1
|
Joseph RE, Wales TE, Jayne S, Britton RG, Fulton DB, Engen JR, Dyer MJS, Andreotti AH. Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia. eLife 2024; 13:RP95488. [PMID: 39728925 DOI: 10.7554/elife.95488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders, and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib, and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph et al., 2020). Here, we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Sandrine Jayne
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Robert G Britton
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Martin J S Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| |
Collapse
|
2
|
Solia E, Kastritis E. Optimal use of BTK inhibitors in Waldenström's macroglobulinemia: combination or single drug approach? Ther Adv Hematol 2024; 15:20406207241308771. [PMID: 39734591 PMCID: PMC11672393 DOI: 10.1177/20406207241308771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Waldenström macroglobulinemia is an indolent B-cell lymphoma which although remains incurable, there are a lot of treatment options. Today, Bruton tyrosine kinase inhibitors have a central role in the management of the disease either as monotherapy or combination with other regimens, due to their efficacy, ease of administration, and safety profile. However, there is still active clinical investigation to further increase their efficacy and improve safety profile. Combinations based on BTK inhibitors may offer advantages. Second- and third-generation BTK inhibitors are also evaluated in combinations aiming to improve the depth of response, overcome genetic factors associated with poorer outcomes and reduce toxicity and duration of therapy.
Collapse
Affiliation(s)
- Eirini Solia
- Department of Clinical Therapeutics, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, Faculty of Medicine, National and Kapodistrian University of Athens, 80 Vassilisis Sofias Avenue, Athens 11527, Greece
| |
Collapse
|
3
|
Shen J, Li J, Yang R, Wu S, Mu Z, Ding S, Zhang X, Duo M, Chen Y, Liu J. Advances in the treatment of mantle cell lymphoma with BTK inhibitors. Leuk Res 2024; 147:107615. [PMID: 39514946 DOI: 10.1016/j.leukres.2024.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Mantle cell lymphoma (MCL) is a heterogenous disease that is one of the most challenging blood cancers due to its poor prognosis, high risk of relapse and drug resistance. Recent researches have brought significant changes in MCL patients outcomes and new clinical. Bruton's Tyrosine Kinase (BTK), a key kinase in the B-cell antigen receptor (BCR) signaling pathway, is a clinical research hot spot and plays a major role in the survival and spread of malignant B cells. The first generation of BTK inhibitors, led by ibrutinib, have shown promising results in targeted treatment. Meanwhile, several inhibitors have entered clinical studies and demonstrated outstanding therapeutic activity in clinical trials for MCL, indicating a good prospect for development. Despite these encouraging findings, the duration of response is limited, and resistance to BTK inhibitors develops in a portion of individuals. This review summarizes the pathogenesis of MCL and targeted BTK inhibitors and provides an overview of the mutations that can lead to resistance to BTK inhibitors. The purpose of this article is to review the literature describing these selective therapies and provides perspectives for their further development.
Collapse
Affiliation(s)
- Jiwei Shen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China; Small molecular targeted drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China
| | - Jiawei Li
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Rui Yang
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Shuang Wu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Zhimei Mu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Shi Ding
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China; Small molecular targeted drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China
| | - Xinyu Zhang
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Meiying Duo
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China
| | - Ye Chen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China; Small molecular targeted drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China.
| | - Ju Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China; Small molecular targeted drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, PR China.
| |
Collapse
|
4
|
Robak T, Witkowska M, Wolska-Washer A, Robak P. BCL-2 and BTK inhibitors for chronic lymphocytic leukemia: current treatments and overcoming resistance. Expert Rev Hematol 2024; 17:781-796. [PMID: 39359174 DOI: 10.1080/17474086.2024.2410003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION In the last decade, BTK inhibitors and the BCL-2 inhibitor venetoclax have replaced immunochemotherapy in the treatment of CLL. AREAS COVERED This review describes the use of BTK inhibitors and BCL2 inhibitors in the treatment of naive and relapsed or refractory CLL, with particular attention to the mechanisms of resistance. It also addresses the management of double-refractory patients, and the discovery of novel drugs. The corpus of papers was obtained by a search of the PubMed and Google Scholar databases for articles in English. EXPERT OPINION Covalent BTK inhibitors and venetoclax are commonly recommended for previously-untreated and relapsed/refractory CLL. However, resistance to both drug classes can develop over time. As such, double-refractory patients are difficult to manage and novel approaches are urgently needed.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Magdalena Witkowska
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Paweł Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| |
Collapse
|
5
|
Mishra A, Thakur A, Sharma R, Onuku R, Kaur C, Liou JP, Hsu SP, Nepali K. Scaffold hopping approaches for dual-target antitumor drug discovery: opportunities and challenges. Expert Opin Drug Discov 2024; 19:1355-1381. [PMID: 39420580 DOI: 10.1080/17460441.2024.2409674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Scaffold hopping has emerged as a practical tactic to enrich the synthetic bank of small molecule antitumor agents. Specifically, it enables the chemist to refine the lead compound's pharmacodynamic, pharmacokinetic, and physiochemical properties. Scaffold hopping opens up fresh molecular territory beyond established patented chemical domains. AREA COVERED The authors present the scaffold hopping-based drug design strategies for dual inhibitory antitumor structural templates in this review. Minor modifications, structure rigidification and simplification (ring-closing and opening), and complete structural overhauls were the strategies employed by the medicinal chemist to generate a library of bifunctional inhibitors. In addition, the review presents an overview of the computational methods of scaffold hopping (software and programs) and organopalladium catalysis leveraged for the synthesis of templates designed via scaffold hopping. EXPERT OPINION The medicinal chemist has demonstrated remarkable prowess in furnishing dual inhibitory antitumor chemical architectures. Scaffold hopping-based drug design strategies have yielded a plethora of pharmacodynamically superior dual modulatory antitumor agents. An integrated approach involving computational advancements, synthetic methodology advancements, and conventional drug design strategies is required to increase the number of scaffold-hopping-assisted drug discovery campaigns.
Collapse
Affiliation(s)
- Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Raphael Onuku
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| |
Collapse
|
6
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
7
|
Joseph RE, Wales TE, Jayne S, Britton RG, Fulton DB, Engen JR, Dyer MJS, Andreotti AH. Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572223. [PMID: 38187560 PMCID: PMC10769265 DOI: 10.1101/2023.12.18.572223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph, R.E., et al., 2020, https://doi.org/10.7554/eLife.60470 ). Here we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.
Collapse
|
8
|
McKeown JP, Byrne AJ, Bright SA, Charleton CE, Kandwal S, Čmelo I, Twamley B, McElligott AM, Fayne D, O’Boyle NM, Williams DC, Meegan MJ. Synthesis and Biochemical Evaluation of Ethanoanthracenes and Related Compounds: Antiproliferative and Pro-Apoptotic Effects in Chronic Lymphocytic Leukemia (CLL). Pharmaceuticals (Basel) 2024; 17:1034. [PMID: 39204139 PMCID: PMC11359702 DOI: 10.3390/ph17081034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of mature B cells, and it is the most frequent form of leukemia diagnosed in Western countries. It is characterized by the proliferation and accumulation of neoplastic B lymphocytes in the blood, lymph nodes, bone marrow and spleen. We report the synthesis and antiproliferative effects of a series of novel ethanoanthracene compounds in CLL cell lines. Structural modifications were achieved via the Diels-Alder reaction of 9-(2-nitrovinyl)anthracene and 3-(anthracen-9-yl)-1-arylprop-2-en-1-ones (anthracene chalcones) with dienophiles, including maleic anhydride and N-substituted maleimides, to afford a series of 9-(E)-(2-nitrovinyl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones, 9-(E)-3-oxo-3-phenylprop-1-en-1-yl)-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones and related compounds. Single-crystal X-ray analysis confirmed the structures of the novel ethanoanthracenes 23f, 23h, 24a, 24g, 25f and 27. The products were evaluated in HG-3 and PGA-1 CLL cell lines (representative of poor and good patient prognosis, respectively). The most potent compounds were identified as 20a, 20f, 23a and 25n with IC50 values in the ranges of 0.17-2.69 µM (HG-3) and 0.35-1.97 µM (PGA-1). The pro-apoptotic effects of the potent compounds 20a, 20f, 23a and 25n were demonstrated in CLL cell lines HG-3 (82-95%) and PGA-1 (87-97%) at 10 µM, with low toxicity (12-16%) observed in healthy-donor peripheral blood mononuclear cells (PBMCs) at concentrations representative of the compounds IC50 values for both the HG-3 and PGA-1 CLL cell lines. The antiproliferative effect of the selected compounds, 20a, 20f, 23a and 25n, was mediated through ROS flux with a marked increase in cell viability upon pretreatment with the antioxidant NAC. 25n also demonstrated sub-micromolar activity in the NCI 60 cancer cell line panel, with a mean GI50 value of 0.245 µM. This ethanoanthracene series of compounds offers potential for the further development of lead structures as novel chemotherapeutics to target CLL.
Collapse
Affiliation(s)
- James P. McKeown
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Andrew J. Byrne
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Sandra A. Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (D.C.W.)
| | - Clara E. Charleton
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - Shubhangi Kandwal
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Ivan Čmelo
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 P3X2 Dublin, Ireland
| | - Anthony M. McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James’s Hospital and Trinity College, Dublin 8, D08 W9RT Dublin, Ireland;
| | - Darren Fayne
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| | - D. Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland (D.C.W.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College, The University of Dublin, East End 4/5, Dublin 2, D02 PN40 Dublin, Ireland (N.M.O.)
