation and function of regulatory T cells (Tregs). However, the underlying mechanism that coordinates cell metabolism to regulate Treg activity is not completely understood. As a pivotal molecule in lipid metabolism, the role of SHIP-1 in Tregs remains unknown. In this study, we found SHIP-1 Treg KO mice (SHIP-1 specifically deleted in regulatory T cells) had severe autoimmunity with increased Tregs in the thymus and disrupted peripheral T cell homeostasis. Mechanistically, CD4Cre Ship-1flox/flox mice were found to have increased Treg precursors and SHIP-1 KO Tregs had reduced migration and stability, which caused decreased Tregs in the spleen. Additionally, the suppressive function of Tregs from SHIP-1 KO mice was diminished, along with their promotion of anti-tumor immunity. Interestingly, the PI3K-mTORC1, but not mTORC2, signaling axis was enhanced in SHIP-1 KO Tregs. In vivo treatment of SHIP-1 Treg KO mice with rapamycin rescued the abnormal Treg percentages and peripheral T cell homeostasis, as well as Treg suppressive function. Furthermore, the treatment of wild-type mice with SHIP-1 inhibitor enhanced anti-tumor activity. Our study highlights the SHIP-1-PI3K-mTORC1 axis that regulates Treg differentiation and function, and it is a potential target for cancer treatment.
Collapse
Affiliation(s)
- Zuochen Du
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- The Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Guizhou Children's Hospital, Zunyi, Guizhou Province, China
| | - Jinzhi Wang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Di Yang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Sun
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorder, Children's Hospital of Chongqing Medical University, Chongqing, China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Pei Huang
- The Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Guizhou Children's Hospital, Zunyi, Guizhou Province, China
| | - Xingye Tang
- Department of Otolaryngology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lisa Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yoshimura Akihiko
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xingrong Du
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Koumpis E, Georgoulis V, Papathanasiou K, Papoudou-Bai A, Kanavaros P, Kolettas E, Hatzimichael E. The Role of microRNA-155 as a Biomarker in Diffuse Large B-Cell Lymphoma. Biomedicines 2024; 12:2658. [PMID: 39767565 PMCID: PMC11673977 DOI: 10.3390/biomedicines12122658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Diffuse Large B-cell Lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma (NHL). Despite the use of newer agents, such as polatuzumab vedotin, more than one-third of patients have ultimately relapsed or experienced refractory disease. MiRNAs are single-stranded, ~22-nucleotide-long RNAs that interact with their target RNA. They are significant regulators of post-transcriptional gene expression. One significant miRNA, miR-155, is involved in the pathophysiology of DLBCL and it is a critical modulator of hematopoiesis, inflammation, and immune responses. Targets of miR-155, such as histone deacetylase 4 (HDAC4), suppressor of cytokine signaling-1 (SOCS1) and immune cells, play a crucial role in DLBCL pathogenesis, since miR-155 regulates key pathways, transcription factors and cytokine expression and shapes the tumor microenvironment in DLBCL. In this review, we examine the role of miR-155 in DLBCL and its potential as a future diagnostic, prognostic, or predictive biomarker.
Collapse
Affiliation(s)
- Epameinondas Koumpis
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (E.K.); (V.G.); (K.P.)
| | - Vasileios Georgoulis
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (E.K.); (V.G.); (K.P.)
| | - Konstantina Papathanasiou
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (E.K.); (V.G.); (K.P.)
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece;
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Evangelos Kolettas
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, Institute of Biosciences, University Centre for Research and Innovation, University of Ioannina, 45110 Ioannina, Greece;
- Biomedical Research Institute, Foundation for Research and Technology, 45110 Ioannina, Greece
| | - Eleftheria Hatzimichael
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (E.K.); (V.G.); (K.P.)
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Roy U, Desai SS, Kumari S, Bushra T, Choudhary B, Raghavan SC. Understanding the Role of miR-29a in the Regulation of RAG1, a Gene Associated with the Development of the Immune System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1125-1138. [PMID: 39269689 DOI: 10.4049/jimmunol.2300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
The process of Ag receptor diversity is initiated by RAGs consisting of RAG1 and RAG2 in developing lymphocytes. Besides its role as a sequence-specific nuclease during V(D)J recombination, RAGs can also act as a structure-specific nuclease leading to genome instability. Thus, regulation of RAG expression is essential to maintaining genome stability. Previously, the role of miR29c in the regulation of RAG1 was identified. In this article, we report the regulation of RAG1 by miR-29a in the lymphocytes of both mice (Mus musculus) and humans (Homo sapiens). The level of RAG1 could be modulated by overexpression of miR-29a and inhibition using anti-miRs. Argonaute2-immunoprecipitation and high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation studies established the association of miR-29a and RAG1 with Argonaute proteins. We observed a negative correlation between miR-29a and RAG1 levels in mouse B and T cells and leukemia patients. Overexpression of pre-miR-29a in the bone marrow cells of mice led to the generation of mature miR-29a transcripts and reduced RAG1 expression, which led to a significant reduction in V(D)J recombination in pro-B cells. Importantly, our studies are consistent with the phenotype reported in miR-29a knockout mice, which showed impaired immunity and survival defects. Finally, we show that although both miR-29c and miR-29a can regulate RAG1 at mRNA and protein levels, miR-29a substantially impacts immunity and survival. Our results reveal that the repression of RAG1 activity by miR-29a in B cells of mice and humans is essential to maintain Ig diversity and prevent hematological malignancies resulting from aberrant RAG1 expression in lymphocytes.
Collapse
Affiliation(s)
- Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sagar Sanjiv Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Tanzeem Bushra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Mesaros O, Veres S, Onciul M, Matei E, Jimbu L, Neaga A, Zdrenghea M. Dysregulated MicroRNAs in Chronic Lymphocytic Leukemia. Cureus 2024; 16:e68770. [PMID: 39376808 PMCID: PMC11456419 DOI: 10.7759/cureus.68770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
MiRNAs are a class of non-coding RNAs acting as gene expression regulators by modulating the lifespan of messenger RNA. Commonly referred to as the most frequent leukemia in the Western world, chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by clonal expansion of CD19, CD23, and CD5-positive mature B-cells. While this pathology is regarded as less aggressive and has a variety of treatment options, the cause of its clinical heterogeneity is not yet understood. Moreover, the prognostic markers and treatment recommendations based on predictive markers are limited. This review aims to investigate some miRNAs that are dysregulated and possibly involved in CLL pathogenesis as a starting point for the proposal of new prognostic and predictive markers and, as more agents targeting miRNA expression become available, their potential role as therapeutic targets.
Collapse
Affiliation(s)
- Oana Mesaros
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
- Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, ROU
| | - Stefana Veres
- Otolaryngology, Policlinica Grigorescu, Cluj-Napoca, ROU
| | - Madalina Onciul
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Emilia Matei
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
- Pathology, Ion Chiricuta Oncology Institute, Cluj-Napoca, ROU
| | - Laura Jimbu
- Hematology, Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, ROU
- Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, ROU
| | - Alexandra Neaga
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Mihnea Zdrenghea
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
| |
Collapse
|
10
|
Nano E, Reggiani F, Amaro AA, Monti P, Colombo M, Bertola N, Ferrero F, Fais F, Bruzzese A, Martino EA, Vigna E, Puccio N, Pistoni M, Torricelli F, D’Arrigo G, Greco G, Tripepi G, Adornetto C, Gentile M, Ferrarini M, Negrini M, Morabito F, Neri A, Cutrona G. MicroRNA Profiling as a Predictive Indicator for Time to First Treatment in Chronic Lymphocytic Leukemia: Insights from the O-CLL1 Prospective Study. Noncoding RNA 2024; 10:46. [PMID: 39311383 PMCID: PMC11417859 DOI: 10.3390/ncrna10050046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
A "watch and wait" strategy, delaying treatment until active disease manifests, is adopted for most CLL cases; however, prognostic models incorporating biomarkers have shown to be useful to predict treatment requirement. In our prospective O-CLL1 study including 224 patients, we investigated the predictive role of 513 microRNAs (miRNAs) on time to first treatment (TTFT). In the context of this study, six well-established variables (i.e., Rai stage, beta-2-microglobulin levels, IGVH mutational status, del11q, del17p, and NOTCH1 mutations) maintained significant associations with TTFT in a basic multivariable model, collectively yielding a Harrell's C-index of 75% and explaining 45.4% of the variance in the prediction of TTFT. Concerning miRNAs, 73 out of 513 were significantly associated with TTFT in a univariable model; of these, 16 retained an independent relationship with the outcome in a multivariable analysis. For 8 of these (i.e., miR-582-3p, miR-33a-3p, miR-516a-5p, miR-99a-5p, and miR-296-3p, miR-502-5p, miR-625-5p, and miR-29c-3p), a lower expression correlated with a shorter TTFT, whereas in the remaining eight (i.e., miR-150-5p, miR-148a-3p, miR-28-5p, miR-144-5p, miR-671-5p, miR-1-3p, miR-193a-3p, and miR-124-3p), the higher expression was associated with shorter TTFT. Integrating these miRNAs into the basic model significantly enhanced predictive accuracy, raising the Harrell's C-index to 81.1% and the explained variation in TTFT to 63.3%. Moreover, the inclusion of the miRNA scores enhanced the integrated discrimination improvement (IDI) and the net reclassification index (NRI), underscoring the potential of miRNAs to refine CLL prognostic models and providing insights for clinical decision-making. In silico analyses on the differently expressed miRNAs revealed their potential regulatory functions of several pathways, including those involved in the therapeutic responses. To add a biological context to the clinical evidence, an miRNA-mRNA correlation analysis revealed at least one significant negative correlation between 15 of the identified miRNAs and a set of 50 artificial intelligence (AI)-selected genes, previously identified by us as relevant for TTFT prediction in the same cohort of CLL patients. In conclusion, the identification of specific miRNAs as predictors of TTFT holds promise for enhancing risk stratification in CLL to predict therapeutic needs. However, further validation studies and in-depth functional analyses are required to confirm the robustness of these observations and to facilitate their translation into meaningful clinical utility.
Collapse
Affiliation(s)
- Ennio Nano
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
| | - Francesco Reggiani
- SSD Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Adriana Agnese Amaro
- SSD Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Monica Colombo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
| | - Nadia Bertola
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
| | - Fabiana Ferrero
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Antonella Bruzzese
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliera Annunziata, 87100 Cosenza, Italy; (A.B.); (E.A.M.); (E.V.); (M.G.)
| | - Enrica Antonia Martino
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliera Annunziata, 87100 Cosenza, Italy; (A.B.); (E.A.M.); (E.V.); (M.G.)
| | - Ernesto Vigna
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliera Annunziata, 87100 Cosenza, Italy; (A.B.); (E.A.M.); (E.V.); (M.G.)
| | - Noemi Puccio
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (N.P.); (M.P.); (F.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (N.P.); (M.P.); (F.T.)
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (N.P.); (M.P.); (F.T.)
| | - Graziella D’Arrigo
- Institute of Clinical Physiology (IFC-CNR), Section of Reggio Calabria, 89124 Reggio Calabria, Italy; (G.D.); (G.T.)
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, 87100 Cosenza, Italy; (G.G.); (C.A.)
| | - Giovanni Tripepi
- Institute of Clinical Physiology (IFC-CNR), Section of Reggio Calabria, 89124 Reggio Calabria, Italy; (G.D.); (G.T.)
| | - Carlo Adornetto
- Department of Mathematics and Computer Science, University of Calabria, 87100 Cosenza, Italy; (G.G.); (C.A.)
| | - Massimo Gentile
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliera Annunziata, 87100 Cosenza, Italy; (A.B.); (E.A.M.); (E.V.); (M.G.)
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Massimo Negrini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Fortunato Morabito
- Gruppo Amici Dell’Ematologia Foundation-GrADE, 42122 Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (E.N.); (M.C.); (N.B.); (F.F.); (F.F.); (G.C.)
| |
Collapse
|
11
|
Tili E, Otsu H, Commisso TL, Palamarchuk A, Balatti V, Michaille JJ, Nuovo GJ, Croce CM. MiR-155-targeted IcosL controls tumor rejection. Proc Natl Acad Sci U S A 2024; 121:e2408649121. [PMID: 38980909 PMCID: PMC11260163 DOI: 10.1073/pnas.2408649121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
Elevated levels of miR-155 in solid and liquid malignancies correlate with aggressiveness of the disease. In this manuscript, we show that miR-155 targets transcripts encoding IcosL, the ligand for Inducible T-cell costimulator (Icos), thus impairing the ability of T cells to recognize and eliminate malignant cells. We specifically found that overexpression of miR-155 in B cells of Eµ-miR-155 mice causes loss of IcosL expression as they progress toward malignancy. Similarly, in mice where miR-155 expression is controlled by a Cre-Tet-OFF system, miR-155 induction led to malignant infiltrates lacking IcosL expression. Conversely, turning miR-155 OFF led to tumor regression and emergence of infiltrates composed of IcosL-positive B cells and Icos-positive T cells forming immunological synapses. Therefore, we next engineered malignant cells to express IcosL, in order to determine whether IcosL expression would increase tumor infiltration by cytotoxic T cells and reduce tumor progression. Indeed, overexpressing an IcosL-encoding cDNA in MC38 murine colon cancer cells before injection into syngeneic C57BL6 mice reduced tumor size and increased intratumor CD8+ T cell infiltration, that formed synapses with IcosL-expressing MC38 cells. Our results underscore the fact that by targeting IcosL transcripts, miR-155 impairs the infiltration of tumors by cytotoxic T cells, as well as the importance of IcosL on enhancing the immune response against malignant cells. These findings should lead to the development of more effective anticancer treatments based on maintaining, increasing, or restoring IcosL expression by malignant cells, along with impairing miR-155 activity.
Collapse
Affiliation(s)
- Esmerina Tili
- Department of Anesthesiology, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH43210
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Hajime Otsu
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Teresa L. Commisso
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Alexey Palamarchuk
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Veronica Balatti
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | - Jean-Jacques Michaille
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| | | | - Carlo M. Croce
- The Ohio State University, Comprehensive Cancer Center, Department of Cancer Biology and Genetics, Wexner Medical Center, Columbus, OH43210
| |
Collapse
|
12
|
Turk A, Čeh E, Calin GA, Kunej T. Multiple omics levels of chronic lymphocytic leukemia. Cell Death Discov 2024; 10:293. [PMID: 38906881 PMCID: PMC11192936 DOI: 10.1038/s41420-024-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by the proliferation of functionally mature but incompetent B cells. It is the most prevalent type of leukemia in Western populations, accounting for approximately 25% of new leukemia cases. While recent advances, such as ibrutinib and venetoclax treatment have improved patient outlook, aggressive forms of CLL such as Richter transformation still pose a significant challenge. This discrepancy may be due to the heterogeneity of factors contributing to CLL development at multiple -omics levels. However, information on the omics of CLL is fragmented, hindering multi-omics-based research into potential treatment options. To address this, we aggregated and presented a selection of important aspects of various omics levels of the disease in this review. The purpose of the present literature analysis is to portray examples of CLL studies from different omics levels, including genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, epiproteomics, metabolomics, glycomics and lipidomics, as well as those identified by multi-omics approaches. The review includes the list of 102 CLL-associated genes with relevant genomics information. While single-omics studies yield substantial and useful data, they omit a significant level of complex biological interplay present in the disease. As multi-omics studies integrate several different layers of data, they may be better suited for complex diseases such as CLL and have thus far yielded promising results. Future multi-omics studies may assist clinicians in improved treatment choices based on CLL subtypes as well as allow the identification of novel biomarkers and targets for treatments.
Collapse
Grants
- P4-0220 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- Dr. Calin is the Felix L. Haas Endowed Professor in Basic Science. Work in G.A.C.’s laboratory is supported by NCI grants 1R01 CA182905-01 and 1R01CA222007-01A1, NIGMS grant 1R01GM122775-01, DoD Idea Award W81XWH-21-1-0030, a Team DOD grant in Gastric Cancer W81XWH-21-1-0715, a Chronic Lymphocytic Leukemia Moonshot Flagship project, a CLL Global Research Foundation 2019 grant, a CLL Global Research Foundation 2020 grant, a CLL Global Research Foundation 2022 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation, an Institutional Research Grant and Development Grant associated with the Brain SPORE 2P50CA127001.
Collapse
Affiliation(s)
- Aleksander Turk
- Clinical Institute of Genomic Medicine, University Clinical Centre Ljubljana, Ljubljana, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Čeh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Bayraktar R, Fontana B, Calin GA, Nemeth K. miRNA Biology in Chronic Lymphocytic Leukemia. Semin Hematol 2024; 61:181-193. [PMID: 38724414 DOI: 10.1053/j.seminhematol.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 07/13/2024]
Abstract
microRNAs (miRNAs) are a class of small non-coding RNAs that play a crucial regulatory role in fundamental biological processes and have been implicated in various diseases, including cancer. The first evidence of the cancer-related function of miRNAs was discovered in chronic lymphocytic leukemia (CLL) in the early 2000s. Alterations in miRNA expression have since been shown to strongly influence the clinical course, prognosis, and response to treatment in patients with CLL. Therefore, the identification of specific miRNA alterations not only enhances our understanding of the molecular mechanisms underlying CLL but also holds promise for the development of novel diagnostic and therapeutic strategies. This review aims to provide a comprehensive summary of the current knowledge and recent insights into miRNA dysregulation in CLL, emphasizing its pivotal roles in disease progression, including the development of the lethal Richter syndrome, and to provide an update on the latest translational research in this field.
Collapse
Affiliation(s)
- Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Beatrice Fontana
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX; The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
14
|
Zhang X, Wang H, Zhang Y, Wang X. Advances in epigenetic alterations of chronic lymphocytic leukemia: from pathogenesis to treatment. Clin Exp Med 2024; 24:54. [PMID: 38492089 PMCID: PMC10944427 DOI: 10.1007/s10238-023-01268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/01/2023] [Indexed: 03/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with alterations in genetic expression and epigenetic modifications. In recent years, the new insight into epigenetics in the pathogenesis of CLL has been developed considerably, including DNA methylation, histone modification, RNA methylation, non-coding RNAs as well as chromatin remodeling. Epigenetic modification regulates various processes such as stem cell biology, cell growth, and tumorigenesis without altering gene sequence. Growing evidence indicates that the disturbance of gene expression profiles which were regulated by epigenetic modifications exerts vital roles in the development and progress in CLL, which provides novel perspectives to explore the etiology of CLL. In addition, the integration with epigenetic therapeutic targets and the in-depth understanding of epigenetic therapy contribute to develop new therapeutic strategies for CLL. Herein, the present review discusses the advances of epigenetic alterations in the pathogenesis, diagnosis, and prognostic assessment of CLL patients and also highlights existing and emerging agents targeting epigenetic regulators.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Hua Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Taishan Scholars Program of Shandong Province, Jinan, 250021, Shandong, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Taishan Scholars Program of Shandong Province, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
15
|
Qiao Y, Huang X, Moos PJ, Ahmann JM, Pomicter AD, Deininger MW, Byrd JC, Woyach JA, Stephens DM, Marth GT. A Bayesian framework to study tumor subclone-specific expression by combining bulk DNA and single-cell RNA sequencing data. Genome Res 2024; 34:94-105. [PMID: 38195207 PMCID: PMC10903947 DOI: 10.1101/gr.278234.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
Genetic and gene expression heterogeneity is an essential hallmark of many tumors, allowing the cancer to evolve and to develop resistance to treatment. Currently, the most commonly used data types for studying such heterogeneity are bulk tumor/normal whole-genome or whole-exome sequencing (WGS, WES); and single-cell RNA sequencing (scRNA-seq), respectively. However, tools are currently lacking to link genomic tumor subclonality with transcriptomic heterogeneity by integrating genomic and single-cell transcriptomic data collected from the same tumor. To address this gap, we developed scBayes, a Bayesian probabilistic framework that uses tumor subclonal structure inferred from bulk DNA sequencing data to determine the subclonal identity of cells from single-cell gene expression (scRNA-seq) measurements. Grouping together cells representing the same genetically defined tumor subclones allows comparison of gene expression across different subclones, or investigation of gene expression changes within the same subclone across time (i.e., progression, treatment response, or relapse) or space (i.e., at multiple metastatic sites and organs). We used simulated data sets, in silico synthetic data sets, as well as biological data sets generated from cancer samples to extensively characterize and validate the performance of our method, as well as to show improvements over existing methods. We show the validity and utility of our approach by applying it to published data sets and recapitulating the findings, as well as arriving at novel insights into cancer subclonal expression behavior in our own data sets. We further show that our method is applicable to a wide range of single-cell sequencing technologies including single-cell DNA sequencing as well as Smart-seq and 10x Genomics scRNA-seq protocols.
Collapse
Affiliation(s)
- Yi Qiao
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Xiaomeng Huang
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Philip J Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jonathan M Ahmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Anthony D Pomicter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Michael W Deininger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, Utah 84112, USA
| | - John C Byrd
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jennifer A Woyach
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Deborah M Stephens
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Gabor T Marth
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA;
| |
Collapse
|
16
|
Ali A, Mahla SB, Reza V, Hossein A, Bahareh K, Mohammad H, Fatemeh S, Mostafa AB, Leili R. MicroRNAs: Potential prognostic and theranostic biomarkers in chronic lymphocytic leukemia. EJHAEM 2024; 5:191-205. [PMID: 38406506 PMCID: PMC10887358 DOI: 10.1002/jha2.849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Small noncoding ribonucleic acids called microRNAs coordinate numerous critical physiological and biological processes such as cell division, proliferation, and death. These regulatory molecules interfere with the function of many genes by binding the 3'-UTR region of target mRNAs to inhibit their translation or even degrade them. Given that a large proportion of miRNAs behave as either tumor suppressors or oncogenes, any genetic or epigenetic aberration changeing their structure and/or function could initiate tumor formation and development. An example of such cancers is chronic lymphocytic leukemia (CLL), the most prevalent adult leukemia in Western nations, which is caused by unregulated growth and buildup of defective cells in the peripheral blood and lymphoid organs. Genetic alterations at cellular and molecular levels play an important role in the occurrence and development of CLL. In this vein, it was noted that the development of this disease is noticeably affected by changes in the expression and function of miRNAs. Many studies on miRNAs have shown that these molecules are pivotal in the prognosis of different cancers, including CLL, and their epigenetic alterations (e.g., methylation) can predict disease progression and response to treatment. Furthermore, miRNAs are involved in the development of drug resistance in CLL, and targeting these molecules can be considered a new therapeutic approach for the treatment of this disease. MiRNA screening can offer important information on the etiology and development of CLL. Considering the importance of miRNAs in gene expression regulation, their application in the diagnosis, prognosis, and treatment of CLL is reviewed in this paper.
Collapse
Affiliation(s)
- Afgar Ali
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sattarzadeh Bardsiri Mahla
- Stem Cells and Regenerative Medicine Innovation CenterKerman University of Medical SciencesKermanIran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Vahidi Reza
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Arezoomand Hossein
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Kashani Bahareh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Hosseininaveh Mohammad
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sharifi Fatemeh
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| | - Amopour Bahnamiry Mostafa
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Rouhi Leili
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
17
|
Moia R, Terzi di Bergamo L, Talotta D, Bomben R, Forestieri G, Spina V, Bruscaggin A, Cosentino C, Almasri M, Dondolin R, Bittolo T, Zucchetto A, Baldoni S, Del Giudice I, Mauro FR, Maffei R, Chiarenza A, Tafuri A, Laureana R, Del Principe MI, Zaja F, D'Arena G, Olivieri J, Rasi S, Mahmoud A, Al Essa W, Awikeh B, Kogila S, Bellia M, Mouhssine S, Sportoletti P, Marasca R, Scarfò L, Ghia P, Gattei V, Foà R, Rossi D, Gaidano G. XPO1 mutations identify early-stage CLL characterized by shorter time to first treatment and enhanced BCR signalling. Br J Haematol 2023; 203:416-425. [PMID: 37580908 DOI: 10.1111/bjh.19052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Here we evaluated the epigenomic and transcriptomic profile of XPO1 mutant chronic lymphocytic leukaemia (CLL) and their clinical phenotype. By ATAC-seq, chromatin regions that were more accessible in XPO1 mutated CLL were enriched of binding sites for transcription factors regulated by pathways emanating from the B-cell receptor (BCR), including NF-κB signalling, p38-JNK and RAS-RAF-MEK-ERK. XPO1 mutant CLL, consistent with the chromatin accessibility changes, were enriched with transcriptomic features associated with BCR and cytokine signalling. By combining epigenomic and transcriptomic data, MIR155HG, the host gene of miR-155, and MYB, the transcription factor that positively regulates MIR155HG, were upregulated by RNA-seq and their promoters were more accessible by ATAC-seq. To evaluate the clinical impact of XPO1 mutations, we investigated a total of 957 early-stage CLL subdivided into 3 independent cohorts (N = 276, N = 286 and N = 395). Next-generation sequencing analysis identified XPO1 mutations as a novel predictor of shorter time to first treatment (TTFT) in all cohorts. Notably, XPO1 mutations maintained their prognostic value independent of the immunoglobulin heavy chain variable status and early-stage prognostic models. These data suggest that XPO1 mutations, conceivably through increased miR-155 levels, may enhance BCR signalling leading to higher proliferation and shorter TTFT in early-stage CLL.
Collapse
Affiliation(s)
- Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Lodovico Terzi di Bergamo
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Bioinformatics Core Unit, Swiss Institute of Bioinformatics, Bellinzona, Switzerland
- Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Donatella Talotta
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Gabriela Forestieri
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Valeria Spina
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Alessio Bruscaggin
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Chiara Cosentino
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Mohammad Almasri
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Dondolin
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Stefano Baldoni
- Institute of Hematology, Center for Hemato-Oncology Research, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Rossana Maffei
- Section of Hematology, Department of Medical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annalisa Chiarenza
- A.O.O. Policlinico "G. Rodolico-S. Marco", U.O.C. Ematologia, Catania, Italy
| | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Hematology Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | | | | | - Francesco Zaja
- SC Ematologia, Azienda Sanitaria Universitaria Integrata, Trieste, Italy
| | - Giovanni D'Arena
- Ematologia, P.O. San Luca, ASL Salerno, Vallo della Lucania, Italy
| | - Jacopo Olivieri
- Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), SOC Clinica Ematologica, Udine, Italy
| | - Silvia Rasi
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Abdurraouf Mahmoud
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Wael Al Essa
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Bassel Awikeh
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Sreekar Kogila
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Matteo Bellia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Samir Mouhssine
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Paolo Sportoletti
- Institute of Hematology, Center for Hemato-Oncology Research, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Medical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lydia Scarfò
- IRCCS Ospedale San Raffaele, Università Vita Salute San Raffaele, Milan, Italy
| | - Paolo Ghia
- IRCCS Ospedale San Raffaele, Università Vita Salute San Raffaele, Milan, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
18
|
Autore F, Ramassone A, Stirparo L, Pagotto S, Fresa A, Innocenti I, Visone R, Laurenti L. Role of microRNAs in Chronic Lymphocytic Leukemia. Int J Mol Sci 2023; 24:12471. [PMID: 37569845 PMCID: PMC10419063 DOI: 10.3390/ijms241512471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most common form of leukemia in adults, with a highly variable clinical course. Improvement in the knowledge of the molecular pathways behind this disease has led to the development of increasingly specific therapies, such as BCR signaling inhibitors and BCL-2 inhibitors. In this context, the emerging role of microRNAs (miRNAs) in CLL pathophysiology and their possible application in therapy is worth noting. MiRNAs are one of the most important regulatory molecules of gene expression. In CLL, they can act both as oncogenes and tumor suppressor genes, and the deregulation of specific miRNAs has been associated with prognosis, progression, and drug resistance. In this review, we describe the role of the miRNAs that primarily impact the disease, and how these miRNAs could be used as therapeutic tools. Certainly, the use of miRNAs in clinical practice is still limited in CLL. Many issues still need to be solved, particularly regarding their biological and safety profile, even if several studies have suggested their efficacy on the disease, alone or in combination with other drugs.
Collapse
Affiliation(s)
- Francesco Autore
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy (A.F.); (I.I.); (L.L.)
| | - Alice Ramassone
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University, 66100 Chieti, Italy; (A.R.); (S.P.); (R.V.)
| | - Luca Stirparo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy (A.F.); (I.I.); (L.L.)
| | - Sara Pagotto
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University, 66100 Chieti, Italy; (A.R.); (S.P.); (R.V.)
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University, 66100 Chieti, Italy
| | - Alberto Fresa
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy (A.F.); (I.I.); (L.L.)
| | - Idanna Innocenti
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy (A.F.); (I.I.); (L.L.)
| | - Rosa Visone
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University, 66100 Chieti, Italy; (A.R.); (S.P.); (R.V.)
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University, 66100 Chieti, Italy
| | - Luca Laurenti
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy (A.F.); (I.I.); (L.L.)
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
19
|
Bryant D, Smith L, Rogers-Broadway KR, Karydis L, Woo J, Blunt MD, Forconi F, Stevenson FK, Goodnow C, Russell A, Humburg P, Packham G, Steele AJ, Strefford JC. Network analysis reveals a major role for 14q32 cluster miRNAs in determining transcriptional differences between IGHV-mutated and unmutated CLL. Leukemia 2023; 37:1454-1463. [PMID: 37169950 PMCID: PMC10317834 DOI: 10.1038/s41375-023-01918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) cells can express unmutated (U-CLL) or mutated (M-CLL) immunoglobulin heavy chain (IGHV) genes with differing clinical behaviours, variable B cell receptor (BCR) signalling capacity and distinct transcriptional profiles. As it remains unclear how these differences reflect the tumour cells' innate pre/post germinal centre origin or their BCR signalling competence, we applied mRNA/miRNA sequencing to 38 CLL cases categorised into three subsets by IGHV mutational status and BCR signalling capacity. We identified 492 mRNAs and 38 miRNAs differentially expressed between U-CLL and M-CLL, but only 9 mRNAs and 0 miRNAs associated with BCR competence within M-CLL. Of the IGHV-associated miRNAs, (14/38 (37%)) derived from chr14q32 clusters where all miRNAs were co-expressed with the MEG3 lncRNA from a cancer associated imprinted locus. Integrative analysis of miRNA/mRNA data revealed pronounced regulatory potential for the 14q32 miRNAs, potentially accounting for up to 25% of the IGHV-related transcriptome signature. GAB1, a positive regulator of BCR signalling, was potentially regulated by five 14q32 miRNAs and we confirmed that two of these (miR-409-3p and miR-411-3p) significantly repressed activity of the GAB1 3'UTR. Our analysis demonstrates a potential key role of the 14q32 miRNA locus in the regulation of CLL-related gene regulation.
Collapse
Affiliation(s)
- Dean Bryant
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lindsay Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Laura Karydis
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jeongmin Woo
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthew D Blunt
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Francesco Forconi
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Freda K Stevenson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Christopher Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Amanda Russell
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Peter Humburg
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Graham Packham
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andrew J Steele
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan C Strefford
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
20
|
Dubois K, Tannoury M, Bauvois B, Susin SA, Garnier D. Extracellular Vesicles in Chronic Lymphocytic Leukemia: Tumor Microenvironment Messengers as a Basis for New Targeted Therapies? Cancers (Basel) 2023; 15:cancers15082307. [PMID: 37190234 DOI: 10.3390/cancers15082307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
In addition to intrinsic genomic and nongenomic alterations, tumor progression is also dependent on the tumor microenvironment (TME, mainly composed of the extracellular matrix (ECM), secreted factors, and bystander immune and stromal cells). In chronic lymphocytic leukemia (CLL), B cells have a defect in cell death; contact with the TME in secondary lymphoid organs dramatically increases the B cells' survival via the activation of various molecular pathways, including the B cell receptor and CD40 signaling. Conversely, CLL cells increase the permissiveness of the TME by inducing changes in the ECM, secreted factors, and bystander cells. Recently, the extracellular vesicles (EVs) released into the TME have emerged as key arbiters of cross-talk with tumor cells. The EVs' cargo can contain various bioactive substances (including metabolites, proteins, RNA, and DNA); upon delivery to target cells, these substances can induce intracellular signaling and drive tumor progression. Here, we review recent research on the biology of EVs in CLL. EVs have diagnostic/prognostic significance and clearly influence the clinical outcome of CLL; hence, from the perspective of blocking CLL-TME interactions, EVs are therapeutic targets. The identification of novel EV inhibitors might pave the way to the development of novel combination treatments for CLL and the optimization of currently available treatments (including immunotherapy).
Collapse
Affiliation(s)
- Kenza Dubois
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| | - Mariana Tannoury
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| | - Brigitte Bauvois
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| | - Santos A Susin
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| | - Delphine Garnier
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| |
Collapse
|
21
|
Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:ijms232214249. [PMID: 36430731 PMCID: PMC9693457 DOI: 10.3390/ijms232214249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
The engagement of the B cell receptor (BcR) on the surface of leukemic cells represents a key event in chronic lymphocytic leukemia (CLL) since it can lead to the maintenance and expansion of the neoplastic clone. This notion was initially suggested by observations of the CLL BcR repertoire and of correlations existing between certain BcR features and the clinical outcomes of single patients. Based on these observations, tyrosine kinase inhibitors (TKIs), which block BcR signaling, have been introduced in therapy with the aim of inhibiting CLL cell clonal expansion and of controlling the disease. Indeed, the impressive results obtained with these compounds provided further proof of the role of BcR in CLL. In this article, the key steps that led to the determination of the role of BcR are reviewed, including the features of the CLL cell repertoire and the fine mechanisms causing BcR engagement and cell signaling. Furthermore, we discuss the biological effects of the engagement, which can lead to cell survival/proliferation or apoptosis depending on certain intrinsic cell characteristics and on signals that the micro-environment can deliver to the leukemic cells. In addition, consideration is given to alternative mechanisms promoting cell proliferation in the absence of BcR signaling, which can explain in part the incomplete effectiveness of TKI therapies. The role of the BcR in determining clonal evolution and disease progression is also described. Finally, we discuss possible models to explain the selection of a special BcR set during leukemogenesis. The BcR may deliver activation signals to the cells, which lead to their uncontrolled growth, with the possible collaboration of other still-undefined events which are capable of deregulating the normal physiological response of B cells to BcR-delivered stimuli.
Collapse
|
22
|
Xie W, Yang J, Zhou N, Ding H, Zhou G, Wu S, Guo S, Li W, Zhang L, Yang H, Mao C, Zheng Y. Identification of microRNA editing sites in three subtypes of leukemia. Front Mol Biosci 2022; 9:1014288. [PMID: 36452459 PMCID: PMC9702332 DOI: 10.3389/fmolb.2022.1014288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/28/2022] [Indexed: 09/15/2023] Open
Abstract
Leukemia is an aberrant hyper-proliferation of immature blood cells that do not form solid tumors. The transcriptomes of microRNAs (miRNAs) of leukemia have been intensively explored. However, miRNA editing of leukemia has not been extensively studied. To identify miRNA editing patterns and explore their functional relevance in leukemia, we analyzed 200 small RNA sequencing profiles of three subtypes of leukemia and identified hundreds of miRNA editing sites in three subtypes of leukemia. Then, we compared the editing levels of identified miRNA editing sites in leukemia and normal controls. Many miRNAs were differential edited in different subtypes of leukemia. We also found the editing levels of 3'-A editing sites of hsa-mir-21-5p and hsa-mir-155-5p decreased in chronic lymphocytic leukemia patients with radiation treatments. By integrating PAR-CLIP sequencing profiles, we predicted the targets of original and edited miRNAs. One of the edited miRNA, hsa-let-7b_5c, with an additional cytosine at 5' end of hsa-let-7b-5p, potentially targeted VBP1 and CTDSP1. CTDSP1 was significantly downregulated in T-ALL compared to normal controls, which might be originated from the hyperediting of hsa-let-7b-5p in T-ALL. Our study provides a comprehensive view of miRNA editing in three different subtypes of leukemia.
Collapse
Affiliation(s)
- Wenping Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jun Yang
- Yunnan Police College, Kunming, Yunnan, China
| | - Nan Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hao Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Guangchen Zhou
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shuai Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lei Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huaide Yang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chunyi Mao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
23
|
Kalkusova K, Taborska P, Stakheev D, Smrz D. The Role of miR-155 in Antitumor Immunity. Cancers (Basel) 2022; 14:5414. [PMID: 36358832 PMCID: PMC9659277 DOI: 10.3390/cancers14215414] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
MicroRNAs belong to a group of short non-coding RNA molecules that are involved in the regulation of gene expression at multiple levels. Their function was described two decades ago, and, since then, microRNAs have become a rapidly developing field of research. Their participation in the regulation of cellular processes, such as proliferation, apoptosis, cell growth, and migration, made microRNAs attractive for cancer research. Moreover, as a single microRNA can simultaneously target multiple molecules, microRNAs offer a unique advantage in regulating multiple cellular processes in different cell types. Many of these cell types are tumor cells and the cells of the immune system. One of the most studied microRNAs in the context of cancer and the immune system is miR-155. MiR-155 plays a role in modulating innate and adaptive immune mechanisms in distinct immune cell types. As such, miR-155 can be part of the communication between the tumor and immune cells and thus impact the process of tumor immunoediting. Several studies have already revealed its effect on antitumor immune responses, and the targeting of this molecule is increasingly implemented in cancer immunotherapy. In this review, we discuss the current knowledge of miR-155 in the regulation of antitumor immunity and the shaping of the tumor microenvironment, and the plausible implementation of miR-155 targeting in cancer therapy.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
24
|
Matis S, Grazia Recchia A, Colombo M, Cardillo M, Fabbi M, Todoerti K, Bossio S, Fabris S, Cancila V, Massara R, Reverberi D, Emionite L, Cilli M, Cerruti G, Salvi S, Bet P, Pigozzi S, Fiocca R, Ibatici A, Angelucci E, Gentile M, Monti P, Menichini P, Fronza G, Torricelli F, Ciarrocchi A, Neri A, Fais F, Tripodo C, Morabito F, Ferrarini M, Cutrona G. MiR-146b-5p regulates IL-23 receptor complex expression in chronic lymphocytic leukemia cells. Blood Adv 2022; 6:5593-5612. [PMID: 35819446 PMCID: PMC9647700 DOI: 10.1182/bloodadvances.2021005726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells express the interleukin-23 receptor (IL-23R) chain, but the expression of the complementary IL-12Rβ1 chain requires cell stimulation via surface CD40 molecules (and not via the B-cell receptor [BCR]). This stimulation induces the expression of a heterodimeric functional IL-23R complex and the secretion of IL-23, initiating an autocrine loop that drives leukemic cell expansion. Based on the observation in 224 untreated Binet stage A patients that the cases with the lowest miR-146b-5p concentrations had the shortest time to first treatment (TTFT), we hypothesized that miR-146b-5p could negatively regulate IL-12Rβ1 side chain expression and clonal expansion. Indeed, miR-146b-5p significantly bound to the 3'-UTR region of the IL-12Rβ1 mRNA in an in vitro luciferase assay. Downregulation of miR-146b-5p with specific miRNA inhibitors in vitro led to the upregulation of the IL-12Rβ1 side chain and expression of a functional IL-23R complex similar to that observed after stimulation of the CLL cell through the surface CD40 molecules. Expression of miR-146b-5p with miRNA mimics in vitro inhibited the expression of the IL-23R complex after stimulation with CD40L. Administration of a miR-146b-5p mimic to NSG mice, successfully engrafted with CLL cells, caused tumor shrinkage, with a reduction of leukemic nodules and of IL-12Rβ1-positive CLL cells in the spleen. Our findings indicate that IL-12Rβ1 expression, a crucial checkpoint for the functioning of the IL-23 and IL-23R complex loop, is under the control of miR-146b-5p, which may represent a potential target for therapy since it contributes to the CLL pathogenesis. This trial is registered at www.clinicaltrials.gov as NCT00917540.
Collapse
Affiliation(s)
- Serena Matis
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Grazia Recchia
- Hematology Unit AO of Cosenza, Cosenza, Italy
- Biothecnology Research Unit, AO, Cosenza, Italy
| | - Monica Colombo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Martina Cardillo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Marina Fabbi
- Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Katia Todoerti
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Bossio
- Hematology Unit AO of Cosenza, Cosenza, Italy
- Biothecnology Research Unit, AO, Cosenza, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Rosanna Massara
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giannamaria Cerruti
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sandra Salvi
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Bet
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Pigozzi
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Roberto Fiocca
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Adalberto Ibatici
- Hematology Unit and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuele Angelucci
- Hematology Unit and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Massimo Gentile
- Hematology Unit AO of Cosenza, Cosenza, Italy
- Biothecnology Research Unit, AO, Cosenza, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo School of Medicine, Palermo, Italy
| | - Fortunato Morabito
- Biothecnology Research Unit, AO, Cosenza, Italy
- Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
25
|
Abdollahi M, Mohammadlou M, Hemati M, Baharlou R, Manouchehri Doulabi E, Ghahremanfard F, Sarabi MA, Kokhaei P. Anti-tumor effect of berberine on chronic lymphocytic leukemia cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:217. [PMID: 36175700 DOI: 10.1007/s12032-022-01818-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a blood malignancy that is characterized by remarkable expression of CD69 and Ki67 in CLL cells. Elevated levels of Cleaved-Poly (ADP-ribose) polymerase-1 (PARP1) and microRNA-155 (MiR-155) are related to poor prognosis of disease. Berberine as a natural isoquinoline alkaloid, has shown an anti-tumor potential in tumor cells. The objective of present study was to explore some aspects of molecular mechanisms of berberine effect in CLL cells. To analyze the expression of CD69 and Ki67 using flow cytometry, 16 peripheral blood samples and seven bone marrow aspirates were collected from CLL patients. Isolated peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMCs) were treated with 25 µM of berberine for 24 h. The level of miR-155 expression was subsequently evaluated by real-time PCR. Furthermore, western blot was used for assessment of cleaved PARP1. Our results demonstrated a significant reduction in CD69 and Ki67 expression on CD19+ cells when the cells were treated by berberine. Interestingly, the expression level of miR-155 was reduced after berberine treatment in compare to the control group. Furthermore, western blotting revealed an increased level of cleaved PARP1 in dose-dependently manner in CLL cells. The results confirmed the anti-tumor impact of berberine on CLL cells through reducing CD69, Ki67, and miR-155 expression and increasing cleaved PARP1 may be considered as an option for future clinical studies.
Collapse
Affiliation(s)
- Maryam Abdollahi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ehsan Manouchehri Doulabi
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Parviz Kokhaei
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Nadeu F, Royo R, Massoni-Badosa R, Playa-Albinyana H, Garcia-Torre B, Duran-Ferrer M, Dawson KJ, Kulis M, Diaz-Navarro A, Villamor N, Melero JL, Chapaprieta V, Dueso-Barroso A, Delgado J, Moia R, Ruiz-Gil S, Marchese D, Giró A, Verdaguer-Dot N, Romo M, Clot G, Rozman M, Frigola G, Rivas-Delgado A, Baumann T, Alcoceba M, González M, Climent F, Abrisqueta P, Castellví J, Bosch F, Aymerich M, Enjuanes A, Ruiz-Gaspà S, López-Guillermo A, Jares P, Beà S, Capella-Gutierrez S, Gelpí JL, López-Bigas N, Torrents D, Campbell PJ, Gut I, Rossi D, Gaidano G, Puente XS, Garcia-Roves PM, Colomer D, Heyn H, Maura F, Martín-Subero JI, Campo E. Detection of early seeding of Richter transformation in chronic lymphocytic leukemia. Nat Med 2022; 28:1662-1671. [PMID: 35953718 PMCID: PMC9388377 DOI: 10.1038/s41591-022-01927-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high–B cell receptor (BCR)low-signaling transcriptional axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seeding of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT. Single-cell genomic and transcriptomic analyses of longitudinal samples of patients with Richter syndrome reveal the presence and dynamics of clones driving transformation from chronic lymphocytic leukemia years before clinical manifestation
Collapse
Affiliation(s)
- Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Ramon Massoni-Badosa
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Heribert Playa-Albinyana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Beatriz Garcia-Torre
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ander Diaz-Navarro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Neus Villamor
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | | | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Sara Ruiz-Gil
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Domenica Marchese
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ariadna Giró
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Núria Verdaguer-Dot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mónica Romo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria Rozman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | | | - Alfredo Rivas-Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | - Tycho Baumann
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Miguel Alcoceba
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Biología Molecular e Histocompatibilidad, IBSAL-Hospital Universitario, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Marcos González
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Biología Molecular e Histocompatibilidad, IBSAL-Hospital Universitario, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Fina Climent
- Hospital Universitari de Bellvitge-Institut d'Investigació Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pau Abrisqueta
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Josep Castellví
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Bosch
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain
| | - Anna Enjuanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sílvia Ruiz-Gaspà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Armando López-Guillermo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Pedro Jares
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | | | - Josep Ll Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - David Torrents
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Davide Rossi
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Pablo M Garcia-Roves
- Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hospital Clínic of Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesco Maura
- Myeloma Service, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - José I Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain. .,Hospital Clínic of Barcelona, Barcelona, Spain. .,Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
27
|
Fletcher D, Brown E, Javadala J, Uysal‐Onganer P, Guinn B. microRNA expression in acute myeloid leukaemia: New targets for therapy? EJHAEM 2022; 3:596-608. [PMID: 36051053 PMCID: PMC9421970 DOI: 10.1002/jha2.441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Recent studies have shown that short non-coding RNAs, known as microRNAs (miRNAs) and their dysregulation, are implicated in the pathogenesis of acute myeloid leukaemia (AML). This is due to their role in the control of gene expression in a variety of molecular pathways. Therapies involving miRNA suppression and replacement have been developed. The normalisation of expression and the subsequent impact on AML cells have been investigated for some miRNAs, demonstrating their potential to act as therapeutic targets. Focussing on miRs with therapeutic potential, we have reviewed those that have a significant impact on the aberrant biological processes associated with AML, and crucially, impact leukaemic stem cell survival. We describe six miRNAs in preclinical trials (miR-21, miR-29b, miR-126, miR-181a, miR-223 and miR-196b) and two miRNAs that are in clinical trials (miR-29 and miR-155). However none have been used to treat AML patients and greater efforts are needed to develop miRNA therapies that could benefit AML patients in the future.
Collapse
Affiliation(s)
| | - Elliott Brown
- Department of Biomedical SciencesUniversity of HullHull, UK
| | | | - Pinar Uysal‐Onganer
- Cancer Research GroupSchool of Life SciencesUniversity of WestminsterLondonUK
| | | |
Collapse
|
28
|
Chen N, Peng C, Li D. Epigenetic Underpinnings of Inflammation: A Key to Unlock the Tumor Microenvironment in Glioblastoma. Front Immunol 2022; 13:869307. [PMID: 35572545 PMCID: PMC9100418 DOI: 10.3389/fimmu.2022.869307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults, and immunotherapies and genetic therapies for GBM have evolved dramatically over the past decade, but GBM therapy is still facing a dilemma due to the high recurrence rate. The inflammatory microenvironment is a general signature of tumors that accelerates epigenetic changes in GBM and helps tumors avoid immunological surveillance. GBM tumor cells and glioma-associated microglia/macrophages are the primary contributors to the inflammatory condition, meanwhile the modification of epigenetic events including DNA methylation, non-coding RNAs, and histone methylation and deacetylases involved in this pathological process of GBM, finally result in exacerbating the proliferation, invasion, and migration of GBM. On the other hand, histone deacetylase inhibitors, DNA methyltransferases inhibitors, and RNA interference could reverse the inflammatory landscapes and inhibit GBM growth and invasion. Here, we systematically review the inflammatory-associated epigenetic changes and regulations in the microenvironment of GBM, aiming to provide a comprehensive epigenetic profile underlying the recognition of inflammation in GBM.
Collapse
Affiliation(s)
- Nian Chen
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
29
|
Jung B, Ferrer G, Chiu PY, Aslam R, Ng A, Palacios F, Wysota M, Cardillo M, Kolitz JE, Allen SL, Barrientos JC, Rai KR, Chiorazzi N, Sherry B. Activated CLL cells regulate IL17F producing Th17 cells in miR155 dependent and outcome specific manners. JCI Insight 2022; 7:158243. [PMID: 35511436 DOI: 10.1172/jci.insight.158243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) results from expansion of a CD5+ B-cell clone that requires interactions with other cell types, including T cells. Moreover, CLL patients have elevated circulating IL17A+ and IL17F+ CD4+ T cells (Th17s), with higher IL17A+Th17s correlating with better outcomes. We report that CLL Th17s express more miR155, a Th17 differentiation regulator, than control Th17s, despite naïve CD4+ T cell (TN) basal miR155 levels being similar in both. We also found that CLL cells directly regulate miR155 levels in TN, thereby affecting Th17 differentiation by documenting that: co-culturing TN with resting (Brest) or activated (Bact) CLL cells alters the magnitude and direction of T-cell miR155 levels; CLL Bact promote IL17A+ and IL17F+ T cell generation by a miR155-dependent mechanism, confirmed by miR155 inhibition; co-cultures of TN with CLL Bact lead to a linear correlation between the degree and direction of T-cell miR155 expression changes and IL17F production, but not IL17A; Bact-mediated changes in TN miR155 expression correlate with outcome, irrespective of IGHV mutation status, a strong prognostic indicator. Together, the results identify a previously unrecognized CLL Bact-dependent mechanism, upregulation of TN miR155 expression and subsequent enhancement of IL17F+ Th17 generation, that favors better clinical courses.
Collapse
Affiliation(s)
- Byeongho Jung
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Gerardo Ferrer
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Pui Yan Chiu
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Insitute for Medical Research, Manhasset, United States of America
| | - Rukhsana Aslam
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Anita Ng
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Florencia Palacios
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Michael Wysota
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Martina Cardillo
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Jonathan E Kolitz
- Department of Medicine, Northwell Health, New Hyde Park, United States of America
| | - Steven L Allen
- Department of Medicine, Northwell Health, New Hyde Park, United States of America
| | | | - Kanti R Rai
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| | - Barbara Sherry
- Center for Immunology & Inflammation, Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, United States of America
| |
Collapse
|
30
|
Sbirkov Y, Vergov B, Mehterov N, Sarafian V. miRNAs in Lymphocytic Leukaemias-The miRror of Drug Resistance. Int J Mol Sci 2022; 23:ijms23094657. [PMID: 35563051 PMCID: PMC9103677 DOI: 10.3390/ijms23094657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Refractory disease and relapse remain the main causes of cancer therapy failure. Refined risk stratification, treatment regimens and improved early diagnosis and detection of minimal residual disease have increased cure rates in malignancies like childhood acute lymphoblastic leukaemia (ALL) to 90%. Nevertheless, overall survival in the context of drug resistance remains poor. The regulatory role of micro RNAs (miRNAs) in cell differentiation, homeostasis and tumorigenesis has been under extensive investigation in different cancers. There is accumulating data demonstrating the significance of miRNAs for therapy outcomes in lymphoid malignancies and some direct demonstrations of the interplay between these small molecules and drug response. Here, we summarise miRNAs' impact on chemotherapy resistance in adult and paediatric ALL and chronic lymphocytic leukaemia (CLL). The main focus of this review is on the modulation of particular signaling pathways like PI3K-AKT, transcription factors such as NF-κB, and apoptotic mediators, all of which are bona fide and pivotal elements orchestrating the survival of malignant lymphocytic cells. Finally, we discuss the attractive strategy of using mimics, antimiRs and other molecular approaches pointing at miRNAs as promising therapeutic targets. Such novel strategies to circumvent ALL and CLL resistance networks may potentially improve patients' responses and survival rates.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| | - Bozhidar Vergov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| |
Collapse
|
31
|
TGF-β/SMAD Pathway Is Modulated by miR-26b-5p: Another Piece in the Puzzle of Chronic Lymphocytic Leukemia Progression. Cancers (Basel) 2022; 14:cancers14071676. [PMID: 35406446 PMCID: PMC8997107 DOI: 10.3390/cancers14071676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary TGF-β is a key immunoregulatory pathway that can limit the proliferation of B-lymphocytes. Chronic lymphocytic leukemia (CLL) has been historically conceptualized as a neoplasm characterized by accumulation of mature B cells escaping programmed cell death and undergoing cell-cycle arrest in the G0/G1 phase. However, new evidence indicates that tumor expansion is in fact a dynamic process in which cell proliferation also plays an important role. In general, cancers progress by the emergence of subclones with genomic aberrations distinct from the initial tumor. Often, these subclones are selected for advantages in cell survival and/or growth. Here, we provide novel evidence to explain, at least in part, the origins of CLL progression in a subgroup of patients with a poor clinical outcome. In this cohort, the immunoregulatory pathway TGF-β/SMAD is modulated by miR-26b-5p and the impairment of this axis bypasses cell cycle arrest in CLL cells facilitating disease progression. Abstract Clinical and molecular heterogeneity are hallmarks of chronic lymphocytic leukemia (CLL), a neoplasm characterized by accumulation of mature and clonal long-lived CD5 + B-lymphocytes. Mutational status of the IgHV gene of leukemic clones is a powerful prognostic tool in CLL, and it is well established that unmutated CLLs (U-CLLs) have worse evolution than mutated cases. Nevertheless, progression and treatment requirement of patients can evolve independently from the mutational status. Microenvironment signaling or epigenetic changes partially explain this different behavior. Thus, we think that detailed characterization of the miRNAs landscape from patients with different clinical evolution could facilitate the understanding of this heterogeneity. Since miRNAs are key players in leukemia pathogenesis and evolution, we aim to better characterize different CLL behaviors by comparing the miRNome of clinically progressive U-CLLs vs. stable U-CLLs. Our data show up-regulation of miR-26b-5p, miR-106b-5p, and miR-142-5p in progressive cases and indicate a key role for miR-26b-5p during CLL progression. Specifically, up-regulation of miR-26b-5p in CLL cells blocks TGF-β/SMAD pathway by down-modulation of SMAD-4, resulting in lower expression of p21−Cip1 kinase inhibitor and higher expression of c-Myc oncogene. This work describes a new molecular mechanism linking CLL progression with TGF-β modulation and proposes an alternative strategy to explore in CLL therapy.
Collapse
|
32
|
Non-coding RNAs as emerging regulators and biomarkers in colorectal cancer. Mol Cell Biochem 2022; 477:1817-1828. [PMID: 35332394 DOI: 10.1007/s11010-022-04412-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022]
Abstract
CRC is the third most common cancer occurring worldwide and the second leading cause of cancer deaths. In the year 2020, 1,931,590 new cases of CRC and 935,173 deaths were reported. The last two decades have witnessed an intensive study of noncoding RNAs and their implications in various pathological conditions including cancer. Noncoding RNAs such as miRNAs, tsRNAs, piRNAs, lncRNAs, pseudogenes, and circRNAs have emerged as promising prognostic and diagnostic biomarkers in preclinical studies of cancer. Some of these noncoding RNAs have also been shown as promising therapeutic targets for cancer treatment. In this review, we have discussed the emerging roles of various types of noncoding RNAs in CRC and their future implications in colorectal cancer management and research.
Collapse
|
33
|
Boncompagni G, Varone A, Tatangelo V, Capitani N, Frezzato F, Visentin A, Trentin L, Corda D, Baldari CT, Patrussi L. Glycerophosphoinositol Promotes Apoptosis of Chronic Lymphocytic Leukemia Cells by Enhancing Bax Expression and Activation. Front Oncol 2022; 12:835290. [PMID: 35392232 PMCID: PMC8980805 DOI: 10.3389/fonc.2022.835290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
An imbalance in the expression of pro- and anti-apoptotic members of the Bcl-2 family of apoptosis-regulating proteins is one of the main biological features of CLL, highlighting these proteins as therapeutic targets for treatment of this malignancy. Indeed, the Bcl-2 inhibitor Venetoclax is currently used for both first-line treatment and treatment of relapsed or refractory CLL. An alternative avenue is the transcriptional modulation of Bcl-2 family members to tilt their balance towards apoptosis. Glycerophosphoinositol (GroPIns) is a biomolecule generated from membrane phosphoinositides by the enzymes phospholipase A2 and lysolipase that pleiotropically affects key cellular functions. Mass-spectrometry analysis of GroPIns interactors recently highlighted the ability of GroPIns to bind to the non-receptor tyrosine phosphatase SHP-1, a known promoter of Bax expression, suggesting that GroPIns might correct the Bax expression defect in CLL cells, thereby promoting their apoptotic demise. To test this hypothesis, we cultured CLL cells in the presence of GroPIns, alone or in combination with drugs commonly used for treatment of CLL. We found that GroPIns alone increases Bax expression and apoptosis in CLL cells and enhances the pro-apoptotic activity of drugs used for CLL treatment in a SHP-1 dependent manner. Interestingly, among GroPIns interactors we found Bax itself. Short-term treatments of CLL cells with GroPIns induce Bax activation and translocation to the mitochondria. Moreover, GroPIns enhances the pro-apoptotic activity of Venetoclax and Fludarabine in CLL cells. These data provide evidence that GroPIns exploits two different pathways converging on Bax to promote apoptosis of leukemic cells and pave the way to new studies aimed at testing GroPIns in combination therapies for the treatment of CLL.
Collapse
Affiliation(s)
| | - Alessia Varone
- Institute of Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Naples, Italy
| | | | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Federica Frezzato
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Daniela Corda
- Department of Biomedical Sciences, National Research Council, Rome, Italy
| | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
34
|
Forconi F, Lanham SA, Chiodin G. Biological and Clinical Insight from Analysis of the Tumor B-Cell Receptor Structure and Function in Chronic Lymphocytic Leukemia. Cancers (Basel) 2022; 14:663. [PMID: 35158929 PMCID: PMC8833472 DOI: 10.3390/cancers14030663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
The B-cell receptor (BCR) is essential to the behavior of the majority of normal and neoplastic mature B cells. The identification in 1999 of the two major CLL subsets expressing unmutated immunoglobulin (Ig) variable region genes (U-IGHV, U-CLL) of pre-germinal center origin and poor prognosis, and mutated IGHV (M-CLL) of post-germinal center origin and good prognosis, ignited intensive investigations on structure and function of the tumor BCR. These investigations have provided fundamental insight into CLL biology and eventually the mechanistic rationale for the development of successful therapies targeting BCR signaling. U-CLL and M-CLL are characterized by variable low surface IgM (sIgM) expression and signaling capacity. Variability of sIgM can in part be explained by chronic engagement with (auto)antigen at tissue sites. However, other environmental elements, genetic changes, and epigenetic signatures also contribute to the sIgM variability. The variable levels have consequences on the behavior of CLL, which is in a state of anergy with an indolent clinical course when sIgM expression is low, or pushed towards proliferation and a more aggressive clinical course when sIgM expression is high. Efficacy of therapies that target BTK may also be affected by the variable sIgM levels and signaling and, in part, explain the development of resistance.
Collapse
Affiliation(s)
- Francesco Forconi
- School of Cancer Sciences, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton SO16 6YD, UK; (S.A.L.); (G.C.)
- Department of Haematology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - Stuart A. Lanham
- School of Cancer Sciences, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton SO16 6YD, UK; (S.A.L.); (G.C.)
| | - Giorgia Chiodin
- School of Cancer Sciences, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton SO16 6YD, UK; (S.A.L.); (G.C.)
| |
Collapse
|
35
|
Penter L, Gohil SH, Lareau C, Ludwig LS, Parry EM, Huang T, Li S, Zhang W, Livitz D, Leshchiner I, Parida L, Getz G, Rassenti LZ, Kipps TJ, Brown JR, Davids MS, Neuberg DS, Livak KJ, Sankaran VG, Wu CJ. Longitudinal Single-Cell Dynamics of Chromatin Accessibility and Mitochondrial Mutations in Chronic Lymphocytic Leukemia Mirror Disease History. Cancer Discov 2021; 11:3048-3063. [PMID: 34112698 PMCID: PMC8660953 DOI: 10.1158/2159-8290.cd-21-0276] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022]
Abstract
While cancers evolve during disease progression and in response to therapy, temporal dynamics remain difficult to study in humans due to the lack of consistent barcodes marking individual clones in vivo. We employ mitochondrial single-cell assay for transposase-accessible chromatin with sequencing to profile 163,279 cells from 9 patients with chronic lymphocytic leukemia (CLL) collected across disease course and utilize mitochondrial DNA (mtDNA) mutations as natural genetic markers of cancer clones. We observe stable propagation of mtDNA mutations over years in the absence of strong selective pressure, indicating clonal persistence, but dramatic changes following tight bottlenecks, including disease transformation and relapse posttherapy, paralleled by acquisition of copy-number variants and changes in chromatin accessibility and gene expression. Furthermore, we link CLL subclones to distinct chromatin states, providing insight into nongenetic sources of relapse. mtDNA mutations thus mirror disease history and provide naturally occurring genetic barcodes to enable patient-specific study of cancer subclonal dynamics. SIGNIFICANCE Single-cell multi-omic profiling of CLL reveals the utility of somatic mtDNA mutations as in vivo barcodes, which mark subclones that can evolve over time along with changes in accessible chromatin and gene expression profiles to capture dynamics of disease evolution. See related commentary by Hilton and Scott, p. 2965. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Oncology, and Tumor Immunology, Charité – Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Satyen H. Gohil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Academic Haematology, University College London Cancer Institute, London, United Kingdom
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Caleb Lareau
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Leif S. Ludwig
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Berlin Institute of Health at Charité — Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Erin M. Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Teddy Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wandi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Dimitri Livitz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Ignaty Leshchiner
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Laxmi Parida
- IBM TJ Watson Research Center, Yorktown Heights, New York, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Laura Z. Rassenti
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J. Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Vijay G. Sankaran
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
36
|
An AC electrokinetics-based electrochemical aptasensor for the rapid detection of microRNA-155. Biosens Bioelectron 2021; 199:113847. [PMID: 34902642 DOI: 10.1016/j.bios.2021.113847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022]
Abstract
Traditional immunosensors are often limited by low sensitivity and long detection times, for they usually depend on passive diffusion-dominated transport of target analytes for the binding reaction with a bio-recognition element such as enzymes, antibodies, and aptamers. Numerous studies rely on electric field manipulation by using alternating current (AC) electrokinetics to enhance the hybridization rate and reduce the hybridization time for faster and more efficient detection. This study demonstrated a rapid electrochemical aptasensor integrated with an AC electroosmotic (ACEO) flow phenomenon for the enhanced target hybridization of microRNA-155 (miR-155). Optimization of the electrokinetic conditions for target collection resulted in a saturation point after 75 s miR-155 was detected within the range of 1 aM-10 pM with a detection limit of 1 aM, which is 100 times lower and about 50 times faster compared with the conventional diffusion-dependent detection done for 1 h. The detection was also done in spiked serum samples, and a concentration range within the required detection range was obtained. The highly sensitive and specific results allow for the rapid and real-time sensing of target biomarkers, which can be used for the early detection of infection.
Collapse
|
37
|
Dhuri K, Gaddam RR, Vikram A, Slack FJ, Bahal R. Therapeutic Potential of Chemically Modified, Synthetic, Triplex Peptide Nucleic Acid-Based Oncomir Inhibitors for Cancer Therapy. Cancer Res 2021; 81:5613-5624. [PMID: 34548334 DOI: 10.1158/0008-5472.can-21-0736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
miRNA-155 (miR-155) is overexpressed in various types of lymphomas and leukemias, suggesting that targeting miR-155 could be a potential platform for the development of precision medicine. Here, we tested the anticancer activity of novel, chemically modified, triplex peptide nucleic acid (PNA)-based antimiRs compared with the current state-of-the-art conventional full-length antimiRs. Next-generation modified PNAs that bound miR-155 by Watson-Crick and Hoogsteen domains possessed superior therapeutic efficacy in vivo and ex vivo compared with conventional full-length anti-miR-155. The efficacy of anti-miR-155 targeting in multiple lymphoma cell lines was comprehensively corroborated by gene expression, Western blot analysis, and cell viability-based functional studies. Finally, preclinical testing in vivo in xenograft mouse models containing lymphoma cell lines demonstrated that treatment with the miR-155-targeting next-generation antimiR resulted in a significant decrease in miR-155 expression, followed by reduced tumor growth. These findings support the effective therapeutic application of chemically modified triplex PNAs to target miR-155 to treat lymphoma. Overall, the present proof-of-concept study further implicates the potential for next-generation triplex gamma PNAs to target other miRNAs for treating cancer. SIGNIFICANCE: This study demonstrates the utility of novel oncomiR inhibitors as cancer therapeutics, providing a new approach for targeting miRNAs and other noncoding RNAs.
Collapse
Affiliation(s)
- Karishma Dhuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Ravinder Reddy Gaddam
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, Iowa
| | - Ajit Vikram
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, Iowa
| | - Frank J Slack
- Department of Pathology, HMS Initiative for RNA Medicine, BIDMC Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
38
|
Karabon L, Andrzejczak A, Ciszak L, Tomkiewicz A, Szteblich A, Bojarska-Junak A, Roliński J, Wołowiec D, Wróbel T, Kosmaczewska A. BTLA Expression in CLL: Epigenetic Regulation and Impact on CLL B Cell Proliferation and Ability to IL-4 Production. Cells 2021; 10:cells10113009. [PMID: 34831232 PMCID: PMC8616199 DOI: 10.3390/cells10113009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
In our previous study, while chronic lymphocytic leukemia (CLL) cases showed higher levels of B and T lymphocyte attenuator (BTLA) mRNA compared to controls, lower BTLA protein expression was observed in cases compared to controls. Hence we hypothesize that micro RNA (miR) 155-5p regulates BTLA expression in CLL. In line with earlier data, expression of BTLA mRNA and miR-155-5p is elevated in CLL (p = 0.034 and p = 0.0006, respectively) as well as in MEC-1 cell line (p = 0.009 and 0.016, respectively). Inhibition of miR-155-5p partially restored BTLA protein expression in CLL patients (p = 0.01) and in MEC-1 cell lines (p = 0.058). Additionally, we aimed to evaluate the significance of BTLA deficiency in CLL cells on proliferation and IL-4 production of B cells. We found that secretion of IL-4 is not dependent on BTLA expression, since fractions of BTLA positive and BTLA negative B cells expressing intracellular IL-4 were similar in CLL patients and controls. We demonstrated that in controls the fraction of proliferating cells is lower in BTLA positive than in BTLA negative B cells (p = 0.059), which was not observed in CLL. However, the frequency of BTLA positive Ki67+ B cells in CLL was higher compared to corresponding cells from controls (p = 0.055) while there were no differences between the examined groups regarding frequency of BTLA negative Ki67+ B cells. Our studies suggest that miR-155-5p is involved in BTLA deficiency, affecting proliferation of CLL B cells, which may be one of the mechanisms responsible for CLL pathogenesis.
Collapse
MESH Headings
- Aged
- Base Sequence
- Cell Line, Tumor
- Cell Proliferation/genetics
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Interleukin-4/biosynthesis
- Ki-67 Antigen/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
Collapse
Affiliation(s)
- Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (A.A.); (A.T.)
- Department and Clinic of Urology and Oncologic Urology, Wroclaw Medical University, Borowska Str. 213, 50-556 Wroclaw, Poland
- Correspondence:
| | - Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (A.A.); (A.T.)
| | - Lidia Ciszak
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (L.C.); (A.S.); (A.K.)
| | - Anna Tomkiewicz
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (A.A.); (A.T.)
| | - Aleksandra Szteblich
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (L.C.); (A.S.); (A.K.)
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, ul. Chodźki 4a, 20-093 Lublin, Poland; (A.B.-J.); (J.R.)
