1
|
Cline H, Wei Z, Groeneveld DJ, Hix JML, Xu X, Flick MJ, Palumbo JS, Poole LG, Dockendorff C, Griffin JH, Luyendyk JP. Hepatocyte-independent PAR1-biased signaling controls liver pathology in experimental obesity. J Thromb Haemost 2024; 22:3191-3198. [PMID: 39122189 PMCID: PMC11513232 DOI: 10.1016/j.jtha.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Protease-activated receptor-1 (PAR1) has emerged as an important link between coagulation and the complications of obesity including metabolic dysfunction-associated steatotic liver disease (MASLD). PAR1 is expressed by various cells and cleaved by different proteases to generate unique tethered agonists that activate distinct signaling pathways. Mice expressing PAR1 with an R41Q mutation have disabled canonical thrombin-mediated signaling, whereas R46Q mice express PAR1 resistant to noncanonical signaling by activated protein C. METHODS Mice with whole body and hepatocyte-selective PAR1 deficiency as well as PAR1 R41Q and R46Q mice were fed a high-fat diet (HFD) to induce MASLD. RESULTS HFD-fed R41Q mice displayed reduced hepatic steatosis and liver/body weight ratio. In contrast, HFD-fed R46Q mice displayed increased relative liver weight and hepatic steatosis alongside increased serum alanine aminotransferase activity. Surprisingly, despite the distinct impact of PAR1 mutations on steatosis, selective deletion of PAR1 in hepatocytes had no impact. To evaluate a viable PAR1-targeted approach, mice with HFD-induced obesity were treated with the allosteric PAR1 modulator NRD-21, which inhibits canonical PAR1 inflammatory signaling but promotes PAR1 protective, noncanonical anti-inflammatory signaling. NRD-21 treatment reduced plasma tumor necrosis factor-alpha, serum alanine aminotransferase activity, hepatic steatosis, and insulin resistance (Homeostatic Model Assessment for Insulin Resistance) but increased plasma active glucagon-like peptide-1. CONCLUSION The results suggest that nonhepatocellular canonical PAR1 cleavage drives MASLD in obese mice and provide translational proof-of-concept that selective pharmacologic modulation of PAR1 yields multiple metabolic benefits in experimental obesity.
Collapse
Affiliation(s)
- Holly Cline
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Zimu Wei
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Dafna J Groeneveld
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Jeremy M L Hix
- Department of Radiology and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Xiao Xu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph S Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lauren G Poole
- Department of Pharmacology, Rutgers University, Piscataway, New Jersey, USA
| | | | - John H Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
2
|
Guo J, Zhou YL, Yang Y, Guo S, You E, Xie X, Jiang Y, Mao C, Xu HE, Zhang Y. Structural basis of tethered agonism and G protein coupling of protease-activated receptors. Cell Res 2024; 34:725-734. [PMID: 38997424 PMCID: PMC11443083 DOI: 10.1038/s41422-024-00997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Protease-activated receptors (PARs) are a unique group within the G protein-coupled receptor superfamily, orchestrating cellular responses to extracellular proteases via enzymatic cleavage, which triggers intracellular signaling pathways. Protease-activated receptor 1 (PAR1) is a key member of this family and is recognized as a critical pharmacological target for managing thrombotic disorders. In this study, we present cryo-electron microscopy structures of PAR1 in its activated state, induced by its natural tethered agonist (TA), in complex with two distinct downstream proteins, the Gq and Gi heterotrimers, respectively. The TA peptide is positioned within a surface pocket, prompting PAR1 activation through notable conformational shifts. Contrary to the typical receptor activation that involves the outward movement of transmembrane helix 6 (TM6), PAR1 activation is characterized by the simultaneous downward shift of TM6 and TM7, coupled with the rotation of a group of aromatic residues. This results in the displacement of an intracellular anion, creating space for downstream G protein binding. Our findings delineate the TA recognition pattern and highlight a distinct role of the second extracellular loop in forming β-sheets with TA within the PAR family, a feature not observed in other TA-activated receptors. Moreover, the nuanced differences in the interactions between intracellular loops 2/3 and the Gα subunit of different G proteins are crucial for determining the specificity of G protein coupling. These insights contribute to our understanding of the ligand binding and activation mechanisms of PARs, illuminating the basis for PAR1's versatility in G protein coupling.
Collapse
Affiliation(s)
- Jia Guo
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yun-Li Zhou
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yixin Yang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shimeng Guo
- CAS Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Erli You
- CAS Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Chunyou Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang, China.
| | - H Eric Xu
- CAS Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yan Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
4
|
Park SH, Heo Y, Kwon I, Jo S, Jeon H, Lee Y, Kim J, Heo JH, Namkung W. Gestodene, a novel positive allosteric modulator of PAR1, enhances PAR1-mediated human platelet aggregation. Front Pharmacol 2024; 15:1430548. [PMID: 39130626 PMCID: PMC11310598 DOI: 10.3389/fphar.2024.1430548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Background: Protease-activated receptor 1 (PAR1) is expressed in human platelets and can be activated by low concentrations of thrombin. Vorapaxar, a selective antagonist of PAR1, inhibits thrombin-induced calcium mobilization in human platelet, which is associated with an increased risk of bleeding. Conversely, the administration of a positive allosteric modulator (PAM) of PAR1 may pose a substantial risk of thrombosis due to inducing excessive platelet activation. In this study, we discovered a novel PAM of PAR1 and investigated the effect of enhanced PAR1 activation by PAM of PAR1 on platelet activation. Methods: To find PAMs of PAR1, a cell-based screen was performed in HT29 cells, and finally, gestodene, an oral contraceptive drug (OC), was identified as a novel PAM of PAR1. The mechanism of action of gestodene and its effects on platelet activation were investigated in human megakaryocytic leukemia cell line MEG-01 cells and human platelet. Results: Gestodene enhanced both thrombin- and PAR1-activating peptide (AP)-induced intracellular calcium levels in a dose-dependent manner without altering PAR2 and PAR4 activity. Gestodene significantly increased PAR1-AP-induced internalization of PAR1 and phosphorylation of ERK1/2, and the enhancing effects were significantly blocked by vorapaxar. Furthermore, gestodene potently increased PAR1-AP induced morphological changes in MEG-01 cells. Remarkably, in human blood, gestodene exerted a robust augmentation of PAR1-AP-induced platelet aggregation, and vorapaxar effectively attenuated the gestodene-induced enhancement of platelet aggregation mediated by PAR1. Conclusion: Gestodene is a selective PAM of PAR1 and suggest one possible mechanism for the increased risk of venous thromboembolism associated with OCs containing gestodene.
Collapse
Affiliation(s)
- So-Hyeon Park
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yunkyung Heo
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Il Kwon
- Integrative Research Institute for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungwoo Jo
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Hyejin Jeon
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Yechan Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jieun Kim
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wan Namkung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| |
Collapse
|
5
|
O'Donnell JS, Fleming H, Noone D, Preston RJS. Unraveling coagulation factor-mediated cellular signaling. J Thromb Haemost 2023; 21:3342-3353. [PMID: 37391097 DOI: 10.1016/j.jtha.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Blood coagulation is initiated in response to blood vessel injury or proinflammatory stimuli, which activate coagulation factors to coordinate complex biochemical and cellular responses necessary for clot formation. In addition to these critical physiologic functions, plasma protein factors activated during coagulation mediate a spectrum of signaling responses via receptor-binding interactions on different cell types. In this review, we describe examples and mechanisms of coagulation factor signaling. We detail the molecular basis for cell signaling mediated by coagulation factor proteases via the protease-activated receptor family, considering new insights into the role of protease-specific cleavage sites, cofactor and coreceptor interactions, and distinct signaling intermediate interactions in shaping protease-activated receptor signaling diversity. Moreover, we discuss examples of how injury-dependent conformational activation of other coagulation proteins, such as fibrin(ogen) and von Willebrand factor, decrypts their signaling potential, unlocking their capacity to contribute to aberrant proinflammatory signaling. Finally, we consider the role of coagulation factor signaling in disease development and the status of pharmacologic approaches to either attenuate or enhance coagulation factor signaling for therapeutic benefit, emphasizing new approaches to inhibit deleterious coagulation factor signaling without impacting hemostatic activity.
Collapse
Affiliation(s)
- James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland, Crumlin, Dublin, Ireland. https://twitter.com/profJSOdonnell
| | - Harry Fleming
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. https://www.twitter.com/PrestonLab_RCSI
| | - David Noone
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. https://www.twitter.com/PrestonLab_RCSI
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland, Crumlin, Dublin, Ireland.
| |
Collapse
|
6
|
Sim MMS, Shiferawe S, Wood JP. Novel strategies in antithrombotic therapy: targeting thrombosis while preserving hemostasis. Front Cardiovasc Med 2023; 10:1272971. [PMID: 37937289 PMCID: PMC10626538 DOI: 10.3389/fcvm.2023.1272971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Antithrombotic therapy is a delicate balance between the benefits of preventing a thrombotic event and the risks of inducing a major bleed. Traditional approaches have included antiplatelet and anticoagulant medications, require careful dosing and monitoring, and all carry some risk of bleeding. In recent years, several new targets have been identified, both in the platelet and coagulation systems, which may mitigate this bleeding risk. In this review, we briefly describe the current state of antithrombotic therapy, and then present a detailed discussion of the new generation of drugs that are being developed to target more safely existing or newly identified pathways, alongside the strategies to reverse direct oral anticoagulants, showcasing the breadth of approaches. Combined, these exciting advances in antithrombotic therapy bring us closer than we have ever been to the "holy grail" of the field, a treatment that separates the hemostatic and thrombotic systems, preventing clots without any concurrent bleeding risk.