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590 Dublin, Ireland
| |
Collapse
|
9
|
Ke L, Li S, Huang D, Wang Y. Efficacy and safety of first- versus second-generation Bruton tyrosine kinase inhibitors in chronic lymphocytic leukemia: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1413985. [PMID: 39050755 PMCID: PMC11266288 DOI: 10.3389/fphar.2024.1413985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
We conducted this first systematic review and meta-analysis to assess the competitive advantage of 2nd-generation Bruton tyrosine kinase inhibitors (BTKi) compared to 1st-generation BTKi in chronic lymphocytic leukemia (CLL). The literature search was conducted from PubMed, Web of Science, Embase databases, and hematology annual conferences. Data of over response rate (ORR), progression-free survival (PFS), and overall survival (OS) were extracted to a pool meta-analysis of efficacy; adverse events (AEs) were also extracted to a pool meta-analysis of safety. Bias risk assessment and meta-analysis were performed by Review Manager 5.3 and STATA 14 software. A total of 3649 patients from 29 cohorts were included. The results showed that the benefits of ORR and 24-month PFS in 2nd-generation BTKi compared to 1st-generation BTKi were not significant in the whole population but only in the relapsed or refractory (R/R) CLL patient subgroup (ORR: 86.4% vs. 76.2%, p = 0.013; 24-month PFS: 76.9% vs. 67.9%, p = 0.004). Any-grade AEs were comparable between 1st- and 2nd-generation BTKi, but grade 3 or higher AEs were significantly less frequent with 2nd-generation BTKi versus 1st-generation BTKi (grade 3 or higher: 53.1% vs. 72.5%; p = 0.002). Headache was more frequent with 2nd-generation BTKi, while diarrhea and atrial fibrillation were more frequent with 1st-generation BTKi. Only for patients with relapsed or refractory CLL did 2nd-generation BTKi have a competitive advantage, while adverse effects still need to be considered. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO, Identifier 42022342488.
Collapse
Affiliation(s)
- Liyuan Ke
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | | | | | | |
Collapse
|
10
|
Tawfiq RK, Abeykoon JP, Kapoor P. Bruton Tyrosine Kinase Inhibition: an Effective Strategy to Manage Waldenström Macroglobulinemia. Curr Hematol Malig Rep 2024; 19:120-137. [PMID: 38536576 DOI: 10.1007/s11899-024-00731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE OF REVIEW The treatment of Waldenström macroglobulinemia (WM) has evolved over the past decade. With the seminal discoveries of MYD88 and CXCR warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) mutations in WM cells, our understanding of the disease biology and treatment has improved. The development of a new class of agents, Bruton tyrosine kinase inhibitors (BTKi), has substantially impacted the treatment paradigm of WM. Herein, we review the current and emerging BTKi and the evidence for their use in WM. RECENT FINDINGS Clinical trials have established the role of covalent BTKi in the treatment of WM. Their efficacy is compromised among patients who harbor CXCR4WHIM mutation or MYD88WT genotype. The development of BTKC481 mutation-mediated resistance to covalent BTKi may lead to disease refractoriness. Novel, non-covalent, next-generation BTKi are emerging, and preliminary results of the early phase clinical trials show promising activity in WM, even among patients refractory to a covalent BTKi. Covalent BTK inhibitors have demonstrated meaningful outcomes in treatment-naïve (TN) and relapsed refractory (R/R) WM, particularly among those harboring the MYD88L265P mutation. The next-generation BTKi demonstrate improved selectivity, resulting in a more favorable toxicity profile. In WM, BTKi are administered until progression or the development of intolerable toxicity. Consequently, the potential for acquired resistance, the emergence of cumulative toxicities, and treatment-related financial burden are critical challenges associated with the continuous therapy approach. By circumventing BTK C481 mutations that alter the binding site to covalent BTKi, the non-covalent BTKi serve as alternative agents in the event of acquired resistance. Head-to-head comparative trials with the conventional chemoimmunotherapies are lacking. The findings of the RAINBOW trial (NCT046152), comparing the dexamethasone, rituximab, and cyclophosphamide (DRC) regimen to the first-generation, ibrutinib are awaited, but more studies are needed to draw definitive conclusions on the comparative efficacy of chemoimmunotherapy and BTKi. Complete response is elusive with BTKi, and combination regimens to improve upon the efficacy and limit the treatment duration are also under evaluation in WM.
Collapse
Affiliation(s)
- Reema K Tawfiq
- Department of Hematology-Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Jithma P Abeykoon
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Prashant Kapoor
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Schmid VK, Hobeika E. B cell receptor signaling and associated pathways in the pathogenesis of chronic lymphocytic leukemia. Front Oncol 2024; 14:1339620. [PMID: 38469232 PMCID: PMC10926848 DOI: 10.3389/fonc.2024.1339620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
B cell antigen receptor (BCR) signaling is a key driver of growth and survival in both normal and malignant B cells. Several lines of evidence support an important pathogenic role of the BCR in chronic lymphocytic leukemia (CLL). The significant improvement of CLL patients' survival with the use of various BCR pathway targeting inhibitors, supports a crucial involvement of BCR signaling in the pathogenesis of CLL. Although the treatment landscape of CLL has significantly evolved in recent years, no agent has clearly demonstrated efficacy in patients with treatment-refractory CLL in the long run. To identify new drug targets and mechanisms of drug action in neoplastic B cells, a detailed understanding of the molecular mechanisms of leukemic transformation as well as CLL cell survival is required. In the last decades, studies of genetically modified CLL mouse models in line with CLL patient studies provided a variety of exciting data about BCR and BCR-associated kinases in their role in CLL pathogenesis as well as disease progression. BCR surface expression was identified as a particularly important factor regulating CLL cell survival. Also, BCR-associated kinases were shown to provide a crosstalk of the CLL cells with their tumor microenvironment, which highlights the significance of the cells' milieu in the assessment of disease progression and treatment. In this review, we summarize the major findings of recent CLL mouse as well as patient studies in regard to the BCR signalosome and discuss its relevance in the clinics.
Collapse
Affiliation(s)
| | - Elias Hobeika
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Zygmunciak P, Robak T, Puła B. Treatment of Double-Refractory Chronic Lymphocytic Leukemia-An Unmet Clinical Need. Int J Mol Sci 2024; 25:1589. [PMID: 38338868 PMCID: PMC10855898 DOI: 10.3390/ijms25031589] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Recent years have seen significant improvement in chronic lymphocytic leukemia (CLL) management. Targeting B-cell lymphoma (BCL-2) and Bruton's kinase (BTK) have become the main strategies to restrain CLL activity. These agents are generally well tolerated, but the discontinuation of these therapies happens due to resistance, adverse effects, and Richter's transformation. A growing population of patients who have previously used both BTK inhibitors and BCL2 suffer from the constriction of the following regimens. This review explores the resistance mechanisms for both ibrutinib and venetoclax. Moreover, we present innovative approaches evaluated for treating double-refractory CLL.
Collapse
Affiliation(s)
- Przemysław Zygmunciak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (P.Z.); (B.P.)
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (P.Z.); (B.P.)
| |
Collapse
|
13
|
Yonezawa H, Narita Y, Nagane M, Mishima K, Terui Y, Arakawa Y, Asai K, Fukuhara N, Sugiyama K, Shinojima N, Aoi A, Nishikawa R. Three-year follow-up analysis of phase 1/2 study on tirabrutinib in patients with relapsed or refractory primary central nervous system lymphoma. Neurooncol Adv 2024; 6:vdae037. [PMID: 38690230 PMCID: PMC11059299 DOI: 10.1093/noajnl/vdae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Background The ONO-4059-02 phase 1/2 study showed favorable efficacy and acceptable safety profile of tirabrutinib, a second-generation Bruton's tyrosine kinase inhibitor, for relapsed/refractory primary central nervous system lymphoma (PCNSL). Here, we report the long-term efficacy and safety after a 3-year follow-up. Methods Eligible patients were aged ≥ 20 years with histologically diagnosed PCNSL and KPS of ≥ 70. Patients received oral tirabrutinib once daily at 320 or 480 mg, or 480 mg under fasted conditions. Results Between October 19, 2017, and June 13, 2019, 44 patients were enrolled: 33 and 9 had relapsed and refractory, respectively. The 320, 480, and 480 mg fasted groups included 20, 7, and 17 patients, respectively. The median follow-up was 37.1 months. The overall response rate was 63.6% (95% CI: 47.8-77.6) with complete response (CR), unconfirmed CR, and partial response in 9, 7, and 12 patients, respectively. The median duration of response (DOR) was 9.2 months, with a DOR rate of 19.8%; the median progression-free survival (PFS) and median overall survival (OS) were 2.9 months and not reached, respectively, with PFS and OS rates of 13.9% and 56.7%, respectively. Adverse events occurred in 38 patients (86.4%): grade ≥ 3 in 23 (52.3%) including 1 patient with grade 5 events. KPS and quality of life (QoL) scores were well maintained among patients receiving long-term treatment. Conclusions The results demonstrated the long-term clinical benefit of tirabrutinib, with deep and durable response in a subset of patients and acceptable safety profile, while KPS and QoL scores were maintained.
Collapse
Affiliation(s)
- Hajime Yonezawa
- Department of Neurosurgery, Kagoshima University Hospital, Kagoshima, Kagoshima, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Mitaka, Tokyo, Japan
| | - Kazuhiko Mishima
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Yasuhito Terui
- Department of Hematology Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Katsunori Asai
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Noriko Fukuhara
- Department of Hematology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology & Neuro-oncology Program, Hiroshima University Hospital, Hiroshima, Hiroshima, Japan
| | - Naoki Shinojima
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Kumamoto, Japan
| | - Arata Aoi
- Department of Clinical Development, Ono Pharmaceutical Co., Ltd., Osaka, Osaka, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| |
Collapse
|
14
|
Goodstal SM, Lin J, Crandall T, Crowley L, Bender AT, Pereira A, Soloviev M, Wesolowski JS, Iadevaia R, Schelhorn SE, Ross E, Morandi F, Ma J, Clark A. Preclinical evidence for the effective use of TL-895, a highly selective and potent second-generation BTK inhibitor, for the treatment of B-cell malignancies. Sci Rep 2023; 13:20412. [PMID: 37989777 PMCID: PMC10663516 DOI: 10.1038/s41598-023-47735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
TL-895 (formerly known as M7583) is a potent, highly selective, adenosine triphosphate (ATP)-competitive, second-generation, irreversible inhibitor of Bruton's tyrosine kinase (BTK). We characterized its biochemical and cellular effects in in vitro and in vivo models. TL-895 was evaluated preclinically for potency against BTK using IC50 concentration-response curves; selectivity using a 270-kinase panel; BTK phosphorylation in Ramos Burkitt's lymphoma cells by ProteinSimple Wes analysis of one study; anti-proliferative effects in primary chronic lymphocytic leukemia (CLL) blasts; cell viability effects in diffuse large B-cell lymphoma (DLBCL) and mantle-cell lymphoma (MCL) cell lines; effects on antibody-dependent cell-mediated cytotoxicity (ADCC) from Daudi cells and chromium-51 release from human tumor cell lines; and efficacy in vivo using four MCL xenograft model and 21 DLBCL patient-derived xenograft (PDX) models (subtypes: 9 ABC, 11 GCB, 1 Unclassified). TL-895 was active against recombinant BTK (average IC50 1.5 nM) and inhibited only three additional kinases with IC50 within tenfold of BTK activity. TL-895 inhibited BTK auto-phosphorylation at the Y223 phosphorylation site (IC50 1-10 nM). TL-895 inhibited the proliferation of primary CLL blasts in vitro and inhibited growth in a subset of activated DLBCL and MCL cell lines. TL-895 inhibited the ADCC mechanism of therapeutic antibodies only at supra-clinical exposure levels. TL-895 significantly inhibited tumor growth in the Mino MCL xenograft model and in 5/21 DLBCL PDX models relative to vehicle controls. These findings demonstrate the potency of TL-895 for BTK and its efficacy in models of B-cell lymphoma despite its refined selectivity.
Collapse
Affiliation(s)
- Samantha M Goodstal
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA.
| | - Jing Lin
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Timothy Crandall
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Lindsey Crowley
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Andrew T Bender
- Research Unit Immunology, EMD Serono Research and Development Institute, Inc., Billerica, MA, 01821, USA
| | - Albertina Pereira
- Research Unit Immunology, EMD Serono Research and Development Institute, Inc., Billerica, MA, 01821, USA
| | - Maria Soloviev
- Protein Engineering Antibody Technologies, EMD Serono Research and Development Institute, Inc., Billerica, MA, 01821, USA
| | - John S Wesolowski
- Protein Engineering Antibody Technologies, EMD Serono Research and Development Institute, Inc., Billerica, MA, 01821, USA
| | - Riham Iadevaia
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Sven-Eric Schelhorn
- Oncology Bioinformatics Quantitative Pharmacology and Drug Disposition (QPD) Biopharma, Merck KGaA, 64293, Darmstadt, Germany
| | - Edith Ross
- Oncology Bioinformatics Quantitative Pharmacology and Drug Disposition (QPD) Biopharma, Merck KGaA, 64293, Darmstadt, Germany
| | - Federica Morandi
- Discovery and Development Technologies, EMD Serono Research and Development Institute, Inc., Billerica, MA, 01821, USA
| | - Jianguo Ma
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Anderson Clark
- Research Unit Oncology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| |
Collapse
|
15
|
Raghani NR, Shah DD, Shah TS, Chorawala MR, Patel RB. Combating relapsed and refractory Mantle cell lymphoma with novel therapeutic armamentarium: Recent advances and clinical prospects. Crit Rev Oncol Hematol 2023; 190:104085. [PMID: 37536448 DOI: 10.1016/j.critrevonc.2023.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a rare, aggressive subtype of non-Hodgkin's lymphoma (NHL), accounting for 5% of all cases. Due to its virulence factor, it is an incurable disease and keeps relapsing despite an intensive treatment regimen. Advancements in research and drug discovery have shifted the treatment strategy from conventional chemotherapy to targeted agents and immunotherapies. The establishment of the role of Bruton tyrosine kinase led to the development of ibrutinib, a first-generation BTK inhibitor, and its successors. A conditioning regimen based immunotherapeutic agent like ibritumumob, has also demonstrated a viable response with a favorable toxicity profile. Brexucabtagene Autoleucel, the only approved CAR T-cell therapy, has proven advantageous for relapsed/refractory MCL in both children and adults. This article reviews certain therapies that could help update the current approach and summarizes a few miscellaneous agents, which, seldom studied in trials, could alleviate the regression observed in traditional therapies. DATA AVAILABILITY: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Neha R Raghani
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Disha D Shah
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Tithi S Shah
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Rakesh B Patel
- Department of Internal Medicine, Division of Hematology and Oncology, UI Carver College of Medicine: The University of Iowa Roy J and Lucille A Carver College of Medicine, 375 Newton Rd, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Easaw S, Ezzati S, Coombs CC. SOHO State of the Art Updates and Next Questions: Updates on BTK Inhibitors for the Treatment of Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:697-704. [PMID: 37544810 DOI: 10.1016/j.clml.2023.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Over the last decade, targeted inhibition of Bruton's tyrosine kinase (BTK) has led to a paradigm shift in the way chronic lymphocytic leukemia (CLL) is managed. BTK inhibitors (BTKi) are broadly classified as covalent BTKI and noncovalent BTKi (cBTKi and ncBTK) Ibrutinib, as the first approved cBTKi, vastly improved outcomes for patients with CLL over prior chemoimmunotherapy regimens. However, long-term use is limited by both intolerance and resistance. The second generation of more selective BTKi were developed to improve tolerability. While these agents have led to an improved safety profile in comparison to Ibrutinib (both acalabrutinib and zanubrutinib), and improved efficacy (zanubrutinib), intolerance occasionally occurs, and resistance remains a challenge. The third generation of BTKi, which noncovalently or reversibly inhibits BTK, has shown promising results in early phase trials and are being evaluated in the phase 3 setting. These drugs could be an effective treatment option in patients with either resistance and intolerance to cBTKi. The most recent development in therapeutic agents targeting BTK is the development of BTK degraders. By removing BTK, as opposed to inhibiting it, these drugs could remain efficacious irrespective of BTK resistance mutations, however clinical data are limited at this time. This review summarizes the evolution and ongoing development of newer BTKi and BTK degraders in the management of CLL, with a focus of future directions in this field, including how emerging clinical data could inform therapeutic sequencing in CLL management.
Collapse
Affiliation(s)
| | - Shawyon Ezzati
- California Northstate University College of Medicine, Elk Grove, CA
| | | |
Collapse
|
17
|
Oien DB, Sharma S, Hattersley MM, DuPont M, Criscione SW, Prickett L, Goeppert AU, Drew L, Yao Y, Zhang J, Chan HM. BET inhibition targets ABC-DLBCL constitutive B-cell receptor signaling through PAX5. Blood Adv 2023; 7:5108-5121. [PMID: 37184294 PMCID: PMC10477446 DOI: 10.1182/bloodadvances.2022009257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
B-cell receptor (BCR) signaling is essential for the diffuse large B-cell lymphoma (DLBCL) subtype that originates from activated B-cells (ABCs). ABC-DLBCL cells are sensitive to Bruton tyrosine kinase intervention. However, patients with relapsed or refractory ABC-DLBCL had overall response rates from 33% to 37% for Bruton tyrosine kinase inhibitors, suggesting the evaluation of combination-based treatment for improved efficacy. We investigated the efficacy and mechanism of the bromodomain and extraterminal motif (BET) inhibitor AZD5153 combined with the Bruton tyrosine kinase inhibitor acalabrutinib in ABC-DLBCL preclinical models. AZD5153 is a bivalent BET inhibitor that simultaneously engages the 2 bromodomains of BRD4. Adding AZD5153 to acalabrutinib demonstrated combination benefits in ABC-DLBCL cell line and patient-derived xenograft models. Differential expression analyses revealed PAX5 transcriptional activity as a novel downstream effector of this drug combination. PAX5 is a transcription factor for BCR signaling genes and may be critical for perpetually active BCR signaling in ABC-DLBCL. Our analyses further indicated significant alterations in BCR, RELB/alternative NF-κB, and toll-like receptor/interferon signaling. Validation of these results mapped a positive-feedback signaling loop regulated by PAX5. We demonstrated that AZD5153 decreased PAX5 expression, whereas acalabrutinib disruption of BCR signaling inhibited PAX5 activation. Furthermore, several interferon levels were decreased by AZD5153 and acalabrutinib in tumors. Adding interferon-beta1 (IFNβ1) to cells treated with acalabrutinib partially rescued PAX5 activation. Our results demonstrate that AZD5153 enhances the efficacy of acalabrutinib through PAX5 and BCR mechanisms that are critical for ABC-DLBCL.