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, ul. Chodźki 4a, 20-093 Lublin, Poland; (A.B.-J.); (J.R.)
| | - Dariusz Wołowiec
- Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Medical University, Wybrzeże Ludwika Pasteura 4, 50-367 Wroclaw, Poland; (D.W.); (T.W.)
| | - Tomasz Wróbel
- Department and Clinic of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Medical University, Wybrzeże Ludwika Pasteura 4, 50-367 Wroclaw, Poland; (D.W.); (T.W.)
| | - Agata Kosmaczewska
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigl 12 Str., 53-114 Wroclaw, Poland; (L.C.); (A.S.); (A.K.)
| |
Collapse
|
39
|
Stevenson FK, Forconi F, Kipps TJ. Exploring the pathways to chronic lymphocytic leukemia. Blood 2021; 138:827-835. [PMID: 34075408 PMCID: PMC8432043 DOI: 10.1182/blood.2020010029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/05/2021] [Indexed: 11/20/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), increasing knowledge of the biology of the tumor cells has led to transformative improvements in our capacity to assess and treat patients. The dependence of tumor cells on surface immunoglobulin receptor signaling, survival pathways, and accessory cells within the microenvironment has led to a successful double-barreled attack with designer drugs. Studies have revealed that CLL should be classified based on the mutational status of the expressed IGHV sequences into 2 diseases, either unmutated (U) or mutated (M) CLL, each with a distinctive cellular origin, biology, epigenetics/genetics, and clinical behavior. The origin of U-CLL lies among the natural antibody repertoire, and dominance of IGHV1-69 reveals a superantigenic driver. In both U-CLL and M-CLL, a calibrated stimulation of tumor cells by self-antigens apparently generates a dynamic reiterative cycle as cells, protected from apoptosis, transit between blood and tissue sites. But there are differences in outcome, with the balance between proliferation and anergy favoring anergy in M-CLL. Responses are modulated by an array of microenvironmental interactions. Availability of T-cell help is a likely determinant of cell fate, the dependency on which varies between U-CLL and M-CLL, reflecting the different cells of origin, and affecting clinical behavior. Despite such advances, cell-escape strategies, Richter transformation, and immunosuppression remain as challenges, which only may be met by continued research into the biology of CLL.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Freda K Stevenson
- School of Cancer Sciences, Cancer Research UK Southampton Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, Cancer Research UK Southampton Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Haematology Department, Cancer Care Directorate, University Hospital Southampton NHS Trust, Southampton, United Kingdom; and
| | - Thomas J Kipps
- Center for Novel Therapeutics, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| |
Collapse
|
40
|
Rituximab induces rapid blood repopulation by CLL cells mediated through their release from immune niches and complement exhaustion. Leuk Res 2021; 111:106684. [PMID: 34438120 DOI: 10.1016/j.leukres.2021.106684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
The in vivo rituximab effects in B cell malignancies are only partially understood. Here we analyzed in a large chronic lymphocytic leukemia (CLL) cohort (n = 80) the inter-patient variability in CLL cell count reduction within the first 24 h of rituximab administration in vivo, and a phenomenon of blood repopulation by malignant cells after anti-CD20 antibody therapy. Larger CLL cell elimination after rituximab infusion was associated with lower pre-therapy CLL cell counts, higher CD20 levels, and the non-exhausted capacity of complement-dependent cytotoxicity (CDC). The absolute amount of cell-surface CD20 molecules (CD20 density x CLL lymphocytosis) was a predictor for complement exhaustion during therapy. We also describe that a highly variable decrease in CLL cell counts at 5 h (88 %-2%) following rituximab infusion is accompanied in most patients by peripheral blood repopulation with CLL cells at 24 h, and in ∼20 % of patients, this resulted in CLL counts higher than before therapy. We provide evidence that CLL cells recrudescence is linked with i) CDC exhaustion, which leads to the formation of an insufficient amount of membrane attack complexes, likely resulting in temporary retention of surviving rituximab-opsonized cells by the mononuclear-phagocyte system (followed by their release back to blood), and ii) CLL cells regression from immune niches (CXCR4dimCD5bright intraclonal subpopulation). Patients with major peripheral blood CLL cell repopulation exhibited a longer time-to-progression after chemoimmunotherapy compared to patients with lower or no repopulation, suggesting chemotherapy vulnerability of CLL cells that repopulate the blood.
Collapse
|
41
|
Mining the Microenvironment for Therapeutic Targets in Chronic Lymphocytic Leukemia. ACTA ACUST UNITED AC 2021; 27:306-313. [PMID: 34398557 DOI: 10.1097/ppo.0000000000000536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT The leukemia cells of patients with chronic lymphocytic leukemia (CLL) are highly fastidious, requiring stimulation by soluble factors and interactions with accessory cells within the supportive niches of lymphoid tissue that comprise the leukemia microenvironment. The advent of therapies that can disrupt some of the stimulatory signaling afforded by the microenvironment has ushered in a new era of targeted therapy, which has dramatically improved clinical outcome and patient survival. Future advances are required for patients who develop intolerance or resistance to current targeted therapies. These may be found by investigating novel drugs that can inhibit identified targets, such as the pathways involved in B-cell receptor signaling, or by developing agents that inhibit additional targets of the leukemia microenvironment. This review describes some of the molecules involved in promoting the growth and/or survival of CLL cells and discusses targeting strategies that may become tomorrow's therapy for patients with CLL.
Collapse
|
42
|
Kabzinski J, Maczynska M, Majsterek I. MicroRNA as a Novel Biomarker in the Diagnosis of Head and Neck Cancer. Biomolecules 2021; 11:844. [PMID: 34198889 PMCID: PMC8228566 DOI: 10.3390/biom11060844] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide, with 890,000 new cases and 450,000 deaths in 2018, and although the survival statistics for some patient groups are improving, there is still an urgent need to find a fast and reliable biomarker that allows early diagnosis. This niche can be filled by microRNA, small single-stranded non-coding RNA molecules, which are expressed in response to specific events in the body. This article presents the potential use of microRNAs in the diagnosis of HNSCC, compares the advances in this field to other diseases, especially other cancers, and discusses the detailed use of miRNA as a biomarker in profiling and predicting the treatment outcome with radiotherapy and immunotherapy. Potential problems and difficulties related to the development of this promising technology, and areas on which future research should be focused in order to overcome these difficulties, were also indicated.
Collapse
Affiliation(s)
| | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, al. Kościuszki 4, 90-419 Łódź, Poland; (J.K.); (M.M.)
| |
Collapse
|
43
|
He J, Xi Y, Gao N, Xu E, Chang J, Liu J. Identification of miRNA-34a and miRNA-155 as prognostic markers for mantle cell lymphoma. J Int Med Res 2021; 49:3000605211016390. [PMID: 34024195 PMCID: PMC8142528 DOI: 10.1177/03000605211016390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective MicroRNAs (miRNAs) with functional relevance have not been previously identified in mantle cell lymphoma (MCL). Here, we aimed to evaluate the relationships between miR-34a and miR-155-5p and MCL clinicopathology and prognosis. Methods Seventy-five paraffin-embedded tissue samples from patients with MCL who completed at least four cycles of chemotherapy from January 2006 to October 2016, and 27 samples from control patients with reactive lymphoid hyperplasia (RLH), were collected. MiRNA expression levels were measured by qRT-PCR. Results The miR-155-5p levels were significantly higher in patients with MCL than in the controls. The Eastern Cooperative Oncology Group (ECOG) ≥ 2 and Sex-Determining Region Y-Box transcription factor 11 (SOX11) < median value (M) groups presented lower miR-34a expression than the ECOG < 2 and SOX11 ≥ M groups, respectively. MiR-155-5p expression differed between low, intermediate, and high MCL International Prognostic Index risk groups. The AUCs of miR-34a and miR-155-5p were 0.5819 and 0.7784, respectively. The median survival times of the miR-34a ≤ 0.2150 and miR-155-5p > 2.11 groups were shorter than those of the miR-34a > 0.2150 and miR-155-5p ≤ 2.11 groups, respectively. Conclusions Low miR-34a and elevated miR-155-5p levels may be correlated with poor prognosis in MCL.
Collapse
Affiliation(s)
- Jianxia He
- Department of Hematology, Shanxi Provincial People's Hospital Affiliated with Shanxi Medical University, Taiyuan 030012, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Tumor Hospital Affiliated with Shanxi Medical University, Taiyuan 030013, China
| | - Ning Gao
- Department of Pathology, Shanxi Tumor Hospital Affiliated with Shanxi Medical University, Taiyuan 030013, China
| | - Enwei Xu
- Department of Pathology, Shanxi Tumor Hospital Affiliated with Shanxi Medical University, Taiyuan 030013, China
| | - Jin Chang
- Department of Hematology, Shanxi Provincial People's Hospital Affiliated with Shanxi Medical University, Taiyuan 030012, China
| | - Jie Liu
- Department of Hematology, Shanxi Provincial People's Hospital Affiliated with Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
44
|
Liang C, Li Y, Wang LN, Zhang XL, Luo JS, Peng CJ, Tang WY, Huang LB, Tang YL, Luo XQ. Up-regulated miR-155 is associated with poor prognosis in childhood acute lymphoblastic leukemia and promotes cell proliferation targeting ZNF238. ACTA ACUST UNITED AC 2021; 26:16-25. [PMID: 33357126 DOI: 10.1080/16078454.2020.1860187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Acute lymphoblastic leukemia (ALL) is one of the most common malignancies in children. Our aim was to identify a novel miRNA that can predict prognosis of childhood ALL patients and explore its potential mechanism. METHODS The miRNA expression profiles of childhood ALL were analyzed using GEO database and HiSeq instruments. The expression of miR-155 was examined by RT-PCR in 42 ALL patients. To investigate the role of miR-155 in ALL, four ALL cell lines (CEM-C1, Jurkat, MOLT-3 and MOLT-4) were transfected with miR-155 mimics, miR-155 inhibitors or corresponding controls. Dual-luciferase reporter system was applied to confirm the miR-155 target ZNF238. Moreover, proliferation and apoptosis were evaluated by MTT and flow cytometry. RESULTS Dataset GSE56489 and GSE23024 demonstrated that miR-155 was up-regulated and ZNF238 was down-regulated at diagnosis status of ALL. High miR-155 expression was associated with poor outcome. Overexpressed miR-155 promoted ALL cell proliferation and inhibited apoptosis. Dual-luciferase reporter result showed that miR-155 directly regulated ZNF238. Silencing ZNF238 promoted cell proliferation in ALL cells. DISCUSSION Our research indicating that miR-155 might possess potential value as a biomarker for predicting the prognosis of individuals. However, the role of ZNF238 in childhood ALL remain unknown. In the present study, we found the possible role of ZNF238 as a new tumor suppressor in ALL, which might be necessary for the antiproliferative functions of normal cells to counteract ALL formation. CONCLUSION Our results propose that miR-155 is in association with poor prognosis of childhood ALL. Furthermore, miR-155 could promote cell proliferation targeting ZNF238.
Collapse
Affiliation(s)
- Cong Liang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu Li
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Na Wang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiao-Li Zhang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jie-Si Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chun-Jin Peng
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wen-Yan Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Bin Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan-Lai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xue-Qun Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
45
|
Iyer DN, Faruq O, Zhang L, Rastgoo N, Liu A, Chang H. Pathophysiological roles of myristoylated alanine-rich C-kinase substrate (MARCKS) in hematological malignancies. Biomark Res 2021; 9:34. [PMID: 33958003 PMCID: PMC8101130 DOI: 10.1186/s40364-021-00286-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The myristoylated alanine-rich C-kinase substrate (MARCKS) protein has been at the crossroads of multiple signaling pathways that govern several critical operations in normal and malignant cellular physiology. Functioning as a target of protein kinase C, MARCKS shuttles between the phosphorylated cytosolic form and the unphosphorylated plasma membrane-bound states whilst regulating several molecular partners including, but not limited to calmodulin, actin, phosphatidylinositol-4,5-bisphosphate, and phosphoinositide-3-kinase. As a result of these interactions, MARCKS directly or indirectly modulates a host of cellular functions, primarily including cytoskeletal reorganization, membrane trafficking, cell secretion, inflammatory response, cell migration, and mitosis. Recent evidence indicates that dysregulated expression of MARCKS is associated with the development and progression of hematological cancers. While it is understood that MARCKS impacts the overall carcinogenesis as well as plays a part in determining the disease outcome in blood cancers, we are still at an early stage of interpreting the pathophysiological roles of MARCKS in neoplastic disease. The situation is further complicated by contradictory reports regarding the role of phosphorylated versus an unphosphorylated form of MARCKS as an oncogene versus tumor suppressor in blood cancers. In this review, we will investigate the current body of knowledge and evolving concepts of the physical properties, molecular network, functional attributes, and the likely pathogenic roles of MARCKS in hematological malignancies. Key emphasis will also be laid upon understanding the novel mechanisms by which MARCKS determines the overall disease prognosis by playing a vital role in the induction of therapeutic resistance. Additionally, we will highlight the importance of MARCKS as a valuable therapeutic target in blood cancers and will discuss the potential of existing strategies available to tackle MARCKS-driven blood cancers.
Collapse
Affiliation(s)
- Deepak Narayanan Iyer
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Omar Faruq
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Lun Zhang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Nasrin Rastgoo
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China.
| | - Hong Chang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
46
|
Sharma S, Pavlasova GM, Seda V, Cerna KA, Vojackova E, Filip D, Ondrisova L, Sandova V, Kostalova L, Zeni PF, Borsky M, Oppelt J, Liskova K, Kren L, Janikova A, Pospisilova S, Fernandes SM, Shehata M, Rassenti LZ, Jaeger U, Doubek M, Davids MS, Brown JR, Mayer J, Kipps TJ, Mraz M. miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: an axis affected by BCR inhibitors. Blood 2021; 137:2481-2494. [PMID: 33171493 PMCID: PMC7610744 DOI: 10.1182/blood.2020005627] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
B-cell receptor (BCR) signaling and T-cell interactions play a pivotal role in chronic lymphocytic leukemia (CLL) pathogenesis and disease aggressiveness. CLL cells can use microRNAs (miRNAs) and their targets to modulate microenvironmental interactions in the lymph node niches. To identify miRNA expression changes in the CLL microenvironment, we performed complex profiling of short noncoding RNAs in this context by comparing CXCR4/CD5 intraclonal cell subpopulations (CXCR4dimCD5bright vs CXCR4brightCD5dim cells). This identified dozens of differentially expressed miRNAs, including several that have previously been shown to modulate BCR signaling (miR-155, miR-150, and miR-22) but also other candidates for a role in microenvironmental interactions. Notably, all 3 miR-29 family members (miR-29a, miR-29b, miR-29c) were consistently down-modulated in the immune niches, and lower miR-29(a/b/c) levels associated with an increased relative responsiveness of CLL cells to BCR ligation and significantly shorter overall survival of CLL patients. We identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as a novel direct target of miR-29s and revealed that higher TRAF4 levels increase CLL responsiveness to CD40 activation and downstream nuclear factor-κB (NF-κB) signaling. In CLL, BCR represses miR-29 expression via MYC, allowing for concurrent TRAF4 upregulation and stronger CD40-NF-κB signaling. This regulatory loop is disrupted by BCR inhibitors (bruton tyrosine kinase [BTK] inhibitor ibrutinib or phosphatidylinositol 3-kinase [PI3K] inhibitor idelalisib). In summary, we showed for the first time that a miRNA-dependent mechanism acts to activate CD40 signaling/T-cell interactions in a CLL microenvironment and described a novel miR-29-TRAF4-CD40 signaling axis modulated by BCR activity.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Adult
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CD40 Antigens/genetics
- CD40 Antigens/metabolism
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- MicroRNAs/genetics
- Middle Aged
- Piperidines/pharmacology
- Prognosis
- Proto-Oncogene Proteins c-bcr/antagonists & inhibitors
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Survival Rate
- TNF Receptor-Associated Factor 4/genetics
- TNF Receptor-Associated Factor 4/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Sonali Sharma
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gabriela Mladonicka Pavlasova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vaclav Seda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Amruz Cerna
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eva Vojackova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniel Filip
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Laura Ondrisova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Sandova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Kostalova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pedro F Zeni
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Borsky
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kvetoslava Liskova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Leos Kren
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Medhat Shehata
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; and
| | - Laura Z Rassenti
- Moores Cancer Center, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ulrich Jaeger
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; and
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Thomas J Kipps
- Moores Cancer Center, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
47
|
Zeni PF, Mraz M. LncRNAs in adaptive immunity: role in physiological and pathological conditions. RNA Biol 2021; 18:619-632. [PMID: 33094664 PMCID: PMC8078528 DOI: 10.1080/15476286.2020.1838783] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
The adaptive immune system is responsible for generating immunological response and immunological memory. Regulation of adaptive immunity including B cell and T cell biology was mainly understood from the protein and microRNA perspective. However, long non-coding RNAs (lncRNAs) are an emerging class of non-coding RNAs (ncRNAs) that influence key factors in lymphocyte biology such as NOTCH, PAX5, MYC and EZH2. LncRNAs were described to modulate lymphocyte activation by regulating pathways such as NFAT, NFκB, MYC, interferon and TCR/BCR signalling (NRON, NKILA, BCALM, GAS5, PVT1), and cell effector functions (IFNG-AS1, TH2-LCR). Here we review lncRNA involvement in adaptive immunity and the implications for autoimmune diseases (multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis) and T/B cell leukaemias and lymphomas (CLL, MCL, DLBCL, T-ALL). It is becoming clear that lncRNAs are important in adaptive immune response and provide new insights into its orchestration.
Collapse
Affiliation(s)
- Pedro Faria Zeni
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
48
|
Mahdloo T, Sahami P, Ramezani R, Jafarinia M, Goudarzi H, Babashah S. Up-regulation of miR-155 potentiates CD34+ CML stem/progenitor cells to escape from the growth-inhibitory effects of TGF-ß1 and BMP signaling. EXCLI JOURNAL 2021; 20:748-763. [PMID: 33907541 PMCID: PMC8073837 DOI: 10.17179/excli2021-3404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs or miRs) play key roles in different stages of chronic myeloid leukemia (CML) pathogenesis. The present study aimed to demonstrate whether miR-155 enables CD34+ CML cells to escape from the growth-inhibitory effects of TGF-β1 and bone morphogenetic protein (BMP) signaling. Among differentially expressed miRNAs in CD34+ CML cells, miR-155 was highly up-regulated. QRT-PCR revealed an inverse correlation between miR-155 and two key members of the TGF-β pathway-TGF-βR2 and SMAD5. Results showed that SMAD5 is not only up-regulated through BMPs treatment, but recombinant TGF-β1 can also induce SMAD5 in CML cells. We also demonstrated that TGF-β1-mediated phosphorylation of SMAD1/5 was abolished by pre-treatment with the blocking TGF-βR2 antibody, suggesting a possible involvement of TGF-βR2. Additionally, overexpression of miR-155 significantly promoted the proliferation rate of CD34+ CML cells. Results showed that siRNA-mediated knockdown of SMAD5 had a promoting effect on CD34+ CML cell proliferation, suggesting that SMAD5 knock-down recapitulates the proliferative effects of miR-155. Importantly, TGF-β1 and BMP2/4 treatment had inhibitory effects on cell proliferation; however, miR-155 overexpression enabled CD34+ CML cells to evade the anti-proliferative effects of TGF-β1 and BMPs. Consistently, down-regulation of miR-155 augmented the promoting effects of TGF-β1 and BMP signaling on inducing apoptosis in CD34+ CML stem cells. Our findings demonstrated that targeting of SMAD5 and TGF-βR2 links miR-155 to TGF-β signaling in CML. Overexpression of miR-155 enables CD34+ CML cells to evade growth-inhibitory effects of the TGF-β1 and BMP signaling, providing new perspectives for miR-155 as a therapeutic target for CML.
Collapse
Affiliation(s)
- Touba Mahdloo
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Marvdasht, Iran
| | - Pantea Sahami
- Department of Biomedical Sciences, Women Research Center, University of Alzahra, Tehran, Iran
| | - Reihaneh Ramezani
- Department of Biomedical Sciences, Women Research Center, University of Alzahra, Tehran, Iran
| | - Mojtaba Jafarinia
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Marvdasht, Iran
| | - Hamedreza Goudarzi
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Marvdasht, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
49
|
Extracellular vesicles and their associated miRNAs as potential prognostic biomarkers in chronic lymphocytic leukemia. Curr Oncol Rep 2021; 23:66. [PMID: 33855607 DOI: 10.1007/s11912-021-01058-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Many prognostic and predictive biomarkers have been proposed for chronic lymphocytic leukaemia (CLL). Here, we aim to discuss the evidence showing a prognostic potential for extracellular vesicles (EV) and their associated microRNAs (miRNAs). RECENT FINDINGS EV are produced by several cells in the body as a physiological event; however, there is evidence suggesting that an elevated EV concentration is present in the circulation of CLL patients. Moreover, some studies have associated EV concentration with advanced Rai stage and unmutated CLL while others have demonstrated its potential as an independent prognostic factor for TTFT and OS. Finally, some studies have shown that CLL EV shared some dysregulated microRNAs with CLL cells and plasma. On the other hand, it was found that CLL EV has a distinctive microRNA expression profile. Until now, EV-associated miR-155 is the most studied miRNA. Despite methodological diversity and limitations in study design, unanimity in CLL EV concentration behaviour and miRNA content has been found.
Collapse
|
50
|
Ochoa-Martínez ÁC, Varela-Silva JA, Orta-García ST, Carrizales-Yáñez L, Pérez-Maldonado IN. Lead (Pb) exposure is associated with changes in the expression levels of circulating miRNAS (miR-155, miR-126) in Mexican women. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103598. [PMID: 33516900 DOI: 10.1016/j.etap.2021.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The environmental contamination with lead (Pb) is considered a critical issue worldwide. Therefore, this study aimed to evaluate the expression levels of circulating miRNAs (miR-155, miR-126, and miR-145) in Mexican women exposed to Pb. Blood lead levels (BLL) were assessed in enrolled women (n = 190) using an atomic absorption method. Also, serum miRNAs expression levels were quantified through a real-time PCR assay. A mean BLL of 10.5 ± 4.50 μg/dL was detected. Overexpression of miR-155 was detected in highly exposed women. Besides, a significant simple positive relationship (p < 0.05) was found between BLL and serum miR-155 expression levels. Additionally, a significant inverse correlation (p < 0.05) was determined between BLL and serum miR-126 expression levels, as downregulation of miR-126 expression levels was observed in highly exposed women. The findings in this study are the concern, as epigenetic changes detected may represent a connection between health illnesses and Pb exposure.
Collapse
Affiliation(s)
- Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - José A Varela-Silva
- Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Sandra Teresa Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Leticia Carrizales-Yáñez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|