Collapse
Affiliation(s)
- Martha M. S. Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Semekidus Shiferawe
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Division of Cardiovascular Medicine Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Ramadas N, Sparkenbaugh EM. The APC-EPCR-PAR1 axis in sickle cell disease. Front Med (Lausanne) 2023; 10:1141020. [PMID: 37497271 PMCID: PMC10366386 DOI: 10.3389/fmed.2023.1141020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Sickle Cell Disease (SCD) is a group of inherited hemoglobinopathies. Sickle cell anemia (SCA) is caused by a homozygous mutation in the β-globin generating sickle hemoglobin (HbS). Deoxygenation leads to pathologic polymerization of HbS and sickling of erythrocytes. The two predominant pathologies of SCD are hemolytic anemia and vaso-occlusive episodes (VOE), along with sequelae of complications including acute chest syndrome, hepatopathy, nephropathy, pulmonary hypertension, venous thromboembolism, and stroke. SCD is associated with endothelial activation due to the release of danger-associated molecular patterns (DAMPs) such as heme, recurrent ischemia-reperfusion injury, and chronic thrombin generation and inflammation. Endothelial cell activation is mediated, in part, by thrombin-dependent activation of protease-activated receptor 1 (PAR1), a G protein coupled receptor that plays a role in platelet activation, endothelial permeability, inflammation, and cytotoxicity. PAR1 can also be activated by activated protein C (APC), which promotes endothelial barrier protection and cytoprotective signaling. Notably, the APC system is dysregulated in SCD. This mini-review will discuss activation of PAR1 by APC and thrombin, the APC-EPCR-PAR1 axis, and their potential roles in SCD.
Collapse
Affiliation(s)
- Nirupama Ramadas
- Department of Medicine, Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erica M. Sparkenbaugh
- Department of Medicine, Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Böttner J, Werner S, Feistner L, Fischer-Schaepmann T, Neussl K, Borger MA, Thiele H, Büttner P, Schlotter F. High resolution monitoring of valvular interstitial cell driven pathomechanisms in procalcific environment using label-free impedance spectroscopy. Front Cardiovasc Med 2023; 10:1155371. [PMID: 37408660 PMCID: PMC10319251 DOI: 10.3389/fcvm.2023.1155371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Fibro-calcific aortic valve disease has high prevalence and is associated with significant mortality. Fibrotic extracellular matrix (ECM) remodeling and calcific mineral deposition change the valvular microarchitecture and deteriorate valvular function. Valvular interstitial cells (VICs) in profibrotic or procalcifying environment are frequently used in vitro models. However, remodeling processes take several days to weeks to develop, even in vitro. Continuous monitoring by real-time impedance spectroscopy (EIS) may reveal new insights into this process. Methods VIC-driven ECM remodeling stimulated by procalcifying (PM) or profibrotic medium (FM) was monitored by label-free EIS. Collagen secretion, matrix mineralization, viability, mitochondrial damage, myofibroblastic gene expression and cytoskeletal alterations were analyzed. Results and Discussion EIS profiles of VICs in control medium (CM) and FM were comparable. PM reproducibly induced a specific, biphasic EIS profile. Phase 1 showed an initial impedance drop, which moderately correlated with decreasing collagen secretion (r = 0.67, p = 0.22), accompanied by mitochondrial membrane hyperpolarization and cell death. Phase 2 EIS signal increase was positively correlated with augmented ECM mineralization (r = 0.97, p = 0.008). VICs in PM decreased myofibroblastic gene expression (p < 0.001) and stress fiber assembly compared to CM. EIS revealed sex-specific differences. Male VICs showed higher proliferation and in PM EIS decrease in phase 1 was significantly pronounced compared to female VICs (male minimum: 7.4 ± 4.2%, female minimum: 26.5 ± 4.4%, p < 0.01). VICs in PM reproduced disease characteristics in vitro remarkably fast with significant impact of donor sex. PM suppressed myofibroblastogenesis and favored ECM mineralization. In summary, EIS represents an efficient, easy-to-use, high-content screening tool enabling patient-specific, subgroup- and temporal resolution.
Collapse
Affiliation(s)
- Julia Böttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Sarah Werner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Lukas Feistner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | | | - Katherina Neussl
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Michael A. Borger
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Petra Büttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Florian Schlotter
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Künze G, Isermann B. Targeting biased signaling by PAR1: function and molecular mechanism of parmodulins. Blood 2023; 141:2675-2684. [PMID: 36952648 PMCID: PMC10646804 DOI: 10.1182/blood.2023019775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
The G protein-coupled receptor (GPCR) protease-activated receptor 1 (PAR1) is a therapeutic target that was originally pursued with the aim of restricting platelet activation and the burden of cardiovascular diseases. In clinical studies, the use of orthosteric PAR1 inhibitors was associated with an increased risk of hemorrhage, including intracranial hemorrhage. Because (1) PAR1 is expressed by various cell types, including endothelial cells, (2) conveys in mice a physiological indispensable function for vascular development during embryogenesis, and (3) is subject to biased signaling dependent on the activating proteases, orthosteric PAR1 inhibition may be associated with unwanted side effects. Alternatively, the protease-activated protein C (aPC) and its variants can promote valuable anti-inflammatory signaling via PAR1. Most recently, small molecule allosteric modulators of PAR1 signaling, called parmodulins, have been developed. Parmodulins inhibit coagulation and platelet activation yet maintain cytoprotective effects typically provoked by PAR1 signaling upon the activation by aPC. In this study, we review the discovery of parmodulins and their preclinical data, summarize the current knowledge about their mode of action, and compare the structural interaction of parmodulin and PAR1 with that of other intracellularly binding allosteric GPCR modulators. Thus, we highlight the pharmaceutical potential and challenges associated with the future development of parmodulins.
Collapse
Affiliation(s)
- Georg Künze
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| |
Collapse
|
10
|
Shpakov AO. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 2023; 24:6187. [PMID: 37047169 PMCID: PMC10094638 DOI: 10.3390/ijms24076187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allosteric regulation is critical for the functioning of G protein-coupled receptors (GPCRs) and their signaling pathways. Endogenous allosteric regulators of GPCRs are simple ions, various biomolecules, and protein components of GPCR signaling (G proteins and β-arrestins). The stability and functional activity of GPCR complexes is also due to multicenter allosteric interactions between protomers. The complexity of allosteric effects caused by numerous regulators differing in structure, availability, and mechanisms of action predetermines the multiplicity and different topology of allosteric sites in GPCRs. These sites can be localized in extracellular loops; inside the transmembrane tunnel and in its upper and lower vestibules; in cytoplasmic loops; and on the outer, membrane-contacting surface of the transmembrane domain. They are involved in the regulation of basal and orthosteric agonist-stimulated receptor activity, biased agonism, GPCR-complex formation, and endocytosis. They are targets for a large number of synthetic allosteric regulators and modulators, including those constructed using molecular docking. The review is devoted to the principles and mechanisms of GPCRs allosteric regulation, the multiplicity of allosteric sites and their topology, and the endogenous and synthetic allosteric regulators, including autoantibodies and pepducins. The allosteric regulation of chemokine receptors, proteinase-activated receptors, thyroid-stimulating and luteinizing hormone receptors, and beta-adrenergic receptors are described in more detail.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
11
|
Rolling CC, Sowa MA, Wang TT, Cornwell M, Myndzar K, Schwartz T, El Bannoudi H, Buyon J, Barrett TJ, Berger JS. P2Y12 Inhibition Suppresses Proinflammatory Platelet-Monocyte Interactions. Thromb Haemost 2023; 123:231-244. [PMID: 36630990 PMCID: PMC11007758 DOI: 10.1055/s-0042-1758655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Monocyte-platelet aggregates (MPAs) represent the crossroads between thrombosis and inflammation, and targeting this axis may suppress thromboinflammation. While antiplatelet therapy (APT) reduces platelet-platelet aggregation and thrombosis, its effects on MPA and platelet effector properties on monocytes are uncertain. OBJECTIVES To analyze the effect of platelets on monocyte activation and APT on MPA and platelet-induced monocyte activation. METHODS Agonist-stimulated whole blood was incubated in the presence of P-selectin, PSGL1, PAR1, P2Y12, GP IIb/IIIa, and COX-1 inhibitors and assessed for platelet and monocyte activity via flow cytometry. RNA-Seq of monocytes incubated with platelets was used to identify platelet-induced monocyte transcripts and was validated by RT-qPCR in monocyte-PR co-incubation ± APT. RESULTS Consistent with a proinflammatory platelet effector role, MPAs were increased in patients with COVID-19. RNA-Seq revealed a thromboinflammatory monocyte transcriptome upon incubation with platelets. Monocytes aggregated to platelets expressed higher CD40 and tissue factor than monocytes without platelets (p < 0.05 for each). Inhibition with P-selectin (85% reduction) and PSGL1 (87% reduction) led to a robust decrease in MPA. P2Y12 and PAR1 inhibition lowered MPA formation (30 and 21% reduction, p < 0.05, respectively) and decreased monocyte CD40 and TF expression, while GP IIb/IIIa and COX1 inhibition had no effect. Pretreatment of platelets with P2Y12 inhibitors reduced the expression of platelet-mediated monocyte transcription of proinflammatory SOCS3 and OSM. CONCLUSIONS: Platelets skew monocytes toward a proinflammatory phenotype. Among traditional APTs, P2Y12 inhibition attenuates platelet-induced monocyte activation.
