1
|
Huang YM, Shih LJ, Hsieh TW, Tsai KW, Lu KC, Liao MT, Hu WC. Type 2 hypersensitivity disorders, including systemic lupus erythematosus, Sjögren's syndrome, Graves' disease, myasthenia gravis, immune thrombocytopenia, autoimmune hemolytic anemia, dermatomyositis, and graft-versus-host disease, are THαβ-dominant autoimmune diseases. Virulence 2024; 15:2404225. [PMID: 39267271 PMCID: PMC11409508 DOI: 10.1080/21505594.2024.2404225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
The THαβ host immunological pathway contributes to the response to infectious particles (viruses and prions). Furthermore, there is increasing evidence for associations between autoimmune diseases, and particularly type 2 hypersensitivity disorders, and the THαβ immune response. For example, patients with systemic lupus erythematosus often produce anti-double stranded DNA antibodies and anti-nuclear antibodies and show elevated levels of type 1 interferons, type 3 interferons, interleukin-10, IgG1, and IgA1 throughout the disease course. These cytokines and antibody isotypes are associated with the THαβ host immunological pathway. Similarly, the type 2 hypersensitivity disorders myasthenia gravis, Graves' disease, graft-versus-host disease, autoimmune hemolytic anemia, immune thrombocytopenia, dermatomyositis, and Sjögren's syndrome have also been linked to the THαβ pathway. Considering the potential associations between these diseases and dysregulated THαβ immune responses, therapeutic strategies such as anti-interleukin-10 or anti-interferon α/β could be explored for effective management.
Collapse
Affiliation(s)
- Yao-Ming Huang
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei city, Taiwan
| | - Teng-Wei Hsieh
- Division of Immunology, Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Medical Tzu Chi Foundation, New Taipei City, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Zhu J, Yang L, Xia J, Zhou N, Zhu J, Zhu H, Chen J, Qing K, Duan CW. Interleukin-27 Promotes the Generation of Myeloid-derived Suppressor Cells to Alleviate Graft-versus-host Disease. Transplantation 2024:00007890-990000000-00771. [PMID: 38773837 DOI: 10.1097/tp.0000000000005069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
BACKGROUND Stimulation of myeloid-derived suppressor cell (MDSC) formation represents a potential curative therapeutic approach for graft-versus-host disease (GVHD), which significantly impacts the prognosis of allogeneic hematopoietic stem cell transplantation. However, the lack of an effective strategy for inducing MDSC production in vivo has hindered their clinical application. In our previous study, MDSC expansion was observed in interleukin (IL)-27-treated mice. METHODS In this study, we overexpressed exogenous IL-27 in mice using a recombinant adeno-associated virus vector to investigate its therapeutic and exacerbating effects in murine GVHD models. RESULTS In our study, we demonstrated that exogenous administration of IL-27 significantly suppressed GVHD development in a mouse model. We found that IL-27 treatment indirectly inhibited the proliferation and activation of donor T cells by rapidly expanding recipient and donor myeloid cells, which act as MDSCs after irradiation or under inflammatory conditions, rather than through regulatory T-cell expansion. Additionally, IL-27 stimulated MDSC expansion by enhancing granulocyte-monocyte progenitor generation. Notably, we verified that IL-27 signaling in donor T cells exerted an antagonistic effect on GVHD prevention and treatment. Further investigation revealed that combination therapy involving IL-27 and T-cell depletion exhibited remarkable preventive effects on GVHD in both mouse and xenogeneic GVHD models. CONCLUSIONS Collectively, these findings suggest that IL-27 promotes MDSC generation to reduce the incidence of GVHD, whereas targeted activation of IL-27 signaling in myeloid progenitors or its combination with T-cell depletion represents a potential strategy for GVHD therapy.
Collapse
Affiliation(s)
- Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xia
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neng Zhou
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayao Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Zhu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Qing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cai-Wen Duan
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Rotolo A, Whelan EC, Atherton MJ, Kulikovskaya I, Jarocha D, Fraietta JA, Kim MM, Diffenderfer ES, Cengel KA, Piviani M, Radaelli E, Duran-Struuck R, Mason NJ. Unedited allogeneic iNKT cells show extended persistence in MHC-mismatched canine recipients. Cell Rep Med 2023; 4:101241. [PMID: 37852175 PMCID: PMC10591065 DOI: 10.1016/j.xcrm.2023.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Allogeneic invariant natural killer T cells (allo-iNKTs) induce clinical remission in patients with otherwise incurable cancers and COVID-19-related acute respiratory failure. However, their functionality is inconsistent among individuals, and they become rapidly undetectable after infusion, raising concerns over rejection and limited therapeutic potential. We validate a strategy to promote allo-iNKT persistence in dogs, an established large-animal model for novel cellular therapies. We identify donor-specific iNKT biomarkers of survival and sustained functionality, conserved in dogs and humans and retained upon chimeric antigen receptor engineering. We reason that infusing optimal allo-iNKTs enriched in these biomarkers will prolong their persistence without requiring MHC ablation, high-intensity chemotherapy, or cytokine supplementation. Optimal allo-iNKTs transferred into MHC-mismatched dogs remain detectable for at least 78 days, exhibiting sustained immunomodulatory effects. Our canine model will accelerate biomarker discovery of optimal allo-iNKT products, furthering application of MHC-unedited allo-iNKTs as a readily accessible universal platform to treat incurable conditions worldwide.
Collapse
Affiliation(s)
- Antonia Rotolo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Eoin C Whelan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J Atherton
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danuta Jarocha
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Piviani
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raimon Duran-Struuck
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicola J Mason
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Harris R, Karimi M. Dissecting the regulatory network of transcription factors in T cell phenotype/functioning during GVHD and GVT. Front Immunol 2023; 14:1194984. [PMID: 37441063 PMCID: PMC10333690 DOI: 10.3389/fimmu.2023.1194984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors play a major role in regulation and orchestration of immune responses. The immunological context of the response can alter the regulatory networks required for proper functioning. While these networks have been well-studied in canonical immune contexts like infection, the transcription factor landscape during alloactivation remains unclear. This review addresses how transcription factors contribute to the functioning of mature alloactivated T cells. This review will also examine how these factors form a regulatory network to control alloresponses, with a focus specifically on those factors expressed by and controlling activity of T cells of the various subsets involved in graft-versus-host disease (GVHD) and graft-versus-tumor (GVT) responses.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Mobin Karimi
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
5
|
Development and Evaluation of a Novel Radiotracer 125I-rIL-27 to Monitor Allotransplant Rejection by Specifically Targeting IL-27Rα. Mol Imaging 2023. [DOI: 10.1155/2023/4200142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Noninvasive monitoring of allograft rejection is beneficial for the prognosis of patients with organ transplantation. Recently, IL-27/IL-27Rα was proved in close relation with inflammatory diseases, and 125I-anti-IL-27Rα mAb our group developed demonstrated high accumulation in the rejection of the allograft. However, antibody imaging has limitations in the imaging background due to its large molecular weight. Therefore, we developed a novel radiotracer (iodine-125-labeled recombinant IL-27) to evaluate the advantage in the targeting and imaging of allograft rejection. In vitro specific binding of 125I-rIL-27 was determined by saturation and competitive assay. Blood clearance, biodistribution, phosphor autoradioimaging, and IL-27Rα expression were studied on day 10 after transplantation (top period of allorejection). Our results indicated that 125I-rIL-27 could bind with IL-27Rα specifically and selectively in vitro. The blood clearance assay demonstrated fast blood clearance with 13.20 μl/h of 125I-rIL-27 staying in the blood after 24 h. The whole-body phosphor autoradiography and biodistribution assay indicated a higher specific uptake of 125I-rIL-27 and a clear radioimage in allograft than in syngraft at 24 h, while a similar result was obtained at 48 h in the group of 125I-anti-IL-27Rα mAb injection. Meanwhile, a higher expression of IL-27Rα was found in the allograft by Western blot. The accumulation of radioactivity of 125I-rIL-27 was highly correlated with the expression of IL-27Rα in the allograft. In conclusion, 125I-rIL-27 could be a promising probe for acutely monitoring allograft rejection with high specific binding towards IL-27Rα on allograft and low imaging background.
Collapse
|
6
|
Dendritic cell-derived IL-27 p28 regulates T cell program in pathogenicity and alleviates acute graft-versus-host disease. Signal Transduct Target Ther 2022; 7:319. [PMID: 36109504 PMCID: PMC9477797 DOI: 10.1038/s41392-022-01147-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Interleukin 27 (IL-27), a heterodimeric cytokine composed of Epstein-Barr virus-induced 3 and p28, is a pleiotropic cytokine with both pro-and anti-inflammatory properties. However, the precise role of IL-27 in acute graft-versus-host disease is not yet fully understood. In this study, utilizing mice with IL-27 p28 deficiency in dendritic cells (DCs), we demonstrated that IL-27 p28 deficiency resulted in impaired Treg cell function and enhanced effector T cell responses, corresponding to aggravated aGVHD in mice. In addition, using single-cell RNA sequencing, we found that loss of IL-27 p28 impaired Treg cell generation and promoted IL-1R2+TIGIT+ pathogenic CD4+ T cells in the thymus at a steady state. Mechanistically, IL-27 p28 deficiency promoted STAT1 phosphorylation and Th1 cell responses, leading to the inhibition of Treg cell differentiation and function. Finally, patients with high levels of IL-27 p28 in serum showed a substantially decreased occurrence of grade II-IV aGVHD and more favorable overall survival than those with low levels of IL-27 p28. Thus, our results suggest a protective role of DC-derived IL-27 p28 in the pathogenesis of aGVHD through modulation of the Treg/Teff cell balance during thymic development. IL-27 p28 may be a valuable marker for predicting aGVHD development after transplantation in humans.
Collapse
|
7
|
Wan X, Zhang Y, Tang H, Li M, Jiang T, He J, Bao C, Wang J, Song Y, Xiao P, Liu Y, Lai L, Wang Q. IL‐27 signaling negatively regulates FcɛRI‐mediated mast cell activation and allergic response. J Leukoc Biol 2022; 112:411-424. [PMID: 35075687 DOI: 10.1002/jlb.2ma1221-637r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Xiaopeng Wan
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veternary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Yuanyuan Zhang
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Huanna Tang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Mengyao Li
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Tianqi Jiang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Jia He
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Chunjing Bao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Junkai Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yinjing Song
- Department of Dermatology and Venereology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Peng Xiao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yang Liu
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Lihua Lai
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- Department of Pharmacology Zhejiang University School of Medicine Hangzhou China
| | - Qingqing Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
8
|
Wang W, Hong T, Wang X, Wang R, Du Y, Gao Q, Yang S, Zhang X. Newly Found Peacekeeper: Potential of CD8+ Tregs for Graft-Versus-Host Disease. Front Immunol 2021; 12:764786. [PMID: 34899714 PMCID: PMC8652293 DOI: 10.3389/fimmu.2021.764786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the most effective and potentially curative treatment for a variety of hematologic malignancies. However, graft-versus-host disease (GVHD) is a major obstacle that limits wide application of allo-HSCT, despite the development of prophylactic strategies. Owing to experimental and clinical advances in the field, GVHD is characterized by disruption of the balance between effector and regulatory immune cells, resulting in higher inflammatory cytokine levels. A reduction in regulatory T cells (Tregs) has been associated with limiting recalibration of inflammatory overaction and maintaining immune tolerance. Moreover, accumulating evidence suggests that immunoregulation may be useful for preventing GVHD. As opposed to CD4+ Tregs, the CD8+ Tregs population, which constitutes an important proportion of all Tregs, efficiently attenuates GVHD while sparing graft-versus-leukemic (GVL) effects. CD8+ Tregs may provide another form of cellular therapy for preventing GVHD and preserving GVL effects, and understanding the underlying mechanisms that different from those of CD4+ Tregs is significant. In this review, we summarize preclinical experiments that have demonstrated the role of CD8+ Tregs during GVHD and attempted to obtain optimized CD8+ Tregs. Notably, although optimized CD8+ Tregs have obvious advantages, more exploration is needed to determine how to apply them in the clinic.
Collapse
Affiliation(s)
- Weihao Wang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Tao Hong
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yuxuan Du
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.,Department of Laboratory Medicine, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Ramalingam S, Siamakpour-Reihani S, Bohannan L, Ren Y, Sibley A, Sheng J, Ma L, Nixon AB, Lyu J, Parker DC, Bain J, Muehlbauer M, Ilkayeva O, Kraus VB, Huebner JL, Spitzer T, Brown J, Peled JU, van den Brink M, Gomes A, Choi T, Gasparetto C, Horwitz M, Long G, Lopez R, Rizzieri D, Sarantopoulos S, Chao N, Sung AD. A phase 2 trial of the somatostatin analog pasireotide to prevent GI toxicity and acute GVHD in allogeneic hematopoietic stem cell transplant. PLoS One 2021; 16:e0252995. [PMID: 34170918 PMCID: PMC8232534 DOI: 10.1371/journal.pone.0252995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Allogeneic hematopoietic stem cell transplantation (HCT) is an often curative intent treatment, however it is associated with significant gastrointestinal (GI) toxicity and treatment related mortality. Graft-versus-host disease is a significant contributor to transplant-related mortality. We performed a phase 2 trial of the somatostatin analog pasireotide to prevent gastrointestinal toxicity and GVHD after myeloablative allogeneic HCT. Methods Patients received 0.9mg pasireotide every 12 hours from the day prior to conditioning through day +4 after HCT (or a maximum of 14 days). The primary outcomes were grade 3–4 gastrointestinal toxicity through day 30 and acute GVHD. Secondary outcomes were chronic GVHD, overall survival and relapse free survival at one year. Stool and blood samples were collected from before and after HCT for analyses of stool microbiome, local inflammatory markers, and systemic inflammatory and metabolic markers. Results were compared with matched controls. Results Twenty-six patients received pasireotide and were compared to 52 matched contemporaneous controls using a 1–2 match. Grade 3–4 GI toxicity occurred in 21 (81%) patients who received pasireotide and 35 (67%) controls (p = 0.33). Acute GVHD occurred in 15 (58%) patients in the pasireotide group and 28 (54%) controls (p = 0.94). Chronic GVHD occurred in 16 patients in the pasireotide group (64%) versus 22 patients in the control group (42%) (p = 0.12). Overall survival at 1 year in the pasireotide group was 63% (95% CI: 47%,86%) versus 82% (95% CI: 72%, 93%) in controls (log-rank p = 0.006). Relapse-free survival rate at one year was 40% (95% CI: 25%, 65%) in the pasireotide group versus 78% (95% CI: 68%, 91%) in controls (log-rank p = 0.002). After controlling for the effect of relevant covariates, patients in the pasireotide group had attenuated post-HCT loss of microbial diversity. Analysis of systemic inflammatory markers and metabolomics demonstrated feasibility of such analyses in patients undergoing allogeneic HCT. Baseline level and pre-to-post transplant changes in several inflammatory markers (including MIP1a, MIP1b, TNFa, IL8Pro, and IL6) correlated with likelihood of survival. Conclusions Pasireotide did not prevent gastrointestinal toxicity or acute GVHD compared to contemporaneous controls. Pasireotide was associated with numerically higher chronic GVHD and significantly decreased OS and RFS compared to contemporaneous controls. Pasireotide may provide a locally protective effect in the stool microbiome and in local inflammation as measured by stool calprotectin, stool beta-defensin, and stool diversity index.
Collapse
Affiliation(s)
- Sendhilnathan Ramalingam
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Sharareh Siamakpour-Reihani
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
| | - Lauren Bohannan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
| | - Yi Ren
- Duke Cancer Institute, Durham, NC, United States of America
| | | | - Jeff Sheng
- Duke Cancer Institute, Durham, NC, United States of America
| | - Li Ma
- Department of Statistical Science, Duke University, Durham, NC, United States of America
| | - Andrew B. Nixon
- Department of Medicine, Duke University, Durham, NC, United States of America
| | - Jing Lyu
- Duke Cancer Institute, Durham, NC, United States of America
| | - Daniel C. Parker
- Division of Geriatrics, Duke University School of Medicine, Durham, NC, United States of America
| | - James Bain
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Michael Muehlbauer
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Janet L. Huebner
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Thomas Spitzer
- Massachusetts General Hospital, Boston, MA, United States of America
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jami Brown
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States of America
| | - Marcel van den Brink
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States of America
| | - Antonio Gomes
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States of America
| | - Taewoong Choi
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Mitchell Horwitz
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Gwynn Long
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Richard Lopez
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - David Rizzieri
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Nelson Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Anthony D. Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
10
|
Gaignage M, Uyttenhove C, Jones LL, Bourdeaux C, Chéou P, Mandour MF, Coutelier JP, Vignali DAA, Van Snick J. Novel antibodies that selectively block mouse IL-12 enable the re-evaluation of the role of IL-12 in immune protection and pathology. Eur J Immunol 2021; 51:1482-1493. [PMID: 33788263 DOI: 10.1002/eji.202048936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023]
Abstract
The dimeric cytokine IL-12 is important in the control of various infections but also contributes to the pathology of certain diseases making it a potential target for therapy. However, its specific inhibition with antibodies is complicated by the fact that its two subunits are present in other cytokines: p40 in IL-23 and p35 in IL-35. This has led to erroneous conclusions like the alleged implication of IL-12 in experimental autoimmune encephalomyelitis (EAE). Here, we report the development of a mouse anti-mouse IL-12 vaccine and the production of monoclonal antibodies (mAbs) that do not react with p40 or p35 (in IL-35) but specifically recognize and functionally inhibit the IL-12 heterodimer. Using one of these mAbs, MM12A1.6, that strongly inhibited IFN-γ production and LPS-induced septic shock after viral infection, we demonstrate the critical role played by IL-12 in the rejection of male skin graft by female C57BL/6 syngeneic recipients and in the clearance of an immunogenic mastocytoma tumor variant by DBA/2 mice, but not in a parent to F1 immune aggression model nor in MOG-induced EAE, which was clearly prevented by anti-p40 mAb C17.8. Given this selective inhibition of IL-12, these mAbs provide new options for reassessing IL-12 function in vivo.
Collapse
Affiliation(s)
| | - Catherine Uyttenhove
- de Duve Institute, Université de Louvain, Brussels, Belgium.,Ludwig Cancer Research, Brussels, Belgium
| | - Lindsay L Jones
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Paméla Chéou
- de Duve Institute, Université de Louvain, Brussels, Belgium
| | - Mohamed F Mandour
- de Duve Institute, Université de Louvain, Brussels, Belgium.,Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jacques Van Snick
- de Duve Institute, Université de Louvain, Brussels, Belgium.,Ludwig Cancer Research, Brussels, Belgium
| |
Collapse
|
11
|
Weber G, Strocchio L, Del Bufalo F, Algeri M, Pagliara D, Arnone CM, De Angelis B, Quintarelli C, Locatelli F, Merli P, Caruana I. Identification of New Soluble Factors Correlated With the Development of Graft Failure After Haploidentical Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 11:613644. [PMID: 33584698 PMCID: PMC7878541 DOI: 10.3389/fimmu.2020.613644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Graft failure is a severe complication of allogeneic hematopoietic stem cell transplantation (HSCT). The mechanisms involved in this phenomenon are still not completely understood; data available suggest that recipient T lymphocytes surviving the conditioning regimen are the main mediators of immune-mediated graft failure. So far, no predictive marker or early detection method is available. In order to identify a non-invasive and efficient strategy to diagnose this complication, as well as to find possible targets to prevent/treat it, we performed a detailed analysis of serum of eight patients experiencing graft failure after T-cell depleted HLA-haploidentical HSCT. In this study, we confirm data describing graft failure to be a complex phenomenon involving different components of the immune system, mainly driven by the IFNγ pathway. We observed a significant modulation of IL7, IL8, IL18, IL27, CCL2, CCL5 (Rantes), CCL7, CCL20 (MIP3a), CCL24 (Eotaxin2), and CXCL11 in patients experiencing graft failure, as compared to matched patients not developing this complication. For some of these factors, the difference was already present at the time of infusion of the graft, thus allowing early risk stratification. Moreover, these cytokines/chemokines could represent possible targets, providing the rationale for exploring new therapeutic/preventive strategies.
Collapse
Affiliation(s)
- Gerrit Weber
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Luisa Strocchio
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Claudia Manuela Arnone
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy.,Sapienza, University of Rome, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens' Hospital, Rome, Italy
| |
Collapse
|
12
|
Yu Q, Wang H, Zhang L, Wei W. Advances in the treatment of graft-versus-host disease with immunomodulatory cells. Int Immunopharmacol 2021; 92:107349. [PMID: 33486323 DOI: 10.1016/j.intimp.2020.107349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been widely used to treat hematological malignancies and genetic diseases. Graft-versus-host disease (GVHD) induced by donor immune system is the most common complication, contributing to severe morbidity and mortality after allo-HSCT. Currently, in terms of the prevention and treatment of GVHD, the major first-line therapeutic drugs are corticosteroids. However, most patients with systemic corticosteroid treatment are prone to steroid-refractory and poor prognosis. The use of several immune cells including Tregs, Bregs and mesenchymal stromal cells (MSCs) as an alternative on prevention or therapy of GVHD has been demonstrated to be beneficial. However, there are still many defects to a certain degree. Based on immune cells, it is promising to develop new and better approaches to improve GVHD. In this article, we will review the current advance of immune cells (Tregs, Bregs, MSCs) with negative regulation in the treatment of GVHD and present emerging strategies for the prevention and treatment of GVHD by other immune regulatory cells and chimeric antigen receptor (CAR) Tregs. In addition, these new therapeutic options need to be further evaluated in well-designed prospective multicenter trials to determine the optimal treatment for GVHD patients and improve their prognosis.
Collapse
Affiliation(s)
- Qianqian Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei 230032, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei 230032, China.
| |
Collapse
|
13
|
Liu XJ, Zhang LJ, Yi M, Li LM, Wang J, Qi Y, Zhao P, Zhang DQ, Yang L. Interleukin-27 levels in patients with myasthenia gravis. Transl Neurosci 2020; 11:302-308. [PMID: 33312724 PMCID: PMC7706121 DOI: 10.1515/tnsci-2020-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022] Open
Abstract
Interleukin-27 (IL-27), which belongs to IL-12 family, influences the function of T cells (Tregs) through regulating the expression, and function of forkhead box P3 (FoxP3). In this study, we detected the IL-27 serum levels in 59 myasthenia gravis (MG) patients and 35 healthy controls (HCs). Among them, 32 MG patients received immunoglobulin intravenous (IVIG) injections (0.4 g/kg per day for 5 consecutive days). IL-27 levels were collected before and after the treatments and subjected to a comparative study. Finally, we assessed the correlations of IL-27 levels with the clinical characteristics of MG. As a result, serum IL-27 levels were significantly higher in MG patients than those in the HCs. Meanwhile, significant reduction was detected after the IVIG treatment. IL-27 levels positively correlated with both MG activities of daily living and quantitative MG score. IL-27 may participate in the pathogenesis of MG and can be used as an early marker for the diagnosis and prognosis of MG. In addition, IL-27 can be used as a target for MG treatment through the regulation of specific immune signaling and maintaining immune homeostasis.
Collapse
Affiliation(s)
- Xiao-Jiao Liu
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Lin-Jie Zhang
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Ming Yi
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Li-Min Li
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Jing Wang
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Yuan Qi
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Peng Zhao
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Da-Qi Zhang
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China.,Department of Neurology, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li Yang
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| |
Collapse
|
14
|
Wan L, Jin Z, Hu B, Lv K, Lei L, Liu Y, Song Y, Zhu Y, Gong H, Xu M, Du Y, Xu Y, Liu H, Wu D, Liu Y. IL-Y Aggravates Murine Chronic Graft- Versus-Host Disease by Enhancing T and B Cell Responses. Front Immunol 2020; 11:559740. [PMID: 33329519 PMCID: PMC7719702 DOI: 10.3389/fimmu.2020.559740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
IL-Y, a synthetic member of IL-12 cytokine family, was found to exert potent immunosuppressive effects by inhibiting the differentiation and activation of Th1 and Th17 cells. However, the role of IL-Y in the development of chronic graft-versus-host disease (cGVHD) remains unknown. Here, using murine models of scleroderma-like and lupus-like cGVHD, we examined the function of IL-Y in the pathogenesis of cGVHD by hydrodynamically injecting minicircle-IL-Y expressing plasmids (MC IL-Y). In contrast with the reported immune suppressive function of IL-Y, administration of MC IL-Y enhanced cGVHD severity reflected by deteriorated multi-organ pathologic damages. In lupus-like cGVHD model, urine protein and the serum anti-dsDNA antibody (IgG) were significantly upregulated by IL-Y treatment. Further study demonstrated that IL-Y impacts both donor T and B cell response. In T cells, IL-Y inhibited the generation of CD4+Foxp3+ regulator T (Treg) cells during the development of cGVHD. IL-Y may also increase the infiltration of pathogenic TNF-α producing CD4+ and CD8+ T cells through IL-27Rα in recipient spleens, as this effect was diminished in IL-27Rα deficient T cells. Moreover, IL-Y enhanced the differentiation of ICOS+ T follicular helper (Tfh) cells. In B cells, the percentage of germinal center (GC) B cells in recipient spleens was significantly upregulated by MC IL-Y plasmid administration. The levels of co-stimulatory molecules, MHC-II and CD86, on B cells were also enhanced by IL-Y expression. Taken together, our data indicated that IL-Y promoted the process of cGVHD by activating pathogenic T and B cells.
Collapse
Affiliation(s)
- Li Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ziqi Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Bo Hu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Kangkang Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Lei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuan Song
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ying Zhu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huanle Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mimi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuanyuan Du
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuejun Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
15
|
Montes de Oca M, de Labastida Rivera F, Winterford C, Frame TCM, Ng SS, Amante FH, Edwards CL, Bukali L, Wang Y, Uzonna JE, Kuns RD, Zhang P, Kabat A, Klein Geltink RI, Pearce EJ, Hill GR, Engwerda CR. IL-27 signalling regulates glycolysis in Th1 cells to limit immunopathology during infection. PLoS Pathog 2020; 16:e1008994. [PMID: 33049000 PMCID: PMC7584222 DOI: 10.1371/journal.ppat.1008994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/23/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Inflammation is critical for controlling pathogens, but also responsible for symptoms of infectious diseases. IL-27 is an important regulator of inflammation and can limit development of IFNγ-producing Tbet+ CD4+ T (Th1) cells. IL-27 is thought to do this by stimulating IL-10 production by CD4+ T cells, but the underlying mechanisms of these immunoregulatory pathways are not clear. Here we studied the role of IL-27 signalling in experimental visceral leishmaniasis (VL) caused by infection of C57BL/6 mice with the human pathogen Leishmania donovani. We found IL-27 signalling was critical for the development of IL-10-producing Th1 (Tr1) cells during infection. Furthermore, in the absence of IL-27 signalling, there was improved control of parasite growth, but accelerated splenic pathology characterised by the loss of marginal zone macrophages. Critically, we discovered that IL-27 signalling limited glycolysis in Th1 cells during infection that in turn attenuated inflammation. Furthermore, the modulation of glycolysis in the absence of IL-27 signalling restricted tissue pathology without compromising anti-parasitic immunity. Together, these findings identify a novel mechanism by which IL-27 mediates immune regulation during disease by regulating cellular metabolism. Infectious diseases like visceral leishmaniasis caused by the protozoan parasites Leishmania donovani and L. infantum are associated with an inflammatory response generated by the host. This is needed to control parasite growth, but also contributes to the symptoms of disease. Consequently, these inflammatory responses need to be tightly regulated. Although we now recognize many of the cells and molecules involved in controlling inflammation, the underlying mechanisms mediating immune regulation are unclear. CD4+ T cells are critical drivers of inflammatory responses during infections and as they progress from a naïve to activated state, the metabolic pathways they use have to change to meet the new energy demands required to proliferate and produce effector molecules. In this study, we discovered that the inflammatory CD4+ T cells needed to control L. donovani infection switch from relying on mitochondrial oxidative pathways to glycolysis. Critically, we found the cytokine IL-27 limited glycolysis in these inflammatory CD4+ T cells, and in the absence of IL-27 signaling pathways, these cells expanded more rapidly to better control parasite growth, but also caused increased tissue damage in the spleen. However, pharmacological dampening of glycolysis in inflammatory CD4+ T cells in L. donovani-infected mice lacking IL-27 signaling pathways limited tissue damage without affecting their improved anti-parasitic activity. Together, these results demonstrate that the pathogenic activity of inflammatory CD4+ T cells can be modulated by altering their cellular metabolism.
Collapse
Affiliation(s)
- Marcela Montes de Oca
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fabian de Labastida Rivera
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Clay Winterford
- QIMR Berghofer Histology Facility, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Teija C. M. Frame
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanna S. Ng
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H. Amante
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Chelsea L. Edwards
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Luzia Bukali
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yulin Wang
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jude E. Uzonna
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rachel D. Kuns
- Bone Marrow Transplantation Laboratory, Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ping Zhang
- Bone Marrow Transplantation Laboratory, Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Agnieszka Kabat
- Max Plank Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Edward J. Pearce
- Max Plank Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Washington, United States of America
| | - Christian R. Engwerda
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail:
| |
Collapse
|
16
|
Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L, Long J, Yuan D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 58:52-70. [PMID: 30449014 DOI: 10.1007/s12016-018-8721-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are a class of CD4+ T cells with immunosuppressive functions that play a critical role in maintaining immune homeostasis. However, in certain disease settings, Tregs demonstrate plastic differentiation, and the stability of these Tregs, which is characterized by the stable expression or protective epigenetic modifications of the transcription factor Foxp3, becomes abnormal. Plastic Tregs have some features of helper T (Th) cells, such as the secretion of Th-related cytokines and the expression of specific transcription factors in Th cells, but also still retain the expression of Foxp3, a feature of Tregs. Although such Th-like Tregs can secrete pro-inflammatory cytokines, they still possess a strong ability to inhibit specific Th cell responses. Therefore, the plastic differentiation of Tregs not only increases the complexity of the immune circumstances under pathological conditions, especially autoimmune diseases, but also shows an association with changes in the stability of Tregs. The plastic differentiation and stability change of Tregs play vital roles in the progression of diseases. This review focuses on the phenotypic characteristics, functions, and formation conditions of several plastic Tregs and also summarizes the changes of Treg stability and their effects on inhibitory function. Additionally, the effects of Treg plasticity and stability on disease prognosis for several autoimmune diseases were also investigated in order to better understand the relationship between Tregs and autoimmune diseases.
Collapse
Affiliation(s)
- Runze Qiu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Yuanjing Ma
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Tao Liang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Le Shi
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
17
|
Zhao S, Liang T, Zhang C, Shi D, Jiang W, Su C, Hou G. IL-27 Rα + cells promoted allorejection via enhancing STAT1/3/5 phosphorylation. J Cell Mol Med 2020; 24:10756-10767. [PMID: 32761753 PMCID: PMC7521268 DOI: 10.1111/jcmm.15700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, emerging evidence strongly suggested that the activation of interleukin-27 Receptor α (IL-27Rα) could modulate different inflammatory diseases. However, whether IL-27Rα affects allotransplantation rejection is not fully understood. Here, we investigated the role of IL-27Rα on allorejection both in vivo and in vitro. The skin allotransplantation mice models were established, and the dynamic IL-27Rα/IL-27 expression was detected, and IL-27Rα+ spleen cells adoptive transfer was performed. STAT1/3/5 phosphorylation, proliferation and apoptosis were investigated in mixed lymphocyte reaction (MLR) with recombinant IL-27 (rIL-27) stimulation. Finally, IFN-γ/ IL-10 in graft/serum from model mice was detected. Results showed higher IL-27Rα/IL-27 expression in allografted group compared that syngrafted group on day 10 (top point of allorejection). IL-27Rα+ spleen cells accelerated allograft rejection in vivo. rIL-27 significantly promoted proliferation, inhibited apoptosis and increased STAT1/3/5 phosphorylation of alloreactive splenocytes, and these effects of rIL-27 could be almost totally blocked by JAK/ STAT inhibitor and anti-IL-27 p28 Ab. Finally, higher IL-27Rα+ IFN-γ+ cells and lower IL-27Rα+ IL-10+ cells within allografts, and high IFN-γ/low IL-10 in serum of allorejecting mice were detected. In conclusion, these data suggested that IL-27Rα+ cells apparently promoted allograft rejection through enhancing alloreactive proliferation, inhibiting apoptosis and up-regulating IFN-γ via enhancing STAT pathway. Blocking IL-27 pathway may favour to prevent allorejection, and IL-27Rα may be as a high selective molecule for targeting diagnosis and therapy for allotransplantation rejection.
Collapse
Affiliation(s)
- Shanshan Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dai Shi
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Jiang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Su
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Hill GR, Koyama M. Cytokines and costimulation in acute graft-versus-host disease. Blood 2020; 136:418-428. [PMID: 32526028 PMCID: PMC7378458 DOI: 10.1182/blood.2019000952] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is an important curative therapy for high-risk hematological malignancies, but the development of severe and/or steroid-refractory acute graft-versus-host disease (aGVHD) remains a significant limitation to optimal outcomes. New approaches to prevent and treat aGVHD remain an unmet need that can be best addressed by understanding the complex disease pathophysiology. It is now clear that chemoradiotherapy used prior to alloSCT induces the release of endogenous alarmins (eg, HMGB-1, ATP, IL-1α, IL-33) from recipient tissue. Exogenous pathogen-derived molecules (eg, lipopolysaccharide, nucleic acids) also translocate from the gastrointestinal tract lumen. Together, these danger signals activate antigen-presenting cells (APCs) to efficiently present alloantigen to donor T cells while releasing cytokines (eg, interleukin-12 [IL-12], IL-23, IL-6, IL-27, IL-10, transforming growth factor-β) that expand and differentiate both pathogenic and regulatory donor T cells. Concurrent costimulatory signals at the APC-T-cell interface (eg, CD80/CD86-CD28, CD40-CD40L, OX40L-OX40, CD155/CD112-DNAM-1) and subsequent coinhibitory signals (eg, CD80/CD86-CTLA4, PDL1/2-PD1, CD155/CD112-TIGIT) are critical to the acquisition of effector T-cell function and ensuing secretion of pathogenic cytokines (eg, IL-17, interferon-γ, tissue necrosis factor, granulocyte-macrophage colony-stimulating factor) and cytolytic degranulation pathway effectors (eg, perforin/granzyme). This review focuses on the combination of cytokine and costimulatory networks at the T-cell surface that culminates in effector function and subsequent aGVHD in target tissue. Together, these pathways now represent robust and clinically tractable targets for preventing the initiation of deleterious immunity after alloSCT.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| |
Collapse
|
19
|
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 2020; 19:116. [PMID: 32680511 PMCID: PMC7367382 DOI: 10.1186/s12943-020-01234-1] [Citation(s) in RCA: 408] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) characterized by the expression of the master transcription factor forkhead box protein p3 (Foxp3) suppress anticancer immunity, thereby hindering protective immunosurveillance of tumours and hampering effective antitumour immune responses in tumour-bearing hosts, constitute a current research hotspot in the field. However, Tregs are also essential for the maintenance of the immune tolerance of the body and share many molecular signalling pathways with conventional T cells, including cytotoxic T cells, the primary mediators of tumour immunity. Hence, the inability to specifically target and neutralize Tregs in the tumour microenvironment without globally compromising self-tolerance poses a significant challenge. