1
|
Herrera J, Bensussen A, García-Gómez ML, Garay-Arroyo A, Álvarez-Buylla ER. A system-level model reveals that transcriptional stochasticity is required for hematopoietic stem cell differentiation. NPJ Syst Biol Appl 2024; 10:145. [PMID: 39639033 PMCID: PMC11621455 DOI: 10.1038/s41540-024-00469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
HSCs differentiation has been difficult to study experimentally due to the high number of components and interactions involved, as well as the impact of diverse physiological conditions. From a 200-node network, that was grounded on experimental data, we derived a 21-node regulatory network by collapsing linear pathways and retaining the functional feedback loops. This regulatory network core integrates key nodes and interactions underlying HSCs differentiation, including transcription factors, metabolic, and redox signaling pathways. We used Boolean, continuous, and stochastic dynamic models to simulate the hypoxic conditions of the HSCs niche, as well as the patterns and temporal sequences of HSCs transitions and differentiation. Our findings indicate that HSCs differentiation is a plastic process in which cell fates can transdifferentiate among themselves. Additionally, we found that cell heterogeneity is fundamental for HSCs differentiation. Lastly, we found that oxygen activates ROS production, inhibiting quiescence and promoting growth and differentiation pathways of HSCs.
Collapse
Affiliation(s)
- Joel Herrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, México
| | - Mónica L García-Gómez
- Theoretical Biology, Institute of Biodynamics and Biocomplexity; Experimental and Computational Plant Development, Institute of Environmental Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Adriana Garay-Arroyo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
2
|
Ganuza M, Morales-Hernández A, Van Huizen A, Chabot A, Hall T, Caprio C, Finkelstein D, Kilimann MW, McKinney-Freeman S. Neurobeachin regulates hematopoietic progenitor differentiation and survival by modulating Notch activity. Blood Adv 2024; 8:4129-4143. [PMID: 38905595 PMCID: PMC11345395 DOI: 10.1182/bloodadvances.2023012426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) can generate all blood cells. This ability is exploited in HSC transplantation (HSCT) to treat hematologic disease. A clear understanding of the molecular mechanisms that regulate HSCT is necessary to continue improving transplant protocols. We identified the Beige and Chediak-Higashi domain-containing protein (BDCP), Neurobeachin (NBEA), as a putative regulator of HSCT. Here, we demonstrated that NBEA and related BDCPs, including LPS Responsive Beige-Like Anchor Protein (LRBA), Neurobeachin Like 1 (NBEAL1) and Lysosomal Trafficking Regulator (LYST), are required during HSCT to efficiently reconstitute the hematopoietic system of lethally irradiated mice. Nbea knockdown in mouse HSCs induced apoptosis and a differentiation block after transplantation. Nbea deficiency in hematopoietic progenitor cells perturbed the expression of genes implicated in vesicle trafficking and led to changes in NOTCH receptor localization. This resulted in perturbation of the NOTCH transcriptional program, which is required for efficient HSC engraftment. In summary, our findings reveal a novel role for NBEA in the control of NOTCH receptor turnover in hematopoietic cells and supports a model in which BDCP-regulated vesicle trafficking is required for efficient HSCT.
Collapse
Affiliation(s)
- Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Morales-Hernández
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Alanna Van Huizen
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ashley Chabot
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Trent Hall
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Claire Caprio
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Manfred W. Kilimann
- Department of Molecular Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | |
Collapse
|
3
|
Liu Y, Ma Z. Leukemia and mitophagy: a novel perspective for understanding oncogenesis and resistance. Ann Hematol 2024; 103:2185-2196. [PMID: 38282059 DOI: 10.1007/s00277-024-05635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Mitophagy, the selective autophagic process that specifically degrades mitochondria, serves as a vital regulatory mechanism for eliminating damaged mitochondria and maintaining cellular balance. Emerging research underscores the central role of mitophagy in the initiation, advancement, and treatment of cancer. Mitophagy is widely acknowledged to govern mitochondrial homeostasis in hematopoietic stem cells (HSCs), influencing their metabolic dynamics. In this article, we integrate recent data to elucidate the regulatory mechanisms governing mitophagy and its intricate significance in the context of leukemia. An in-depth molecular elucidation of the processes governing mitophagy may serve as a basis for the development of pioneering approaches in targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yueyao Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Sichuan Province, No. 20, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Zhigui Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Sichuan Province, No. 20, Section 3, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
4
|
Zeinali S, Sutton K, Zefreh MG, Mabbott N, Vervelde L. Discrimination of distinct chicken M cell subsets based on CSF1R expression. Sci Rep 2024; 14:8795. [PMID: 38627516 PMCID: PMC11021470 DOI: 10.1038/s41598-024-59368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
In mammals, a subset of follicle-associated epithelial (FAE) cells, known as M cells, conduct the transcytosis of antigens across the epithelium into the underlying lymphoid tissues. We previously revealed that M cells in the FAE of the chicken lung, bursa of Fabricius (bursa), and caecum based on the expression of CSF1R. Here, we applied RNA-seq analysis on highly enriched CSF1R-expressing bursal M cells to investigate their transcriptome and identify novel chicken M cell-associated genes. Our data show that, like mammalian M cells, those in the FAE of the chicken bursa also express SOX8, MARCKSL1, TNFAIP2 and PRNP. Immunohistochemical analysis also confirmed the expression of SOX8 in CSF1R-expressing cells in the lung, bursa, and caecum. However, we found that many other mammalian M cell-associated genes such as SPIB and GP2 were not expressed by chicken M cells or represented in the chicken genome. Instead, we show bursal M cells express high levels of related genes such as SPI1. Whereas our data show that bursal M cells expressed CSF1R-highly, the M cells in the small intestine lacked CSF1R and both expressed SOX8. This study offers insights into the transcriptome of chicken M cells, revealing the expression of CSF1R in M cells is tissue-specific.
Collapse
Affiliation(s)
- Safieh Zeinali
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Kate Sutton
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Masoud Ghaderi Zefreh
- Division of Genetics and Genomics, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Neil Mabbott
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
5
|
Liu Y, Huo JL, Ren K, Pan S, Liu H, Zheng Y, Chen J, Qiao Y, Yang Y, Feng Q. Mitochondria-associated endoplasmic reticulum membrane (MAM): a dark horse for diabetic cardiomyopathy treatment. Cell Death Discov 2024; 10:148. [PMID: 38509100 PMCID: PMC10954771 DOI: 10.1038/s41420-024-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), an important complication of diabetes mellitus (DM), is one of the most serious chronic heart diseases and has become a major cause of heart failure worldwide. At present, the pathogenesis of DCM is unclear, and there is still a lack of effective therapeutics. Previous studies have shown that the homeostasis of mitochondria and the endoplasmic reticulum (ER) play a core role in maintaining cardiovascular function, and structural and functional abnormalities in these organelles seriously impact the occurrence and development of various cardiovascular diseases, including DCM. The interplay between mitochondria and the ER is mediated by the mitochondria-associated ER membrane (MAM), which participates in regulating energy metabolism, calcium homeostasis, mitochondrial dynamics, autophagy, ER stress, inflammation, and other cellular processes. Recent studies have proven that MAM is closely related to the initiation and progression of DCM. In this study, we aim to summarize the recent research progress on MAM, elaborate on the key role of MAM in DCM, and discuss the potential of MAM as an important therapeutic target for DCM, thereby providing a theoretical reference for basic and clinical studies of DCM treatment.
Collapse
Affiliation(s)
- Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Jin-Ling Huo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Yifeng Zheng
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Jingfang Chen
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
6
|
Jackson BT, Finley LWS. Metabolic regulation of the hallmarks of stem cell biology. Cell Stem Cell 2024; 31:161-180. [PMID: 38306993 PMCID: PMC10842269 DOI: 10.1016/j.stem.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Stem cells perform many different functions, each of which requires specific metabolic adaptations. Over the past decades, studies of pluripotent and tissue stem cells have uncovered a range of metabolic preferences and strategies that correlate with or exert control over specific cell states. This review aims to describe the common themes that emerge from the study of stem cell metabolism: (1) metabolic pathways supporting stem cell proliferation, (2) metabolic pathways maintaining stem cell quiescence, (3) metabolic control of cellular stress responses and cell death, (4) metabolic regulation of stem cell identity, and (5) metabolic requirements of the stem cell niche.
Collapse
Affiliation(s)
- Benjamin T Jackson
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Boothby M, Cho SH. Hypoxia and the Hypoxia-Inducible Factors in Lymphocyte Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:115-141. [PMID: 39017842 DOI: 10.1007/978-3-031-62731-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Molecular oxygen doubles as a biomolecular building block and an element required for energy generation and metabolism in aerobic organisms. A variety of systems in mammalian cells sense the concentration of oxygen to which they are exposed and are tuned to the range present in our blood and tissues. The ability to respond to insufficient O2 in tissues is central to regulation of erythroid lineage cells, but challenges also are posed for immune cells by a need to adjust to very different oxygen concentrations. Hypoxia-inducible factors (HIFs) provide a major means of making such adjustments. For adaptive immunity, lymphoid lineages are initially defined in bone marrow niches; T lineage cells arise in the thymus, and B cells complete maturation in the spleen. Lymphocytes move from these first stops into microenvironments (bloodstream, lymphatics, and tissues) with distinct oxygenation in each. Herein, evidence pertaining to functions of the HIF transcription factors (TFs) in lymphocyte differentiation and function is reviewed. For the CD4+ and CD8+ subsets of T cells, the case is very strong that hypoxia and HIFs regulate important differentiation events and functions after the naïve lymphocytes emerge from the thymus. In the B lineage, the data indicate that HIF1 contributes to a balanced regulation of B-cell fates after antigen (Ag) activation during immunity. A model synthesized from the aggregate literature is that HIF in lymphocytes generally serves to modulate function in a manner dependent on the molecular context framed by other TFs and signals.
Collapse
Affiliation(s)
- Mark Boothby
- Departments of Pathology, Microbiology, Immunology (Molecular Pathogenesis Division), Vanderbilt University Medical Center, Nashville, TN, USA.
- Medicine (Rheumatology and Immunology Division), Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Inflammation, Immunity (VI4), Nashville, TN, USA.
| | - Sung Hoon Cho
- Departments of Pathology, Microbiology, Immunology (Molecular Pathogenesis Division), Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Inflammation, Immunity (VI4), Nashville, TN, USA
| |
Collapse
|
8
|
Serio B, Giudice V, Selleri C. All Roads Lead to Interferon-γ: From Known to Untraveled Pathways in Acquired Aplastic Anemia. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2170. [PMID: 38138273 PMCID: PMC10744863 DOI: 10.3390/medicina59122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Bone marrow failure (BMF) syndromes are a heterogeneous group of benign hematological conditions with common clinical features including reduced bone marrow cellularity and peripheral blood cytopenias. Acquired aplastic anemia (AA) is caused by T helper(Th)1-mediated immune responses and cytotoxic CD8+ T cell-mediated autologous immune attacks against hematopoietic stem and progenitor cells (HSPCs). Interferon-γ (IFNγ), tumor necrosis factor-α, and Fas-ligand are historically linked to AA pathogenesis because they drive Th1 and cytotoxic T cell-mediated responses and can directly induce HSPC apoptosis and differentiation block. The use of omics technologies has amplified the amount of data at the single-cell level, and knowledge on AA, and new scenarios, have been opened on "old" point of view. In this review, we summarize the current state-of-art of the pathogenic role of IFNγ in AA from initial findings to novel evidence, such as the involvement of the HIF-1α pathway, and how this knowledge can be translated in clinical practice.
Collapse
Affiliation(s)
- Bianca Serio
- Department of Medicine, Surgery, and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (C.S.)
| | - Valentina Giudice
- Department of Medicine, Surgery, and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery, and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
9
|
Zhang YW, Schönberger K, Cabezas‐Wallscheid N. Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. EMBO J 2023; 42:e112348. [PMID: 38010205 PMCID: PMC10711668 DOI: 10.15252/embj.2022112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 11/29/2023] Open
Abstract
During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | | | | |
Collapse
|
10
|
Şoroğlu CV, Uslu-Bıçak İ, Toprak SF, Yavuz AS, Sözer S. Effect of hypoxia on HIF-1α and NOS3 expressions in CD34 + cells of JAK2V617F-positive myeloproliferative neoplasms. Adv Med Sci 2023; 68:169-175. [PMID: 37075583 DOI: 10.1016/j.advms.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE Myeloproliferative neoplasms (MPN) are a heterogeneous group of hematopoietic stem-cell diseases with excessive proliferation of one or more blood cell lines. In this study, we evaluated the effect of different oxygen concentrations on HIF-1α and NOS3 gene expression to determine the effect of the bone marrow microenvironment on JAK2V617F positive Philadelphia chromosome negative (Ph-) MPNs. PATIENTS AND METHODS Peripheral blood mononuclear cells (MNC) of 12 patients with Ph- MPN were collected. The presence of JAK2V617F allele status was determined with allele-specific nested PCR analysis. MPN CD34+ and CD34depleted populations were isolated from MNC by magnetic beads. Separate cell cultures of CD34+/depleted populations were managed at different oxygen concentrations including anoxia (∼0%), hypoxia (∼3%), and normoxia (∼20%) conditions for 24 h. HIF-1α and NOS3 gene expression changes were examined in each population related to JAK2V617F status with real time RT-PCR. RESULT It was revealed that relative HIF-1α and NOS3 expressions were significantly increased in response to decreased oxygen concentration in all samples. Relative HIF-1α and NOS3 expressions were found to be higher especially in CD34+ and CD34depleted populations carrying JAK2V617F mutations compared to MPN patients carrying wild-type JAK2. CONCLUSION JAK2V617F might have specific role in HIF-1α and NOS3 regulations with respect to low oxygen concentrations in Ph- MPN. Further evaluations might reveal the effect of JAK2V617F on Ph- MPN pathogenesis in bone marrow microenvironment.
Collapse
Affiliation(s)
- Can Veysel Şoroğlu
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - İldeniz Uslu-Bıçak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Akif Selim Yavuz
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
11
|
Qiu S, Sheth V, Yan C, Liu J, Chacko BK, Li H, Crossman DK, Fortmann SD, Aryal S, Rennhack A, Grant MB, Welner RS, Paterson AJ, Wende AR, Darley-Usmar VM, Lu R, Locasale JW, Bhatia R. Metabolic adaptation to tyrosine kinase inhibition in leukemia stem cells. Blood 2023; 142:574-588. [PMID: 37192295 PMCID: PMC10447615 DOI: 10.1182/blood.2022018196] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are very effective in treating chronic myelogenous leukemia (CML), but primitive, quiescent leukemia stem cells persist as a barrier to the cure. We performed a comprehensive evaluation of metabolic adaptation to TKI treatment and its role in CML hematopoietic stem and progenitor cell persistence. Using a CML mouse model, we found that glycolysis, glutaminolysis, the tricarboxylic acid cycle, and oxidative phosphorylation (OXPHOS) were initially inhibited by TKI treatment in CML-committed progenitors but were restored with continued treatment, reflecting both selection and metabolic reprogramming of specific subpopulations. TKI treatment selectively enriched primitive CML stem cells with reduced metabolic gene expression. Persistent CML stem cells also showed metabolic adaptation to TKI treatment through altered substrate use and mitochondrial respiration maintenance. Evaluation of transcription factors underlying these changes helped detect increased HIF-1 protein levels and activity in TKI-treated stem cells. Treatment with an HIF-1 inhibitor in combination with TKI treatment depleted murine and human CML stem cells. HIF-1 inhibition increased mitochondrial activity and reactive oxygen species (ROS) levels, reduced quiescence, increased cycling, and reduced the self-renewal and regenerating potential of dormant CML stem cells. We, therefore, identified the HIF-1-mediated inhibition of OXPHOS and ROS and maintenance of CML stem cell dormancy and repopulating potential as a key mechanism of CML stem cell adaptation to TKI treatment. Our results identify a key metabolic dependency in CML stem cells persisting after TKI treatment that can be targeted to enhance their elimination.
Collapse
MESH Headings
- Mice
- Humans
- Animals
- Protein-Tyrosine Kinases/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Reactive Oxygen Species/metabolism
- Neoplastic Stem Cells/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Drug Resistance, Neoplasm
Collapse
Affiliation(s)
- Shaowei Qiu
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Vipul Sheth
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Chengcheng Yan
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
| | - Balu K. Chacko
- Department of Pathology, Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL
| | - Hui Li
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - David K. Crossman
- Genomics Core Facility, University of Alabama at Birmingham, Birmingham, AL
| | - Seth D. Fortmann
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
- Medical Scientist Training Program, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Sajesan Aryal
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Ashley Rennhack
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Robert S. Welner
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Andrew J. Paterson
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Adam R. Wende
- Department of Pathology, Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL
| | - Victor M. Darley-Usmar
- Department of Pathology, Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL
| | - Rui Lu
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
| | - Ravi Bhatia
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
12
|
Song F, Lu CL, Wang CG, Hu CW, Zhang Y, Wang TL, Han L, Chen Z. Uncovering the mechanism of Kang-ai injection for treating intrahepatic cholangiocarcinoma based on network pharmacology, molecular docking, and in vitro validation. Front Pharmacol 2023; 14:1129709. [PMID: 36937833 PMCID: PMC10017963 DOI: 10.3389/fphar.2023.1129709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Objective: Kang-ai injection (KAI) has been a popular adjuvant treatment for solid tumors, but its anti-tumor mechanism in intrahepatic cholangiocarcinoma (ICC) remains poorly understood. This study applied a network pharmacology-based approach to unveil KAI's anti-tumor activity, key targets, and potential pharmacological mechanism in ICC by integrating molecular docking and in vitro validation. Methods: The KAI-compound-target-ICC network was constructed to depict the connections between active KAI compounds and ICC-related targets based on the available data sources. The crucial ingredients, potential targets, and signaling pathways were screened using GO, KEGG enrichment analysis, and the PPI network. Molecular docking was performed to visualize the interactions between hub targets and components. In vitro experiments were carried out to validate the findings. Results: Among the 87 active components of KAI and 80 KAI-ICC-related targets, bioinformatics analysis identified quercetin as a possible candidate. GO and KEGG enrichment analysis indicated that the PI3K-AKT signaling pathway might be essential in ICC pharmacotherapy. The PPI network and its sub-networks screened 10 core target genes, including AKT1 and IL1β. Molecular docking results showed stable binding between AKT1 and IL1β with KAI active ingredients. The in vitro experiments confirmed that KAI might suppress the proliferation of ICC cell lines by inhibiting the PI3K/AKT signaling pathway, consistent with the network pharmacology approach and molecular docking predictions. Conclusion: The study sheds light on KAI's biological activity, potential targets, and molecular mechanisms in treating ICC and provides a promising strategy for understanding the scientific basis and therapeutic mechanisms of herbal treatments for ICC. This research has important implications for developing new, targeted therapies for ICC and highlights the importance of network pharmacology-based approaches in investigating complex herbal formulations.
Collapse
Affiliation(s)
- Fei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chang-Liang Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Cheng-Gui Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen-Wei Hu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Tian-Lun Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Lu Han
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- *Correspondence: Zhong Chen,
| |
Collapse
|
13
|
Arif T. Lysosomes and Their Role in Regulating the Metabolism of Hematopoietic Stem Cells. BIOLOGY 2022; 11:1410. [PMID: 36290314 PMCID: PMC9598322 DOI: 10.3390/biology11101410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs) have the capacity to renew blood cells at all stages of life and are largely quiescent at a steady state. It is essential to understand the processes that govern quiescence in HSCs to enhance bone marrow transplantation. It is hypothesized that in their quiescent state, HSCs primarily use glycolysis for energy production rather than mitochondrial oxidative phosphorylation (OXPHOS). In addition, the HSC switch from quiescence to activation occurs along a continuous developmental path that is driven by metabolism. Specifying the metabolic regulation pathway of HSC quiescence will provide insights into HSC homeostasis for therapeutic application. Therefore, understanding the metabolic demands of HSCs at a steady state is key to developing innovative hematological therapeutics. Lysosomes are the major degradative organelle in eukaryotic cells. Catabolic, anabolic, and lysosomal function abnormalities are connected to an expanding list of diseases. In recent years, lysosomes have emerged as control centers of cellular metabolism, particularly in HSC quiescence, and essential regulators of cell signaling have been found on the lysosomal membrane. In addition to autophagic processes, lysosomal activities have been shown to be crucial in sustaining quiescence by restricting HSCs access to a nutritional reserve essential for their activation into the cell cycle. Lysosomal activity may preserve HSC quiescence by altering glycolysis-mitochondrial biogenesis. The understanding of HSC metabolism has significantly expanded over the decade, revealing previously unknown requirements of HSCs in both their dividing (active) and quiescent states. Therefore, understanding the role of lysosomes in HSCs will allow for the development of innovative treatment methods based on HSCs to fight clonal hematopoiesis and HSC aging.