Collapse
Affiliation(s)
- Christina C. Rolling
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
- University Medical Center Hamburg-Eppendorf, Department of Oncology and Hematology, Hamburg, Germany
| | - Marcin A. Sowa
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Tricia T. Wang
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - MacIntosh Cornwell
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Khrystyna Myndzar
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Tamar Schwartz
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Hanane El Bannoudi
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Jill Buyon
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
12
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
13
|
Novel approaches to antiplatelet therapy. Biochem Pharmacol 2022; 206:115297. [DOI: 10.1016/j.bcp.2022.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022]
|
14
|
De Simone I, Baaten CCFMJ, Jandrot-Perrus M, Gibbins JM, ten Cate H, Heemskerk JWM, Jones CI, van der Meijden PEJ. Coagulation Factor XIIIa and Activated Protein C Activate Platelets via GPVI and PAR1. Int J Mol Sci 2022; 23:ijms231810203. [PMID: 36142125 PMCID: PMC9499330 DOI: 10.3390/ijms231810203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Platelet and coagulation activation are highly reciprocal processes driven by multi-molecular interactions. Activated platelets secrete several coagulation factors and expose phosphatidylserine, which supports the activation of coagulation factor proteins. On the other hand, the coagulation cascade generates known ligands for platelet receptors, such as thrombin and fibrin. Coagulation factor (F)Xa, (F)XIIIa and activated protein C (APC) can also bind to platelets, but the functional consequences are unclear. Here, we investigated the effects of the activated (anti)coagulation factors on platelets, other than thrombin. Multicolor flow cytometry and aggregation experiments revealed that the ‘supernatant of (hirudin-treated) coagulated plasma’ (SCP) enhanced CRP-XL-induced platelet responses, i.e., integrin αIIbβ3 activation, P-selectin exposure and aggregate formation. We demonstrated that FXIIIa in combination with APC enhanced platelet activation in solution, and separately immobilized FXIIIa and APC resulted in platelet spreading. Platelet activation by FXIIIa was inhibited by molecular blockade of glycoprotein VI (GPVI) or Syk kinase. In contrast, platelet spreading on immobilized APC was inhibited by PAR1 blockade. Immobilized, but not soluble, FXIIIa and APC also enhanced in vitro adhesion and aggregation under flow. In conclusion, in coagulation, factors other than thrombin or fibrin can induce platelet activation via GPVI and PAR receptors.
Collapse
Affiliation(s)
- Ilaria De Simone
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- School of Biological Sciences, Institute for Metabolic and Cardiovascular Research, University of Reading, Reading RG6 6AS, UK
| | - Constance C. F. M. J. Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Martine Jandrot-Perrus
- UMR_S1148, Laboratory for Vascular Translational Science, INSERM, University Paris Cité, F-75018 Paris, France
| | - Jonathan M. Gibbins
- School of Biological Sciences, Institute for Metabolic and Cardiovascular Research, University of Reading, Reading RG6 6AS, UK
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Synapse Research Institute, 6217 KD Maastricht, The Netherlands
| | - Chris I. Jones
- School of Biological Sciences, Institute for Metabolic and Cardiovascular Research, University of Reading, Reading RG6 6AS, UK
- Correspondence: (C.I.J.); (P.E.J.v.d.M.); Tel.: +44-(0)-118-378-7047 (C.I.J.); +31-43-388-1684 (P.E.J.v.d.M.)
| | - Paola E. J. van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Correspondence: (C.I.J.); (P.E.J.v.d.M.); Tel.: +44-(0)-118-378-7047 (C.I.J.); +31-43-388-1684 (P.E.J.v.d.M.)
| |
Collapse
|
15
|
Renna SA, Michael JV, Kong X, Ma L, Ma P, Nieman MT, Edelstein LC, McKenzie SE. Human and mouse PAR4 are functionally distinct receptors: Studies in novel humanized mice. J Thromb Haemost 2022; 20:1236-1247. [PMID: 35152546 DOI: 10.1111/jth.15669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 08/31/2023]
Abstract
BACKGROUND Human and mouse platelets both express protease-activated receptor (PAR) 4 but sequence alignment reveals differences in several functional domains. These differences may result in functional disparities between the receptors which make it difficult to translate PAR4 studies using mice to human platelet physiology. OBJECTIVES To generate transgenic mice that express human, but not mouse, PAR4 and directly compare human and mouse PAR4 function in the same platelet environment. METHODS Transgenic mice were made using a genomic clone of the F2RL3 gene (encoding PAR4) and backcrossed with Par4 KO mice. For certain experiments, mice were bred with GRK6 KO mice. Tail bleeding time and platelet function in response to PAR4-activating peptide were assessed. RESULTS Human F2RL3 was successfully integrated into the mouse genome, transgenic mice were crossed to the mPar4 KO background (PAR4 tg/KO), and PAR4 was functionally expressed on platelets. Compared to WT, PAR4 tg/KO mice exhibited shortened tail bleeding time and their platelets were more responsive to PAR4-AP as assessed by α-granule release and integrin activation. The opposite was observed with thrombin. Knocking out GRK6 had no effect on human PAR4-expressing platelets, unlike mouse Par4-expressing platelets. PAR4 tg/KO platelets exhibited greater Ca2+ area under the curve and more robust extracellular vesicle release than WT stimulated with PAR4-AP. CONCLUSION These data suggest that (1) human PAR4- and mouse Par4-mediated signaling are different and (2) the feedback regulation mechanisms of human and mouse PAR4 are different. These functional differences are important to consider when interpreting PAR4 studies done with mice.
Collapse
Affiliation(s)
- Stephanie A Renna
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James V Michael
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xianguo Kong
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lin Ma
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peisong Ma
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marvin T Nieman
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leonard C Edelstein
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven E McKenzie
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Francis LRA, Millington-Burgess SL, Rahman T, Harper MT. Q94 is not a selective modulator of proteinase-activated receptor 1 (PAR1) in platelets. Platelets 2022; 33:1090-1095. [PMID: 35417662 DOI: 10.1080/09537104.2022.2026911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Thrombin is a potent platelet activator, acting through proteinase-activated receptors -1 and -4 (PAR1 and PAR4). Of these, PAR-1 is activated more rapidly and by lower thrombin concentrations. Consequently, PAR-1 has been extensively investigated as a target for anti-platelet drugs to prevent myocardial infarction. Q94 has been reported to act as an allosteric modulator of PAR1, potently and selectively inhibiting PAR1-Gαq coupling in multiple cell lines, but its effects on human platelet activation have not been previously studied. Platelet Ca2+ signaling, integrin αIIbβ3 activation and α-granule secretion were monitored following stimulation by a PAR1-activating peptide (PAR1-AP). Although Q94 inhibited these responses, its potency was low compared to other PAR1 antagonists. In addition, αIIbβ3 activation and α-granule secretion in response to other platelet activators were also inhibited with similar potency. Finally, in endothelial cells, Q94 did not inhibit PAR1-dependent Ca2+ signaling. Our data suggest that Q94 may have PAR1-independent off-target effects in platelets, precluding its use as a selective PAR1 allosteric modulator.
Collapse
Affiliation(s)
- Luc R A Francis
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Popescu NI, Lupu C, Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood 2022; 139:1973-1986. [PMID: 34428280 PMCID: PMC8972096 DOI: 10.1182/blood.2020007208] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is a syndrome triggered by infectious and noninfectious pathologies characterized by excessive generation of thrombin within the vasculature and widespread proteolytic conversion of fibrinogen. Despite diverse clinical manifestations ranging from thrombo-occlusive damage to bleeding diathesis, DIC etiology commonly involves excessive activation of blood coagulation and overlapping dysregulation of anticoagulants and fibrinolysis. Initiation of blood coagulation follows intravascular expression of tissue factor or activation of the contact pathway in response to pathogen-associated or host-derived, damage-associated molecular patterns. The process is further amplified through inflammatory and immunothrombotic mechanisms. Consumption of anticoagulants and disruption of endothelial homeostasis lower the regulatory control and disseminate microvascular thrombosis. Clinical DIC development in patients is associated with worsening morbidities and increased mortality, regardless of the underlying pathology; therefore, timely recognition of DIC is critical for reducing the pathologic burden. Due to the diversity of triggers and pathogenic mechanisms leading to DIC, diagnosis is based on algorithms that quantify hemostatic imbalance, thrombocytopenia, and fibrinogen conversion. Because current diagnosis primarily assesses overt consumptive coagulopathies, there is a critical need for better recognition of nonovert DIC and/or pre-DIC states. Therapeutic strategies for patients with DIC involve resolution of the eliciting triggers and supportive care for the hemostatic imbalance. Despite medical care, mortality in patients with DIC remains high, and new strategies, tailored to the underlying pathologic mechanisms, are needed.
