1
|
Liu C, Meng F. Identification of potential causal genes and drug targets in pulmonary hypertension based on transcriptomic analysis and Mendelian randomization. Postgrad Med J 2025:qgaf044. [PMID: 40156905 DOI: 10.1093/postmj/qgaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/16/2025] [Accepted: 03/08/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE Currently, there is no definitive treatment for pulmonary hypertension (PH). This study aims to utilize the GEO database and conduct Mendelian randomization (MR) analysis to identify new genetic targets for PH and investigate their potential pathogenic pathways and therapeutic drugs. METHODS We identified key genes by combining the findings from MR and bioinformatics analyses of GEO datasets. We performed enrichment analysis to explore the functional roles of these key genes. Then, we constructed protein-protein interaction (PPI) and miRNA-mRNA networks to identify interacting proteins and miRNAs. Drug prediction analysis was conducted to propose potential therapeutic drugs. Finally, we validated the results through the GEO dataset, RT-PCR, and western blot experiments. RESULTS The joint analysis utilizing GEO databases and MR analysis identified two key genes, ITGA2B and TSPAN9 that exhibited significance across both analytical methods. The enrichment analysis indicated that the key genes were involved in critical biological functions and pathways, including cell adhesion, platelet activation, and the PI3K-Akt signaling pathway. The PPI and miRNA-mRNA networks further highlighted the significance of the key genes in PH. Drug prediction analysis revealed the potential of the key genes as therapeutic targets. The RT-PCR and western blot experiments validated the above findings. CONCLUSION By integrating bioinformatics and MR analysis, we found that ITGA2B and TSPAN9 have a causal relationship with PH. Our findings offer new insights into the molecular mechanism and potential treatment targets of PH, establishing a basis for future research and clinical applications.
Collapse
Affiliation(s)
- Chengliang Liu
- Department of Respiratory and Critical Care Medicine, Chaohu Hospital of Anhui Medical University, No. 64 Chaohu North Road, Chaohu 238000, China
| | - Fanliang Meng
- Department of Respiratory and Critical Care Medicine, Chaohu Hospital of Anhui Medical University, No. 64 Chaohu North Road, Chaohu 238000, China
| |
Collapse
|
2
|
Zerella JR, Homan CC, Arts P, Lin X, Spinelli SJ, Venugopal P, Babic M, Brautigan PJ, Truong L, Arriola-Martinez L, Moore S, Hollins R, Parker WT, Nguyen H, Kassahn KS, Branford S, Feurstein S, Larcher L, Sicre de Fontbrune F, Demirdas S, de Munnik S, Antoine-Poirel H, Brichard B, Mansour S, Gordon K, Wlodarski MW, Koppayi A, Dobbins S, Mutsaers PGNJ, Nichols KE, Oak N, DeMille D, Mao R, Crawford A, McCarrier J, Basel D, Flores-Daboub J, Drazer MW, Phillips K, Poplawski NK, Birdsey GM, Pirri D, Ostergaard P, Simons A, Godley LA, Ross DM, Hiwase DK, Soulier J, Brown AL, Carmichael CL, Scott HS, Hahn CN. Germ line ERG haploinsufficiency defines a new syndrome with cytopenia and hematological malignancy predisposition. Blood 2024; 144:1765-1780. [PMID: 38991192 PMCID: PMC11530364 DOI: 10.1182/blood.2024024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
ABSTRACT The genomics era has facilitated the discovery of new genes that predispose individuals to bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery of ETS-related gene (ERG), a novel, autosomal dominant BMF/HM predisposition gene. ERG is a highly constrained transcription factor that is critical for definitive hematopoiesis, stem cell function, and platelet maintenance. ERG colocalizes with other transcription factors, including RUNX family transcription factor 1 (RUNX1) and GATA binding protein 2 (GATA2), on promoters or enhancers of genes that orchestrate hematopoiesis. We identified a rare heterozygous ERG missense variant in 3 individuals with thrombocytopenia from 1 family and 14 additional ERG variants in unrelated individuals with BMF/HM, including 2 de novo cases and 3 truncating variants. Phenotypes associated with pathogenic germ line ERG variants included cytopenias (thrombocytopenia, neutropenia, and pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, and acute lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense and 1 truncating), including 3 missense population variants, were functionally characterized. Thirteen potentially pathogenic erythroblast transformation specific (ETS) domain missense variants displayed loss-of-function (LOF) characteristics, thereby disrupting transcriptional transactivation, DNA binding, and/or nuclear localization. Selected variants overexpressed in mouse fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture and to promote acute erythroleukemia when transplanted into mice, concordant with these being LOF variants. Four individuals displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germ line ERG variants has clinical implications for patient and family diagnoses, counseling, surveillance, and treatment strategies, including selection of bone marrow donors and cell or gene therapy.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sam J. Spinelli
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Parvathy Venugopal
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Milena Babic
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peter J. Brautigan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Luis Arriola-Martinez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Sarah Moore
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Rachel Hollins
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Wendy T. Parker
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hung Nguyen
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Karin S. Kassahn
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Susan Branford
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lise Larcher
- Université Paris Cité, INSERM and Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France
| | | | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Benedicte Brichard
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sahar Mansour
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
- South West Thames Regional Centre for Genomics, St. George's Universities National Health Service Foundation Trust, London, United Kingdom
| | - Kristiana Gordon
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities National Health Service Foundation Trust, London, United Kingdom
| | - Marcin W. Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ashwin Koppayi
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Sara Dobbins
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
| | - Pim G. N. J. Mutsaers
- Department of Hematology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Desiree DeMille
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Associated Regional and University Pathologists Laboratories, Salt Lake City, UT
| | - Rong Mao
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Associated Regional and University Pathologists Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah, Salt Lake City, UT
| | | | - Julie McCarrier
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Donald Basel
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | | | - Michael W. Drazer
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Graeme M. Birdsey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Daniela Pirri
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pia Ostergaard
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lucy A. Godley
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - David M. Ross
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Devendra K. Hiwase
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Jean Soulier
- Université Paris Cité, INSERM and Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Anna L. Brown
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Hamish S. Scott
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
3
|
Ross JE, Mohan S, Zhang J, Sullivan MJ, Bury L, Lee K, Futchi I, Frantz A, McDougal D, Perez Botero J, Cattaneo M, Cooper N, Downes K, Gresele P, Keenan C, Lee AI, Megy K, Morange PE, Morgan NV, Schulze H, Zimowski K, Freson K, Lambert MP. Evaluating the clinical validity of genes related to hemostasis and thrombosis using the Clinical Genome Resource gene curation framework. J Thromb Haemost 2024; 22:645-665. [PMID: 38016518 PMCID: PMC10922649 DOI: 10.1016/j.jtha.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Inherited bleeding, thrombotic, and platelet disorders (BTPDs) are a heterogeneous set of diseases, many of which are very rare globally. Over the past 5 decades, the genetic basis of some of these disorders has been identified, and recently, high-throughput sequencing has become the primary means of identifying disease-causing genetic variants. OBJECTIVES Knowledge of the clinical validity of a gene-disease relationship is essential to provide an accurate diagnosis based on results of diagnostic gene panel tests and inform the construction of such panels. The Scientific and Standardization Committee for Genetics in Thrombosis and Hemostasis undertook a curation process for selecting 96 TIER1 genes for BTPDs. The purpose of the process was to evaluate the evidence supporting each gene-disease relationship and provide an expert-reviewed classification for the clinical validity of genes associated with BTPDs. METHODS The Clinical Genome Resource (ClinGen) Hemostasis/Thrombosis Gene Curation Expert Panel assessed the strength of evidence for TIER1 genes using the semiquantitative ClinGen gene-disease clinical validity framework. ClinGen Lumping and Splitting guidelines were used to determine the appropriate disease entity or entities for each gene, and 101 gene-disease relationships were identified for curation. RESULTS The final outcome included 68 Definitive (67%), 26 Moderate (26%), and 7 Limited (7%) classifications. The summary of each curation is available on the ClinGen website. CONCLUSION Expert-reviewed assignment of gene-disease relationships by the ClinGen Hemostasis/Thrombosis Gene Curation Expert Panel facilitates accurate molecular diagnoses of BTPDs by clinicians and diagnostic laboratories. These curation efforts can allow genetic testing to focus on genes with a validated role in disease.
Collapse
Affiliation(s)
- Justyne E Ross
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jing Zhang
- KingMed Diagnostics, Guangzhou, Guangdong, China
| | - Mia J Sullivan
- Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Kristy Lee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Isabella Futchi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Annabelle Frantz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dara McDougal
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Juliana Perez Botero
- Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, USA; Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marco Cattaneo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Nichola Cooper
- Centre for Haematology, Imperial College London, London, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Catriona Keenan
- Haemostasis Molecular Diagnostic Laboratory, National Coagulation Centre, St James's Hospital, Dublin, Ireland
| | - Alfred I Lee
- Section of Hematology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Pierre-Emmanuel Morange
- INSERM, INRAE, C2VN, Aix Marseille University, Marseille, France; Hematology Laboratory, La Timone Hospital, APHM, Marseille, France
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Harald Schulze
- Institute of Experimental Biomedicine, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Karen Zimowski
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium.
| | - Michele P Lambert
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
5
|
Homan CC, Scott HS, Brown AL. Hereditary platelet disorders associated with germ line variants in RUNX1, ETV6, and ANKRD26. Blood 2023; 141:1533-1543. [PMID: 36626254 PMCID: PMC10651873 DOI: 10.1182/blood.2022017735] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Hereditary platelet disorders (HPDs) are a group of blood disorders with variable severity and clinical impact. Although phenotypically there is much overlap, known genetic causes are many, prompting the curation of multigene panels for clinical use, which are being deployed in increasingly large-scale populations to uncover missing heritability more efficiently. For some of these disorders, in particular RUNX1, ETV6, and ANKRD26, pathogenic germ line variants in these genes also come with a risk of developing hematological malignancy (HM). Although they may initially present as similarly mild-moderate thrombocytopenia, each of these 3 disorders have distinct penetrance of HM and a different range of somatic alterations associated with malignancy development. As our ability to diagnose HPDs has improved, we are now faced with the challenges of integrating these advances into routine clinical practice for patients and how to optimize management and surveillance of patients and carriers who have not developed malignancy. The volume of genetic information now being generated has created new challenges in how to accurately assess and report identified variants. The answers to all these questions involve international initiatives on rare diseases to better understand the biology of these disorders and design appropriate models and therapies for preclinical testing and clinical trials. Partnered with this are continued technological developments, including the rapid sharing of genetic variant information and automated integration with variant classification relevant data, such as high-throughput functional data. Collective progress in this area will drive timely diagnosis and, in time, leukemia preventive therapeutic interventions.