Collapse
Affiliation(s)
- Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
14
|
Meteorin links the bone marrow hypoxic state to hematopoietic stem/progenitor cell mobilization. Cell Rep 2022; 40:111361. [PMID: 36130501 DOI: 10.1016/j.celrep.2022.111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Hematopoietic stem/progenitor cells (HSPCs) are supported and regulated by niche cells in the bone marrow with an important characterization of physiological hypoxia. However, how hypoxia regulates HSPCs is still unclear. Here, we find that meteorin (Metrn) from hypoxic macrophages restrains HSPC mobilization. Hypoxia-induced factor 1α and Yin Yang 1 induce the high expression of Metrn in macrophages, and macrophage-specific Metrn knockout increases HSPC mobilization through modulating HSPC proliferation and migration. Mechanistically, Metrn interacts with its receptor 5-hydroxytryptamine receptor 2b (Htr2b) to regulate the reactive oxygen species levels in HSPCs through targeting phospholipase C signaling. The reactive oxygen species levels are reduced in HSPCs of macrophage-specific Metrn knockout mice with activated phospholipase C signaling. Targeting the Metrn/Htr2b axis could therefore be a potential strategy to improve HSPC mobilization for stem cell-based therapy.
Collapse
|
15
|
Morganti C, Cabezas-Wallscheid N, Ito K. Metabolic Regulation of Hematopoietic Stem Cells. Hemasphere 2022; 6:e740. [PMID: 35785147 PMCID: PMC9242402 DOI: 10.1097/hs9.0000000000000740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022] Open
Abstract
Cellular metabolism is a key regulator of hematopoietic stem cell (HSC) maintenance. HSCs rely on anaerobic glycolysis for energy production to minimize the production of reactive oxygen species and shift toward mitochondrial oxidative phosphorylation upon differentiation. However, increasing evidence has shown that HSCs still maintain a certain level of mitochondrial activity in quiescence, and exhibit high mitochondrial membrane potential, which both support proper HSC function. Since glycolysis and the tricarboxylic acid (TCA) cycle are not directly connected in HSCs, other nutrient pathways, such as amino acid and fatty acid metabolism, generate acetyl-CoA and provide it to the TCA cycle. In this review, we discuss recent insights into the regulatory roles of cellular metabolism in HSCs. Understanding the metabolic requirements of healthy HSCs is of critical importance to the development of new therapies for hematological disorders.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Jakubison BL, Sarkar T, Gudmundsson KO, Singh S, Sun L, Morris HM, Klarmann KD, Keller JR. ID2 and HIF-1α collaborate to protect quiescent hematopoietic stem cells from activation, differentiation, and exhaustion. J Clin Invest 2022; 132:152599. [PMID: 35775482 PMCID: PMC9246389 DOI: 10.1172/jci152599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Defining mechanism(s) that maintain tissue stem quiescence is important for improving tissue regeneration, cell therapies, aging, and cancer. We report here that genetic ablation of Id2 in adult hematopoietic stem cells (HSCs) promotes increased HSC activation and differentiation, which results in HSC exhaustion and bone marrow failure over time. Id2Δ/Δ HSCs showed increased cycling, ROS production, mitochondrial activation, ATP production, and DNA damage compared with Id2+/+ HSCs, supporting the conclusion that Id2Δ/Δ HSCs are less quiescent. Mechanistically, HIF-1α expression was decreased in Id2Δ/Δ HSCs, and stabilization of HIF-1α in Id2Δ/Δ HSCs restored HSC quiescence and rescued HSC exhaustion. Inhibitor of DNA binding 2 (ID2) promoted HIF-1α expression by binding to the von Hippel-Lindau (VHL) protein and interfering with proteasomal degradation of HIF-1α. HIF-1α promoted Id2 expression and enforced a positive feedback loop between ID2 and HIF-1α to maintain HSC quiescence. Thus, sustained ID2 expression could protect HSCs during stress and improve HSC expansion for gene editing and cell therapies.
Collapse
Affiliation(s)
- Brad L Jakubison
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Kristbjorn O Gudmundsson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Lei Sun
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Holly M Morris
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Kimberly D Klarmann
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jonathan R Keller
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| |
Collapse
|
17
|
Romo-González M, Ijurko C, Hernández-Hernández Á. Reactive Oxygen Species and Metabolism in Leukemia: A Dangerous Liaison. Front Immunol 2022; 13:889875. [PMID: 35757686 PMCID: PMC9218220 DOI: 10.3389/fimmu.2022.889875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Reactive oxygen species (ROS), previously considered toxic by-products of aerobic metabolism, are increasingly recognized as regulators of cellular signaling. Keeping ROS levels low is essential to safeguard the self-renewal capacity of hematopoietic stem cells (HSC). HSC reside in a hypoxic environment and have been shown to be highly dependent on the glycolytic pathway to meet their energy requirements. However, when the differentiation machinery is activated, there is an essential enhancement of ROS together with a metabolic shift toward oxidative metabolism. Initiating and sustaining leukemia depend on the activity of leukemic stem cells (LSC). LSC also show low ROS levels, but unlike HSC, LSC rely on oxygen to meet their metabolic energetic requirements through mitochondrial respiration. In contrast, leukemic blasts show high ROS levels and great metabolic plasticity, both of which seem to sustain their invasiveness. Oxidative stress and metabolism rewiring are recognized as hallmarks of cancer that are intimately intermingled. Here we present a detailed overview of these two features, sustained at different levels, that support a two-way relationship in leukemia. Modifying ROS levels and targeting metabolism are interesting therapeutic approaches. Therefore, we provide the most recent evidence on the modulation of oxidative stress and metabolism as a suitable anti-leukemic approach.
Collapse
Affiliation(s)
- Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
18
|
Zeng J, Chen M, Yang Y, Wu B. A novel hypoxic lncRNA, HRL-SC, promotes the proliferation and migration of human dental pulp stem cells through the PI3K/AKT signaling pathway. Stem Cell Res Ther 2022; 13:286. [PMID: 35765088 PMCID: PMC9241257 DOI: 10.1186/s13287-022-02970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Human dental pulp stem cells (hDPSCs) are critical for pulp generation. hDPSCs proliferate faster under hypoxia, but the mechanism by which long noncoding RNA (lncRNA) regulates this process is not fully understood. Methods Novel lncRNAs were obtained by reanalysis of transcriptome datasets from RNA-Seq under hypoxia compared with normoxia, and a differential expression analysis of target genes was performed. Bioinformatics analyses, including gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis and gene set enrichment analysis, were used to understand the function of key novel lncRNAs. hDPSCs were isolated from dental pulp tissue. EdU and scratch wound healing assays were used to detect the proliferation and migration of hDPSCs. qRT-PCR was used to detect changes in the RNA expression of selected genes. RNA fluorescence in situ hybridization, small interfering RNA, qRT-PCR and Western blot analysis were used to explore the function of key novel lncRNAs. Results We identified 496 novel lncRNAs in hDPSCs under hypoxia, including 45 differentially expressed novel lncRNAs. Of these, we focused on a key novel lncRNA, which we designated HRL-SC (hypoxia-responsive lncRNA in stem cells). Functional annotation revealed that HRL-SC was associated with hypoxic conditions and the PI3K/AKT signaling pathway. HRL-SC was mainly located in the cytoplasm of hDPSCs and had stable high expression under hypoxia. Knockdown of HRL-SC inhibited the proliferation and migration of hDPSCs and the expression levels of PI3K/AKT-related marker proteins. Furthermore, the AKT activator SC79 partially offset the inhibitory effect caused by the knockdown, indicating that HRL-SC promoted hDPSCs through the PI3K/AKT signaling pathway. Conclusions Hypoxia-responsive lncRNA HRL-SC promotes the proliferation and migration of hDPSCs through the PI3K/AKT signaling pathway, and this understanding may facilitate the regenerative application of hDPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02970-5.
Collapse
Affiliation(s)
- Junkai Zeng
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.,School of Stomatology, Southern Medical University, Guangzhou, People's Republic of China
| | - Ming Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China.,School of Stomatology, Southern Medical University, Guangzhou, People's Republic of China
| | - Yeqing Yang
- Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China.,School of Stomatology, Southern Medical University, Guangzhou, People's Republic of China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, 510515, Guangdong, People's Republic of China. .,School of Stomatology, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
19
|
Gudmundsson KO, Du Y. Quiescence regulation by normal haematopoietic stem cells and leukaemia stem cells. FEBS J 2022. [PMID: 35514133 DOI: 10.1111/febs.16472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/21/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The haematopoietic system is maintained by rare haematopoietic stem cells (HSCs), which are quiescent most of the time and only divide occasionally to self-renew and/or to undergo commitment to clonal expansion via the generation of highly proliferative progenitor cells. The latter is responsible for the generation of all mature cells of the system through subsequent lineage commitment and terminal differentiation. Cells with similar properties also exist in leukaemias and are known as leukaemia stem cells (LSCs). Quiescence provides essential protection for both HSC and LSC from cytotoxic stress and DNA damage and, in the case of LSCs, likely causes therapy resistance and disease relapse in leukaemia patients. Specific inhibition of LSC quiescence has been considered a promising strategy for eliminating LSCs and curing leukaemias. Although the understanding of mechanisms responsible for quiescence maintenance in these cells remains limited, particularly for LSCs, recent studies have suggested potential differences in their dependency on certain pathways and their levels of stress and DNA damage caused by increased cycling. Such differences likely stem from oncogenic mutations in LSCs and could be specifically exploited for the elimination of LSCs while sparing normal HSCs in the future.
Collapse
Affiliation(s)
- Kristbjorn Orri Gudmundsson
- Basic Science Program Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program Center for Cancer Research NCI Frederick MD USA
| | - Yang Du
- Department of Pediatrics Uniformed Services University of the Health Sciences Bethesda MD USA
| |
Collapse
|
20
|
Abstract
Metabolism has been studied mainly in cultured cells or at the level of whole tissues or whole organisms in vivo. Consequently, our understanding of metabolic heterogeneity among cells within tissues is limited, particularly when it comes to rare cells with biologically distinct properties, such as stem cells. Stem cell function, tissue regeneration and cancer suppression are all metabolically regulated, although it is not yet clear whether there are metabolic mechanisms unique to stem cells that regulate their activity and function. Recent work has, however, provided evidence that stem cells do have a metabolic signature that is distinct from that of restricted progenitors and that metabolic changes influence tissue homeostasis and regeneration. Stem cell maintenance throughout life in many tissues depends upon minimizing anabolic pathway activation and cell division. Consequently, stem cell activation by tissue injury is associated with changes in mitochondrial function, lysosome activity and lipid metabolism, potentially at the cost of eroding self-renewal potential. Stem cell metabolism is also regulated by the environment: stem cells metabolically interact with other cells in their niches and are able to sense and adapt to dietary changes. The accelerating understanding of stem cell metabolism is revealing new aspects of tissue homeostasis with the potential to promote tissue regeneration and cancer suppression.
Collapse
|
21
|
Zhu B, Zhong W, Cao X, Pan G, Xu M, Zheng J, Chen H, Feng X, Luo C, Lu C, Xiao J, Lin W, Lai C, Li M, Du X, Yi Q, Yan D. Loss of miR-31-5p drives hematopoietic stem cell malignant transformation and restoration eliminates leukemia stem cells in mice. Sci Transl Med 2022; 14:eabh2548. [PMID: 35080912 DOI: 10.1126/scitranslmed.abh2548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Leukemia stem cells (LSCs) propagate leukemia and are responsible for the high frequency of relapse of treated patients. The ability to target LSCs remains elusive, indicating a need to understand the underlying mechanism of LSC formation. Here, we report that miR-31-5p is reduced or undetectable in human LSCs compared to hematopoietic stem progenitor cells (HSPCs). Inhibition of miR-31-5p in HSPCs promotes the expression of its target gene FIH, encoding FIH [factor inhibiting hypoxia-inducing factor 1α (HIF-1α)], to suppress HIF-1α signaling. Increased FIH resulted in a switch from glycolysis to oxidative phosphorylation (OXPHOS) as the predominant mode of energy metabolism and increased the abundance of the oncometabolite fumarate. Increased fumarate promoted the conversion of HSPCs to LSCs and initiated myeloid leukemia-like disease in NOD-Prkdcscid IL2rgtm1/Bcgen (B-NDG) mice. We further demonstrated that miR-31-5p inhibited long- and short-term hematopoietic stem cells with a high frequency of LSCs. In combination with the chemotherapeutic agent Ara-C (cytosine arabinoside), restoration of miR-31-5p using G7 poly (amidoamine) nanosized dendriplex encapsulating miR-31-5p eliminated LSCs and inhibited acute myeloid leukemia (AML) progression in patient-derived xenograft mouse models. These results demonstrated a mechanism of HSC malignant transformation through altered energy metabolism and provided a potential therapeutic strategy to treat patients with AML.
Collapse
Affiliation(s)
- Biying Zhu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Wenbin Zhong
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiuye Cao
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Guoping Pan
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Mengyang Xu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Huanzhao Chen
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiaoqin Feng
- Hematology and Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chengwei Luo
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Chen Lu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Jie Xiao
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Weize Lin
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Chaofeng Lai
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Mingchuan Li
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Qing Yi
- Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Daoguang Yan
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Inflammation Regulates Haematopoietic Stem Cells and Their Niche. Int J Mol Sci 2022; 23:ijms23031125. [PMID: 35163048 PMCID: PMC8835214 DOI: 10.3390/ijms23031125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Haematopoietic stem cells (HSCs) reside in the bone marrow and are supported by the specialised microenvironment, a niche to maintain HSC quiescence. To deal with haematopoietic equilibrium disrupted during inflammation, HSCs are activated from quiescence directly and indirectly to generate more mature immune cells, especially the myeloid lineage cells. In the process of proliferation and differentiation, HSCs gradually lose their self-renewal potential. The extensive inflammation might cause HSC exhaustion/senescence and malignant transformation. Here, we summarise the current understanding of how HSC functions are maintained, damaged, or exhausted during acute, prolonged, and pathological inflammatory conditions. We also highlight the inflammation-altered HSC niche and its impact on escalating the insults on HSCs.
Collapse
|
23
|
Jun S, Mahesula S, Mathews TP, Martin-Sandoval MS, Zhao Z, Piskounova E, Agathocleous M. The requirement for pyruvate dehydrogenase in leukemogenesis depends on cell lineage. Cell Metab 2021; 33:1777-1792.e8. [PMID: 34375613 DOI: 10.1016/j.cmet.2021.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022]
Abstract
Cancer cells are metabolically similar to their corresponding normal tissues. Differences between cancers and normal tissues may reflect reprogramming during transformation or maintenance of the metabolism of the specific normal cell type that originated the cancer. Here, we compare glucose metabolism in hematopoiesis and leukemia. Thymus T cell progenitors were glucose avid and oxidized more glucose in the tricarboxylic acid cycle through pyruvate dehydrogenase (PDH) as compared with other hematopoietic cells. PDH deletion decreased double-positive T cell progenitor cells but had no effect on hematopoietic stem cells, myeloid progenitors, or other hematopoietic cells. PDH deletion blocked the development of Pten-deficient T cell leukemia, but not the development of a Pten-deficient myeloid neoplasm. Therefore, the requirement for PDH in leukemia reflected the metabolism of the normal cell of origin independently of the driver genetic lesion. PDH was required to prevent pyruvate accumulation and maintain glutathione levels and redox homeostasis.
Collapse
Affiliation(s)
- Sojeong Jun
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Swetha Mahesula
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Misty S Martin-Sandoval
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhiyu Zhao
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elena Piskounova
- Sandra and Edward Meyer Cancer Center and Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Michalis Agathocleous
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Sun V, Sharpley M, Kaczor-Urbanowicz KE, Chang P, Montel-Hagen A, Lopez S, Zampieri A, Zhu Y, de Barros SC, Parekh C, Casero D, Banerjee U, Crooks GM. The Metabolic Landscape of Thymic T Cell Development In Vivo and In Vitro. Front Immunol 2021; 12:716661. [PMID: 34394122 PMCID: PMC8355594 DOI: 10.3389/fimmu.2021.716661] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
Although metabolic pathways have been shown to control differentiation and activation in peripheral T cells, metabolic studies on thymic T cell development are still lacking, especially in human tissue. In this study, we use transcriptomics and extracellular flux analyses to investigate the metabolic profiles of primary thymic and in vitro-derived mouse and human thymocytes. Core metabolic pathways, specifically glycolysis and oxidative phosphorylation, undergo dramatic changes between the double-negative (DN), double-positive (DP), and mature single-positive (SP) stages in murine and human thymus. Remarkably, despite the absence of the complex multicellular thymic microenvironment, in vitro murine and human T cell development recapitulated the coordinated decrease in glycolytic and oxidative phosphorylation activity between the DN and DP stages seen in primary thymus. Moreover, by inducing in vitro T cell differentiation from Rag1-/- mouse bone marrow, we show that reduced metabolic activity at the DP stage is independent of TCR rearrangement. Thus, our findings suggest that highly conserved metabolic transitions are critical for thymic T cell development.
Collapse
Affiliation(s)
- Victoria Sun
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, United States
| | - Mark Sharpley
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Karolina E. Kaczor-Urbanowicz
- Division of Oral Biology & Medicine, School of Dentistry, UCLA, Los Angeles, CA, United States
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA, United States
| | - Patrick Chang
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, United States
| | - Amélie Montel-Hagen
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Shawn Lopez
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Alexandre Zampieri
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yuhua Zhu
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Stéphanie C. de Barros
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Chintan Parekh
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - David Casero
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars- Sinai Medical Center, Los Angeles, CA, United States
| | - Utpal Banerjee
- Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, United States
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, United States
- Department of Biological Chemistry, UCLA, Los Angeles, CA, United States
- Eli and Edythe Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States
| | - Gay M. Crooks
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Eli and Edythe Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
25
|
Yao Y, Li F, Huang J, Jin J, Wang H. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Exp Hematol Oncol 2021; 10:39. [PMID: 34246314 PMCID: PMC8272391 DOI: 10.1186/s40164-021-00233-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the advances in intensive chemotherapy regimens and targeted therapies, overall survival (OS) of acute myeloid leukemia (AML) remains unfavorable due to inevitable chemotherapy resistance and high relapse rate, which mainly caused by the persistence existence of leukemia stem cells (LSCs). Bone marrow microenvironment (BMM), the home of hematopoiesis, has been considered to play a crucial role in both hematopoiesis and leukemogenesis. When interrupted by the AML cells, a malignant BMM formed and thus provided a refuge for LSCs and protecting them from the cytotoxic effects of chemotherapy. In this review, we summarized the alterations in the bidirectional interplay between hematopoietic cells and BMM in the normal/AML hematopoietic environment, and pointed out the key role of these alterations in pathogenesis and chemotherapy resistance of AML. Finally, we focused on the current potential BMM-targeted strategies together with future prospects and challenges. Accordingly, while further research is necessary to elucidate the underlying mechanisms behind LSC–BMM interaction, targeting the interaction is perceived as a potential therapeutic strategy to eradicate LSCs and ultimately improve the outcome of AML.
Collapse
Affiliation(s)
- Yiyi Yao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310000, Zhejiang, People's Republic of China.
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
26
|
Chakrabarty RP, Chandel NS. Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell 2021; 28:394-408. [PMID: 33667360 DOI: 10.1016/j.stem.2021.02.011] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence supports the notion that mitochondrial metabolism is necessary for the determination of stem cell fate. Historically, mitochondrial metabolism is linked to the production of ATP and tricarboxylic acid (TCA) cycle metabolites to support stem cell survival and growth, respectively. However, it is now clear that beyond these canonical roles, mitochondria as signaling organelles dictate stem cell fate and function. In this review, we focus on key conceptual ideas on how mitochondria control mammalian stem cell fate and function through reactive oxygen species (ROS) generation, TCA cycle metabolite production, NAD+/NADH ratio regulation, pyruvate metabolism, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Ram Prosad Chakrabarty
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
27
|
Hypoxia favors chemoresistance in T-ALL through an HIF1α-mediated mTORC1 inhibition loop. Blood Adv 2021; 5:513-526. [PMID: 33496749 DOI: 10.1182/bloodadvances.2020002832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Resistance to chemotherapy, a major therapeutic challenge in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), can be driven by interactions between leukemic cells and the microenvironment that promote survival of leukemic cells. The bone marrow, an important leukemia niche, has low oxygen partial pressures that highly participate in the regulation of normal hematopoiesis. Here we show that hypoxia inhibits T-ALL cell growth by slowing down cell cycle progression, decreasing mitochondria activity, and increasing glycolysis, making them less sensitive to antileukemic drugs and preserving their ability to initiate leukemia after treatment. Activation of the mammalian target of rapamycin (mTOR) was diminished in hypoxic leukemic cells, and treatment of T-ALL with the mTOR inhibitor rapamycin in normoxia mimicked the hypoxia effects, namely decreased cell growth and increased quiescence and drug resistance. Knocking down (KD) hypoxia-induced factor 1α (HIF-1α), a key regulator of the cellular response to hypoxia, antagonized the effects observed in hypoxic T-ALL and restored chemosensitivity. HIF-1α KD also restored mTOR activation in low O2 concentrations, and inhibiting mTOR in HIF1α KD T-ALL protected leukemic cells from chemotherapy. Thus, hypoxic niches play a protective role of T-ALL during treatments. Inhibition of HIF-1α and activation of the mTORC1 pathway may help suppress the drug resistance of T-ALL in hypoxic niches.
Collapse
|
28
|
Mapperley C, van de Lagemaat LN, Lawson H, Tavosanis A, Paris J, Campos J, Wotherspoon D, Durko J, Sarapuu A, Choe J, Ivanova I, Krause DS, von Kriegsheim A, Much C, Morgan M, Gregory RI, Mead AJ, O’Carroll D, Kranc KR. The mRNA m6A reader YTHDF2 suppresses proinflammatory pathways and sustains hematopoietic stem cell function. J Exp Med 2021; 218:e20200829. [PMID: 33156926 PMCID: PMC7653684 DOI: 10.1084/jem.20200829] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/27/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022] Open
Abstract
The mRNA N6-methyladenosine (m6A) modification has emerged as an essential regulator of normal and malignant hematopoiesis. Inactivation of the m6A mRNA reader YTHDF2, which recognizes m6A-modified transcripts to promote m6A-mRNA degradation, results in hematopoietic stem cell (HSC) expansion and compromises acute myeloid leukemia. Here we investigate the long-term impact of YTHDF2 deletion on HSC maintenance and multilineage hematopoiesis. We demonstrate that Ythdf2-deficient HSCs from young mice fail upon serial transplantation, display increased abundance of multiple m6A-modified inflammation-related transcripts, and chronically activate proinflammatory pathways. Consistent with the detrimental consequences of chronic activation of inflammatory pathways in HSCs, hematopoiesis-specific Ythdf2 deficiency results in a progressive myeloid bias, loss of lymphoid potential, HSC expansion, and failure of aged Ythdf2-deficient HSCs to reconstitute multilineage hematopoiesis. Experimentally induced inflammation increases YTHDF2 expression, and YTHDF2 is required to protect HSCs from this insult. Thus, our study positions YTHDF2 as a repressor of inflammatory pathways in HSCs and highlights the significance of m6A in long-term HSC maintenance.
Collapse
Affiliation(s)
- Christopher Mapperley
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louie N. van de Lagemaat
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hannah Lawson
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Andrea Tavosanis
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jasmin Paris
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Joana Campos
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - David Wotherspoon
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jozef Durko
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Annika Sarapuu
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Junho Choe
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Ivayla Ivanova
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Christian Much
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Marcos Morgan
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Richard I. Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Adam J. Mead
- Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Dónal O’Carroll
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kamil R. Kranc
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
29
|
Lawson H, Sepulveda C, van de Lagemaat LN, Durko J, Barile M, Tavosanis A, Georges E, Shmakova A, Timms P, Carter RN, Allen L, Campos J, Vukovic M, Guitart AV, Giles P, O'Shea M, Vernimmen D, Morton NM, Rodrigues NP, Göttgens B, Schofield CJ, Lengeling A, O'Carroll D, Kranc KR. JMJD6 promotes self-renewal and regenerative capacity of hematopoietic stem cells. Blood Adv 2021; 5:889-899. [PMID: 33560400 PMCID: PMC7876897 DOI: 10.1182/bloodadvances.2020002702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Lifelong multilineage hematopoiesis critically depends on rare hematopoietic stem cells (HSCs) that reside in the hypoxic bone marrow microenvironment. Although the role of the canonical oxygen sensor hypoxia-inducible factor prolyl hydroxylase has been investigated extensively in hematopoiesis, the functional significance of other members of the 2-oxoglutarate (2-OG)-dependent protein hydroxylase family of enzymes remains poorly defined in HSC biology and multilineage hematopoiesis. Here, by using hematopoietic-specific conditional gene deletion, we reveal that the 2-OG-dependent protein hydroxylase JMJD6 is essential for short- and long-term maintenance of the HSC pool and multilineage hematopoiesis. Additionally, upon hematopoietic injury, Jmjd6-deficient HSCs display a striking failure to expand and regenerate the hematopoietic system. Moreover, HSCs lacking Jmjd6 lose multilineage reconstitution potential and self-renewal capacity upon serial transplantation. At the molecular level, we found that JMJD6 functions to repress multiple processes whose downregulation is essential for HSC integrity, including mitochondrial oxidative phosphorylation (OXPHOS), protein synthesis, p53 stabilization, cell cycle checkpoint progression, and mTORC1 signaling. Indeed, Jmjd6-deficient primitive hematopoietic cells display elevated basal and maximal mitochondrial respiration rates and increased reactive oxygen species (ROS), prerequisites for HSC failure. Notably, an antioxidant, N-acetyl-l-cysteine, rescued HSC and lymphoid progenitor cell depletion, indicating a causal impact of OXPHOS-mediated ROS generation upon Jmjd6 deletion. Thus, JMJD6 promotes HSC maintenance and multilineage differentiation potential by suppressing fundamental pathways whose activation is detrimental for HSC function.
Collapse
Affiliation(s)
- Hannah Lawson
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Catarina Sepulveda
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Louie N van de Lagemaat
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jozef Durko
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Melania Barile
- Department of Haematology, Wellcome and Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Andrea Tavosanis
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Elise Georges
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Alena Shmakova
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Penny Timms
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Roderick N Carter
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lewis Allen
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joana Campos
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Milica Vukovic
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Amelie V Guitart
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Marie O'Shea
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas Vernimmen
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, Wellcome and Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Andreas Lengeling
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Administrative Headquarters, Max Planck Society, Munich, Germany; and
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Institute for Stem Cell Research and
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kamil R Kranc
- Laboratory of Haematopoietic Stem Cell and Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Nakamura-Ishizu A, Ito K, Suda T. Hematopoietic Stem Cell Metabolism during Development and Aging. Dev Cell 2021; 54:239-255. [PMID: 32693057 DOI: 10.1016/j.devcel.2020.06.029] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
Cellular metabolism in hematopoietic stem cells (HSCs) is an area of intense research interest, but the metabolic requirements of HSCs and their adaptations to their niches during development have remained largely unaddressed. Distinctive from other tissue stem cells, HSCs transition through multiple hematopoietic sites during development. This transition requires drastic metabolic shifts, insinuating the capacity of HSCs to meet the physiological demand of hematopoiesis. In this review, we highlight how mitochondrial metabolism determines HSC fate, and especially focus on the links between mitochondria, endoplasmic reticulum (ER), and lysosomes in HSC metabolism.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA; Department of Medicine (Hemato-Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA; Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan.
| |
Collapse
|
31
|
Understanding of the crosstalk between normal residual hematopoietic stem cells and the leukemic niche in acute myeloid leukemia. Exp Hematol 2021; 95:23-30. [PMID: 33497761 DOI: 10.1016/j.exphem.2021.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease, yet clinically most patients present with pancytopenia resulting from bone marrow failure, predisposing them to life-threatening infections and bleeding. The mechanisms by which AML mediates hematopoietic suppression is not well known. Indeed, much effort has so far been focused on how AML remodels the bone marrow niche to make it a more permissive environment, with less focus on how the remodeled niche affects normal hematopoietic cells. In this perspective, we present evidence of the key role of the bone marrow niche in suppressing hematopoietic stem cells (HSCs) during leukemic progression and provide perspectives on how future research on this topic may be exploited to provide treatments for one of the key complications of AML.
Collapse
|
32
|
Hypoxia Regulates Lymphoid Development of Human Hematopoietic Progenitors. Cell Rep 2020; 29:2307-2320.e6. [PMID: 31747603 DOI: 10.1016/j.celrep.2019.10.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 01/04/2023] Open
Abstract
Hypoxia plays a major role in the physiology of hematopoietic and immune niches. Important clues from works in mouse have paved the way to investigate the role of low O2 levels in hematopoiesis. However, whether hypoxia impacts the initial steps of human lymphopoiesis remains unexplored. Here, we show that hypoxia regulates cellular and metabolic profiles of umbilical cord blood (UCB)-derived hematopoietic progenitor cells. Hypoxia more specifically enhances in vitro lymphoid differentiation potentials of lymphoid-primed multipotent progenitors (LMPPs) and pro-T/natural killer (NK) cells and in vivo B cell potential of LMPPs. In accordance, hypoxia exacerbates the lymphoid gene expression profile through hypoxia-inducible factor (HIF)-1α (for LMPPs) and HIF-2α (for pro-T/NK). Moreover, loss of HIF-1/2α expression seriously impedes NK and B cell production from LMPPs and pro-T/NK. Our study describes how hypoxia contributes to the lymphoid development of human progenitors and reveals the implication of the HIF pathway in LMPPs and pro-T/NK-cell lymphoid identities.
Collapse
|
33
|
Waclawiczek A, Hamilton A, Rouault-Pierre K, Abarrategi A, Albornoz MG, Miraki-Moud F, Bah N, Gribben J, Fitzgibbon J, Taussig D, Bonnet D. Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia. J Clin Invest 2020; 130:3038-3050. [PMID: 32364536 PMCID: PMC7260026 DOI: 10.1172/jci133187] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) disrupts the generation of normal blood cells, predisposing patients to hemorrhage, anemia, and infections. Differentiation and proliferation of residual normal hematopoietic stem and progenitor cells (HSPCs) are impeded in AML-infiltrated bone marrow (BM). The underlying mechanisms and interactions of residual hematopoietic stem cells (HSCs) within the leukemic niche are poorly understood, especially in the human context. To mimic AML infiltration and dissect the cellular crosstalk in human BM, we established humanized ex vivo and in vivo niche models comprising AML cells, normal HSPCs, and mesenchymal stromal cells (MSCs). Both models replicated the suppression of phenotypically defined HSPC differentiation without affecting their viability. As occurs in AML patients, the majority of HSPCs were quiescent and showed enrichment of functional HSCs. HSPC suppression was largely dependent on secreted factors produced by transcriptionally remodeled MSCs. Secretome analysis and functional validation revealed MSC-derived stanniocalcin 1 (STC1) and its transcriptional regulator HIF-1α as limiting factors for HSPC proliferation. Abrogation of either STC1 or HIF-1α alleviated HSPC suppression by AML. This study provides a humanized model to study the crosstalk among HSPCs, leukemia, and their MSC niche, and a molecular mechanism whereby AML impairs normal hematopoiesis by remodeling the mesenchymal niche.
Collapse
MESH Headings
- Animals
- Female
- Glycoproteins/genetics
- Glycoproteins/metabolism
- HL-60 Cells
- Hematopoiesis
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- U937 Cells
Collapse
Affiliation(s)
- Alexander Waclawiczek
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ashley Hamilton
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | | | - Farideh Miraki-Moud
- Haemato-Oncology Unit, Royal Marsden Hospital, Institute of Cancer Research, London, United Kingdom
| | - Nourdine Bah
- Bioinformatic Core Facility, Francis Crick Institute, London, United Kingdom
| | - John Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - David Taussig
- Haemato-Oncology Unit, Royal Marsden Hospital, Institute of Cancer Research, London, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
34
|
Ferrer A, Roser CT, El-Far MH, Savanur VH, Eljarrah A, Gergues M, Kra JA, Etchegaray JP, Rameshwar P. Hypoxia-mediated changes in bone marrow microenvironment in breast cancer dormancy. Cancer Lett 2020; 488:9-17. [PMID: 32479768 DOI: 10.1016/j.canlet.2020.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) remains a clinical challenge despite improved treatments and public awareness to ensure early diagnosis. A major issue is the ability of BC cells (BCCs) to survive as dormant cancer cells in the bone marrow (BM), resulting in the cancer surviving for decades with the potential to resurge as metastatic cancer. The experimental evidence indicates similarity between dormant BCCs and other stem cells, resulting in the preponderance of data to show dormant BCCs being cancer stem cells (CSCs). The BM niche and their secretome support BCC dormancy. Lacking in the literature is a comprehensive research to describe how the hypoxic environment within the BM may influence the behavior of BCCs. This information is relevant to understand the prognosis of BC in young and aged individuals whose oxygen levels differ in BM. This review discusses the changing information on vascularity in different regions of the BM and the impact on endogenous hematopoietic stem cells (HSCs). This review highlights the necessary information to provide insights on vascularity of different BM regions on the behavior of BCCs, in particular a dormant phase. For instance, how the transcription factor HIF1-α (hypoxia-inducible factor 1 alpha), functioning as first responder under hypoxic conditions, affects the expression of specific gene networks involved in energy metabolism, cell survival, tumor invasion and angiogenesis. This enables cell fate transition and facilitates tumor heterogeneity, which in turn favors tumor progression and resistance to anticancer treatments Thus, HIF1-α could be a potential target for cancer treatment. This review describes epigenetic mechanisms involved in hypoxic responses during cancer dormancy in the bone marrow. The varied hypoxic environment in the BM is relevant to understand the complex process of the aging bone marrow for insights on breast cancer outcome between the young and aged.
Collapse
Affiliation(s)
- Alejandra Ferrer
- Rutgers New Jersey Medical School, Department of Medicine, Newark, NJ, 07103, USA; Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, 07103, USA
| | - Christopher T Roser
- Rutgers New Jersey Medical School, Department of Medicine, Newark, NJ, 07103, USA
| | - Markos H El-Far
- Rutgers New Jersey Medical School, Department of Medicine, Newark, NJ, 07103, USA; Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, 07103, USA
| | - Vibha Harindra Savanur
- Rutgers New Jersey Medical School, Department of Medicine, Newark, NJ, 07103, USA; Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, 07103, USA
| | - Adam Eljarrah
- Rutgers New Jersey Medical School, Department of Medicine, Newark, NJ, 07103, USA
| | - Marina Gergues
- Rutgers New Jersey Medical School, Department of Medicine, Newark, NJ, 07103, USA; Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, 07103, USA
| | - Joshua A Kra
- Rutgers Cancer Institute of New Jersey at University Hospital, Newark, NJ, 07103, USA
| | | | - Pranela Rameshwar
- Rutgers New Jersey Medical School, Department of Medicine, Newark, NJ, 07103, USA.
| |
Collapse
|
35
|
Snoeck HW. Calcium regulation of stem cells. EMBO Rep 2020; 21:e50028. [PMID: 32419314 DOI: 10.15252/embr.202050028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Pluripotent and post-natal, tissue-specific stem cells share functional features such as the capacity to differentiate into multiple lineages and to self-renew, and are endowed with specific cell maintenance mechanism as well as transcriptional and epigenetic signatures that determine stem cell identity and distinguish them from their progeny. Calcium is a highly versatile and ubiquitous second messenger that regulates a wide variety of cellular functions. Specific roles of calcium in stem cell niches and stem cell maintenance mechanisms are only beginning to be explored, however. In this review, I discuss stem cell-specific regulation and roles of calcium, focusing on its potential involvement in the intertwined metabolic and epigenetic regulation of stem cells.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center of Human Development, Columbia University Irving Medical Center, New York, NY, USA.,Division of Pulmonary Medicine, Allergy and Critical Care, Columbia University Irving Medical Center, New York, NY, USA.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
36
|
Baumeister J, Chatain N, Hubrich A, Maié T, Costa IG, Denecke B, Han L, Küstermann C, Sontag S, Seré K, Strathmann K, Zenke M, Schuppert A, Brümmendorf TH, Kranc KR, Koschmieder S, Gezer D. Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms. Leukemia 2020; 34:1062-1074. [PMID: 31728053 DOI: 10.1038/s41375-019-0629-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
Classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are a heterogeneous group of hematopoietic malignancies including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The JAK2V617F mutation plays a central role in these disorders and can be found in 90% of PV and ~50-60% of ET and PMF. Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional regulator of the response to decreased oxygen levels. We demonstrate the impact of pharmacological inhibition and shRNA-mediated knockdown (KD) of HIF-1α in JAK2V617F-positive cells. Inhibition of HIF-1 binding to hypoxia response elements (HREs) with echinomycin, verified by ChIP, impaired growth and survival by inducing apoptosis and cell cycle arrest in Jak2V617F-positive 32D cells, but not Jak2WT controls. Echinomycin selectively abrogated clonogenic growth of JAK2V617F cells and decreased growth, survival, and colony formation of bone marrow and peripheral blood mononuclear cells and iPS cell-derived progenitor cells from JAK2V617F-positive patients, while cells from healthy donors were unaffected. We identified HIF-1 target genes involved in the Warburg effect as a possible underlying mechanism, with increased expression of Pdk1, Glut1, and others. That was underlined by transcriptome analysis of primary patient samples. Collectively, our data show that HIF-1 is a new potential therapeutic target in JAK2V617F-positive MPN.
Collapse
Affiliation(s)
- Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Annika Hubrich
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lijuan Han
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Caroline Küstermann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Stephanie Sontag
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Kristin Seré
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Klaus Strathmann
- Institute for Transfusion Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andreas Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Kamil R Kranc
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
37
|
Network Pharmacology-Based Investigation of the System-Level Molecular Mechanisms of the Hematopoietic Activity of Samul-Tang, a Traditional Korean Herbal Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9048089. [PMID: 32104198 PMCID: PMC7040423 DOI: 10.1155/2020/9048089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
Hematopoiesis is a dynamic process of the continuous production of diverse blood cell types to meet the body's physiological demands and involves complex regulation of multiple cellular mechanisms in hematopoietic stem cells, including proliferation, self-renewal, differentiation, and apoptosis. Disruption of the hematopoietic system is known to cause various hematological disorders such as myelosuppression. There is growing evidence on the beneficial effects of herbal medicines on hematopoiesis; however, their mechanism of action remains unclear. In this study, we conducted a network pharmacological-based investigation of the system-level mechanisms underlying the hematopoietic activity of Samul-tang, which is an herbal formula consisting of four herbal medicines, including Angelicae Gigantis Radix, Rehmanniae Radix Preparata, Paeoniae Radix Alba, and Cnidii Rhizoma. In silico analysis of the absorption-distribution-metabolism-excretion model identified 16 active phytochemical compounds contained in Samul-tang that may target 158 genes/proteins associated with myelosuppression to exert pharmacological effects. Functional enrichment analysis suggested that the targets of Samul-tang were significantly enriched in multiple pathways closely related to the hematopoiesis and myelosuppression development, including the PI3K-Akt, MAPK, IL-17, TNF, FoxO, HIF-1, NF-kappa B, and p53 signaling pathways. Our study provides novel evidence regarding the system-level mechanisms underlying the hematopoiesis-promoting effect of herbal medicines for hematological disorder treatment.
Collapse
|
38
|
Koschade SE, Brandts CH. Selective Autophagy in Normal and Malignant Hematopoiesis. J Mol Biol 2020; 432:261-282. [DOI: 10.1016/j.jmb.2019.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
|
39
|
Wierenga ATJ, Cunningham A, Erdem A, Lopera NV, Brouwers-Vos AZ, Pruis M, Mulder AB, Günther UL, Martens JHA, Vellenga E, Schuringa JJ. HIF1/2-exerted control over glycolytic gene expression is not functionally relevant for glycolysis in human leukemic stem/progenitor cells. Cancer Metab 2019; 7:11. [PMID: 31890203 PMCID: PMC6935105 DOI: 10.1186/s40170-019-0206-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Background Hypoxia-inducible factors (HIF)1 and 2 are transcription factors that regulate the homeostatic response to low oxygen conditions. Since data related to the importance of HIF1 and 2 in hematopoietic stem and progenitors is conflicting, we investigated the chromatin binding profiles of HIF1 and HIF2 and linked that to transcriptional networks and the cellular metabolic state. Methods Genome-wide ChIPseq and ChIP-PCR experiments were performed to identify HIF1 and HIF2 binding sites in human acute myeloid leukemia (AML) cells and healthy CD34+ hematopoietic stem/progenitor cells. Transcriptome studies were performed to identify gene expression changes induced by hypoxia or by overexpression of oxygen-insensitive HIF1 and HIF2 mutants. Metabolism studies were performed by 1D-NMR, and glucose consumption and lactate production levels were determined by spectrophotometric enzyme assays. CRISPR-CAS9-mediated HIF1, HIF2, and ARNT-/- lines were generated to study the functional consequences upon loss of HIF signaling, in vitro and in vivo upon transplantation of knockout lines in xenograft mice. Results Genome-wide ChIP-seq and transcriptome studies revealed that overlapping HIF1- and HIF2-controlled loci were highly enriched for various processes including metabolism, particularly glucose metabolism, but also for chromatin organization, cellular response to stress and G protein-coupled receptor signaling. ChIP-qPCR validation studies confirmed that glycolysis-related genes but not genes related to the TCA cycle or glutaminolysis were controlled by both HIF1 and HIF2 in leukemic cell lines and primary AMLs, while in healthy human CD34+ cells these loci were predominantly controlled by HIF1 and not HIF2. However, and in contrast to our initial hypotheses, CRISPR/Cas9-mediated knockout of HIF signaling did not affect growth, internal metabolite concentrations, glucose consumption or lactate production under hypoxia, not even in vivo upon transplantation of knockout cells into xenograft mice. Conclusion These data indicate that, while HIFs exert control over glycolysis but not OxPHOS gene expression in human leukemic cells, this is not critically important for their metabolic state. In contrast, inhibition of BCR-ABL did impact on glucose consumption and lactate production regardless of the presence of HIFs. These data indicate that oncogene-mediated control over glycolysis can occur independently of hypoxic signaling modules.
Collapse
Affiliation(s)
- Albertus T J Wierenga
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB The Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RB Groningen, The Netherlands
| | - Alan Cunningham
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB The Netherlands
| | - Ayşegül Erdem
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB The Netherlands
| | | | - Annet Z Brouwers-Vos
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB The Netherlands
| | - Maurien Pruis
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB The Netherlands
| | - André B Mulder
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RB Groningen, The Netherlands
| | - Ulrich L Günther
- 3Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Joost H A Martens
- 4Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Edo Vellenga
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700RB The Netherlands
| |
Collapse
|
40
|
|
41
|
Hif1a and Hif2a can be safely inactivated in cone photoreceptors. Sci Rep 2019; 9:16121. [PMID: 31695081 PMCID: PMC6834587 DOI: 10.1038/s41598-019-52508-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Impaired tissue oxygenation results in hypoxia and leads to the activation of hypoxia-inducible transcription factors (HIF). A chronic, HIF-triggered molecular response to hypoxia may be an important factor in the etiology of age-related macular degeneration (AMD) and is likely activated before any clinical manifestation of the disease. Thus, HIF1 and HIF2 recently emerged as potential therapeutic targets for AMD. To address and evaluate potential consequences of anti-HIF therapies for retinal physiology and function, we generated mouse lines that have Hif1a, or both Hif1a and Hif2a ablated specifically in cone photoreceptors. The knockdown of Hifs in cones did not cause detectable pathological alterations such as loss of cone photoreceptors, retinal degeneration or abnormalities of the retinal vasculature, had no impact on retinal function and resulted in a similar tolerance to hypoxic exposure. Our data indicate that HIF transcription factors are dispensable for maintaining normal cone function and survival in retinas of adult mice. This study provides the groundwork necessary to establish safety profiles for strategies aiming at antagonizing HIF1A and HIF2A function in cone photoreceptors for the treatment of retinal degenerative diseases that involve a hypoxic component such as AMD.
Collapse
|
42
|
Libby CJ, McConathy J, Darley-Usmar V, Hjelmeland AB. The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology. Cancer Res 2019; 80:5-16. [PMID: 31575548 DOI: 10.1158/0008-5472.can-19-1169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/04/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of intratumoral heterogeneity in cancer continues to evolve, with current models incorporating single-cell signatures to explore cell-cell interactions and differentiation state. The transition between stem and differentiation states in nonneoplastic cells requires metabolic plasticity, and this plasticity is increasingly recognized to play a central role in cancer biology. The insights from hematopoietic and neural stem cell differentiation pathways were used to identify cancer stem cells in leukemia and gliomas. Similarly, defining metabolic heterogeneity and fuel-switching signals in nonneoplastic stem cells may also give important insights into the corresponding molecular mechanisms controlling metabolic plasticity in cancer. These advances are important, because metabolic adaptation to anticancer therapeutics is rooted in this inherent metabolic plasticity and is a therapeutic challenge to be overcome.
Collapse
Affiliation(s)
- Catherine J Libby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
43
|
Mattes K, Vellenga E, Schepers H. Differential redox-regulation and mitochondrial dynamics in normal and leukemic hematopoietic stem cells: A potential window for leukemia therapy. Crit Rev Oncol Hematol 2019; 144:102814. [PMID: 31593878 DOI: 10.1016/j.critrevonc.2019.102814] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The prognosis for many patients with acute myeloid leukemia (AML) is poor, mainly due to disease relapse driven by leukemia stem cells (LSCs). Recent studies have highlighted the unique metabolic properties of LSCs, which might represent opportunities for LSC-selective targeting. LSCs characteristically have low levels of reactive oxygen species (ROS), which apparently result from a combination of low mitochondrial activity and high activity of ROS-removing pathways such as autophagy. Due to this low activity, LSCs are highly dependent on mitochondrial regulatory mechanisms. These include the anti-apoptotic protein BCL-2, which also has crucial roles in regulating the mitochondrial membrane potential, and proteins involved in mitophagy. Here we review the different pathways that impact mitochondrial activity and redox-regulation, and highlight their relevance for the functionality of both HSCs and LSCs. Additionally, novel AML therapy strategies that are based on interference with those pathways, including the promising BCL-2 inhibitor Venetoclax, are summarized.
Collapse
Affiliation(s)
- Katharina Mattes
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hein Schepers
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
44
|
Abstract
Hematopoietic stem cells (HSCs) are considered to originate from the aorta-gonad-mesonephros, migrate into fetal liver for a rapid expansion, and eventually reside into a unique hypoxic bone marrow niche, where they maintain their homeostasis throughout their life span. HSCs have been widely used for the treatment of many begin or malignant hematopoietic disorders. However, the unavailability of sufficient amount of HSCs still impedes their applications in the clinic. It is urgent to understand how HSC stemness or cell fates are determined at different developmental stages. Although many intrinsic and extrinsic factors (niche components) have been identified in the regulation of HSC origination, expansion, migration, and localization, the underlying mechanisms remain largely unknown. In this article, we summarize current views on the metabolic profiles of HSCs and related regulatory networks, which shows that intrinsic metabolic regulation may be critical for the cell fate determinations of HSCs: HSCs utilize glycolysis as their major energy sources; mitochondrial respiration is also required for the homeostasis of HSCs; amino acids, lipids, or other nutrient metabolisms also have unique roles in sustaining HSC activities. Mechanistically, many important regulatory pathways, such as MEIS1/HIF1A, MYC, PPM1K/CDC20, and ROS signals, are identified to fine-tune the nutrient metabolisms and cell fate commitments in HSCs. Nevertheless, more effort is required for the optimization or establishment of sensitive and specific metabolic techniques/systems for the metabolism studies in HSCs with limited cell numbers and exploring the metabolic profiles and fundamental regulatory mechanisms of different types of nutrients at each developmental stage of HSCs.
Collapse
|
45
|
Menendez-Gonzalez JB, Vukovic M, Abdelfattah A, Saleh L, Almotiri A, Thomas LA, Agirre-Lizaso A, Azevedo A, Menezes AC, Tornillo G, Edkins S, Kong K, Giles P, Anjos-Afonso F, Tonks A, Boyd AS, Kranc KR, Rodrigues NP. Gata2 as a Crucial Regulator of Stem Cells in Adult Hematopoiesis and Acute Myeloid Leukemia. Stem Cell Reports 2019; 13:291-306. [PMID: 31378673 PMCID: PMC6700503 DOI: 10.1016/j.stemcr.2019.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Subversion of transcription factor (TF) activity in hematopoietic stem/progenitor cells (HSPCs) leads to the development of therapy-resistant leukemic stem cells (LSCs) that drive fulminant acute myeloid leukemia (AML). Using a conditional mouse model where zinc-finger TF Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to rapid and complete cell-autonomous loss of adult hematopoietic stem cells. By using short hairpin RNAi to target GATA2, we also identify a requirement for GATA2 in human HSPCs. In Meis1a/Hoxa9-driven AML, deletion of Gata2 impedes maintenance and self-renewal of LSCs. Ablation of Gata2 enforces an LSC-specific program of enhanced apoptosis, exemplified by attenuation of anti-apoptotic factor BCL2, and re-instigation of myeloid differentiation--which is characteristically blocked in AML. Thus, GATA2 acts as a critical regulator of normal and leukemic stem cells and mediates transcriptional networks that may be exploited therapeutically to target key facets of LSC behavior in AML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Self Renewal
- Disease Models, Animal
- GATA2 Transcription Factor/antagonists & inhibitors
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Hematopoiesis
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
| | - Milica Vukovic
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ali Abdelfattah
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Lubaid Saleh
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Alhomidi Almotiri
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Leigh-Anne Thomas
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Aloña Agirre-Lizaso
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Aleksandra Azevedo
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Ana Catarina Menezes
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Sarah Edkins
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF10 3XQ, UK
| | - Kay Kong
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Peter Giles
- Wales Gene Park and Wales Cancer Research Centre, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF10 3XQ, UK
| | - Fernando Anjos-Afonso
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Alex Tonks
- Department of Hematology, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff CF14 4XW, UK
| | - Ashleigh S Boyd
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London NW3 2PF, UK; Institute of Immunity and Transplantation, University College London, London NW3 2QG, UK
| | - Kamil R Kranc
- Centre for Hemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK.
| |
Collapse
|
46
|
Phc2 controls hematopoietic stem and progenitor cell mobilization from bone marrow by repressing Vcam1 expression. Nat Commun 2019; 10:3496. [PMID: 31375680 PMCID: PMC6677815 DOI: 10.1038/s41467-019-11386-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/12/2019] [Indexed: 01/04/2023] Open
Abstract
The timely mobilization of hematopoietic stem and progenitor cells (HSPCs) is essential for maintaining hematopoietic and tissue leukocyte homeostasis. Understanding how HSPCs migrate between bone marrow (BM) and peripheral tissues is of great significance in the clinical setting, where therapeutic strategies for modulating their migration capacity determine the clinical outcome. Here, we identify an epigenetic regulator, Phc2, as a critical modulator of HSPC trafficking. The genetic ablation of Phc2 in mice causes a severe defect in HSPC mobilization through the derepression of Vcam1 in bone marrow stromal cells (BMSCs), ultimately leading to a systemic immunodeficiency. Moreover, the pharmacological inhibition of VCAM-1 in Phc2-deficient mice reverses the symptoms. We further determine that Phc2-dependent Vcam1 repression in BMSCs is mediated by the epigenetic regulation of H3K27me3 and H2AK119ub. Together, our data demonstrate a cell-extrinsic role for Phc2 in controlling the mobilization of HSPCs by finely tuning their bone marrow niche. Mobilization of hematopoietic stem and progenitor cells (HSPCs) into the circulation is essential for maintaining homeostasis. Here, the authors show that Phc2 in bone marrow stromal cells represses the cell adhesion molecule Vcam1 and facilitates mobilization of HSPCs through regulation of epigenetic marks.
Collapse
|
47
|
Halvarsson C, Rörby E, Eliasson P, Lang S, Soneji S, Jönsson JI. Putative Role of Nuclear Factor-Kappa B But Not Hypoxia-Inducible Factor-1α in Hypoxia-Dependent Regulation of Oxidative Stress in Hematopoietic Stem and Progenitor Cells. Antioxid Redox Signal 2019; 31:211-226. [PMID: 30827134 PMCID: PMC6590716 DOI: 10.1089/ars.2018.7551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Aims: Adaptation to low oxygen of hematopoietic stem cells (HSCs) in the bone marrow has been demonstrated to depend on the activation of hypoxia-inducible factor (HIF)-1α as well as the limited production of reactive oxygen species (ROS). In this study, we aimed at determining whether HIF-1α is involved in protecting HSCs from ROS. Results: Oxidative stress was induced by DL-buthionine-(S,R)-sulfoximine (BSO)-treatment, which increases the mitochondrial ROS level. Hypoxia rescued Lineage-Sca-1+c-kit+ (LSK) cells from BSO-induced apoptosis, whereas cells succumbed to apoptosis in normoxia. Apoptosis in normoxia was inhibited with the antioxidant N-acetyl-L-cysteine or by overexpression of anti-apoptotic BCL-2. Moreover, stabilized expression of oxygen-insensitive HIFs could not protect LSK cells from oxidative stress-induced apoptosis at normoxia, neither could short hairpin RNA to Hif-1α inhibit the protective effects by hypoxia in LSK cells. Likewise, BSO treatment of LSK cells from Hif-1α knockout mice did not suppress the effects seen in hypoxia. Microarray analysis identified the nuclear factor-kappa B (NF-κB) pathway as a pathway induced by hypoxia. By using NF-κB lentiviral construct and DNA-binding assay, we found increased NF-κB activity in cells cultured in hypoxia compared with normoxia. Using an inhibitor against NF-κB activation, we could confirm the involvement of NF-κB signaling as BSO-mediated cell death was significantly increased in hypoxia after adding the inhibitor. Innovation: HIF-1α is not involved in protecting HSCs and progenitors to elevated levels of ROS on glutathione depletion during hypoxic conditions. Conclusion: The study proposes a putative role of NF-κB signaling as a hypoxia-induced regulator in early hematopoietic cells.
Collapse
Affiliation(s)
- Camilla Halvarsson
- Experimental Hematology Unit, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Emma Rörby
- Experimental Hematology Unit, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Pernilla Eliasson
- Experimental Hematology Unit, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Stefan Lang
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Shamit Soneji
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jan-Ingvar Jönsson
- Experimental Hematology Unit, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
48
|
Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, Mapperley C, Lawson H, Wotherspoon DA, Sepulveda C, Vukovic M, Allen L, Sarapuu A, Tavosanis A, Guitart AV, Villacreces A, Much C, Choe J, Azar A, van de Lagemaat LN, Vernimmen D, Nehme A, Mazurier F, Somervaille TCP, Gregory RI, O'Carroll D, Kranc KR. Targeting the RNA m 6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell 2019; 25:137-148.e6. [PMID: 31031138 PMCID: PMC6617387 DOI: 10.1016/j.stem.2019.03.021] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/20/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive clonal disorder of hematopoietic stem cells (HSCs) and primitive progenitors that blocks their myeloid differentiation, generating self-renewing leukemic stem cells (LSCs). Here, we show that the mRNA m6A reader YTHDF2 is overexpressed in a broad spectrum of human AML and is required for disease initiation as well as propagation in mouse and human AML. YTHDF2 decreases the half-life of diverse m6A transcripts that contribute to the overall integrity of LSC function, including the tumor necrosis factor receptor Tnfrsf2, whose upregulation in Ythdf2-deficient LSCs primes cells for apoptosis. Intriguingly, YTHDF2 is not essential for normal HSC function, with YTHDF2 deficiency actually enhancing HSC activity. Thus, we identify YTHDF2 as a unique therapeutic target whose inhibition selectively targets LSCs while promoting HSC expansion.
Collapse
Affiliation(s)
- Jasmin Paris
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Marcos Morgan
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Joana Campos
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4GJ, UK
| | - Alena Shmakova
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Ivayla Ivanova
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Christopher Mapperley
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Hannah Lawson
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - David A Wotherspoon
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Catarina Sepulveda
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Milica Vukovic
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lewis Allen
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Annika Sarapuu
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Andrea Tavosanis
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Amelie V Guitart
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Arnaud Villacreces
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Christian Much
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Junho Choe
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ali Azar
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Louie N van de Lagemaat
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Ali Nehme
- Université de Tours, CNRS, LNOx ERL 7001, Tours, France
| | | | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4GJ, UK
| | - Richard I Gregory
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| | - Kamil R Kranc
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
49
|
Luchsinger LL, Strikoudis A, Danzl NM, Bush EC, Finlayson MO, Satwani P, Sykes M, Yazawa M, Snoeck HW. Harnessing Hematopoietic Stem Cell Low Intracellular Calcium Improves Their Maintenance In Vitro. Cell Stem Cell 2019; 25:225-240.e7. [PMID: 31178255 DOI: 10.1016/j.stem.2019.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022]
Abstract
The specific cellular physiology of hematopoietic stem cells (HSCs) is underexplored, and their maintenance in vitro remains challenging. We discovered that culture of HSCs in low calcium increased their maintenance as determined by phenotype, function, and single-cell expression signature. HSCs are endowed with low intracellular calcium conveyed by elevated activity of glycolysis-fueled plasma membrane calcium efflux pumps and a low-bone-marrow interstitial fluid calcium concentration. Low-calcium conditions inhibited calpain proteases, which target ten-eleven translocated (TET) enzymes, of which TET2 was required for the effect of low calcium conditions on HSC maintenance in vitro. These observations reveal a physiological feature of HSCs that can be harnessed to improve their maintenance in vitro.
Collapse
Affiliation(s)
- Larry L Luchsinger
- Columbia Center of Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Alexandros Strikoudis
- Columbia Center of Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nichole M Danzl
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Erin C Bush
- JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael O Finlayson
- JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Prakash Satwani
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Megan Sykes
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Masayuki Yazawa
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hans-Willem Snoeck
- Columbia Center of Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
50
|
Mogilenko DA, Haas JT, L'homme L, Fleury S, Quemener S, Levavasseur M, Becquart C, Wartelle J, Bogomolova A, Pineau L, Molendi-Coste O, Lancel S, Dehondt H, Gheeraert C, Melchior A, Dewas C, Nikitin A, Pic S, Rabhi N, Annicotte JS, Oyadomari S, Velasco-Hernandez T, Cammenga J, Foretz M, Viollet B, Vukovic M, Villacreces A, Kranc K, Carmeliet P, Marot G, Boulter A, Tavernier S, Berod L, Longhi MP, Paget C, Janssens S, Staumont-Sallé D, Aksoy E, Staels B, Dombrowicz D. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell 2019; 177:1201-1216.e19. [PMID: 31031005 DOI: 10.1016/j.cell.2019.03.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 01/27/2019] [Accepted: 03/08/2019] [Indexed: 01/22/2023]
Abstract
Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.
Collapse
Affiliation(s)
- Denis A Mogilenko
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Joel T Haas
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Laurent L'homme
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Sébastien Fleury
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Sandrine Quemener
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Matthieu Levavasseur
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France; Department of Dermatology, CHU Lille, 59045 Lille, France
| | - Coralie Becquart
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France; Department of Dermatology, CHU Lille, 59045 Lille, France
| | - Julien Wartelle
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Alexandra Bogomolova
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Laurent Pineau
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Olivier Molendi-Coste
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Steve Lancel
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Hélène Dehondt
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Celine Gheeraert
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Aurelie Melchior
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Cédric Dewas
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Artemii Nikitin
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Samuel Pic
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Nabil Rabhi
- University of Lille, EGID, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199, 59019 Lille, France
| | - Jean-Sébastien Annicotte
- University of Lille, EGID, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199, 59019 Lille, France
| | - Seiichi Oyadomari
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Talia Velasco-Hernandez
- Department of Hematology, Institute for Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Jörg Cammenga
- Department of Hematology, Institute for Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Marc Foretz
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France
| | - Benoit Viollet
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; INSERM U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR8104, 75014 Paris, France
| | - Milica Vukovic
- Centre for Haemato-Oncology, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Arnaud Villacreces
- Centre for Haemato-Oncology, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kamil Kranc
- Centre for Haemato-Oncology, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, 3000 Belgium
| | - Guillemette Marot
- Université Lille, MODAL Team, Inria Lille-Nord Europe, 59650 Villeneuve-d'Ascq, France
| | - Alexis Boulter
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Simon Tavernier
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research and Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany
| | - Maria P Longhi
- William Harvey Research Institute, Barts, and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Christophe Paget
- Université de Tours, INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, 37041 Tours, France
| | - Sophie Janssens
- ER Stress and Inflammation, VIB Center for Inflammation Research, and Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium
| | - Delphine Staumont-Sallé
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France; Department of Dermatology, CHU Lille, 59045 Lille, France
| | - Ezra Aksoy
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Bart Staels
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - David Dombrowicz
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France.
| |
Collapse
|