Collapse
Affiliation(s)
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
- Department of Cell Biology
- Department of Pathology, and
- Department of Internal Medicine, Oklahoma University Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
18
|
Johnson BZ, Stevenson AW, Barrett LW, Fear MW, Wood FM, Linden MD. Platelets after burn injury - hemostasis and beyond. Platelets 2022; 33:655-665. [PMID: 34986759 DOI: 10.1080/09537104.2021.1981849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Burn injuries are common and often life-threatening trauma. With this trauma comes an interruption of normal hemostasis, with distinct impacts on platelets. Our interest in the relationships between burn injury and platelet function stems from two key perspectives: platelet function is a vital component of acute responses to injury, and furthermore the incidence of cardiovascular disease (CVD) is higher in burn survivors compared to the general population. This review explores the impact of burn injury on coagulation, platelet function, and the participation of platelets in immunopathology. Potential avenues of further research are explored, and consideration is given to what therapies may be appropriate for mediating post-burn thrombopathology.
Collapse
Affiliation(s)
- B Z Johnson
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,School of Biomedical Science, University of Western Australia, Perth, Australia
| | - A W Stevenson
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,School of Biomedical Science, University of Western Australia, Perth, Australia
| | - L W Barrett
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - M W Fear
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,School of Biomedical Science, University of Western Australia, Perth, Australia
| | - F M Wood
- Burn Injury Research Unit, University of Western Australia, Perth, Australia.,Burns Service of Western Australia, Wa Department of Health, Nedlands, Australia
| | - M D Linden
- School of Biomedical Science, University of Western Australia, Perth, Australia
| |
Collapse
|
19
|
Yang Q, Shang J, Chen Y, Tang D, Ouyang Y, Xiong B, Zhang X. Plasmonic Imaging of Dynamic Interactions between Membrane Receptor Clusters beyond the Diffraction Limit in Live Cells. Anal Chem 2021; 93:16571-16580. [PMID: 34847664 DOI: 10.1021/acs.analchem.1c03843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a general mechanism, ligand-induced receptor clustering on cell membrane plays determinative roles in pattern recognition and transmembrane signaling. Nevertheless, probing the dynamic characteristics for the complicated interactions between receptor clusters remains difficult because of the lack of strategy for receptor cluster labeling and long-term monitoring in live cells. Herein, we proposed a data-mining-integrated plasmon coupling microscopy to study the dynamic cluster-cluster interactions on cell surface. The receptor clusters were activated and labeled with multivalent plasmonic nanoprobes, which enables the real-time monitoring of individual receptor clusters and the measurement of cluster-cluster interactions from the analysis of plasmonic coupling for the nanoprobe pairs beyond the diffraction limit. Using this method, we found that the protease-activated receptor 1 (PAR1) clusters would experience an initial contact and then form a weakly bound cluster-cluster complex, followed by cluster fusion to generate large-sized signaling complexes. The underlying state transitions for the cluster-cluster fusion process were uncovered using a data-mining technique named the K-means-based hidden Markov model with the scattering intensity of coupled nanoprobe pairs as observations. All of the findings from single-particle analysis and bulk measurements suggested that the allosteric inhibitors could suppress the dynamic transitions from the weakly bound cluster-cluster complexes to fused signaling complexes, leading to the subsequent downregulation of intracellular calcium signaling pathways. We believe that this strategy is promising for imaging and monitoring receptor clustering as well as protein phase separation on the cell surface in various biological and physiological processes.
Collapse
Affiliation(s)
- Qian Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Jinhui Shang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Yancao Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Decui Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Yuzhi Ouyang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Bin Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| |
Collapse
|
20
|
Jourdi G, Lordkipanidzé M, Philippe A, Bachelot-Loza C, Gaussem P. Current and Novel Antiplatelet Therapies for the Treatment of Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms222313079. [PMID: 34884884 PMCID: PMC8658271 DOI: 10.3390/ijms222313079] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, antiplatelet agents, mainly aspirin and P2Y12 receptor antagonists, have significantly reduced morbidity and mortality associated with arterial thrombosis. Their pharmacological characteristics, including pharmacokinetic/pharmacodynamics profiles, have been extensively studied, and a significant number of clinical trials assessing their efficacy and safety in various clinical settings have established antithrombotic efficacy. Notwithstanding, antiplatelet agents carry an inherent risk of bleeding. Given that bleeding is associated with adverse cardiovascular outcomes and mortality, there is an unmet clinical need to develop novel antiplatelet therapies that inhibit thrombosis while maintaining hemostasis. In this review, we present the currently available antiplatelet agents, with a particular focus on their targets, pharmacological characteristics, and patterns of use. We will further discuss the novel antiplatelet therapies in the pipeline, with the goal of improved clinical outcomes among patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: (G.J.); (P.G.)
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Aurélien Philippe
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
- Service d’Hématologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Christilla Bachelot-Loza
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
| | - Pascale Gaussem
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
- Service d’Hématologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Correspondence: (G.J.); (P.G.)
| |
Collapse
|
21
|
Which proteinase-activated receptor-1 antagonist is better?: Evaluation of vorapaxar and parmodulin-2 effects on human left internal mammary artery endothelial function. Life Sci 2021; 286:120045. [PMID: 34653426 DOI: 10.1016/j.lfs.2021.120045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/26/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Endothelial dysfunction occurs as an early event in cardiovascular disease. Previously, vorapaxar, a proteinase-activated receptor-1 antagonist, was shown to cause endothelial damage in a cell culture study. Therefore, our study aimed to compare the effects of vorapaxar and parmodulin-2, proteinase-activated receptor-1 biased agonist, on human left internal mammary artery endothelial function in vitro. METHOD Isolated arteries were hung in the organ baths. Acetylcholine responses (10-11-10-6 M) were obtained in endothelium-intact tissues the following incubation with vorapaxar/parmodulin-2 (10-6 M) to determine the effects of these molecules on the endothelium-dependent relaxation. Subsequently, endothelium-dependent relaxation responses of tissues were investigated in the presence of L-NAME (10-4 M), L-arginine (10-5 M), indomethacin (10-5 M), and charybdotoxin-apamin (10-7 M) in addition to vorapaxar/parmodulin-2 incubation. Besides, the effect of these molecules on endothelium-independent relaxation response was evaluated with sodium nitroprusside (10-11-10-6 M). Finally, the sections of human arteries were imaged using a transmission electron microscope, and the integrity of the endothelial layer was evaluated. RESULTS We found that vorapaxar caused significant endothelial dysfunction by disrupting nitric oxide and endothelium-derived hyperpolarizing factor-dependent relaxation mechanisms. Parmodulin-2 did not cause endothelial damage. Neither vorapaxar nor parmodulin-2 disrupted endothelium-independent relaxation responses. The effect of vorapaxar on the endothelial layer was supported by the transmission electron microscope images. CONCLUSION Parmodulin-2 may be a better option than vorapaxar in treating cardiovascular diseases since it can inhibit PAR-1 without caused endothelial dysfunction.
Collapse
|
22
|
Festoff BW, Dockendorff C. The Evolving Concept of Neuro-Thromboinflammation for Neurodegenerative Disorders and Neurotrauma: A Rationale for PAR1-Targeting Therapies. Biomolecules 2021; 11:1558. [PMID: 34827556 PMCID: PMC8615608 DOI: 10.3390/biom11111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Interest in the role of coagulation and fibrinolysis in the nervous system was active in several laboratories dating back before cloning of the functional thrombin receptor in 1991. As one of those, our attention was initially on thrombin and plasminogen activators in synapse formation and elimination in the neuromuscular system, with orientation towards diseases such as amyotrophic lateral sclerosis (ALS) and how clotting and fibrinolytic pathways fit into its pathogenesis. This perspective is on neuro-thromboinflammation, emphasizing this emerging concept from studies and reports over more than three decades. It underscores how it may lead to novel therapeutic approaches to treat the ravages of neurotrauma and neurodegenerative diseases, with a focus on PAR1, ALS, and parmodulins.