Collapse
Affiliation(s)
- Claire C. Homan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Australian Cancer Research Foundation (ACRF) Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Anna L. Brown
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Warren JT, Di Paola J. Genetics of inherited thrombocytopenias. Blood 2022; 139:3264-3277. [PMID: 35167650 PMCID: PMC9164741 DOI: 10.1182/blood.2020009300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/04/2022] [Indexed: 01/19/2023] Open
Abstract
The inherited thrombocytopenia syndromes are a group of disorders characterized primarily by quantitative defects in platelet number, though with a variety demonstrating qualitative defects and/or extrahematopoietic findings. Through collaborative international efforts applying next-generation sequencing approaches, the list of genetic syndromes that cause thrombocytopenia has expanded significantly in recent years, now with over 40 genes implicated. In this review, we focus on what is known about the genetic etiology of inherited thrombocytopenia syndromes and how the field has worked to validate new genetic discoveries. We highlight the important role for the clinician in identifying a germline genetic diagnosis and strategies for identifying novel causes through research-based endeavors.
Collapse
Affiliation(s)
- Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jorge Di Paola
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Bourguignon A, Tasneem S, Hayward CP. Screening and diagnosis of inherited platelet disorders. Crit Rev Clin Lab Sci 2022; 59:405-444. [PMID: 35341454 DOI: 10.1080/10408363.2022.2049199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inherited platelet disorders are important conditions that often manifest with bleeding. These disorders have heterogeneous underlying pathologies. Some are syndromic disorders with non-blood phenotypic features, and others are associated with an increased predisposition to developing myelodysplasia and leukemia. Platelet disorders can present with thrombocytopenia, defects in platelet function, or both. As the underlying pathogenesis of inherited thrombocytopenias and platelet function disorders are quite diverse, their evaluation requires a thorough clinical assessment and specialized diagnostic tests, that often challenge diagnostic laboratories. At present, many of the commonly encountered, non-syndromic platelet disorders do not have a defined molecular cause. Nonetheless, significant progress has been made over the past few decades to improve the diagnostic evaluation of inherited platelet disorders, from the assessment of the bleeding history to improved standardization of light transmission aggregometry, which remains a "gold standard" test of platelet function. Some platelet disorder test findings are highly predictive of a bleeding disorder and some show association to symptoms of prolonged bleeding, surgical bleeding, and wound healing problems. Multiple assays can be required to diagnose common and rare platelet disorders, each requiring control of preanalytical, analytical, and post-analytical variables. The laboratory investigations of platelet disorders include evaluations of platelet counts, size, and morphology by light microscopy; assessments for aggregation defects; tests for dense granule deficiency; analyses of granule constituents and their release; platelet protein analysis by immunofluorescent staining or flow cytometry; tests of platelet procoagulant function; evaluations of platelet ultrastructure; high-throughput sequencing and other molecular diagnostic tests. The focus of this article is to review current methods for the diagnostic assessment of platelet function, with a focus on contemporary, best diagnostic laboratory practices, and relationships between clinical and laboratory findings.
Collapse
Affiliation(s)
- Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Catherine P Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
8
|
Dalen ML, Vigerust NF, Hammarström C, Holmstrøm H, Andresen JH. Neonatal interstitial lung disease in a girl with Jacobsen syndrome: a case report. J Med Case Rep 2022; 16:117. [PMID: 35321730 PMCID: PMC8944088 DOI: 10.1186/s13256-022-03351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We report a case of the neonatal interstitial lung disease pulmonary interstitial glycogenosis in a girl with Jacobsen syndrome. While Jacobsen syndrome is caused by a deletion on the long arm of chromosome 11 and is genetically confirmed, pulmonary interstitial glycogenosis is of unknown etiology and is diagnosed by lung biopsy. Pulmonary interstitial glycogenosis has not previously been described in association with Jacobsen syndrome. CASE PRESENTATION A term newborn small for gestational age Caucasian girl presented with respiratory distress, pulmonary hypertension, congenital heart defects, immunodeficiency, and thrombocytopenia. She was diagnosed with Jacobsen syndrome, but also had pulmonary interstitial glycogenosis, which contributed to significant morbidity. There was striking clinical improvement after steroid treatment of the pulmonary interstitial glycogenosis. CONCLUSIONS Interstitial lung disease should be considered as a differential diagnosis when respiratory distress and hypoxemia in the perinatal period worsens or persists despite standard treatment. Importantly, pulmonary interstitial glycogenosis may be treatable with corticosteroids. Whether there is a genetic link between pulmonary interstitial glycogenosis and Jacobsen syndrome is still unknown.
Collapse
Affiliation(s)
- Marit Lunde Dalen
- Department of Neonatal Intensive Care, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Nydalen, Box 4956, 0424, Oslo, Norway.
| | | | - Clara Hammarström
- Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Henrik Holmstrøm
- Department of Paediatric Cardiology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
9
|
Lacey J, Webster SJ, Heath PR, Hill CJ, Nicholson-Goult L, Wagner BE, Khan AO, Morgan NV, Makris M, Daly ME. Sorting nexin 24 is required for α-granule biogenesis and cargo delivery in megakaryocytes. Haematologica 2022; 107:1902-1913. [PMID: 35021601 PMCID: PMC9335091 DOI: 10.3324/haematol.2021.279636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 01/06/2023] Open
Abstract
Germline defects affecting the DNA-binding domain of the transcription factor FLI1 are associated with a bleeding disorder that is characterized by the presence of large, fused α-granules in platelets. We investigated whether the genes showing abnormal expression in FLI1-deficient platelets could be involved in platelet α-granule biogenesis by undertaking transcriptome analysis of control platelets and platelets harboring a DNA-binding variant of FLI1. Our analysis identified 2,276 transcripts that were differentially expressed in FLI1-deficient platelets. Functional annotation clustering of the coding transcripts revealed significant enrichment for gene annotations relating to protein transport, and identified Sorting nexin 24 (SNX24) as a candidate for further investigation. Using an induced pluripotent stem cell-derived megakaryocyte model, SNX24 expression was found to be increased during the early stages of megakaryocyte differentiation and downregulated during proplatelet formation, indicating tight regulatory control during megakaryopoiesis. CRISPR-Cas9 mediated knockout (KO) of SNX24 led to decreased expression of immature megakaryocyte markers, CD41 and CD61, and increased expression of the mature megakaryocyte marker CD42b (P=0.0001), without affecting megakaryocyte polyploidisation, or proplatelet formation. Electron microscopic analysis revealed an increase in empty membrane-bound organelles in SNX24 KO megakaryocytes, a reduction in α-granules and an absence of immature and mature multivesicular bodies, consistent with a defect in the intermediate stage of α-granule maturation. Co-localization studies showed that SNX24 associates with each compartment of α-granule maturation. Reduced expression of CD62P and VWF was observed in SNX24 KO megakaryocytes. We conclude that SNX24 is required for α-granule biogenesis and intracellular trafficking of α-granule cargo within megakaryocytes.
Collapse
Affiliation(s)
- Joanne Lacey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield
| | - Simon J. Webster
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield
| | - Paul R. Heath
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield
| | - Chris J. Hill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield
| | | | - Bart E. Wagner
- Histopathology Department, Royal Hallamshire Hospital, Sheffield
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Neil V. Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michael Makris
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield
| | - Martina E. Daly
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield,Martina E. Daly
| |
Collapse
|
10
|
Immunological Evaluation of Patients Affected with Jacobsen Syndrome Reveals Profound Not Age-Related Lymphocyte Alterations. J Clin Immunol 2021; 42:365-374. [PMID: 34802108 DOI: 10.1007/s10875-021-01169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Jacobsen syndrome (JS) is a rare form of genetic disorder that was recently classified as a syndromic immunodeficiency. Available detailed immunological data from JS patients are limited. METHODS Clinical and immunological presentation of twelve pediatric patients with JS by means of revision of clinical records, flow cytometry, real-time PCR, and lymphocyte functional testing were collected. RESULTS Recurrent infections were registered in 6/12 patients (50%), while bleeding episodes in 2/12 (16.7%). White blood cell and absolute lymphocyte counts were reduced in 8/12 (66.7%) and 7/12 (58.3%) patients, respectively. Absolute numbers of CD3+ and CD4+ T cells were reduced in 8/12 (66.7%) and 7/12 (58.3%), respectively. Of note, recent thymic emigrants (RTE) were reduced in all tested patients (9/9), with T-cell receptor excision circle analysis (TRECs) showing a similar trend in 8/9 patients; naïve CD4+ T cells were low only in 5/11 patients (45.4%). Interestingly, B-cell counts, IgM memory B cells, and IgM serum levels were reduced in 10/12 (83.3%) patients. Natural killer (NK) cell counts were mostly normal but the percentages of CD16+CD56low/- cells were expanded in 7/7 patients tested. The observed immunological alterations did not correlate with patients' age. Finally, responses to proliferative stimuli were normal at presentation for all patients, although they may deteriorate over time. CONCLUSIONS Our data suggest that patients affected with JS may display important numeric and maturational alterations in the T-, B-, and NK-cell compartments. These findings suggest that JS patients should be regularly monitored from an immunological point of view.