Collapse
Affiliation(s)
- Derek B. Oien
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Samanta Sharma
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | | | - Michelle DuPont
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | | | - Laura Prickett
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Anne U. Goeppert
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Lisa Drew
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Yi Yao
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Jingwen Zhang
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Ho Man Chan
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| |
Collapse
|
18
|
Köckenberger J, Klemt I, Sauer C, Arkhypov A, Reshetnikov V, Mokhir A, Heinrich MR. Cyanine- and Rhodamine-Derived Alkynes for the Selective Targeting of Cancerous Mitochondria through Radical Thiol-Yne Coupling in Live Cells. Chemistry 2023; 29:e202301340. [PMID: 37171462 DOI: 10.1002/chem.202301340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
Despite their long history and their synthetic potential underlined by various recent advances, radical thiol-yne coupling reactions have so far only rarely been exploited for the functionalization of biomolecules, and no examples yet exist for their application in live cells - although natural thiols show widespread occurrence therein. By taking advantage of the particular cellular conditions of mitochondria in cancer cells, we have demonstrated that radical thiol-yne coupling represents a powerful reaction principle for the selective targeting of these organelles. Within our studies, fluorescently labeled reactive alkyne probes were investigated, for which the fluorescent moiety was chosen to enable both mitochondria accumulation as well as highly sensitive detection. After preliminary studies under cell-free conditions, the most promising alkyne-dye conjugates were evaluated in various cellular experiments comprising analysis by flow cytometry and microscopy. All in all, these results pave the way for improved future therapeutic strategies relying on live-cell compatibility and selectivity among cellular compartments.
Collapse
Affiliation(s)
- Johannes Köckenberger
- Department of Chemistry and Pharmacy Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Insa Klemt
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Caroline Sauer
- Department of Chemistry and Pharmacy Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Anton Arkhypov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Viktor Reshetnikov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
19
|
Robak P, Witkowska M, Wolska-Washer A, Robak T. The preclinical discovery and development of orelabrutinib as a novel treatment option for B-cell lymphoid malignancies. Expert Opin Drug Discov 2023; 18:1065-1076. [PMID: 37438969 DOI: 10.1080/17460441.2023.2236547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Bruton's tyrosine kinase (BTK) inhibitors have recently been approved for clinical use against several B-cell indolent lymphoid malignancies, both as single agents or in combination. One second-generation BTK inhibitor that is being developed for the treatment of B-cell hematological malignancies, as well as for autoimmune disorders, is orelabrutinib. AREAS COVERED This paper reviews recent developments in the use of orelabrutinib against B-cell indolent lymphoid malignancies such as chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B-cell lymphoma, Waldenstrom macroglobulinemia and central nervous system lymphoma. Google Scholar and PubMed were initially searched for articles, and the corpus of articles was broadened by reviewing the references of the identified papers. All were in English. The corpus comprised papers from 2016 to April 2023. In addition, a manual search was performed of conference proceedings from the last five years of The American Society of Hematology, American Society of Clinical Oncology and the European Hematology Association. EXPERT OPINION Orelabrutinib is an active drug in indolent and aggressive B-cell lymphoid malignancies. It demonstrates high selectivity, good efficacy and an excellent safety profile. Nevertheless, further clinical trials are required to optimize its use. In addition, several other highly selective BTK inhibitors are being examined in early-phase studies.
Collapse
Affiliation(s)
- Paweł Robak
- Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Magda Witkowska
- Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| |
Collapse
|
20
|
Frustaci AM, Deodato M, Zamprogna G, Cairoli R, Montillo M, Tedeschi A. Next Generation BTK Inhibitors in CLL: Evolving Challenges and New Opportunities. Cancers (Basel) 2023; 15:1504. [PMID: 36900295 PMCID: PMC10000925 DOI: 10.3390/cancers15051504] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Ibrutinib revolutionized the CLL treatment approach and prognosis demonstrating its efficacy and safety even at extended follow-up. During the last few years, several next-generation inhibitors have been developed to overcome the occurrence of toxicity or resistance in patients on continuous treatment. In a head-to-head comparison of two phase III trials, both acalabrutinib and zanubrutinib demonstrated a lower incidence of adverse events in respect to ibrutinib. Nevertheless, resistance mutations remain a concern with continuous therapy and were demonstrated with both first- and next-generation covalent inhibitors. Reversible inhibitors showed efficacy independently of previous treatment and the presence of BTK mutations. Other strategies are currently under development in CLL, especially for high-risk patients, and include BTK inhibitor combinations with BCl2 inhibitors with or without anti-CD20 monoclonal antibodies. Finally, new mechanisms for BTK inhibition are under investigations in patients progressing with both covalent and non-covalent BTK and BCl2 inhibitors. Here we summarize and discuss results from main experiences on irreversible and reversable BTK inhibitors in CLL.
Collapse
Affiliation(s)
- Anna Maria Frustaci
- ASST Grande Ospedale Metropolitano Niguarda, Niguarda Cancer Center, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Brewitz L, Dumjahn L, Zhao Y, Owen CD, Laidlaw SM, Malla TR, Nguyen D, Lukacik P, Salah E, Crawshaw AD, Warren AJ, Trincao J, Strain-Damerell C, Carroll MW, Walsh MA, Schofield CJ. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine. J Med Chem 2023; 66:2663-2680. [PMID: 36757959 PMCID: PMC9924091 DOI: 10.1021/acs.jmedchem.2c01627] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 02/10/2023]
Abstract
Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (Mpro), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Leo Dumjahn
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Yilin Zhao
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - C. David Owen
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Stephen M. Laidlaw
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Tika R. Malla
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Dung Nguyen
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Petra Lukacik
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Adam D. Crawshaw
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Anna J. Warren
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Jose Trincao
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Claire Strain-Damerell
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Miles W. Carroll
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Martin A. Walsh
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
22
|
Castillo JJ, Buske C, Trotman J, Sarosiek S, Treon SP. Bruton tyrosine kinase inhibitors in the management of Waldenström macroglobulinemia. Am J Hematol 2023; 98:338-347. [PMID: 36415104 PMCID: PMC10107762 DOI: 10.1002/ajh.26788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Bruton tyrosine kinase (BTK) inhibitors have taken a central role in the management of patients with Waldenström macroglobulinemia and are the only agents approved by the Food and Drug Administration (FDA) to treat these patients. Although associated with high rates of durable responses, unmet needs with BTK inhibitor therapy include indefinite duration therapy, high cost, scarcity of complete responses, and lower rates and shorter duration of response in patients with CXCR4 mutations. Herein, we review the data supporting the use of covalent BTK inhibitors, selected management issues, clinical trials with covalent BTK inhibitor combination regimens, and up-and-coming non-covalent BTK inhibitors.
Collapse
Affiliation(s)
- Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Buske
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - Judith Trotman
- Department of Haematology, Concord Repatriation General Hospital, Faculty of Medicine, University of Sydney, Concord, Australia
| | - Shayna Sarosiek
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven P Treon
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Yamagami J. B-cell targeted therapy of pemphigus. J Dermatol 2023; 50:124-131. [PMID: 36478455 PMCID: PMC10107866 DOI: 10.1111/1346-8138.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 12/12/2022]
Abstract
Pemphigus is an autoimmune disease that causes blistering and erosion of the skin and mucous membranes because of autoantibodies against desmoglein, which plays an important role in adhesion between epidermal keratinocytes. Treatment of pemphigus has long been centered on corticosteroids, and the guidelines for management of pemphigus have recommended high-dose systemic corticosteroids as the first-line treatment. While guideline-based treatment has been shown to be beneficial in patients with pemphigus, it has also become clear that this treatment is accompanied by significant burden and risk. The challenge for future pemphigus treatment is to maximize efficacy while minimizing risk during the course of the disease. In this regard, treatment targeting B cells is expected to become increasingly important as autoreactive B cells in pemphigus patients are thought to play a major role in the production of autoantibodies, which form the basis of the pathogenesis. The recent expansion of insurance coverage to rituximab, a monoclonal antibody against CD20, for refractory pemphigus in the USA, Europe, and Japan has opened up a new era of pemphigus treatment by enabling treatment strategies with drugs targeting B cells in patients. Here, we discuss the current status and future prospects of pemphigus treatment, focusing on rituximab and Bruton's tyrosine kinase inhibitors, which are expected to become essential drugs for pemphigus treatment in the future.
Collapse
Affiliation(s)
- Jun Yamagami
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Hermann MR, Tautermann CS, Sieger P, Grundl MA, Weber A. BIreactive: Expanding the Scope of Reactivity Predictions to Propynamides. Pharmaceuticals (Basel) 2023; 16:ph16010116. [PMID: 36678612 PMCID: PMC9866037 DOI: 10.3390/ph16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
We present the first comprehensive study on the prediction of reactivity for propynamides. Covalent inhibitors like propynamides often show improved potency, selectivity, and unique pharmacologic properties compared to their non-covalent counterparts. In order to achieve this, it is essential to tune the reactivity of the warhead. This study shows how three different in silico methods can predict the in vitro properties of propynamides, a covalent warhead class integrated into approved drugs on the market. Whereas the electrophilicity index is only applicable to individual subclasses of substitutions, adduct formation and transition state energies have a good predictability for the in vitro reactivity with glutathione (GSH). In summary, the reported methods are well suited to estimate the reactivity of propynamides. With this knowledge, the fine tuning of the reactivity is possible which leads to a speed up of the design process of covalent drugs.
Collapse
|
25
|
Long-term safety profile of tirabrutinib: final results of a Japanese Phase I study in patients with relapsed or refractory B-cell malignancies. Int J Hematol 2022; 117:553-562. [PMID: 36576659 PMCID: PMC10063512 DOI: 10.1007/s12185-022-03514-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Tirabrutinib is a Bruton's tyrosine kinase inhibitor for treating B-cell malignancies. We report the final results of a Phase I study of tirabrutinib in 17 Japanese patients with B-cell malignancies. Patients were administered tirabrutinib at a dose of 160 mg, 320 mg, or 480 mg once daily, or 300 mg twice daily (N = 3, 3, 4, and 7, respectively). Three patients continued tirabrutinib until study completion (November 30, 2020). Adverse events (AEs) occurred in all 17 patients, with Grade 3-4 AEs in 8 (47.1%), serious AEs in 7 (41.2%), drug-related AEs in 16 (94.1%), and Grade 3-4 drug-related AEs in 6 (35.3%). Drug-related AEs reported in 3 or more patients were rash, vomiting, neutropenia, arthralgia, and malaise. One additional serious AE (benign neoplasm of the lung, unrelated to tirabrutinib) occurred after the previous data cutoff (January 4, 2018). Tirabrutinib administration and response assessment were continued for over 4 years in 4 patients. The overall response rate was 76.5% (13/17 patients). The median (range) time to response and duration of response were 0.9 (0.9-5.9) months and 2.59 (0.08-5.45) years, respectively. These findings demonstrate the long-term safety and efficacy of tirabrutinib in Japanese patients with B-cell malignancies.Clinical trial registration: JapicCTI-142682 ( http://www.clinicaltrials.jp/ ).
Collapse
|
26
|
Al-Mansour M. Treatment Landscape of Relapsed/Refractory Mantle Cell Lymphoma: An Updated Review. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e1019-e1031. [PMID: 36068158 DOI: 10.1016/j.clml.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Mantle cell lymphoma (MCL) accounts for nearly 2-6% of all non-Hodgkin lymphoma (NHL) cases, with a steady incidence increase over the past few decades. Although many patients achieve an adequate response to the upfront treatment, the short duration of remission with rapid relapse is challenging during MCL management. In this regard, there is no consensus on the best treatment options for relapsed/refractory (R/R) disease, and the international guidelines demonstrate wide variations in the recommended approaches. The last decade has witnessed the introduction of new agents in the treatment landscape of R/R MCL. Since the introduction of Bruton's tyrosine kinase (BTK) inhibitors, the treatment algorithm and response of R/R MCL patients have dramatically changed. Nevertheless, BTK resistance is common, necessitating further investigations to develop novel agents with a more durable response. Novel agents targeting the B-cell receptor (BCR) signaling have exhibited clinical activity and a well-tolerable safety profile. However, as the responses to these novel agents are still modest in most clinical trials, combination strategies were investigated in pre-clinical and early clinical settings to determine whether the combination of novel agents would exhibit a better durable response than single agents. In this report, we provide an updated literature review that covers recent clinical data about the safety and efficacy of novel therapies for the management of R/R MCL.
Collapse
Affiliation(s)
- Mubarak Al-Mansour
- Adult Medical Oncology, Princess Noorah Oncology Center, Jeddah, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
| |
Collapse
|
27
|
Garg N, Padron EJ, Rammohan KW, Goodman CF. Bruton's Tyrosine Kinase Inhibitors: The Next Frontier of B-Cell-Targeted Therapies for Cancer, Autoimmune Disorders, and Multiple Sclerosis. J Clin Med 2022; 11:6139. [PMID: 36294458 PMCID: PMC9604914 DOI: 10.3390/jcm11206139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is an important protein belonging to the tyrosine kinase family that plays a key role in the intracellular signaling and proliferation, migration, and survival of normal and malignant B-lymphocytes and myeloid cells. Understanding the role of BTK in the B-cell signaling pathway has led to the development of BTK inhibitors (BTKi) as effective therapies for malignancies of myeloid origin and exploration as a promising therapeutic option for other cancers. Given its central function in B-cell receptor signaling, inhibition of BTK is an attractive approach for the treatment of a wide variety of autoimmune diseases that involve aberrant B-cell function including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). Here, we review the role of BTK in different cell signaling pathways, the development of BTKi in B-cell malignancies, and their emerging role in the treatment of MS and other autoimmune disorders.
Collapse
Affiliation(s)
- Neeta Garg
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
28
|
Alu A, Lei H, Han X, Wei Y, Wei X. BTK inhibitors in the treatment of hematological malignancies and inflammatory diseases: mechanisms and clinical studies. J Hematol Oncol 2022; 15:138. [PMID: 36183125 PMCID: PMC9526392 DOI: 10.1186/s13045-022-01353-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is an essential component of multiple signaling pathways that regulate B cell and myeloid cell proliferation, survival, and functions, making it a promising therapeutic target for various B cell malignancies and inflammatory diseases. Five small molecule inhibitors have shown remarkable efficacy and have been approved to treat different types of hematological cancers, including ibrutinib, acalabrutinib, zanubrutinib, tirabrutinib, and orelabrutinib. The first-in-class agent, ibrutinib, has created a new era of chemotherapy-free treatment of B cell malignancies. Ibrutinib is so popular and became the fourth top-selling cancer drug worldwide in 2021. To reduce the off-target effects and overcome the acquired resistance of ibrutinib, significant efforts have been made in developing highly selective second- and third-generation BTK inhibitors and various combination approaches. Over the past few years, BTK inhibitors have also been repurposed for the treatment of inflammatory diseases. Promising data have been obtained from preclinical and early-phase clinical studies. In this review, we summarized current progress in applying BTK inhibitors in the treatment of hematological malignancies and inflammatory disorders, highlighting available results from clinical studies.
Collapse
Affiliation(s)
- Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Coombs CC. EXABS-124-CLL Extended Abstract: New BTKi. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22 Suppl 2:S27-S29. [PMID: 36163875 DOI: 10.1016/s2152-2650(22)00650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Sekiguchi Y, Nishimura Y, Kanda H, Kawamura M, Kobayashi K, Kobayashi H. Waldenstrom Macroglobulinemia/Lymphoplasmacytic Lymphoma Associated with Nephrotic Syndrome during Hemodialysis, Treated Successfully with Tirabrutinib. Intern Med 2022; 61:2503-2508. [PMID: 35110483 PMCID: PMC9449620 DOI: 10.2169/internalmedicine.8760-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A 74-year-old woman was diagnosed with Waldenstrom macroglobulinemia/lymphoplasmacytic lymphoma (WM/LPL) in X-18. Fludarabine plus rituximab (FR) was started, and she showed remission. In July X-7, the serum creatinine (Cr) level increased to 1.67 mg/dL, and bendamustine plus rituximab (BR) was started. By November X-7, the Cr level had increased to 8.41 mg/dL, so she was started on hemodialysis (HD). In September X-1, she developed nephrotic syndrome. She was started on tirabrutinib at 480 mg. In July X, her nephrotic syndrome had improved, and a complete response (CR) was achieved. This is the first case of the administration of tirabrutinib in a patient undergoing HD.
Collapse
Affiliation(s)
| | - You Nishimura
- Department of Pathology, Saitama Cancer Center, Japan
| | - Hiroaki Kanda
- Department of Pathology, Saitama Cancer Center, Japan
| | - Machiko Kawamura
- Department of Clinical Laboratory Medicine, Saitama Cancer Center, Japan
| | - Kazuhiko Kobayashi
- Department of Clinical Laboratory Medicine, Saitama Cancer Center, Japan
| | | |
Collapse
|
31
|
Sermer D, Sarosiek S, Branagan AR, Treon SP, Castillo JJ. SOHO State of the Art Updates and Next Questions: Targeted therapies and emerging novel treatment approaches for Waldenström Macroglobulinemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:547-556. [PMID: 35339405 DOI: 10.1016/j.clml.2022.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Waldenström Macroglobulinemia (WM) is a rare hematologic malignancy characterized by the presence of lymphoplasmacytic lymphoma cells involving the bone marrow and production of a monoclonal IgM paraprotein. Recurrent somatic mutations in MYD88L265P and CXCR4 have been reported in 90% to 95% and 30% to 40% of patients with WM, respectively. Standard treatment regimens combine the anti-CD20 antibody rituximab with alkylating agents (eg, bendamustine, cyclophosphamide), nucleoside analogs (eg, fludarabine, cladribine), or proteasome inhibitors (eg, bortezomib, carfilzomib, and ixazomib). Covalent BTK inhibitors (eg, ibrutinib, acalabrutinib, zanubrutinib) have shown to be safe and highly effective in patients with WM. Novel and promising agents in this disease include next-generation covalent BTK inhibitors (eg, tirabrutinib, orelabrutinib), non-covalent BTK inhibitors (eg, pirtobrutinib, ARQ531), BCL-2 antagonists (eg, venetoclax), and CXCR4-targeted agents (eg, mavorixafor, ulocuplumab), among others. Future studies will focus on developing fixed-duration combinations regimens with these novel agents aimed at increasing durable responses while minimizing toxicity and cost.
Collapse
Affiliation(s)
- David Sermer
- Division of Hematology and Hematologic Malignancies, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA
| | - Shayna Sarosiek
- Department of Medicine, Harvard Medical School, Boston, MA; Bing Center for Waldenstrom Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Andrew R Branagan
- Department of Medicine, Harvard Medical School, Boston, MA; Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA
| | - Steven P Treon
- Department of Medicine, Harvard Medical School, Boston, MA; Bing Center for Waldenstrom Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA
| | - Jorge J Castillo
- Department of Medicine, Harvard Medical School, Boston, MA; Bing Center for Waldenstrom Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA.
| |
Collapse
|
32
|
The Dosing of Ibrutinib and Related Bruton's Tyrosine Kinase Inhibitors: Eliminating the Use of Brute Force. Blood Adv 2022; 6:5041-5044. [PMID: 35816636 PMCID: PMC9631621 DOI: 10.1182/bloodadvances.2022007793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
|
33
|
Design, synthesis, and biological evaluation of pyrrolopyrimidine derivatives as novel Bruton's tyrosine kinase (BTK) inhibitors. Eur J Med Chem 2022; 241:114611. [DOI: 10.1016/j.ejmech.2022.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022]
|
34
|
Kutsch N, Pallasch C, Decker T, Hebart H, Chow KU, Graeven U, Kisro J, Kroeber A, Tausch E, Fischer K, Fink AM, Wendtner CM, Ritgen M, Stilgenbauer S, Zhang D, Li B, Jürgensmeier JM, Rajakumaraswamy N, Bhargava P, Hallek M, Eichhorst B. Efficacy and Safety of Tirabrutinib and Idelalisib With or Without Obinutuzumab in Relapsed Chronic Lymphocytic Leukemia. Hemasphere 2022; 6:e729. [PMID: 35747845 PMCID: PMC9208895 DOI: 10.1097/hs9.0000000000000729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Nadine Kutsch
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and German CLL Study Group, University of Cologne, Germany
| | - Christian Pallasch
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Germany
| | | | | | | | - Ullrich Graeven
- Klinik für Hämatologie, Onkologie und Gastroenterologie, Kliniken Maria Hilf GmbH, Mönchengladbach, Germany
| | - Jens Kisro
- Luebecker Onkologische Schwerpunktpraxis, Luebeck, Germany
| | | | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Germany
| | - Kirsten Fischer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and German CLL Study Group, University of Cologne, Germany
| | - Anna-Maria Fink
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and German CLL Study Group, University of Cologne, Germany
| | - Clemens-Martin Wendtner
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Ritgen
- Department of Medicine II, University of Schleswig-Holstein, Kiel, Germany
| | | | | | - Biao Li
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and German CLL Study Group, University of Cologne, Germany
| | - Barbara Eichhorst
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and German CLL Study Group, University of Cologne, Germany
| |
Collapse
|
35
|
Zhai Y, Zhou X, Wang X. Novel insights into the biomarkers and therapies for primary central nervous system lymphoma. Ther Adv Med Oncol 2022; 14:17588359221093745. [PMID: 35558005 PMCID: PMC9087239 DOI: 10.1177/17588359221093745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and highly aggressive extranodal type of non-Hodgkin lymphoma. After the introduction and widespread use of high-dose-methotrexate (HD-MTX)-based polychemotherapy, treatment responses of PCNSL have been improved. However, long-term prognosis for patients who have failed first-line therapy and relapsed remains poor. Less invasive diagnostic markers, including the circulating tumor DNAs (ctDNAs), microRNAs, metabolomic markers, and other novel biomarkers, such as a proliferation inducing ligand (APRIL) and B-cell activating factor of the TNF family (BAFF), have shown potential to distinguish PCNSL at an early stage, and some of them are related with prognosis to a certain extent. Recent insights into novel therapies, including Bruton tyrosine kinase (BTK) inhibitors, immunomodulatory drugs, immune checkpoint inhibitors, PI3K/mTOR inhibitors, and chimeric antigen receptor (CAR) T cells, have revealed encouraging efficacy in treatment response, whereas the duration of response and long-term survival of patients with relapsed or refractory PCNSL (r/r PCNSL) need further improvement. In addition, the diagnostic efficiency of novel markers and the antitumor efficacy of novel therapies are needed to be assessed further in larger clinical trials. This review provides an overview of recent research on novel diagnostic markers and therapeutic strategies for PCNSL.
Collapse
Affiliation(s)
- Yujia Zhai
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, ChinaSchool of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- School of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China
| |
Collapse
|
36
|
Sarosiek S, Sermer D, Branagan AR, Treon SP, Castillo JJ. Zanubrutinib for the treatment of adults with Waldenstrom macroglobulinemia. Expert Rev Anticancer Ther 2022; 22:471-478. [PMID: 35404729 DOI: 10.1080/14737140.2022.2064849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The development of Bruton tyrosine kinase (BTK) inhibitors has significantly changed the treatment landscape for patients with Waldenström macroglobulinemia (WM). Ibrutinib was the first BTK inhibitor to receive FDA approval for this disease, but in recent years additional more selective BTK inhibitors have become available. Zanubrutinib, the most recently FDA-approved therapy for WM, has demonstrated comparable efficacy regarding hematologic response, but with an improved side effect profile compared to other BTK inhibitors. AREAS COVERED In this review, we highlight the pivotal studies that have formed the foundation for the use of zanubrutinib in WM, including safety and efficacy data from prospective clinical trials of the currently available BTK inhibitors. EXPERT OPINION BTK inhibitors are very effective in WM and have an overall response rate higher than 90%. The side effect profile of these medications is manageable, but does include a risk of atrial fibrillation, infection, and bleeding. The newer BTK inhibitors, such as acalabrutinib and zanubrutinib, are known to have less off-target effects and are potential treatment options. BTK inhibitors should be considered as a treatment option in treatment-naïve and previously treated disease depending on the individual patient preferences, comorbidities, and molecular profile.
Collapse
Affiliation(s)
- Shayna Sarosiek
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David Sermer
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Andrew R Branagan
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Steven P Treon
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Kutsch N, Pallasch C, Tausch E, Böhme V, Ritgen M, Liersch R, Wacker A, Jacobs G, Trappe RU, Dreger P, Fischer K, Fink AM, Stilgenbauer S, Zhai S, Li B, Jürgensmeier JM, Rajakumaraswamy N, Bhargava P, Hallek M, Eichhorst BF. Efficacy and Safety of the Combination of Tirabrutinib and Entospletinib With or Without Obinutuzumab in Relapsed Chronic Lymphocytic Leukemia. Hemasphere 2022; 6:e692. [PMID: 35284802 PMCID: PMC8906452 DOI: 10.1097/hs9.0000000000000692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Nadine Kutsch
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and German CLL Study Group, University of Cologne, Germany
| | - Christian Pallasch
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Germany
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | | | - Matthias Ritgen
- Department of Medicine II, University of Schleswig-Holstein, Kiel, Germany
| | - Rüdiger Liersch
- Gemeinschaftspraxis für Hämatologie und Onkologie, Clemenshospital Münster, Düesbergweg, Germany
| | - Alexander Wacker
- Department of Internal Medicine I, Klinikum am Steinenberg, Reutlingen, Germany
| | | | | | - Peter Dreger
- Department of Medicine V, University Hospital Heidelberg, Germany
| | - Kirsten Fischer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and German CLL Study Group, University of Cologne, Germany
| | - Anna-Maria Fink
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and German CLL Study Group, University of Cologne, Germany
| | | | - Shuyan Zhai
- Gilead Sciences, Inc., Foster City, California, USA
| | - Biao Li
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and German CLL Study Group, University of Cologne, Germany
| | - Barbara F. Eichhorst
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and German CLL Study Group, University of Cologne, Germany
| |
Collapse
|
38
|
Owens TD, Brameld KA, Verner EJ, Ton T, Li X, Zhu J, Masjedizadeh MR, Bradshaw JM, Hill RJ, Tam D, Bisconte A, Kim EO, Francesco M, Xing Y, Shu J, Karr D, LaStant J, Finkle D, Loewenstein N, Haberstock-Debic H, Taylor MJ, Nunn P, Langrish CL, Goldstein DM. Discovery of Reversible Covalent Bruton's Tyrosine Kinase Inhibitors PRN473 and PRN1008 (Rilzabrutinib). J Med Chem 2022; 65:5300-5316. [PMID: 35302767 DOI: 10.1021/acs.jmedchem.1c01170] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bruton's tyrosine kinase (BTK), a Tec family tyrosine kinase, is critical in immune pathways as an essential intracellular signaling element, participating in both adaptive and immune responses. Currently approved BTK inhibitors are irreversible covalent inhibitors and limited to oncology indications. Herein, we describe the design of covalent reversible BTK inhibitors and the discoveries of PRN473 (11) and rilzabrutinib (PRN1008, 12). These compounds have exhibited potent and durable inhibition of BTK, in vivo efficacy in rodent arthritis models, and clinical efficacy in canine pemphigus foliaceus. Compound 11 has completed phase 1 trials as a topical agent, and 12 is in phase 3 trials for pemphigus vulgaris and immune thrombocytopenia.
Collapse
Affiliation(s)
- Timothy D Owens
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Ken A Brameld
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Erik J Verner
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Tony Ton
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Xiaoyan Li
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Jiang Zhu
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Mohammad R Masjedizadeh
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - J Michael Bradshaw
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Ronald J Hill
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Danny Tam
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Angelina Bisconte
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Eun Ok Kim
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Michelle Francesco
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Yan Xing
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Jin Shu
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Dane Karr
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Jacob LaStant
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - David Finkle
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Natalie Loewenstein
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Helena Haberstock-Debic
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Michael J Taylor
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Philip Nunn
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - Claire L Langrish
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| | - David M Goldstein
- Principia Biopharma, a Sanofi Company, 220 E Grand Ave, South San Francisco, California 94080, United States
| |
Collapse
|
39
|
The New Treatment Methods for Non-Hodgkin Lymphoma in Pediatric Patients. Cancers (Basel) 2022; 14:cancers14061569. [PMID: 35326719 PMCID: PMC8945992 DOI: 10.3390/cancers14061569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most common cancer malignancies is non-Hodgkin lymphoma, whose incidence is nearly 3% of all 36 cancers combined. It is the fourth highest cancer occurrence in children and accounts for 7% of cancers in patients under 20 years of age. Today, the survivability of individuals diagnosed with non-Hodgkin lymphoma varies by about 70%. Chemotherapy, radiation, stem cell transplantation, and immunotherapy have been the main methods of treatment, which have improved outcomes for many oncological patients. However, there is still the need for creation of novel medications for those who are treatment resistant. Additionally, more effective drugs are necessary. This review gathers the latest findings on non-Hodgkin lymphoma treatment options for pediatric patients. Attention will be focused on the most prominent therapies such as monoclonal antibodies, antibody–drug conjugates, chimeric antigen receptor T cell therapy and others.
Collapse
|
40
|
Zhang H, Hu Z, Zhang H, Sun X, Yang J, Yuan J. Characterization of the metabolites of tirabrutinib generated from rat, dog and human liver microsomes using ultra-high-performance liquid chromatography combined with high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9240. [PMID: 34904306 DOI: 10.1002/rcm.9240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE Tirabrutinib is an orally administered Bruton's tyrosine kinase (BTK) inhibitor developed for the treatment of autoimmune disorders and haematological malignancies. The goals of this study were to identify the metabolites of tirabrutinib and to propose the metabolic pathways. METHODS Tirabrutinib was individually incubated with rat, dog and human liver microsomes at 37°C for 1 h. To trap the potential reactive metabolites, glutathione (GSH) was incorporated into the incubation samples. The incubation samples were analysed using ultra-high-performance liquid chromatography combined with high-resolution mass spectrometry (UHPLC-HRMS). The metabolites were identified and characterized by exact masses, product ions and retention times. RESULTS A total of 18 metabolites, including four GSH conjugates, were identified and characterized in terms of elemental compositions and product ions. The metabolic pathways of tirabrutinib included amide hydrolysis, O-dealkylation, mono-oxygenation, di-oxygenation and GSH conjugation. Among these metabolites, M10 was the most abundant metabolite. Compared with dog, rat has the closer metabolic profiles to humans, and thus it would be more suitable for toxicity study. CONCLUSIONS This study provides valuable data regarding the in vitro metabolism of tirabrutinib, which may be helpful for further safety assessment of this drug.
Collapse
Affiliation(s)
- Hongjian Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Hefei Cancer Hospital, Chinese Academy of Science, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Zhen Hu
- Department of Radiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Huiping Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Hefei Cancer Hospital, Chinese Academy of Science, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xiyan Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Hefei Cancer Hospital, Chinese Academy of Science, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jianming Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Yuan
- Anhui Provincial Institute for Food and Drug Control, Hefei, China
| |
Collapse
|
41
|
Cherala G, Nelson C, Guo Y, Mathur A, Tarnowski T, Othman AA. Evaluation of the Potential for Pharmacokinetic Interaction Between Tirabrutinib and Levonorgestrel/Ethinyl Estradiol in Healthy Female Volunteers. Clin Transl Sci 2022; 15:1492-1499. [PMID: 35266297 PMCID: PMC9199868 DOI: 10.1111/cts.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
Tirabrutinib (TIRA), a potent and nonreversible oral Bruton tyrosine kinase inhibitor, is evaluated for treatment of certain hematological malignancies and inflammatory diseases. A drug–drug interaction study to evaluate the effect of TIRA on the pharmacokinetics of the oral contraceptive levonorgestrel (LEVO)/ethinyl estradiol (EE) was conducted in healthy female participants (N = 26). Participants received a single dose of LEVO (150 mcg)/EE (30 mcg) alone (reference), and on day 12 of a 15‐day regimen of TIRA 160 mg once‐daily (test). Intensive blood sampling for determination of LEVO, EE, and TIRA plasma concentrations was conducted, and safety was assessed throughout the study. Pharmacokinetic interactions were evaluated using 90% confidence intervals (CIs) of the geometric least squares mean (GLSM) ratios of the test versus reference treatments. The GLSM (90% CI) ratios of area under the concentration‐time curve from zero to infinity (AUCinf; LEVO: 0.95, 95% CI: 0.88–1.03, EE: 1.10, 95% CI: 1.05–1.16) and maximum plasma concentration (Cmax; LEVO: 0.85, 95% CI: 0.74–0.98, EE: 1.07, 95% CI: 0.98–1.18) were within the prespecified 0.70 to 1.43 no effect bounds; and the AUC ratios met the stricter 0.80 to 1.25 equivalence bounds. Study treatments were generally well‐tolerated. In conclusion, co‐administration with TIRA did not alter the exposure of LEVO/EE, and accordingly LEVO/EE containing oral contraceptives can serve as a contraception method for participants on TIRA 160 mg (or lower) daily doses.
Collapse
Affiliation(s)
| | | | - Ying Guo
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | |
Collapse
|
42
|
Profitós-Pelejà N, Santos JC, Marín-Niebla A, Roué G, Ribeiro ML. Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas. Cancers (Basel) 2022; 14:860. [PMID: 35205606 PMCID: PMC8870007 DOI: 10.3390/cancers14040860] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
The proliferation and survival signals emanating from the B-cell receptor (BCR) constitute a crucial aspect of mature lymphocyte's life. Dysregulated BCR signaling is considered a potent contributor to tumor survival in different subtypes of B-cell non-Hodgkin lymphomas (B-NHLs). In the last decade, the emergence of BCR-associated kinases as rational therapeutic targets has led to the development and approval of several small molecule inhibitors targeting either Bruton's tyrosine kinase (BTK), spleen tyrosine kinase (SYK), or phosphatidylinositol 3 kinase (PI3K), offering alternative treatment options to standard chemoimmunotherapy, and making some of these drugs valuable assets in the anti-lymphoma armamentarium. Despite their initial effectiveness, these precision medicine strategies are limited by primary resistance in aggressive B-cell lymphoma such as diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL), especially in the case of first generation BTK inhibitors. In these patients, BCR-targeting drugs often fail to produce durable responses, and nearly all cases eventually progress with a dismal outcome, due to secondary resistance. This review will discuss our current understanding of the role of antigen-dependent and antigen-independent BCR signaling in DLBCL and MCL and will cover both approved inhibitors and investigational molecules being evaluated in early preclinical studies. We will discuss how the mechanisms of action of these molecules, and their off/on-target effects can influence their effectiveness and lead to toxicity, and how our actual knowledge supports the development of more specific inhibitors and new, rationally based, combination therapies, for the management of MCL and DLBCL patients.
Collapse
Affiliation(s)
- Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ana Marín-Niebla
- Department of Hematology, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, Brazil
| |
Collapse
|
43
|
Robak T, Witkowska M, Smolewski P. The Role of Bruton's Kinase Inhibitors in Chronic Lymphocytic Leukemia: Current Status and Future Directions. Cancers (Basel) 2022; 14:771. [PMID: 35159041 PMCID: PMC8833747 DOI: 10.3390/cancers14030771] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
The use of Bruton's tyrosine kinase (BTK) inhibitors has changed the management and clinical history of patients with chronic lymphocytic leukemia (CLL). BTK is a critical molecule that interconnects B-cell antigen receptor (BCR) signaling. BTKis are classified into two categories: irreversible (covalent) inhibitors and reversible (non-covalent) inhibitors. Ibrutinib was the first irreversible BTK inhibitor approved by the U.S. Food and Drug Administration in 2013 as a breakthrough therapy in CLL patients. Subsequently, several studies have evaluated the efficacy and safety of new agents with reduced toxicity when compared with ibrutinib. Two other irreversible, second-generation BTK inhibitors, acalabrutinib and zanubrutinib, were developed to reduce ibrutinib-mediated adverse effects. Additionally, new reversible BTK inhibitors are currently under development in early-phase studies to improve their activity and to diminish adverse effects. This review summarizes the pharmacology, clinical efficacy, safety, dosing, and drug-drug interactions associated with the treatment of CLL with BTK inhibitors and examines their further implications.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | - Magda Witkowska
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.W.); (P.S.)
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.W.); (P.S.)
| |
Collapse
|
44
|
Meng A, Humeniuk R, Jürgensmeier JM, Hsueh C, Matzkies F, Grant E, Truong H, Billin AN, Yu H, Feng J, Kwan E, Tarnowski T, Nelson CH. Semi-Mechanistic PK/PD Modeling and Simulation of Irreversible BTK Inhibition to Support Dose Selection of Tirabrutinib in Subjects with RA. Clin Pharmacol Ther 2022; 111:416-424. [PMID: 34623640 PMCID: PMC9298258 DOI: 10.1002/cpt.2439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/14/2021] [Indexed: 11/08/2022]
Abstract
Tirabrutinib is an irreversible, small-molecule Bruton's tyrosine kinase (BTK) inhibitor, which was approved in Japan (VELEXBRU) to treat B-cell malignancies and is in clinical development for inflammatory diseases. As an application of model-informed drug development, a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model for irreversible BTK inhibition of tirabrutinib was developed to support dose selection in clinical development, based on clinical PK and BTK occupancy data from two phase I studies with a wide range of PK exposures in healthy volunteers and in subjects with rheumatoid arthritis. The developed model adequately described and predicted the PK and PD data. Overall, the model-based simulation supported a total daily dose of at least 40 mg, either q.d. or b.i.d., with adequate BTK occupancy (> 90%) for further development in inflammatory diseases. Following the PK/PD modeling and simulation, the relationship between model-predicted BTK occupancy and preliminary clinical efficacy data was also explored and a positive trend was identified between the increasing time above adequate BTK occupancy and better efficacy in treatment for RA by linear regression.
Collapse
Affiliation(s)
- Amy Meng
- Gilead Sciences, Inc.Foster CityCaliforniaUSA
| | | | | | | | | | - Ethan Grant
- Gilead Sciences, Inc.Foster CityCaliforniaUSA
| | - Hoa Truong
- Gilead Sciences, Inc.Foster CityCaliforniaUSA
| | | | - Helen Yu
- Gilead Sciences, Inc.Foster CityCaliforniaUSA
| | - Joy Feng
- Gilead Sciences, Inc.Foster CityCaliforniaUSA
| | - Ellen Kwan
- Gilead Sciences, Inc.Foster CityCaliforniaUSA
| | | | | |
Collapse
|
45
|
Tirabrutinib maintenance therapy for a patient with high-dose methotrexate-ineligible primary central nervous system lymphoma. Ann Hematol 2022; 101:1379-1381. [PMID: 35083523 DOI: 10.1007/s00277-021-04744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 11/01/2022]
|
46
|
Shirley M. Bruton Tyrosine Kinase Inhibitors in B-Cell Malignancies: Their Use and Differential Features. Target Oncol 2022; 17:69-84. [PMID: 34905129 PMCID: PMC8783859 DOI: 10.1007/s11523-021-00857-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
Starting with the first-in-class agent ibrutinib, the development of Bruton tyrosine kinase (BTK) inhibitors has led to dramatic improvements in the management of B-cell malignancies. Subsequently, more-highly selective second-generation BTK inhibitors (including acalabrutinib, zanubrutinib, tirabrutinib and orelabrutinib) have been developed, primarily with an aim to reduce off-target toxicities. More recently, third-generation agents including the non-covalent BTK inhibitors pirtobrutinib and nemtabrutinib have entered later-stage clinical development. BTK inhibitors have shown strong activity in a range of B-cell malignancies, including chronic lymphocytic leukaemia/small lymphocytic lymphoma, mantle cell lymphoma, Waldenström's macroglobulinaemia and marginal zone lymphoma. The agents have acceptable tolerability, with adverse events generally being manageable with dosage modification. This review article summarises the evidence supporting the role of BTK inhibitors in the management of B-cell malignancies, including highlighting some differential features between agents.
Collapse
Affiliation(s)
- Matt Shirley
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
47
|
Lu X, Smaill JB, Patterson AV, Ding K. Discovery of Cysteine-targeting Covalent Protein Kinase Inhibitors. J Med Chem 2021; 65:58-83. [PMID: 34962782 DOI: 10.1021/acs.jmedchem.1c01719] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small molecule covalent kinase inhibitors (CKIs) have entered a new era in drug discovery, which have the advantage for sustained target inhibition and high selectivity. An increased understanding of binding kinetics of CKIs and discovery of additional irreversible and reversible-covalent cysteine-targeted warheads has inspired the development of this area. Herein, we summarize the major medicinal chemistry strategies employed in the discovery of these representative CKIs, which are categorized by the location of the target cysteine within seven main regions of the kinase: the front region, the glycine rich loop (P-loop), the hinge region, the DFG region, the activation loop (A-loop), the catalytic loop (C-loop), and the remote loop. The emphasis is placed on the design and optimization strategies of CKIs that are generated by addition of a warhead to a reversible lead/inhibitor scaffold. In addition, we address the challenges facing this area of drug discovery.
Collapse
Affiliation(s)
- Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
48
|
Sawalha Y. Relapsed/Refractory Diffuse Large B-Cell Lymphoma: A Look at the Approved and Emerging Therapies. J Pers Med 2021; 11:1345. [PMID: 34945817 PMCID: PMC8708171 DOI: 10.3390/jpm11121345] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 12/11/2022] Open
Abstract
Approximately 40% of patients with diffuse large B cell lymphoma (DLBCL) do not respond or develop relapsed disease after first-line chemoimmunotherapy. A minority of these patients can be cured with autologous hematopoietic stem cell transplantation (AHCT). Although chimeric antigen receptor (CAR) T cells have transformed the treatment paradigm of relapsed/refractory DLBCL, only 30-40% of patients achieve durable remissions. In addition, many patients with relapsed/refractory DLBCL are ineligible to receive treatment with CAR T cells due to comorbidities or logistical limitations. Since 2019, the following four non-CAR T-cell treatments have been approved in relapsed/refractory DLBCL: polatuzumab in combination with bendamustine and rituximab, selinexor, tafasitamab plus lenalidomide, and loncastuximab. In this article, I review the data behind these four approvals and discuss important considerations on their use in clinical practice. I also review emerging therapies that have shown promising early results in relapsed/refractory DLBCL including the bispecific antibodies, antibody-drug conjugates, Bruton tyrosine kinase inhibitors, BCL2 inhibitors, immune checkpoint inhibitors, and epigenetic modifiers.
Collapse
Affiliation(s)
- Yazeed Sawalha
- Department of Internal Medicine, Division of Hematology, Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Ma C, Li Q, Zhao M, Fan G, Zhao J, Zhang D, Yang S, Zhang S, Gao D, Mao L, Zhu L, Li W, Xu G, Jiang Y, Ding Q. Discovery of 1-Amino-1 H-imidazole-5-carboxamide Derivatives as Highly Selective, Covalent Bruton's Tyrosine Kinase (BTK) Inhibitors. J Med Chem 2021; 64:16242-16270. [PMID: 34672559 DOI: 10.1021/acs.jmedchem.1c01559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bruton's tyrosine kinase (BTK) inhibitors suppressing the aberrant activation of BTK have led to a paradigm shift in the therapy of B-cell malignancies. However, there is an urgent need to discover more selective covalent BTK inhibitors owing to the off-target adverse effects of the approved inhibitor, ibrutinib. Herein, we disclose the discovery and preliminary activity studies of novel BTK inhibitors carrying 1-amino-1H-imidazole-5-carboxamide as a hinge binder. The most potent BTK inhibitor 26 demonstrates impressive selectivity, favorable pharmacokinetic properties, and robust antitumor efficacy in vivo, which indicates its potential as a novel therapeutic option for B-cell lymphomas. Importantly, to the best of our knowledge, this is the first example of a 1-amino-1H-imidazole-5-carboxamide scaffold used as the hinge binder of kinase inhibitors, which will largely expand the chemical diversity of kinase inhibitors.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingyun Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Minghao Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Goujie Fan
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dandan Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shouning Yang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuting Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Longfei Mao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,Henan Zhiwei Biomedicine Co., Ltd., Xinxiang, Henan 453007, China
| | - Liang Zhu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wei Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,Henan Zhiwei Biomedicine Co., Ltd., Xinxiang, Henan 453007, China
| | - Guiqing Xu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingjie Ding
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
50
|
Wang H, Zhang W, Yang J, Zhou K. The resistance mechanisms and treatment strategies of BTK inhibitors in B-cell lymphoma. Hematol Oncol 2021; 39:605-615. [PMID: 34651869 PMCID: PMC9293416 DOI: 10.1002/hon.2933] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 01/19/2023]
Abstract
Bruton's tyrosine kinase inhibitors (BTKi) have revolutionized the treatment of B‐cell lymphoma (BCL). These drugs interfere with the mechanisms underlying malignant B‐cell pathophysiology, allowing better drug response as well as low toxicity. However, these multiple mechanisms also lead to drug resistance, which compromised the treatment outcome and needs to be solved urgently. This review focuses on genomic variations (such as BTK and its downstream PCLG2 mutations as well as Del 8p, 2p+, Del 6q/8p, BIRC3, TRAF2, TRAF3, CARD11, MYD88, and CCND1 mutations) and related pathways (such as PI3K/Akt/mTOR, NF‐κB, MAPK signaling pathways, overexpression of B‐cell lymphoma 6, platelet‐derived growth factor, toll‐like receptors, and microenvironment, cancer stem cells, and exosomes) involved in cancer pathophysiology to discuss the mechanisms underlying resistance to BTKi. We have also reviewed the newly reported drug resistance mechanisms and the proposed potential treatment strategies (the next‐generation BTKi, proteolysis‐targeting chimera‐BTK, XMU‐MP‐3, PI3K‐Akt‐mTOR pathway, MYC or LYN kinase inhibitor, and other small‐molecule targeted drugs) to overcome drug resistance. The findings presented in this review lay a strong foundation for further research in this field.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wentao Zhang
- Department of Urology, Armed Police Forces Hospital of Henan, Zhengzhou, China
| | - Jingyi Yang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|