Collapse
Affiliation(s)
- Barry W. Festoff
- PHLOGISTIX LLC, Department of Neurology, University of Kansas Medical School, Kansas City, MO 64108, USA
| | | |
Collapse
|
23
|
Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Front Oncol 2021; 11:665534. [PMID: 34322381 PMCID: PMC8311658 DOI: 10.3389/fonc.2021.665534] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Although platelets are critically involved in thrombosis and hemostasis, experimental and clinical evidence indicate that platelets promote tumor progression and metastasis through a wide range of physical and functional interactions between platelets and cancer cells. Thrombotic and thromboembolic events are frequent complications in patients with solid tumors. Hence, cancer modulates platelet function by directly inducing platelet-tumor aggregates and triggering platelet granule release and altering platelet turnover. Also, platelets enhance tumor cell dissemination by activating endothelial cell function and recruiting immune cells to primary and metastatic tumor sites. In this review, we summarize current knowledge on the complex interactions between platelets and tumor cells and the host microenvironment. We also critically discuss the potential of anti-platelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
24
|
Chandrabalan A, Ramachandran R. Molecular mechanisms regulating Proteinase‐Activated Receptors (PARs). FEBS J 2021; 288:2697-2726. [DOI: 10.1111/febs.15829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Arundhasa Chandrabalan
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| |
Collapse
|
25
|
Muruganantham S, Krishnaswami V, Alagarsamy S, Kandasamy R. Anti-platelet Drug-loaded Targeted Technologies for the Effective Treatment of Atherothrombosis. Curr Drug Targets 2021; 22:399-419. [PMID: 33109044 DOI: 10.2174/1389450121666201027125303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022]
Abstract
Atherothrombosis results from direct interaction between atherosclerotic plaque and arterial thrombosis and is the most common type of cardiovascular disease. As a long term progressive disease, atherosclerosis frequently results in an acute atherothrombotic event through plaque rupture and platelet-rich thrombus formation. The pathophysiology of atherothrombosis involves cholesterol accumulation endothelial dysfunction, dyslipidemia, immuno-inflammatory, and apoptotic aspects. Platelet activation and aggregation is the major cause for stroke because of its roles, including thrombus, contributing to atherosclerotic plaque, and sealing off the bleeding vessel. Platelet aggregates are associated with arterial blood pressure and cardiovascular ischemic events. Under normal physiological conditions, when a blood vessel is damaged, the task of platelets within the circulation is to arrest the blood loss. Antiplatelet inhibits platelet function, thereby decreasing thrombus formation with complementary modes of action to prevent atherothrombosis. In the present scientific scenario, researchers throughout the world are focusing on the development of novel drug delivery systems to enhance patient's compliance. Immediate responding pharmaceutical formulations become an emerging trend in the pharmaceutical industries with better patient compliance. The proposed review provides details related to the molecular pathogenesis of atherothrombosis and recent novel formulation approaches to treat atherothrombosis with particular emphasis on commercial formulation and upcoming technologies.
Collapse
Affiliation(s)
- Selvakumar Muruganantham
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
26
|
Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther 2020; 5:293. [PMID: 33361764 PMCID: PMC7758411 DOI: 10.1038/s41392-020-00454-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
On 12 March 2020, the outbreak of coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization. As of 4 August 2020, more than 18 million confirmed infections had been reported globally. Most patients have mild symptoms, but some patients develop respiratory failure which is the leading cause of death among COVID-19 patients. Endothelial cells with high levels of angiotensin-converting enzyme 2 expression are major participants and regulators of inflammatory reactions and coagulation. Accumulating evidence suggests that endothelial activation and dysfunction participate in COVID-19 pathogenesis by altering the integrity of vessel barrier, promoting pro-coagulative state, inducing endothelial inflammation, and even mediating leukocyte infiltration. This review describes the proposed cellular and molecular mechanisms of endothelial activation and dysfunction during COVID-19 emphasizing the principal mediators and therapeutic implications.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
27
|
Han X, Nieman MT, Kerlin BA. Protease-activated receptors: An illustrated review. Res Pract Thromb Haemost 2020; 5:17-26. [PMID: 33537526 PMCID: PMC7845062 DOI: 10.1002/rth2.12454] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Proteases are important regulators of cell behavior, survival, and apoptosis. They communicate to cells directly through a special class of G‐protein–coupled receptors known as protease‐activated receptors (PARs). N‐terminal PAR proteolysis unmasks a neo‐N‐terminus, which serves as a tethered ligand to activate PARs. Using this unique irreversible activation mechanism, PARs relay information across cell membranes. The year 2020 is the 30th year since discovery of the first member of this family, PAR1. In this illustrated review, we highlight achievements in the PAR field over the past 3 decades. Additionally, the known expression profiles of PARs in human tissues and across species are portrayed. We also illustrate the tethered ligand activation mechanism, which is unique to PARs, and PAR regulatory mechanisms. PAR1 was originally named “thrombin receptor” because thrombin was the first protease identified to activate PAR1. However, over the past 30 years, a growing number of proteases have been found to cleave PARs and trigger differential downstream signaling depending on cleavage site, cell type, and species. We exemplify the diversity of PAR1‐mediated signaling outcomes in platelets and endothelial cells as pertinent examples to the hemostasis, thrombosis, and vascular biology fields. Further, the termination and regulation of PAR signaling via endocytosis and currently available pharmacologic approaches are depicted. We conclude with portrayal of clinically translational aspects of PAR biology including pharmacologic manipulation and single‐nucleotide polymorphisms.
Collapse
Affiliation(s)
- Xu Han
- Department of Pharmacology Case Western Reserve University Cleveland OH USA
| | - Marvin T Nieman
- Department of Pharmacology Case Western Reserve University Cleveland OH USA
| | - Bryce A Kerlin
- Center for Clinical and Translational Research Abigail Wexner Research Institute at Nationwide Children's Hospital Columbus OH USA.,Department of Pediatrics The Ohio State University College of Medicine Columbus OH USA
| |
Collapse
|
28
|
Cholesterol-Rich Microdomains Contribute to PAR1 Signaling in Platelets Despite a Weak Localization of the Receptor in These Microdomains. Int J Mol Sci 2020; 21:ijms21218065. [PMID: 33138025 PMCID: PMC7663584 DOI: 10.3390/ijms21218065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 01/03/2023] Open
Abstract
Platelet protease-activated receptor 1 (PAR1) is a cell surface G-protein-coupled receptor (GPCR) that acts as a thrombin receptor promoting platelet aggregation. Targeting the PAR1 pathway by vorapaxar, a PAR1 antagonist, leads to a reduction in ischemic events in cardiovascular patients with a history of myocardial infarction or with peripheral arterial disease. In platelets, specialized microdomains highly enriched in cholesterol act as modulators of the activity of several GPCRs and play a pivotal role in the signaling pathway. However, their involvement in platelet PAR1 function remains incompletely characterized. In this context, we aimed to investigate whether activation of PAR1 in human platelets requires its localization in the membrane cholesterol-rich microdomains. Using confocal microscopy, biochemical isolation, and proteomics approaches, we found that PAR1 was not localized in cholesterol-rich microdomains in resting platelets, and only a small fraction of the receptor relocated to the microdomains following its activation. Vorapaxar treatment increased the level of PAR1 at the platelet surface, possibly by reducing its endocytosis, while its colocalization with cholesterol-rich microdomains remained weak. Consistent with a cholesterol-dependent activation of Akt and p38 MAP kinase in thrombin receptor-activating peptide (TRAP)-activated platelets, the proteomic data of cholesterol-rich microdomains isolated from TRAP-activated platelets showed the recruitment of proteins contributing to these signaling pathways. In conclusion, contrary to endothelial cells, we found that PAR1 was only weakly present in cholesterol-rich microdomains in human platelets but used these microdomains for efficient activation of downstream signaling pathways following TRAP activation.
Collapse
|
29
|
Han X, Nieman MT. The domino effect triggered by the tethered ligand of the protease activated receptors. Thromb Res 2020; 196:87-98. [PMID: 32853981 DOI: 10.1016/j.thromres.2020.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Protease activated receptors (PARs) are G-protein coupled receptors (GPCRs) that have a unique activation mechanism. Unlike other GPCRs that can be activated by free ligands, under physiological conditions, PARs are activated by the tethered ligand, which is a part of their N-terminus that is unmasked by proteolysis. It has been 30 years since the first member of the family, PAR1, was identified. In this review, we will discuss this unique tethered ligand mediate receptor activation of PARs in detail: how they interact with the proteases, the complex structural rearrangement of the receptors upon activation, and the termination of the signaling. We also summarize the structural studies of the PARs and how single nucleotide polymorphisms impact the receptor reactivity. Finally, we review the current strategies for inhibiting PAR function with therapeutic targets for anti-thrombosis. The focus of this review is PAR1 and PAR4 as they are the thrombin signal mediators on human platelets and therapeutics targets. We also include the structural studies of PAR2 as it informs the mechanism of action for PARs in general.
Collapse
Affiliation(s)
- Xu Han
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
30
|
Madhusudhan T, Ghosh S, Wang H, Dong W, Gupta D, Elwakiel A, Stoyanov S, Al-Dabet MM, Krishnan S, Biemann R, Nazir S, Zimmermann S, Mathew A, Gadi I, Rana R, Zeng-Brouwers J, Moeller MJ, Schaefer L, Esmon CT, Kohli S, Reiser J, Rezaie AR, Ruf W, Isermann B. Podocyte Integrin- β 3 and Activated Protein C Coordinately Restrict RhoA Signaling and Ameliorate Diabetic Nephropathy. J Am Soc Nephrol 2020; 31:1762-1780. [PMID: 32709711 DOI: 10.1681/asn.2019111163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS The zymogen protein C and aPC bind to podocyte integrin-β 3, a subunit of integrin-α v β 3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-α v β 3 induces transient binding of integrin-β 3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-β 3 via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-β 3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-β 3 interaction by specifically deleting podocyte integrin-β 3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-α v β 3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-α v β 3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.
Collapse
Affiliation(s)
- Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany .,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Sanchita Ghosh
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Hongjie Wang
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Dong
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Dheerendra Gupta
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Stoyan Stoyanov
- German Center for Neurodegenerative Diseases, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.,Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, Amman, Jordan
| | - Shruthi Krishnan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ronald Biemann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Sumra Nazir
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Silke Zimmermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Akash Mathew
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ihsan Gadi
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Rajiv Rana
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Jinyang Zeng-Brouwers
- Institute of Pharmacology, University Hospital and Goethe University, Frankfurt, Germany
| | - Marcus J Moeller
- Division of Nephrology and Immunology, University Hospital of the Rheinisch-Westfälische Technische Hochschule, Aachen University of Technology, Aachen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology, University Hospital and Goethe University, Frankfurt, Germany
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shrey Kohli
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany .,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
31
|
Zwart B, Parker WAE, Storey RF. New Antithrombotic Drugs in Acute Coronary Syndrome. J Clin Med 2020; 9:E2059. [PMID: 32629976 PMCID: PMC7408919 DOI: 10.3390/jcm9072059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, much progress has been made in the field of antithrombotic drugs in acute coronary syndrome (ACS) treatment, as reflected by the introduction of the more potent P2Y12-inhibitors prasugrel and ticagrelor, and novel forms of concomitant anticoagulation, such as fondaparinux and bivalirudin. However, despite substantial improvements in contemporary ACS treatment, there remains residual ischemic risk in this group and hence the need for even more effective antithrombotic drugs, while balancing antithrombotic efficacy against bleeding risk. This review discusses recently introduced and currently developed antiplatelet and anticoagulant drugs in ACS treatment.
Collapse
Affiliation(s)
- Bastiaan Zwart
- Department of Cardiology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands
- Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - William A. E. Parker
- Cardiovascular Research Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (W.A.E.P.); (R.F.S.)
- South Yorkshire Cardiothoracic Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S5 7AU, UK
| | - Robert F. Storey
- Cardiovascular Research Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (W.A.E.P.); (R.F.S.)
- South Yorkshire Cardiothoracic Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S5 7AU, UK
| |
Collapse
|
32
|
Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov 2020; 19:333-352. [PMID: 32132678 DOI: 10.1038/s41573-020-0061-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Antiplatelet agents and anticoagulants are a mainstay for the prevention and treatment of thrombosis. However, despite advances in antithrombotic therapy, a fundamental challenge is the side effect of bleeding. Improved understanding of the mechanisms of haemostasis and thrombosis has revealed new targets for attenuating thrombosis with the potential for less bleeding, including glycoprotein VI on platelets and factor XIa of the coagulation system. The efficacy and safety of new agents are currently being evaluated in phase III trials. This Review provides an overview of haemostasis and thrombosis, details the current landscape of antithrombotic agents, addresses challenges with preventing thromboembolic events in patients at high risk and describes the emerging therapeutic strategies that may break the inexorable link between antithrombotic therapy and bleeding risk.
Collapse
|
33
|
Tscharre M, Michelson AD, Gremmel T. Novel Antiplatelet Agents in Cardiovascular Disease. J Cardiovasc Pharmacol Ther 2020; 25:191-200. [DOI: 10.1177/1074248419899314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antiplatelet therapy reduces atherothrombotic risk and has therefore become a cornerstone in the treatment of cardiovascular disease. Aspirin, adenosine diphosphate P2Y12 receptor antagonists, glycoprotein IIb/IIIa inhibitors, and the thrombin receptor blocker vorapaxar are effective antiplatelet agents but significantly increase the risk of bleeding. Moreover, atherothrombotic events still impair the prognosis of many patients with cardiovascular disease despite established antiplatelet therapy. Over the last years, advances in the understanding of thrombus formation and hemostasis led to the discovery of various new receptors and signaling pathways of platelet activation. As a consequence, many new antiplatelet agents with high antithrombotic efficacy and supposedly only moderate effects on regular hemostasis have been developed and yielded promising results in preclinical and early clinical studies. Although their long journey from animal studies to randomized clinical trials and finally administration in daily clinical routine has just begun, some of the new agents may in the future become meaningful additions to the pharmacological armamentarium in cardiovascular disease.
Collapse
Affiliation(s)
- Maximilian Tscharre
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
| | - Alan D. Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Thomas Gremmel
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Olie RH, van der Meijden PEJ, Spronk HMH, Ten Cate H. Antithrombotic Therapy: Prevention and Treatment of Atherosclerosis and Atherothrombosis. Handb Exp Pharmacol 2020; 270:103-130. [PMID: 32776281 DOI: 10.1007/164_2020_357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a multifactorial vascular disease that develops in the course of a lifetime. Numerous risk factors for atherosclerosis have been identified, mostly inflicting pro-inflammatory effects. Vessel injury, such as occurring during erosion or rupture of atherosclerotic lesions triggers blood coagulation, in attempt to maintain hemostasis (protect against bleeding). However, thrombo-inflammatory mechanisms may drive blood coagulation such that thrombosis develops, the key process underlying myocardial infarction and ischemic stroke (not due to embolization from the heart). In the blood coagulation system, platelets and coagulation proteins are both essential elements. Hyperreactivity of blood coagulation aggravates atherosclerosis in preclinical models. Pharmacologic inhibition of blood coagulation, either with platelet inhibitors, or better documented with anticoagulants, or both, limits the risk of thrombosis and may potentially reverse atherosclerosis burden, although the latter evidence is still based on animal experimentation.Patients at risk of atherothrombotic complications should receive a single antiplatelet agent (acetylsalicylic acid, ASA, or clopidogrel); those who survived an atherothrombotic event will be prescribed temporary dual antiplatelet therapy (ASA plus a P2Y12 inhibitor) in case of myocardial infarction (6-12 months), or stroke (<6 weeks), followed by a single antiplatelet agent indefinitely. High risk for thrombosis patients (such as those with peripheral artery disease) benefit from a combination of an anticoagulant and ASA. The price of gained efficacy is always increased risk of (major) bleeding; while tailoring therapy to individual needs may limit the risks to some extent, new generations of agents that target less critical elements of hemostasis and coagulation mechanisms are needed to maintain efficacy while reducing bleeding risks.
Collapse
Affiliation(s)
- R H Olie
- Internal Medicine and CARIM School for Cardiovascular Research, Maastricht University Medical Center, Maastricht, The Netherlands.,Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P E J van der Meijden
- Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H M H Spronk
- Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Ten Cate
- Internal Medicine and CARIM School for Cardiovascular Research, Maastricht University Medical Center, Maastricht, The Netherlands. .,Thrombosis Expertise Center, Heart+ Cardiovascular Center, and Department of Biochemistry, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
35
|
Willis Fox O, Preston RJS. Molecular basis of protease-activated receptor 1 signaling diversity. J Thromb Haemost 2020; 18:6-16. [PMID: 31549766 DOI: 10.1111/jth.14643] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Protease-activated receptors (PARs) are a family of highly conserved G protein-coupled receptors (GPCRs) that respond to extracellular proteases via a unique proteolysis-dependent activation mechanism. Protease-activated receptor 1 (PAR1) was the first identified member of the receptor family and plays important roles in hemostasis, inflammation and malignancy. The biology underlying PAR1 signaling by its canonical agonist thrombin is well characterized; however, definition of the mechanistic basis of PAR1 signaling by other proteases, including matrix metalloproteases, activated protein C, plasmin, and activated factors VII and X, remains incompletely understood. In this review, we discuss emerging insights into the molecular bases for "biased" PAR1 signaling, including atypical PAR1 proteolysis, PAR1 heterodimer and coreceptor interactions, PAR1 translocation on the membrane surface, and interactions with different G-proteins and β-arrestins upon receptor activation. Moreover, we consider how these new insights into PAR1 signaling have acted to spur development of novel PAR1-targeted therapeutics that act to inhibit, redirect, or fine-tune PAR1 signaling output to treat cardiovascular and inflammatory disease. Finally, we discuss some of the key unanswered questions relating to PAR1 biology, in particular how differences in PAR1 proteolysis, signaling intermediate coupling, and engagement with coreceptors and GPCRs combine to mediate the diversity of identified PAR1 signaling outputs.
Collapse
Affiliation(s)
- Orla Willis Fox
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
36
|
Gandhi DM, Rosas R, Greve E, Kentala K, D-R Diby N, Snyder VA, Stephans A, Yeung THW, Subramaniam S, DiMilo E, Kurtenbach KE, Arnold LA, Weiler H, Dockendorff C. The parmodulin NRD-21 is an allosteric inhibitor of PAR1 Gq signaling with improved anti-inflammatory activity and stability. Bioorg Med Chem 2019; 27:3788-3796. [PMID: 31320211 PMCID: PMC6706283 DOI: 10.1016/j.bmc.2019.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022]
Abstract
Novel analogs of the allosteric, biased PAR1 ligand ML161 (parmodulin 2, PM2) were prepared in order to identify potential anti-thrombotic and anti-inflammatory compounds of the parmodulin class with improved properties. Investigations of structure-activity relationships of the western portion of the 1,3-diaminobenzene scaffold were performed using an intracellular calcium mobilization assay with endothelial cells, and several heterocycles were identified that inhibited PAR1 at sub-micromolar concentrations. The oxazole NRD-21 was profiled in additional detail, and it was confirmed to act as a selective, reversible, negative allosteric modulator of PAR1. In addition to inhibiting human platelet aggregation, it showed superior anti-inflammatory activity to ML161 in a qPCR assay measuring the expression of tissue factor in response to the cytokine TNF-alpha in endothelial cells. Additionally, NRD-21 is much more plasma stable than ML161, and is a promising lead compound for the parmodulin class for anti-thrombotic and anti-inflammatory indications.
Collapse
Affiliation(s)
- Disha M Gandhi
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Ricardo Rosas
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Eric Greve
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Kaitlin Kentala
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - N'Guessan D-R Diby
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Vladyslava A Snyder
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Allison Stephans
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Teresa H W Yeung
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | | | - Elliot DiMilo
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, WI 53211, USA
| | - Khia E Kurtenbach
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, WI 53211, USA
| | - Hartmut Weiler
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chris Dockendorff
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.
| |
Collapse
|
37
|
Flaumenhaft R. Protease-Activated Receptor-1 Signaling: The Big Picture. Arterioscler Thromb Vasc Biol 2019; 37:1809-1811. [PMID: 28954808 DOI: 10.1161/atvbaha.117.310068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Robert Flaumenhaft
- From the Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA.
| |
Collapse
|
38
|
Cheng S, Tu M, Chen H, Xu Z, Wang Z, Liu H, Zhao G, Zhu B, Du M. Identification and inhibitory activity against α-thrombin of a novel anticoagulant peptide derived from oyster (Crassostrea gigas) protein. Food Funct 2019; 9:6391-6400. [PMID: 30457135 DOI: 10.1039/c8fo01635f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A newly discovered anticoagulant peptide was isolated, purified and identified from the pepsin hydrolysate of oyster (Crassostrea gigas) which could potently prolong the activated partial thromboplastin time and the thrombin time. The anticoagulant peptide with a 1264.36 Da molecular mass was similar to the amino acid sequence of the C-terminal segment (DFEEIPEEYLQ) of hirudin (a potent thrombin inhibitor). The peptide specifically inhibited a vital blood coagulation factor: thrombin. The molecular docking energy scores of the anticoagulant peptide with the active site, exosite-I and exosite-II of thrombin were 132.355 kcal mol-1, 151.266 kcal mol-1 and 147.317 kcal mol-1, respectively. The anticoagulant peptide interacted with thrombin by competing with fibrinogen for an anion-binding exosite I. In the anticoagulant peptide-thrombin complex, there are seven hydrogen bonds and reciprocity exists between hydrogen atoms and oxygen atoms, and electrostatic and hydrophobic interactions are also involved. Such abundant interactions may be accountable for the high affinity and specificity of the anticoagulant peptide.
Collapse
Affiliation(s)
- Shuzhen Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Majithia A, Bhatt DL. Novel Antiplatelet Therapies for Atherothrombotic Diseases. Arterioscler Thromb Vasc Biol 2019; 39:546-557. [PMID: 30760019 PMCID: PMC6445601 DOI: 10.1161/atvbaha.118.310955] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/20/2019] [Indexed: 01/03/2023]
Abstract
Antiplatelet therapies are an essential tool to reduce the risk of developing clinically apparent atherothrombotic disease and are a mainstay in the therapy of patients who have established cardiovascular, cerebrovascular, and peripheral artery disease. Strategies to intensify antiplatelet regimens are limited by concomitant increases in clinically significant bleeding. The development of novel antiplatelet therapies targeting additional receptor and signaling pathways, with a focus on maintaining antiplatelet efficacy while preserving hemostasis, holds tremendous potential to improve outcomes among patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Arjun Majithia
- From the Brigham and Women’s Hospital Heart and Vascular Center and Harvard Medical School, Boston, MA
| | - Deepak L. Bhatt
- From the Brigham and Women’s Hospital Heart and Vascular Center and Harvard Medical School, Boston, MA
| |
Collapse
|
40
|
Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 2019; 17:4. [PMID: 30976204 PMCID: PMC6440139 DOI: 10.1186/s12959-019-0194-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs. PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors. In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.
Collapse
Affiliation(s)
- Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Cheng S, Tu M, Liu H, Zhao G, Du M. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 2019; 59:S81-S95. [PMID: 30740983 DOI: 10.1080/10408398.2018.1524363] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thromboembolism and its sequelae have been the leading causes of morbidity and mortality throughout the world. Food-derived antithrombotic peptides, as potential ingredients in health-promoting functional foods targeting thrombus, have attracted increasing attention because of their high biological activities, low toxicity, and ease of metabolism in the human body. This review presents the conventional workflow of preparation, isolation and identification of antithrombotic peptides from various kinds of food materials. More importantly, to analyze the antithrombotic effects and mechanism of antithrombotic peptides, methods for interaction of anticoagulant peptides and thrombin, the main participant in thrombosis, were analyzed from biochemistry, solution chemistry and crystal chemistry. The present study is intended to highlight the recent advances in research of food-derived antithrombotic peptide as a novel vehicle in the field of food science and nutrition. Future outlooks are highlighted with the aim to suggest a research line to be followed in further studies with the introduced research approach.
Collapse
Affiliation(s)
- Shuzheng Cheng
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China.,b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Maolin Tu
- c Department of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| | - Hanxiong Liu
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| | - Guanghua Zhao
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Ming Du
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| |
Collapse
|
42
|
Festoff BW, Citron BA. Thrombin and the Coag-Inflammatory Nexus in Neurotrauma, ALS, and Other Neurodegenerative Disorders. Front Neurol 2019; 10:59. [PMID: 30804878 PMCID: PMC6371052 DOI: 10.3389/fneur.2019.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
This review details our current understanding of thrombin signaling in neurodegeneration, with a focus on amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease) as well as future directions to be pursued. The key factors are multifunctional and involved in regulatory pathways, namely innate immune and the coagulation cascade activation, that are essential for normal nervous system function and health. These two major host defense systems have a long history in evolution and include elements and regulators of the coagulation pathway that have significant impacts on both the peripheral and central nervous system in health and disease. The clotting cascade responds to a variety of insults to the CNS including injury and infection. The blood brain barrier is affected by these responses and its compromise also contributes to these detrimental effects. Important molecules in signaling that contribute to or protect against neurodegeneration include thrombin, thrombomodulin (TM), protease activated receptor 1 (PAR1), damage associated molecular patterns (DAMPs), such as high mobility group box protein 1 (HMGB1) and those released from mitochondria (mtDAMPs). Each of these molecules are entangled in choices dependent upon specific signaling pathways in play. For example, the particular cleavage of PAR1 by thrombin vs. activated protein C (APC) will have downstream effects through coupled factors to result in toxicity or neuroprotection. Furthermore, numerous interactions influence these choices such as the interplay between HMGB1, thrombin, and TM. Our hope is that improved understanding of the ways that components of the coagulation cascade affect innate immune inflammatory responses and influence the course of neurodegeneration, especially after injury, will lead to effective therapeutic approaches for ALS, traumatic brain injury, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Barry W Festoff
- pHLOGISTIX LLC, Fairway, KS, United States.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bruce A Citron
- Laboratory of Molecular Biology Research & Development, VA New Jersey Health Care System, East Orange, NJ, United States.,Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
43
|
Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019; 133:906-918. [PMID: 30642917 DOI: 10.1182/blood-2018-11-882993] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Thrombosis with associated inflammation (thromboinflammation) occurs commonly in a broad range of human disorders. It is well recognized clinically in the context of superficial thrombophlebitis (thrombosis and inflammation of superficial veins); however, it is more dangerous when it develops in the microvasculature of injured tissues and organs. Microvascular thrombosis with associated inflammation is well recognized in the context of sepsis and ischemia-reperfusion injury; however, it also occurs in organ transplant rejection, major trauma, severe burns, the antiphospholipid syndrome, preeclampsia, sickle cell disease, and biomaterial-induced thromboinflammation. Central to thromboinflammation is the loss of the normal antithrombotic and anti-inflammatory functions of endothelial cells, leading to dysregulation of coagulation, complement, platelet activation, and leukocyte recruitment in the microvasculature. α-Thrombin plays a critical role in coordinating thrombotic and inflammatory responses and has long been considered an attractive therapeutic target to reduce thromboinflammatory complications. This review focuses on the role of basic aspects of coagulation and α-thrombin in promoting thromboinflammatory responses and discusses insights gained from clinical trials on the effects of various inhibitors of coagulation on thromboinflammatory disorders. Studies in sepsis patients have been particularly informative because, despite using anticoagulant approaches with different pharmacological profiles, which act at distinct points in the coagulation cascade, bleeding complications continue to undermine clinical benefit. Future advances may require the development of therapeutics with primary anti-inflammatory and cytoprotective properties, which have less impact on hemostasis. This may be possible with the growing recognition that components of blood coagulation and platelets have prothrombotic and proinflammatory functions independent of their hemostatic effects.
Collapse
|
44
|
|
45
|
Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, Chhibber T, Jhaveri VM. Organ‐on‐chip models: Implications in drug discovery and clinical applications. J Cell Physiol 2018; 234:8352-8380. [DOI: 10.1002/jcp.27729] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Frank W. Woo
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Carlo S. Castro
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Madeline A. Cohen
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Joana Karanxha
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Tanya Chhibber
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University Chandigarh India
| | - Vasanti M. Jhaveri
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
46
|
Shahzad K, Gadi I, Nazir S, Al-Dabet MM, Kohli S, Bock F, Breitenstein L, Ranjan S, Fuchs T, Halloul Z, Nawroth PP, Pelicci PG, Braun-Dullaeus RC, Camerer E, Esmon CT, Isermann B. Activated protein C reverses epigenetically sustained p66 Shc expression in plaque-associated macrophages in diabetes. Commun Biol 2018; 1:104. [PMID: 30271984 PMCID: PMC6123684 DOI: 10.1038/s42003-018-0108-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022] Open
Abstract
Impaired activated protein C (aPC) generation is associated with atherosclerosis and diabetes mellitus. Diabetes-associated atherosclerosis is characterized by the hyperglycaemic memory, e.g., failure of disease improvement despite attenuation of hyperglycaemia. Therapies reversing the hyperglycaemic memory are lacking. Here we demonstrate that hyperglycaemia, but not hyperlipidaemia, induces the redox-regulator p66Shc and reactive oxygen species (ROS) in macrophages. p66Shc expression, ROS generation, and a pro-atherogenic phenotype are sustained despite restoring normoglycemic conditions. Inhibition of p66Shc abolishes this sustained pro-atherogenic phenotype, identifying p66Shc-dependent ROS in macrophages as a key mechanism conveying the hyperglycaemic memory. The p66Shc-associated hyperglycaemic memory can be reversed by aPC via protease-activated receptor-1 signalling. aPC reverses glucose-induced CpG hypomethylation within the p66Shc promoter by induction of the DNA methyltransferase-1 (DNMT1). Thus, epigenetically sustained p66Shc expression in plaque macrophages drives the hyperglycaemic memory, which-however-can be reversed by aPC. This establishes that reversal of the hyperglycaemic memory in diabetic atherosclerosis is feasible.
Collapse
Affiliation(s)
- Khurrum Shahzad
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany.
- Department of Biotechnology, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Ihsan Gadi
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Sumra Nazir
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Shrey Kohli
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Fabian Bock
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
- Department of Medicine, Vanderbilt University Medical Center, 37232, Nashville, TN, USA
| | - Lukas Breitenstein
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Satish Ranjan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Tina Fuchs
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, 68167, Mannheim, Germany
| | - Zuhir Halloul
- Division of Vascular Surgery, Department of General, Abdominal and Vascular Surgery Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, 69120, Heidelberg, Germany
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti, 435, 20141, Milan, Italy
| | - Ruediger C Braun-Dullaeus
- Department of Internal Medicine, Division of Cardiology and Angiology, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, 75015, Paris, France
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, and Department of Pathology and Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, OK, USA
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany.
| |
Collapse
|
47
|
Knowles RB, Warner TD. Anti-platelet drugs and their necessary interaction with endothelial mediators and platelet cyclic nucleotides for therapeutic efficacy. Pharmacol Ther 2018; 193:83-90. [PMID: 30081048 PMCID: PMC6325790 DOI: 10.1016/j.pharmthera.2018.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For many millions of patients at secondary risk of coronary thrombosis pharmaceutical protection is supplied by dual anti-platelet therapy. Despite substantial therapeutic developments over the last decade recurrent thrombotic events occur, highlighting the need for further optimisation of therapies. Importantly, but often ignored, anti-platelet drugs interact with cyclic nucleotide systems in platelets and these are the same systems that mediate key endogenous pathways of platelet regulation, notably those dependent upon the vascular endothelium. The aim of this review is to highlight interactions between the anti-platelet drugs, aspirin and P2Y12 receptor antagonists and endogenous pathways of platelet regulation at the level of cyclic nucleotides. These considerations are key to concepts such as anti-platelet drug resistance and individualized anti-platelet therapy which cannot be understood by study of platelets in isolation from the circulatory environment. We also explore novel and emerging therapies that focus on preserving haemostasis and how the concepts outlined in this review could be exploited therapeutically to improve anti-thrombotic efficacy whilst reducing bleeding risk.
Collapse
Affiliation(s)
- Rebecca B Knowles
- The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Timothy D Warner
- The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
48
|
Pant A, Kopec AK, Luyendyk JP. Role of the blood coagulation cascade in hepatic fibrosis. Am J Physiol Gastrointest Liver Physiol 2018; 315:G171-G176. [PMID: 29723040 PMCID: PMC6139645 DOI: 10.1152/ajpgi.00402.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
Liver is the primary source of numerous proteins that are critical for normal function of the blood coagulation cascade. Because of this, diseases of the liver, particularly when affiliated with severe complications like cirrhosis, are associated with abnormalities of blood clotting. Although conventional interpretation has inferred cirrhosis as a disorder of uniform bleeding risk, it is now increasingly appreciated as a disease wherein the coagulation cascade is precariously rebalanced. Moreover, prothrombotic risk factors are also associated with a more rapid progression of fibrosis in humans, suggesting that coagulation proteases participate in disease pathogenesis. Indeed, strong evidence drawn from experimental animal studies indicates that components of the coagulation cascade, particularly coagulation factor Xa and thrombin, drive profibrogenic events, leading to hepatic fibrosis. Here, we concisely review the evidence supporting a pathologic role for coagulation in the development of liver fibrosis and the potential mechanisms involved. Further, we highlight how studies in experimental animals may shed light on emerging clinical evidence, suggesting that beneficial effects of anticoagulation could extend beyond preventing thrombotic complications to include reducing pathologies like fibrosis.
Collapse
Affiliation(s)
- Asmita Pant
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
| | - Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University , East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University , East Lansing, Michigan
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
49
|
Gandhi DM, Majewski MW, Rosas R, Kentala K, Foster TJ, Greve E, Dockendorff C. Characterization of Protease-Activated Receptor (PAR) ligands: Parmodulins are reversible allosteric inhibitors of PAR1-driven calcium mobilization in endothelial cells. Bioorg Med Chem 2018; 26:2514-2529. [PMID: 29685684 PMCID: PMC5937995 DOI: 10.1016/j.bmc.2018.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 01/18/2023]
Abstract
Several classes of ligands for Protease-Activated Receptors (PARs) have shown impressive anti-inflammatory and cytoprotective activities, including PAR2 antagonists and the PAR1-targeting parmodulins. In order to support medicinal chemistry studies with hundreds of compounds and to perform detailed mode-of-action studies, it became important to develop a reliable PAR assay that is operational with endothelial cells, which mediate the cytoprotective effects of interest. We report a detailed protocol for an intracellular calcium mobilization assay with adherent endothelial cells in multiwell plates that was used to study a number of known and new PAR1 and PAR2 ligands, including an alkynylated version of the PAR1 antagonist RWJ-58259 that is suitable for the preparation of tagged or conjugate compounds. Using the cell line EA.hy926, it was necessary to perform media exchanges with automated liquid handling equipment in order to obtain optimal and reproducible antagonist concentration-response curves. The assay is also suitable for study of PAR2 ligands; a peptide antagonist reported by Fairlie was synthesized and found to inhibit PAR2 in a manner consistent with reports using epithelial cells. The assay was used to confirm that vorapaxar acts as an irreversible antagonist of PAR1 in endothelium, and parmodulin 2 (ML161) and the related parmodulin RR-90 were found to inhibit PAR1 reversibly, in a manner consistent with negative allosteric modulation.
Collapse
Affiliation(s)
- Disha M Gandhi
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Mark W Majewski
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Ricardo Rosas
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Kaitlin Kentala
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Trevor J Foster
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Eric Greve
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Chris Dockendorff
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.
| |
Collapse
|
50
|
Higgins SJ, De Ceunynck K, Kellum JA, Chen X, Gu X, Chaudhry SA, Schulman S, Libermann TA, Lu S, Shapiro NI, Christiani DC, Flaumenhaft R, Parikh SM. Tie2 protects the vasculature against thrombus formation in systemic inflammation. J Clin Invest 2018; 128:1471-1484. [PMID: 29360642 DOI: 10.1172/jci97488] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/18/2018] [Indexed: 12/25/2022] Open
Abstract
Disordered coagulation contributes to death in sepsis and lacks effective treatments. Existing markers of disseminated intravascular coagulation (DIC) reflect its sequelae rather than its causes, delaying diagnosis and treatment. Here we show that disruption of the endothelial Tie2 axis is a sentinel event in septic DIC. Proteomics in septic DIC patients revealed a network involving inflammation and coagulation with the Tie2 antagonist, angiopoietin-2 (Angpt-2), occupying a central node. Angpt-2 was strongly associated with traditional DIC markers including platelet counts, yet more accurately predicted mortality in 2 large independent cohorts (combined N = 1,077). In endotoxemic mice, reduced Tie2 signaling preceded signs of overt DIC. During this early phase, intravital imaging of microvascular injury revealed excessive fibrin accumulation, a pattern remarkably mimicked by Tie2 deficiency even without inflammation. Conversely, Tie2 activation normalized prothrombotic responses by inhibiting endothelial tissue factor and phosphatidylserine exposure. Critically, Tie2 activation had no adverse effects on bleeding. These results mechanistically implicate Tie2 signaling as a central regulator of microvascular thrombus formation in septic DIC and indicate that circulating markers of the Tie2 axis could facilitate earlier diagnosis. Finally, interventions targeting Tie2 may normalize coagulation in inflammatory states while averting the bleeding risks of current DIC therapies.
Collapse
Affiliation(s)
- Sarah J Higgins
- Division of Nephrology and Department of Medicine.,Center for Vascular Biology Research, and
| | - Karen De Ceunynck
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiuying Chen
- Division of Nephrology and Department of Medicine.,Center for Vascular Biology Research, and
| | - Xuesong Gu
- Bioinformatics, and Systems Biology Center, Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology, and
| | - Sharjeel A Chaudhry
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Towia A Libermann
- Bioinformatics, and Systems Biology Center, Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology, and
| | - Shulin Lu
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David C Christiani
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School and the Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Samir M Parikh
- Division of Nephrology and Department of Medicine.,Center for Vascular Biology Research, and
| |
Collapse
|