Collapse
|
11
|
Collins J, Astle WJ, Megy K, Mumford AD, Vuckovic D. Advances in understanding the pathogenesis of hereditary macrothrombocytopenia. Br J Haematol 2021; 195:25-45. [PMID: 33783834 DOI: 10.1111/bjh.17409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Low platelet count, or thrombocytopenia, is a common haematological abnormality, with a wide differential diagnosis, which may represent a clinically significant underlying pathology. Macrothrombocytopenia, the presence of large platelets in combination with thrombocytopenia, can be acquired or hereditary and indicative of a complex disorder. In this review, we discuss the interpretation of platelet count and volume measured by automated haematology analysers and highlight some important technical considerations relevant to the analysis of blood samples with macrothrombocytopenia. We review how large cohorts, such as the UK Biobank and INTERVAL studies, have enabled an accurate description of the distribution and co-variation of platelet parameters in adult populations. We discuss how genome-wide association studies have identified hundreds of genetic associations with platelet count and mean platelet volume, which in aggregate can explain large fractions of phenotypic variance, consistent with a complex genetic architecture and polygenic inheritance. Finally, we describe the large genetic diagnostic and discovery programmes, which, simultaneously to genome-wide association studies, have expanded the repertoire of genes and variants associated with extreme platelet phenotypes. These have advanced our understanding of the pathogenesis of hereditary macrothrombocytopenia and support a future clinical diagnostic strategy that utilises genotype alongside clinical and laboratory phenotype data.
Collapse
Affiliation(s)
- Janine Collins
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, Barts Health NHS Trust, London, UK
| | - William J Astle
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge, UK
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrew D Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Dragana Vuckovic
- Department of Biostatistics and Epidemiology, Faculty of Medicine, Imperial College London, London, UK
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Saultier P, Cabantous S, Puceat M, Peiretti F, Bigot T, Saut N, Bordet JC, Canault M, van Agthoven J, Loosveld M, Payet-Bornet D, Potier D, Falaise C, Bernot D, Morange PE, Alessi MC, Poggi M. GATA1 pathogenic variants disrupt MYH10 silencing during megakaryopoiesis. J Thromb Haemost 2021; 19:2287-2301. [PMID: 34060193 DOI: 10.1111/jth.15412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND GATA1 is an essential transcription factor for both polyploidization and megakaryocyte (MK) differentiation. The polyploidization defect observed in GATA1 variant carriers is not well understood. OBJECTIVE To extensively phenotype two pedigrees displaying different variants in the GATA1 gene and determine if GATA1 controls MYH10 expression levels, a key modulator of MK polyploidization. METHOD A total of 146 unrelated propositi with constitutional thrombocytopenia were screened on a multigene panel. We described the genotype-phenotype correlation in GATA1 variant carriers and investigated the effect of these novel variants on MYH10 transcription using luciferase constructs. RESULTS The clinical profile associated with the p.L268M variant localized in the C terminal zinc finger was unusual in that the patient displayed bleeding and severe platelet aggregation defects without early-onset thrombocytopenia. p.N206I localized in the N terminal zinc finger was associated, on the other hand, with severe thrombocytopenia (15G/L) in early life. High MYH10 levels were evidenced in platelets of GATA1 variant carriers. Analysis of MKs anti-GATA1 chromatin immunoprecipitation-sequencing data revealed two GATA1 binding sites, located in the 3' untranslated region and in intron 8 of the MYH10 gene. Luciferase reporter assays showed their respective role in the regulation of MYH10 gene expression. Both GATA1 variants significantly alter intron 8 driven MYH10 transcription. CONCLUSION The discovery of an association between MYH10 and GATA1 is a novel one. Overall, this study suggests that impaired MYH10 silencing via an intronic regulatory element is the most likely cause of GATA1-related polyploidization defect.
Collapse
Affiliation(s)
- Paul Saultier
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
| | | | | | | | - Timothée Bigot
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | - Noémie Saut
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | | | | | - Johannes van Agthoven
- Structural Biology Program, Division of Nephrology/Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Marie Loosveld
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
- Aix-Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | | - Céline Falaise
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Denis Bernot
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | - Pierre-Emmanuel Morange
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Marie-Christine Alessi
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Marjorie Poggi
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| |
Collapse
|
13
|
Serra G, Memo L, Antona V, Corsello G, Favero V, Lago P, Giuffrè M. Jacobsen syndrome and neonatal bleeding: report on two unrelated patients. Ital J Pediatr 2021; 47:147. [PMID: 34210338 PMCID: PMC8252210 DOI: 10.1186/s13052-021-01108-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction In 1973, Petrea Jacobsen described the first patient showing dysmorphic features, developmental delay and congenital heart disease (atrial and ventricular septal defect) associated to a 11q deletion, inherited from the father. Since then, more than 200 patients have been reported, and the chromosomal critical region responsible for this contiguous gene disorder has been identified. Patients’ presentation We report on two unrelated newborns observed in Italy affected by Jacobsen syndrome (JBS, also known as 11q23 deletion). Both patients presented prenatal and postnatal bleeding, growth and developmental delay, craniofacial dysmorphisms, multiple congenital anomalies, and pancytopenia of variable degree. Array comparative genomic hybridization (aCGH) identified a terminal deletion at 11q24.1-q25 of 12.5 Mb and 11 Mb, in Patient 1 and 2, respectively. Fluorescent in situ hybridization (FISH) analysis of the parents documented a de novo origin of the deletion for Patient 1; parents of Patient 2 refused further genetic investigations. Conclusions Present newborns show the full phenotype of JBS including thrombocytopenia, according to their wide 11q deletion size. Bleeding was particularly severe in one of them, leading to a cerebral hemorrhage. Our report highlights the relevance of early diagnosis, genetic counselling and careful management and follow-up of JBS patients, which may avoid severe clinical consequences and lower the mortality risk. It may provide further insights and a better characterization of JBS, suggesting new elements of the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Gregorio Serra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Luigi Memo
- Clinical Genetics Outpatient Service, Neonatology and Neonatal Intensive Care Unit, San Bortolo Hospital, Vicenza, Italy
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Favero
- Neonatal Intensive Care Unit, Ca' Foncello Hospital, Treviso, Italy
| | - Paola Lago
- Neonatal Intensive Care Unit, Ca' Foncello Hospital, Treviso, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
14
|
Inherited Platelet Disorders: An Updated Overview. Int J Mol Sci 2021; 22:ijms22094521. [PMID: 33926054 PMCID: PMC8123627 DOI: 10.3390/ijms22094521] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets play a major role in hemostasis as ppwell as in many other physiological and pathological processes. Accordingly, production of about 1011 platelet per day as well as appropriate survival and functions are life essential events. Inherited platelet disorders (IPDs), affecting either platelet count or platelet functions, comprise a heterogenous group of about sixty rare diseases caused by molecular anomalies in many culprit genes. Their clinical relevance is highly variable according to the specific disease and even within the same type, ranging from almost negligible to life-threatening. Mucocutaneous bleeding diathesis (epistaxis, gum bleeding, purpura, menorrhagia), but also multisystemic disorders and/or malignancy comprise the clinical spectrum of IPDs. The early and accurate diagnosis of IPDs and a close patient medical follow-up is of great importance. A genotype-phenotype relationship in many IPDs makes a molecular diagnosis especially relevant to proper clinical management. Genetic diagnosis of IPDs has been greatly facilitated by the introduction of high throughput sequencing (HTS) techniques into mainstream investigation practice in these diseases. However, there are still unsolved ethical concerns on general genetic investigations. Patients should be informed and comprehend the potential implications of their genetic analysis. Unlike the progress in diagnosis, there have been no major advances in the clinical management of IPDs. Educational and preventive measures, few hemostatic drugs, platelet transfusions, thrombopoietin receptor agonists, and in life-threatening IPDs, allogeneic hematopoietic stem cell transplantation are therapeutic possibilities. Gene therapy may be a future option. Regular follow-up by a specialized hematology service with multidisciplinary support especially for syndromic IPDs is mandatory.
Collapse
|
15
|
Learning the Ropes of Platelet Count Regulation: Inherited Thrombocytopenias. J Clin Med 2021; 10:jcm10030533. [PMID: 33540538 PMCID: PMC7867147 DOI: 10.3390/jcm10030533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Inherited thrombocytopenias (IT) are a group of hereditary disorders characterized by a reduced platelet count sometimes associated with abnormal platelet function, which can lead to bleeding but also to syndromic manifestations and predispositions to other disorders. Currently at least 41 disorders caused by mutations in 42 different genes have been described. The pathogenic mechanisms of many forms of IT have been identified as well as the gene variants implicated in megakaryocyte maturation or platelet formation and clearance, while for several of them the pathogenic mechanism is still unknown. A range of therapeutic approaches are now available to improve survival and quality of life of patients with IT; it is thus important to recognize an IT and establish a precise diagnosis. ITs may be difficult to diagnose and an initial accurate clinical evaluation is mandatory. A combination of clinical and traditional laboratory approaches together with advanced sequencing techniques provide the highest rate of diagnostic success. Despite advancement in the diagnosis of IT, around 50% of patients still do not receive a diagnosis, therefore further research in the field of ITs is warranted to further improve patient care.
Collapse
|
16
|
Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev 2020; 48:100784. [PMID: 33317862 DOI: 10.1016/j.blre.2020.100784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
The great advances in the knowledge of inherited thrombocytopenias (ITs) made since the turn of the century have significantly changed our view of these conditions. To date, ITs encompass 45 disorders with different degrees of complexity of the clinical picture and very wide variability in the prognosis. They include forms characterized by thrombocytopenia alone, forms that present with other congenital defects, and conditions that predispose to acquire additional diseases over the course of life. In this review, we recapitulate the clinical features of ITs with emphasis on the forms predisposing to additional diseases. We then discuss the key issues for a rational approach to the diagnosis of ITs in clinical practice. Finally, we aim to provide an updated and comprehensive guide to the treatment of ITs, including the management of hemostatic challenges, the treatment of severe forms, and the approach to the manifestations that add to thrombocytopenia.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy.
| | | |
Collapse
|
17
|
Anzick S, Thurm A, Burkett S, Velez D, Cho E, Chlebowski C, Virtaneva K, Bruno D, Martin CB, Lang DM, Brooks B, Martens C, McDermott DH, Murphy PM. Chromoanasynthesis as a cause of Jacobsen syndrome. Am J Med Genet A 2020; 182:2533-2539. [PMID: 32841469 PMCID: PMC11007684 DOI: 10.1002/ajmg.a.61824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 01/02/2023]
Abstract
Jacobsen syndrome (MIM #147791) is a rare multisystem genomic disorder involving craniofacial abnormalities, intellectual disability, other neurodevelopmental defects, and terminal truncation of chromosome 11q, typically deleting ~170 to >340 genes. We describe the first case of Jacobsen syndrome caused by congenital chromoanasynthesis, an extreme form of complex chromosomal rearrangement. Six duplications and five deletions occurred on one copy of chromosome 11q with microhomology signatures in the breakpoint junctions, indicating an all-at-once replication-based rearrangement mechanism in a gametocyte or early post-zygotic cell. Eighteen genes were deleted from the Jacobsen region, including KIRREL3, which is associated with intellectual disability.
Collapse
Affiliation(s)
- Sarah Anzick
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Audrey Thurm
- National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | | | - Daniel Velez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Elena Cho
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Colby Chlebowski
- National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Kimmo Virtaneva
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Daniel Bruno
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Clare B. Martin
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - David M. Lang
- Warren Grant Magnuson Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Brian Brooks
- National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Craig Martens
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Almazni I, Stapley RJ, Khan AO, Morgan NV. A comprehensive bioinformatic analysis of 126 patients with an inherited platelet disorder to identify both sequence and copy number genetic variants. Hum Mutat 2020; 41:1848-1865. [PMID: 32935436 DOI: 10.1002/humu.24114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022]
Abstract
Inherited bleeding disorders (IBDs) comprise an extremely heterogeneous group of diseases that reflect abnormalities of blood vessels, coagulation proteins, and platelets. Previously the UK-GAPP study has used whole-exome sequencing in combination with deep platelet phenotyping to identify pathogenic genetic variants in both known and novel genes in approximately 40% of the patients. To interrogate the remaining "unknown" cohort and improve this detection rate, we employed an IBD-specific gene panel of 119 genes using the Congenica Clinical Interpretation Platform to detect both single-nucleotide variants and copy number variants in 126 patients. In total, 135 different heterozygous variants in genes implicated in bleeding disorders were identified. Of which, 22 were classified pathogenic, 26 likely pathogenic, and the remaining were of uncertain significance. There were marked differences in the number of reported variants in individuals between the four patient groups: platelet count (35), platelet function (43), combined platelet count and function (59), and normal count (17). Additionally, we report three novel copy number variations (CNVs) not previously detected. We show that a combined single-nucleotide variation (SNV)/CNV analysis using the Congenica platform not only improves detection rates for IBDs, suggesting that such an approach can be applied to other genetic disorders where there is a high degree of heterogeneity.
Collapse
Affiliation(s)
- Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachel J Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Fisher MH, Kirkpatrick GD, Stevens B, Jones C, Callaghan M, Rajpurkar M, Fulbright J, Cooper MA, Rowley J, Porter CC, Gutierrez-Hartmann A, Jones K, Jordan C, Pietras EM, Di Paola J. ETV6 germline mutations cause HDAC3/NCOR2 mislocalization and upregulation of interferon response genes. JCI Insight 2020; 5:140332. [PMID: 32841218 PMCID: PMC7526537 DOI: 10.1172/jci.insight.140332] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
ETV6 is an ETS family transcription factor that plays a key role in hematopoiesis and megakaryocyte development. Our group and others have identified germline mutations in ETV6 resulting in autosomal dominant thrombocytopenia and predisposition to malignancy; however, molecular mechanisms defining the role of ETV6 in megakaryocyte development have not been well established. Using a combination of molecular, biochemical, and sequencing approaches in patient-derived PBMCs, we demonstrate abnormal cytoplasmic localization of ETV6 and the HDAC3/NCOR2 repressor complex that led to overexpression of HDAC3-regulated interferon response genes. This transcriptional dysregulation was also reflected in patient-derived platelet transcripts and drove aberrant proplatelet formation in megakaryocytes. Our results suggest that aberrant transcription may predispose patients with ETV6 mutations to bone marrow inflammation, dysplasia, and megakaryocyte dysfunction.
Collapse
Affiliation(s)
- Marlie H. Fisher
- Molecular Biology Graduate Program
- Medical Scientist Training Program, and
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory D. Kirkpatrick
- Medical Scientist Training Program, and
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brett Stevens
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Courtney Jones
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Callaghan
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, Michigan, USA
| | - Madhvi Rajpurkar
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, Michigan, USA
| | - Joy Fulbright
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Megan A. Cooper
- Department of Pediatrics, Washington University at St. Louis, St. Louis, Missouri, USA
| | - Jesse Rowley
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Christopher C. Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arthur Gutierrez-Hartmann
- Molecular Biology Graduate Program
- Department of Internal Medicine and
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenneth Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Craig Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric M. Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jorge Di Paola
- Department of Pediatrics, Washington University at St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Abstract
We and others recently described families with germline heterozygote mutations in ETV6 leading to autosomal dominant highly penetrant thrombocytopenia, red cell macrocytosis and predisposition to leukemia.The bone marrow of affected individuals shows erythroid dysplasia and hyperplasia of small, hypolobulated immature megakaryocytes suggesting a differentiation arrest. This discovery led to subsequent studies that confirmed our findings and to additional larger studies that demonstrated a 1% frequency of germline ETV6 mutations among 4405 individuals with acute lymphoblastic leukemia. Additionally, a 4.5% prevalence of ETV6 germline mutations was reported in families with inherited thrombocytopenia. Preliminary data suggest that decreased ETV6 function leads to MK maturation arrest, impaired platelet production and differentially expressed platelet transcripts among individuals affected with ETV6 mutations when compared to control relatives. Additionally, individuals with some ETV6 mutation exhibit bleeding that appears disproportionate to the mildly reduced platelet count, suggesting a platelet function deficit. Furthermore, recent studies describe decreased ability of platelets from individuals with ETV6 mutations to spread on fibrinogen covered surfaces. Overall, ETV6 germline mutations represent a new cancer predisposition thrombocytopenia with platelet dysfunction.
Collapse
Affiliation(s)
- Jorge Di Paola
- Department of Pediatrics, Washington University School of Medicine in St. Louis , St. Louis, Missouri, USA
| | - Marlie H Fisher
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus , Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado Anschutz Medical Campus , Aurora, Colorado, USA
| |
Collapse
|
21
|
Asnafi AA, Mohammadi MB, Rezaeeyan H, Davari N, Saki N. Prognostic significance of mutated genes in megakaryocytic disorders. Oncol Rev 2019; 13:408. [PMID: 31410247 PMCID: PMC6661530 DOI: 10.4081/oncol.2019.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/28/2019] [Indexed: 01/19/2023] Open
Abstract
Megakaryopoiesis is a process during which platelets that play a major role in hemostasis are produced due to differentiation and maturation of megakaryocytic precursors. Several genes, including oncogenes and tumor suppressor genes, play a role in the regulation of this process. This study was conducted to investigate the oncogenes and tumor suppressor genes as well as their mutations during the megakaryopoiesis process, which can lead to megakaryocytic disorders. Relevant literature was identified by a PubMed search (1998-2019) of English language papers using the terms ‘Megakaryopoiesis’, ‘Mutation’, ‘oncogenes’, and ‘Tumor Suppressor’. According to investigations, several mutations occur in the genes implicated in megakaryopoiesis, which abnormally induce or inhibit megakaryocyte production, differentiation, and maturation, leading to platelet disorders. GATA-1 is one of the important genes in megakaryopoiesis and its mutations can be considered among the factors involved in the incidence of these disorders. Considering the essential role of these genes (such as GATA- 1) in megakaryopoiesis and the involvement of their mutations in platelet disorders, study and examination of these changes can be a positive step in the diagnosis and prognosis of these diseases.
Collapse
Affiliation(s)
- Ali Amin Asnafi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Bagher Mohammadi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Shared roles for Scl and Lyl1 in murine platelet production and function. Blood 2019; 134:826-835. [PMID: 31300405 DOI: 10.1182/blood.2019896175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
The stem cell leukemia (Scl or Tal1) protein forms part of a multimeric transcription factor complex required for normal megakaryopoiesis. However, unlike other members of this complex such as Gata1, Fli1, and Runx1, mutations of Scl have not been observed as a cause of inherited thrombocytopenia. We postulated that functional redundancy with its closely related family member, lymphoblastic leukemia 1 (Lyl1) might explain this observation. To determine whether Lyl1 can substitute for Scl in megakaryopoiesis, we examined the platelet phenotype of mice lacking 1 or both factors in megakaryocytes. Conditional Scl knockout (KO) mice crossed with transgenic mice expressing Cre recombinase under the control of the mouse platelet factor 4 (Pf4) promoter generated megakaryocytes with markedly reduced but not absent Scl These Pf4Sclc-KO mice had mild thrombocytopenia and subtle defects in platelet aggregation. However, Pf4Sclc-KO mice generated on an Lyl1-null background (double knockout [DKO] mice) had severe macrothrombocytopenia, abnormal megakaryocyte morphology, defective pro-platelet formation, and markedly impaired platelet aggregation. DKO megakaryocytes, but not single-knockout megakaryocytes, had reduced expression of Gata1, Fli1, Nfe2, and many other genes that cause inherited thrombocytopenia. These gene expression changes were significantly associated with shared Scl and Lyl1 E-box binding sites that were also enriched for Gata1, Ets, and Runx1 motifs. Thus, Scl and Lyl1 share functional roles in platelet production by regulating expression of partner proteins including Gata1. We propose that this functional redundancy provides one explanation for the absence of Scl and Lyl1 mutations in inherited thrombocytopenia.
Collapse
|
23
|
Galera P, Dulau-Florea A, Calvo KR. Inherited thrombocytopenia and platelet disorders with germline predisposition to myeloid neoplasia. Int J Lab Hematol 2019; 41 Suppl 1:131-141. [PMID: 31069978 DOI: 10.1111/ijlh.12999] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Advances in molecular genetic sequencing techniques have contributed to the elucidation of previously unknown germline mutations responsible for inherited thrombocytopenia (IT). Regardless of age of presentation and severity of symptoms related to thrombocytopenia and/or platelet dysfunction, a subset of patients with IT are at increased risk of developing myeloid neoplasms during their life time, particularly those with germline autosomal dominant mutations in RUNX1, ANKRD26, and ETV6. Patients may present with isolated thrombocytopenia and megakaryocytic dysmorphia or atypia on baseline bone marrow evaluation, without constituting myelodysplasia (MDS). Bone marrow features may overlap with idiopathic thrombocytopenic purpura (ITP) or sporadic MDS leading to misdiagnosis. Progression to myelodysplastic syndrome/ acute myeloid leukemia (MDS/AML) may be accompanied by progressive bi- or pancytopenia, multilineage dysplasia, increased blasts, cytogenetic abnormalities, acquisition of bi-allelic mutations in the underlying gene with germline mutation, or additional somatic mutations in genes associated with myeloid malignancy. A subset of patients may present with MDS/AML at a young age, underscoring the growing concern for evaluating young patients with MDS/AML for germline mutations predisposing to myeloid neoplasm. Early recognition of germline mutation and predisposition to myeloid malignancy permits appropriate treatment, adequate monitoring for disease progression, proper donor selection for hematopoietic stem cell transplantation, as well as genetic counseling of the affected patients and their family members. Herein, we describe the clinical and diagnostic features of IT with germline mutations predisposing to myeloid neoplasms focusing on mutations involving RUNX1, ANKRD26, and ETV6.
Collapse
Affiliation(s)
- Pallavi Galera
- Department of Laboratory Medicine, Hematology Section, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland
| | - Alina Dulau-Florea
- Department of Laboratory Medicine, Hematology Section, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland
| | - Katherine R Calvo
- Department of Laboratory Medicine, Hematology Section, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
24
|
Almazni I, Stapley R, Morgan NV. Inherited Thrombocytopenia: Update on Genes and Genetic Variants Which may be Associated With Bleeding. Front Cardiovasc Med 2019; 6:80. [PMID: 31275945 PMCID: PMC6593073 DOI: 10.3389/fcvm.2019.00080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Inherited thrombocytopenia (IT) is comprised of a group of hereditary disorders characterized by a reduced platelet count as the main feature, and often with abnormal platelet function, which can subsequently lead to impaired haemostasis. Inherited thrombocytopenia results from genetic mutations in genes implicated in megakaryocyte differentiation and/or platelet formation and clearance. The identification of the underlying causative gene of IT is challenging given the high degree of heterogeneity, but important due to the presence of various clinical presentations and prognosis, where some defects can lead to hematological malignancies. Traditional platelet function tests, clinical manifestations, and hematological parameters allow for an initial diagnosis. However, employing Next-Generation Sequencing (NGS), such as Whole Genome and Whole Exome Sequencing (WES) can be an efficient method for discovering causal genetic variants in both known and novel genes not previously implicated in IT. To date, 40 genes and their mutations have been implicated to cause many different forms of inherited thrombocytopenia. Nevertheless, despite this advancement in the diagnosis of IT, the molecular mechanism underlying IT in some patients remains unexplained. In this review, we will discuss the genetics of thrombocytopenia summarizing the recent advancement in investigation and diagnosis of IT using phenotypic approaches, high-throughput sequencing, targeted gene panels, and bioinformatics tools.
Collapse
Affiliation(s)
- Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
25
|
Conrad S, Demurger F, Moradkhani K, Pichon O, Le Caignec C, Pascal C, Thomas C, Bayart S, Perlat A, Dubourg C, Jaillard S, Nizon M. 11q24.2q24.3 microdeletion in two families presenting features of Jacobsen syndrome, without intellectual disability: Role of FLI1, ETS1, and SENCR long noncoding RNA. Am J Med Genet A 2019; 179:993-1000. [PMID: 30888095 DOI: 10.1002/ajmg.a.61113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
This report presents two families with interstitial 11q24.2q24.3 deletion, associated with malformations, hematologic features, and typical facial dysmorphism, observed in Jacobsen syndrome (JS), except for intellectual disability (ID). The smallest 700 Kb deletion contains only two genes: FLI1 and ETS1, and a long noncoding RNA, SENCR, narrowing the minimal critical region for some features of JS. Consistent with recent literature, it adds supplemental data to confirm the crucial role of FLI1 and ETS1 in JS, namely FLI1 in thrombocytopenia and ETS1 in cardiopathy and immune deficiency. It also supports that combined ETS1 and FLI1 haploinsufficiency explains dysmorphic features, notably ears, and nose anomalies. Moreover, it raises the possibility that SENCR, a long noncoding RNA, could be responsible for limb defects, because of its early role in endothelial cell commitment and function. Considering ID and autism spectrum disorder, which are some of the main features of JS, a participation of ETS1, FLI1, or SENCR cannot be excluded. But, considering the normal neurodevelopment of our patients, their role would be either minor or with an important variability in penetrance. Furthermore, according to literature, ARHGAP32 and KIRREL3 seem to be the strongest candidate genes in the 11q24 region for other Jacobsen patients.
Collapse
Affiliation(s)
| | | | | | | | - Cédric Le Caignec
- Service de Génétique Médicale, CHU Nantes, France.,INSERM, CNRS, UNIV Nantes, l'Institut du Thorax, Nantes, France
| | - Cécile Pascal
- Service de Cardiologie pédiatrique et fœtale, Hôpital privé du Confluent, Nantes, France
| | | | - Sophie Bayart
- Centre de traitement des maladies hémorragiques, CHU Rennes, France
| | - Antoinette Perlat
- Service de Médecine Interne-Immunologie Clinique, CHU de Rennes, France
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, CHU Rennes, France.,Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), UMR 6290, Rennes, France
| | - Sylvie Jaillard
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France.,INSERM U1085-IRSET, Université de Rennes 1, Rennes, France
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, France.,INSERM, CNRS, UNIV Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
26
|
|
27
|
|
28
|
Lambert MP, Poncz M. Inherited Thrombocytopenias. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Song J, Yuan C, Yang J, Liu T, Yao Y, Xiao X, Gajendran B, Xu D, Li Y, Wang C, Liu W, Wen M, Spaner D, Filmus J, Zacksenhaus E, Zhang Y, Hao X, Ben‐David Y. Novel flavagline‐like compounds with potent Fli‐1 inhibitory activity suppress diverse types of leukemia. FEBS J 2018; 285:4631-4645. [PMID: 30387554 DOI: 10.1111/febs.14690] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jialei Song
- The Laboratory of Cell Biochemistry and Topogenic Regulation College of Bioengineering and Faculty of Sciences Chongqing University China
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Chunmao Yuan
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Jue Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Tangjingjun Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Yao Yao
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Dahai Xu
- Department of Anatomy Norman Bethune College of Medicine Jilin University Changchun China
| | - You‐Jun Li
- Department of Anatomy Norman Bethune College of Medicine Jilin University Changchun China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Min Wen
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - David Spaner
- Biology Platform Sunnybrook Research Institute Toronto Canada
| | - Jorge Filmus
- Biology Platform Sunnybrook Research Institute Toronto Canada
| | - Eldad Zacksenhaus
- Department of Medicine University of Toronto Canada
- Division of Advanced Diagnostics Toronto General Research Institute University Health Network Toronto Canada
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenic Regulation College of Bioengineering and Faculty of Sciences Chongqing University China
| | - Xiaojiang Hao
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Yaacov Ben‐David
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| |
Collapse
|
30
|
Fisher MH, Di Paola J. Genomics and transcriptomics of megakaryocytes and platelets: Implications for health and disease. Res Pract Thromb Haemost 2018; 2:630-639. [PMID: 30349880 PMCID: PMC6178711 DOI: 10.1002/rth2.12129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/03/2018] [Indexed: 01/07/2023] Open
Abstract
The field of megakaryocyte and platelet biology has been transformed with the implementation of high throughput sequencing. The use of modern sequencing technologies has led to the discovery of causative mutations in congenital platelet disorders and has been a useful tool in uncovering many other mechanisms of altered platelet formation and function. Although the understanding of the presence of RNA in platelets is relatively novel, mRNA and miRNA expression profiles are being shown to play an increasingly important role in megakaryopoiesis and platelet function in normal physiology as well as in disease states. Understanding the genetic perturbations underlying platelet dysfunction provides insight into normal megakaryopoiesis and thrombopoiesis, as well as guiding the development of novel therapeutics.
Collapse
Affiliation(s)
- Marlie H. Fisher
- Department of PediatricsUniversity of Colorado School of MedicineAuroraColorado
- Medical Scientist Training ProgramUniversity of Colorado School of MedicineAuroraColorado
| | - Jorge Di Paola
- Department of PediatricsUniversity of Colorado School of MedicineAuroraColorado
- Medical Scientist Training ProgramUniversity of Colorado School of MedicineAuroraColorado
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Platelets are small, anucleate cells that circulate within the blood and play essential roles in preserving vascular integrity. However, abnormalities in either platelet production or destruction can result in thrombocytopenia, clinically defined by a platelet count lower than 150 000/μL of whole blood. Thrombocytopenia is frequently associated with impaired hemostatic responses to vascular injury and can be life-threatening because of bleeding complications. Megakaryocytes are the precursor cells responsible for platelet production, a process commonly referred to as thrombopoiesis. This review specifically discusses how perturbation of molecular mechanisms governing megakaryocyte differentiation and development manifest in various forms of thrombocytopenia. RECENT FINDINGS This review highlights the identification of novel transcriptional regulators of megakaryocyte maturation and platelet production. We also provide an update into the essential role of cytoskeletal regulation in thrombopoiesis, and how both megakaryopoiesis and platelet production are altered by anticancer therapeutics. Lastly, we focus on recent investigative approaches to treat thrombocytopenia and discuss future prospects in the field of megakaryocyte research. SUMMARY In patients where thrombocytopenia is not due to heightened platelet destruction or clearance, defects in megakaryocyte development should be considered.
Collapse
Affiliation(s)
- Harvey G Roweth
- Division of Hematology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Harvard Institutes of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
32
|
Abstract
Mucocutaneous bleeding symptoms and/or persistent thrombocytopenia occur in individuals with congenital disorders of platelet function and number. Apart from bleeding, these disorders are often associated with additional hematologic and clinical manifestations, including auditory, immunologic, and oncologic disease. Autosomal recessive, dominant, and X-linked inheritance patterns have been demonstrated. Precise delineation of the molecular cause of the platelet disorder can aid the pediatrician in the detection and prevention of specific disorder-associated manifestations and guide appropriate treatment and anticipatory care for the patient and family.
Collapse
Affiliation(s)
- Ruchika Sharma
- BloodCenter of Wisconsin, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | - Shawn M Jobe
- Blood Center of Wisconsin, Blood Research Institute, Medical College of Wisconsin, 8733 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
33
|
Balduini A, Raslova H, Di Buduo CA, Donada A, Ballmaier M, Germeshausen M, Balduini CL. Clinic, pathogenic mechanisms and drug testing of two inherited thrombocytopenias, ANKRD26-related Thrombocytopenia and MYH9-related diseases. Eur J Med Genet 2018; 61:715-722. [PMID: 29545013 DOI: 10.1016/j.ejmg.2018.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/08/2018] [Accepted: 01/27/2018] [Indexed: 12/21/2022]
Abstract
Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet count resulting in impaired hemostasis. Patients can have spontaneous hemorrhages and/or excessive bleedings provoked by hemostatic challenges as trauma or surgery. To date, ITs encompass 32 different rare monogenic disorders caused by mutations of 30 genes. This review will focus on the major discoveries that have been made in the last years on the diagnosis, treatment and molecular mechanisms of ANKRD26-Related Thrombocytopenia and MYH9-Related Diseases. Furthermore, we will discuss the use a Thrombopoietin mimetic as a novel approach to treat the thrombocytopenia in these patients. We will propose the use of a new 3D bone marrow model to study the mechanisms of action of these drugs and to test their efficacy and safety in patients. The overall purpose of this review is to point out that important progresses have been made in understanding the pathogenesis of ANKRD26-Related Thrombocytopenia and MYH9-Related Diseases and new therapeutic approaches have been proposed and tested. Future advancement in this research will rely in the development of more physiological models to study the regulation of human platelet biogenesis, disease mechanisms and specific pharmacologic targets.
Collapse
Affiliation(s)
- Alessandra Balduini
- University of Pavia, Pavia, Italy; IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | - Hana Raslova
- INSERM UMR 1170, Gustave Roussy Cancer Campus, Université Paris-Saclay, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | - Christian A Di Buduo
- University of Pavia, Pavia, Italy; IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandro Donada
- INSERM UMR 1170, Gustave Roussy Cancer Campus, Université Paris-Saclay, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | | | | | - Carlo L Balduini
- University of Pavia, Pavia, Italy; IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| |
Collapse
|
34
|
|
35
|
Ichimiya Y, Wada Y, Kunishima S, Tsukamoto K, Kosaki R, Sago H, Ishiguro A, Ito Y. 11q23 deletion syndrome (Jacobsen syndrome) with severe bleeding: a case report. J Med Case Rep 2018; 12:3. [PMID: 29307309 PMCID: PMC5757304 DOI: 10.1186/s13256-017-1535-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/30/2017] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND 11q23 deletion syndrome, also known as Jacobsen syndrome, is characterized by growth retardation, psychomotor retardation, facial dysmorphism, multiple congenital abnormalities, and thrombocytopenia. In 11q23 deletion syndrome, it is often difficult to anticipate the severity of bleeding. We report a neonatal case of 11q23 deletion syndrome with bleeding that was more severe than predicted by the platelet count. CASE PRESENTATION We report a case of 11q23 deletion syndrome in an Asian male newborn with severe bleeding just after birth. The diagnosis of 11q23 deletion syndrome was made prenatally by amniocentesis. An array comparative genomic hybridization analysis revealed a deletion of the 13.0 Mb regions ranging from 11q24.1 to the q terminus encoding FLI1. Our patient was delivered by cesarean section and exhibited skull deformities, facial asymmetry, low-set ears, inguinal hernia, flat feet, and crowded toes. He had a low platelet count (45,000/μL) and a coagulation abnormality with a prothrombin time-international normalized ratio of 1.92 and an activated partial thromboplastin time of 158.6 seconds. Bleeding at the site of a peripheral vessel puncture was more severe than expected with thrombocytopenia. The peripheral blood featured two different sizes of platelets containing large α-granules. As a result, he required eight platelet transfusions and two fresh frozen plasma transfusions within 13 days of birth. Massive bleeding was avoided, and cerebral magnetic resonance imaging indicated the occurrence of only petechial hemorrhage. CONCLUSIONS Our patient with 11q deletion including FLI1 avoided massive bleeding and serious sequelae because of careful management after prenatal diagnosis. We suggest that prenatal diagnosis and vigilant perinatal care including a cesarean section are warranted for patients with 11q23 deletion syndrome.
Collapse
Affiliation(s)
- Yuko Ichimiya
- Division of Neonatology, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582 Japan
| | - Yuka Wada
- Division of Neonatology, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Shinji Kunishima
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keiko Tsukamoto
- Division of Neonatology, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Haruhiko Sago
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Akira Ishiguro
- Division of Hematology, National Center for Child Health and Development, Tokyo, Japan
| | - Yushi Ito
- Division of Neonatology, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
36
|
Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:385-399. [PMID: 29222283 PMCID: PMC6142591 DOI: 10.1182/asheducation-2017.1.385] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The introduction of high throughput sequencing (HTS) techniques greatly improved the knowledge of inherited thrombocytopenias (ITs) over the last few years. A total of 33 different forms caused by molecular defects affecting at least 32 genes have been identified; along with the discovery of new disease-causing genes, pathogenetic mechanisms of thrombocytopenia have been better elucidated. Although the clinical picture of ITs is heterogeneous, bleeding has been long considered the major clinical problem for patients with IT. Conversely, the current scenario indicates that patients with some of the most common ITs are at risk of developing additional disorders more dangerous than thrombocytopenia itself during life. In particular, MYH9 mutations result in congenital macrothrombocytopenia and predispose to kidney failure, hearing loss, and cataracts, MPL and MECOM mutations cause congenital thrombocytopenia evolving into bone marrow failure, whereas thrombocytopenias caused by RUNX1, ANKRD26, and ETV6 mutations are characterized by predisposition to hematological malignancies. Making a definite diagnosis of these forms is crucial to provide patients with the most appropriate treatment, follow-up, and counseling. In this review, the ITs known to date are discussed, with specific attention focused on clinical presentations and diagnostic criteria for ITs predisposing to additional illnesses. The currently available therapeutic options for the different forms of IT are illustrated.
Collapse
Affiliation(s)
- Patrizia Noris
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| |
Collapse
|
37
|
Nava T, Rivard GE, Bonnefoy A. Challenges on the diagnostic approach of inherited platelet function disorders: Is a paradigm change necessary? Platelets 2017; 29:148-155. [PMID: 29090587 DOI: 10.1080/09537104.2017.1356918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inherited platelet function disorders (IPFD) have been assessed for more than 50 years by aggregation- and secretion-based tests. Several decision trees are available intending to standardize the investigation of IPFD. A large variability of approaches is still in use among the laboratories across the world. In spite of costly and lengthy laboratory evaluation, the results have been found inconclusive or negative in a significant part of patients having bleeding manifestations. Molecular investigation of newly identified IPFD has recently contributed to a better understanding of the complexity of platelet function. Once considered "classic" IPFDs, Glanzmann thrombasthenia and Bernard-Soulier syndrome have each had their pathophysiology reassessed and their diagnosis made more precise and informative. Megakaryopoiesis, platelet formation, and function have been found tightly interlinked, with several genes being involved in both inherited thrombocytopenias and impaired platelet function. Moreover, genetic approaches have moved from being used as confirmatory diagnostic tests to being tools for identification of genetic variants associated with bleeding disorders, even in the absence of a clear phenotype in functional testing. In this study, we aim to address some limits of the conventional tests used for the diagnosis of IPFD, and to highlight the potential contribution of recent molecular tools and opportunities to rethink the way we should approach the investigation of IPFD.
Collapse
Affiliation(s)
- Tiago Nava
- a Centre Hospitalier Universitaire Sainte-Justine , Hematology and Oncology Division , Montréal , QC , Canada.,b Child and Adolescent Health, School of Medicine , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil
| | - Georges-Etienne Rivard
- a Centre Hospitalier Universitaire Sainte-Justine , Hematology and Oncology Division , Montréal , QC , Canada
| | - Arnaud Bonnefoy
- a Centre Hospitalier Universitaire Sainte-Justine , Hematology and Oncology Division , Montréal , QC , Canada
| |
Collapse
|
38
|
Rabbolini DJ, Morel-Kopp MC, Chen Q, Gabrielli S, Dunlop LC, Chew LP, Blair N, Brighton TA, Singh N, Ng AP, Ward CM, Stevenson WS. Thrombocytopenia and CD34 expression is decoupled from α-granule deficiency with mutation of the first growth factor-independent 1B zinc finger. J Thromb Haemost 2017; 15:2245-2258. [PMID: 28880435 DOI: 10.1111/jth.13843] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 01/23/2023]
Abstract
Essentials The phenotypes of different growth factor-independent 1B (GFI1B) variants are not established. GFI1B variants produce heterogeneous clinical phenotypes dependent on the site of mutation. Mutation of the first non-DNA-binding zinc-finger causes a mild platelet and clinical phenotype. GFI1B regulates the CD34 promoter; platelet CD34 expression is an indicator of GFI1B mutation. SUMMARY Background Mutation of the growth factor-independent 1B (GFI1B) fifth DNA-binding zinc-finger domain causes macrothrombocytopenia and α-granule deficiency leading to clinical bleeding. The phenotypes associated with GFI1B variants disrupting non-DNA-binding zinc-fingers remain uncharacterized. Objectives To determine the functional and phenotypic consequences of GFI1B variants disrupting non-DNA-binding zinc-finger domains. Methods The GFI1B C168F variant and a novel GFI1B c.2520 + 1_2520 + 8delGTGGGCAC splice variant were identified in four unrelated families. Phenotypic features, DNA-binding properties and transcriptional effects were determined and compared with those in individuals with a GFI1B H294 fs mutation of the fifth DNA-binding zinc-finger. Patient-specific induced pluripotent stem cell (iPSC)-derived megakaryocytes were generated to facilitate disease modeling. Results The DNA-binding GFI1B variant C168F, which is predicted to disrupt the first non-DNA-binding zinc-finger domain, is associated with macrothrombocytopenia without α-granule deficiency or bleeding symptoms. A GFI1B splice variant, c.2520 + 1_2520 + 8delGTGGGCAC, which generates a short GFI1B isoform that lacks non-DNA-binding zinc-fingers 1 and 2, is associated with increased platelet CD34 expression only, without quantitative or morphologic platelet abnormalities. GFI1B represses the CD34 promoter, and this repression is attenuated by different GFI1B zinc-finger mutations, suggesting that deregulation of CD34 expression occurs at a direct transcriptional level. Patient-specific iPSC-derived megakaryocytes phenocopy these observations. Conclusions Disruption of GFI1B non-DNA-binding zinc-finger 1 is associated with mild to moderate thrombocytopenia without α-granule deficiency or bleeding symptomatology, indicating that the site of GFI1B mutation has important phenotypic implications. Platelet CD34 expression appears to be a common feature of perturbed GFI1B function, and may have diagnostic utility.
Collapse
Affiliation(s)
- D J Rabbolini
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - M-C Morel-Kopp
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Q Chen
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - S Gabrielli
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - L C Dunlop
- Department of Haematology, Liverpool Hospital, Sydney, Australia
| | - L P Chew
- Department of Haematology, Sarawak General Hospital, Sarawak, Malaysia
| | - N Blair
- Department of Neurogenetics, The Royal North Shore Hospital, Sydney, Australia
| | - T A Brighton
- Department of Haematology, Prince of Wales Hospital, Sydney, Australia
| | - N Singh
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| | - A P Ng
- Department of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - C M Ward
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - W S Stevenson
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| |
Collapse
|
39
|
Borst S, Sim X, Poncz M, French DL, Gadue P. Induced Pluripotent Stem Cell-Derived Megakaryocytes and Platelets for Disease Modeling and Future Clinical Applications. Arterioscler Thromb Vasc Biol 2017; 37:2007-2013. [PMID: 28982668 PMCID: PMC5675007 DOI: 10.1161/atvbaha.117.309197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022]
Abstract
Platelets, derived from megakaryocytes, are anucleate cytoplasmic discs that circulate in the blood stream and play major roles in hemostasis, inflammation, and vascular biology. Platelet transfusions are used in a variety of medical settings to prevent life-threatening thrombocytopenia because of cancer therapy, other causes of acquired or inherited thrombocytopenia, and trauma. Currently, platelets used for transfusion purposes are donor derived. However, there is a drive to generate nondonor sources of platelets to help supplement donor-derived platelets. Efforts have been made by many laboratories to generate in vitro platelets and optimize their production and quality. In vitro-derived platelets have the potential to be a safer, more uniform product, and genetic manipulation could allow for better treatment of patients who become refractory to donor-derived units. This review focuses on potential clinical applications of in vitro-derived megakaryocytes and platelets, current methods to generate and expand megakaryocytes from pluripotent stem cell sources, and the use of these cells for disease modeling.
Collapse
Affiliation(s)
- Sara Borst
- From the Department of Cell and Molecular Biology, Perelman School of Medicine (S.B., X.S.), Department of Pharmacology, Perelman School of Medicine (M.P.), and Department of Pathology and Laboratory Medicine (D.L.F., P.G.), University of Pennsylvania, Philadelphia; and Center for Cellular and Molecular Therapeutics (S.B., X.S., D.L.F., P.G.) and Division of Hematology (M.P.), Children's Hospital of Philadelphia, PA
| | - Xiuli Sim
- From the Department of Cell and Molecular Biology, Perelman School of Medicine (S.B., X.S.), Department of Pharmacology, Perelman School of Medicine (M.P.), and Department of Pathology and Laboratory Medicine (D.L.F., P.G.), University of Pennsylvania, Philadelphia; and Center for Cellular and Molecular Therapeutics (S.B., X.S., D.L.F., P.G.) and Division of Hematology (M.P.), Children's Hospital of Philadelphia, PA
| | - Mortimer Poncz
- From the Department of Cell and Molecular Biology, Perelman School of Medicine (S.B., X.S.), Department of Pharmacology, Perelman School of Medicine (M.P.), and Department of Pathology and Laboratory Medicine (D.L.F., P.G.), University of Pennsylvania, Philadelphia; and Center for Cellular and Molecular Therapeutics (S.B., X.S., D.L.F., P.G.) and Division of Hematology (M.P.), Children's Hospital of Philadelphia, PA
| | - Deborah L French
- From the Department of Cell and Molecular Biology, Perelman School of Medicine (S.B., X.S.), Department of Pharmacology, Perelman School of Medicine (M.P.), and Department of Pathology and Laboratory Medicine (D.L.F., P.G.), University of Pennsylvania, Philadelphia; and Center for Cellular and Molecular Therapeutics (S.B., X.S., D.L.F., P.G.) and Division of Hematology (M.P.), Children's Hospital of Philadelphia, PA
| | - Paul Gadue
- From the Department of Cell and Molecular Biology, Perelman School of Medicine (S.B., X.S.), Department of Pharmacology, Perelman School of Medicine (M.P.), and Department of Pathology and Laboratory Medicine (D.L.F., P.G.), University of Pennsylvania, Philadelphia; and Center for Cellular and Molecular Therapeutics (S.B., X.S., D.L.F., P.G.) and Division of Hematology (M.P.), Children's Hospital of Philadelphia, PA.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Inherited thrombocytopenias are a heterogeneous group of diseases caused by mutations in many genes. They account for approximately only 50% of cases, suggesting that novel genes have yet to be identified for a comprehensive understanding of platelet biogenesis defects. This review provides an update of the last year of discoveries on inherited thrombocytopenias focusing on the molecular basis and potential pathogenic mechanisms affecting megakaryopoiesis and platelet production. RECENT FINDINGS Most of the novel discoveries are related to identification of mutations in novel inherited thrombocytopenia genes using a next-generation sequencing approach. They include MECOM, DIAPH1, TRPM7, SRC, FYB, and SLFN14, playing different roles in megakaryopoiesis and platelet production. Moreover, it is worth mentioning data on hypomorphic mutations of FLI1 and the association of single nucleotide polymorphisms, such as that identified in ACTN1, with thrombocytopenia. SUMMARY Thanks to the application of next-generation sequencing, the number of inherited thrombocytopenia genes is going to increase rapidly. Considering the wide genetic heterogeneity (more than 30 genes), these technologies can also be used for diagnostic purpose. Whatever is the aim, extreme caution should be taken in interpreting data, as inherited thrombocytopenias are mainly autosomal dominant diseases caused by variants of apparent unknown significance.
Collapse
|
41
|
Freson K, Turro E. High-throughput sequencing approaches for diagnosing hereditary bleeding and platelet disorders. J Thromb Haemost 2017; 15:1262-1272. [PMID: 28671349 DOI: 10.1111/jth.13681] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hereditary bleeding and platelet disorders (BPDs) are characterized by marked genetic heterogeneity, far greater than previously appreciated. The list of genes involved in the regulation of megakaryopoiesis, platelet formation, platelet function and bleeding has been growing rapidly since the introduction of high-throughput sequencing (HTS) approaches in research. Thanks to the gradual adoption of HTS in diagnostic practice, these discoveries are improving the diagnostic yield for BPD patients, who may or may not present with bleeding problems and often have other clinical symptoms unrelated to the blood system. However, it was previously found that screening for all known etiologies gives a diagnostic yield of over 90% when the phenotype closely matches a known BPD but drops to 10% when the phenotype is indicative of a novel disorder. Thus, further research is needed to identify currently unknown etiologies for BPDs. Novel genes are likely to be found to be implicated in BPDs. New modes of inheritance, including digenic inheritance, are likely to play a role in some cases. Additionally, identifying and interpreting pathogenic variants outside exons is a looming challenge that can only be tackled with an improved understanding of the regulatory landscape of relevant cell types and with the transition from targeted sequencing to whole-genome sequencing in the clinic.
Collapse
Affiliation(s)
- K Freson
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - E Turro
- Department of Haematology and MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
FLI1 level during megakaryopoiesis affects thrombopoiesis and platelet biology. Blood 2017; 129:3486-3494. [PMID: 28432223 DOI: 10.1182/blood-2017-02-770958] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/14/2017] [Indexed: 12/17/2022] Open
Abstract
Friend leukemia virus integration 1 (FLI1), a critical transcription factor (TF) during megakaryocyte differentiation, is among genes hemizygously deleted in Jacobsen syndrome, resulting in a macrothrombocytopenia termed Paris-Trousseau syndrome (PTSx). Recently, heterozygote human FLI1 mutations have been ascribed to cause thrombocytopenia. We studied induced-pluripotent stem cell (iPSC)-derived megakaryocytes (iMegs) to better understand these clinical disorders, beginning with iPSCs generated from a patient with PTSx and iPSCs from a control line with a targeted heterozygous FLI1 knockout (FLI1+/-). PTSx and FLI1+/- iMegs replicate many of the described megakaryocyte/platelet features, including a decrease in iMeg yield and fewer platelets released per iMeg. Platelets released in vivo from infusion of these iMegs had poor half-lives and functionality. We noted that the closely linked E26 transformation-specific proto-oncogene 1 (ETS1) is overexpressed in these FLI1-deficient iMegs, suggesting FLI1 negatively regulates ETS1 in megakaryopoiesis. Finally, we examined whether FLI1 overexpression would affect megakaryopoiesis and thrombopoiesis. We found increased yield of noninjured, in vitro iMeg yield and increased in vivo yield, half-life, and functionality of released platelets. These studies confirm FLI1 heterozygosity results in pleiotropic defects similar to those noted with other critical megakaryocyte-specific TFs; however, unlike those TFs, FLI1 overexpression improved yield and functionality.
Collapse
|
43
|
Hematopoietic transcription factor mutations: important players in inherited platelet defects. Blood 2017; 129:2873-2881. [PMID: 28416505 DOI: 10.1182/blood-2016-11-709881] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/26/2017] [Indexed: 01/19/2023] Open
Abstract
Transcription factors (TFs) are proteins that bind to specific DNA sequences and regulate expression of genes. The molecular and genetic mechanisms in most patients with inherited platelet defects are unknown. There is now increasing evidence that mutations in hematopoietic TFs are an important underlying cause for defects in platelet production, morphology, and function. The hematopoietic TFs implicated in patients with impaired platelet function and number include runt-related transcription factor 1, Fli-1 proto-oncogene, E-twenty-six (ETS) transcription factor (friend leukemia integration 1), GATA-binding protein 1, growth factor independent 1B transcriptional repressor, ETS variant 6, ecotropic viral integration site 1, and homeobox A11. These TFs act in a combinatorial manner to bind sequence-specific DNA within promoter regions to regulate lineage-specific gene expression, either as activators or repressors. TF mutations induce rippling downstream effects by simultaneously altering the expression of multiple genes. Mutations involving these TFs affect diverse aspects of megakaryocyte biology, and platelet production and function, culminating in thrombocytopenia and platelet dysfunction. Some are associated with predisposition to hematologic malignancies. These TF variants may occur more frequently in patients with inherited platelet defects than generally appreciated. This review focuses on alterations in hematopoietic TFs in the pathobiology of inherited platelet defects.
Collapse
|
44
|
Saultier P, Vidal L, Canault M, Bernot D, Falaise C, Pouymayou C, Bordet JC, Saut N, Rostan A, Baccini V, Peiretti F, Favier M, Lucca P, Deleuze JF, Olaso R, Boland A, Morange PE, Gachet C, Malergue F, Fauré S, Eckly A, Trégouët DA, Poggi M, Alessi MC. Macrothrombocytopenia and dense granule deficiency associated with FLI1 variants: ultrastructural and pathogenic features. Haematologica 2017; 102:1006-1016. [PMID: 28255014 PMCID: PMC5451332 DOI: 10.3324/haematol.2016.153577] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/24/2017] [Indexed: 12/20/2022] Open
Abstract
Congenital macrothrombocytopenia is a family of rare diseases, of which a significant fraction remains to be genetically characterized. To analyze cases of unexplained thrombocytopenia, 27 individuals from a patient cohort of the Bleeding and Thrombosis Exploration Center of the University Hospital of Marseille were recruited for a high-throughput gene sequencing study. This strategy led to the identification of two novel FLI1 variants (c.1010G>A and c.1033A>G) responsible for macrothrombocytopenia. The FLI1 variant carriers’ platelets exhibited a defect in aggregation induced by low-dose adenosine diphosphate (ADP), collagen and thrombin receptor-activating peptide (TRAP), a defect in adenosine triphosphate (ATP) secretion, a reduced mepacrine uptake and release and a reduced CD63 expression upon TRAP stimulation. Precise ultrastructural analysis of platelet content was performed using transmission electron microscopy and focused ion beam scanning electron microscopy. Remarkably, dense granules were nearly absent in the carriers’ platelets, presumably due to a biogenesis defect. Additionally, 25–29% of the platelets displayed giant α-granules, while a smaller proportion displayed vacuoles (7–9%) and autophagosome-like structures (0–3%). In vitro study of megakaryocytes derived from circulating CD34+ cells of the carriers revealed a maturation defect and reduced proplatelet formation potential. The study of the FLI1 variants revealed a significant reduction in protein nuclear accumulation and transcriptional activity properties. Intraplatelet flow cytometry efficiently detected the biomarker MYH10 in FLI1 variant carriers. Overall, this study provides new insights into the phenotype, pathophysiology and diagnosis of FLI1 variant-associated thrombocytopenia.
Collapse
Affiliation(s)
- Paul Saultier
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Léa Vidal
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | | | - Denis Bernot
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Céline Falaise
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Catherine Pouymayou
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | | | - Noémie Saut
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Agathe Rostan
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Véronique Baccini
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | | | - Marie Favier
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Pauline Lucca
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France.,Inserm, UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, France
| | | | - Robert Olaso
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | - Pierre Emmanuel Morange
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Christian Gachet
- UMR_S949 INSERM, Strasbourg, France.,Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), France.,Université de Strasbourg, Marseille, France
| | - Fabrice Malergue
- Beckman Coulter Immunotech, Life Sciences Global Assay and Applications Development, Marseille, France
| | - Sixtine Fauré
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Anita Eckly
- UMR_S949 INSERM, Strasbourg, France.,Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), France.,Université de Strasbourg, Marseille, France
| | - David-Alexandre Trégouët
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France.,Inserm, UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, France
| | - Marjorie Poggi
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Marie-Christine Alessi
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| |
Collapse
|
45
|
Songdej N, Rao AK. Inherited platelet dysfunction and hematopoietic transcription factor mutations. Platelets 2017; 28:20-26. [PMID: 27463948 PMCID: PMC5628047 DOI: 10.1080/09537104.2016.1203400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 01/19/2023]
Abstract
Transcription factors (TFs) are proteins that bind to specific DNA sequences and regulate expression of genes. The molecular and genetic mechanisms in most patients with inherited platelet dysfunction are unknown. There is now increasing evidence that mutations in hematopoietic TFs are an important underlying cause for the defects in platelet production, morphology, and function. The hematopoietic TFs implicated in the patients with impaired platelet function include Runt related TF 1 (RUNX1), Fli-1 proto-oncogene, ETS TF (FLI1), GATA-binding protein 1 (GATA1), and growth factor independent 1B transcriptional repressor (GFI1B). These TFs act in a combinatorial manner to bind sequence-specific DNA within a promoter region to regulate lineage-specific gene expression, either as activators or as repressors. TF mutations induce rippling downstream effects by simultaneously altering the expression of multiple genes. Mutations involving these TFs affect diverse aspects of megakaryocyte biology and platelet production and function, culminating in thrombocytopenia, platelet dysfunction, and associated clinical features. Mutations in TFs may occur more frequently in the patients with inherited platelet dysfunction than generally appreciated. This review focuses on the alterations in hematopoietic TFs in the pathobiology of inherited platelet dysfunction.
Collapse
Affiliation(s)
- Natthapol Songdej
- a Sol Sherry Thrombosis Research Center, and Hematology Section, Department of Medicine , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| | - A Koneti Rao
- a Sol Sherry Thrombosis Research Center, and Hematology Section, Department of Medicine , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| |
Collapse
|
46
|
Watson SP, Daly ME, Harrison P, Lowe GC, Paterson A, Rivera J, Warner TD, Morgan NV. ISTH Advanced Training Course on platelet bleeding disorders: How should they be investigated? St. Anne's College, Oxford, 6-9th September 2016. Platelets 2016; 27:719-721. [PMID: 27841701 DOI: 10.1080/09537104.2016.1256726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Steve P Watson
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham , UK
| | - Martina E Daly
- b Department of Infection , Immunity and Cardiovascular Disease, University of Sheffield , Sheffield , UK
| | - Paul Harrison
- c Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham , Birmingham , UK
| | - Gillian C Lowe
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham , UK.,d Haemophilia Comprehensive Care Centre, University Hospital Birmingham , Edgbaston , Birmingham , UK
| | - Andrew Paterson
- e Program in Genetics & Genomic Biology , The Hospital for Sick Children Research Institute , Toronto , Ontario , Canada
| | - Jose Rivera
- f Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia , IMIB-Arrixaca, CIBERER, Murcia 30003 , Spain
| | - Tim D Warner
- g The William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London , London , UK
| | - Neil V Morgan
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham , UK
| |
Collapse
|
47
|
Daly ME. Transcription factor defects causing platelet disorders. Blood Rev 2016; 31:1-10. [PMID: 27450272 DOI: 10.1016/j.blre.2016.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 07/12/2016] [Indexed: 01/19/2023]
Abstract
Recent years have seen increasing recognition of a subgroup of inherited platelet function disorders which are due to defects in transcription factors that are required to regulate megakaryopoiesis and platelet production. Thus, germline mutations in the genes encoding the haematopoietic transcription factors RUNX1, GATA-1, FLI1, GFI1b and ETV6 have been associated with both quantitative and qualitative platelet abnormalities, and variable bleeding symptoms in the affected patients. Some of the transcription factor defects are also associated with an increased predisposition to haematologic malignancies (RUNX1, ETV6), abnormal erythropoiesis (GATA-1, GFI1b, ETV6) and immune dysfunction (FLI1). The persistence of MYH10 expression in platelets is a surrogate marker for FLI1 and RUNX1 defects. Characterisation of the transcription factor defects that give rise to platelet function disorders, and of the genes that are differentially regulated as a result, are yielding insights into the roles of these genes in platelet formation and function.
Collapse
Affiliation(s)
- Martina E Daly
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
48
|
Balduini CL, Melazzini F, Pecci A. Inherited thrombocytopenias-recent advances in clinical and molecular aspects. Platelets 2016; 28:3-13. [PMID: 27161842 DOI: 10.3109/09537104.2016.1171835] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the beginning of the century, our knowledge of inherited thrombocytopenias greatly advanced, and we presently know 30 forms with well-defined genetic defects. This great advancement changed our view of these disorders, as we realized that most patients have only mild thrombocytopenia with inconspicuous bleeding or no bleeding tendency at all. However, better knowledge of inherited thrombocytopenias also revealed that some of the most prevalent forms expose to the risk of acquiring during infancy or adulthood additional disorders that endanger the life of patients much more than hemorrhages. Thus, inherited thrombocytopenias are complex disorders with quite different clinical features and prognosis. Identification of novel genes whose mutations result in low platelet count greatly advanced also our knowledge of the megakaryocyte biology and proved beyond any doubt that the defective proteins play an essential role in platelet biogenesis or survival in humans. Based on the study of inherited thrombocytopenias, we better understood the sequence of molecular events regulating megakaryocyte differentiation, maturation, and platelet release. Since nearly 50% of patients have as yet unidentified genetic or molecular mechanisms underlying their inherited thrombocytopenia, further studies are expected to reveal new clinical entities and new molecular mechanisms of platelet production.
Collapse
Affiliation(s)
- Carlo L Balduini
- a Department of Medicine , IRCCS Policlinico San Matteo Foundation - University of Pavia , Pavia , Italy
| | - Federica Melazzini
- a Department of Medicine , IRCCS Policlinico San Matteo Foundation - University of Pavia , Pavia , Italy
| | - Alessandro Pecci
- a Department of Medicine , IRCCS Policlinico San Matteo Foundation - University of Pavia , Pavia , Italy
| |
Collapse
|
49
|
Sakurai K, Fujiwara T, Hasegawa S, Okitsu Y, Fukuhara N, Onishi Y, Yamada-Fujiwara M, Ichinohasama R, Harigae H. Inhibition of human primary megakaryocyte differentiation by anagrelide: a gene expression profiling analysis. Int J Hematol 2016; 104:190-9. [DOI: 10.1007/s12185-016-2006-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 11/29/2022]
|
50
|
Abstract
In this issue of Blood, Stevenson et al describe a family with a homozygous missense mutation in FLI1 that is associated with a platelet phenotype identical to the one observed in Paris-Trousseau syndrome, supporting existing evidence that FLI1 is directly involved in the mechanism of thrombocytopenia observed in this disease.
Collapse
|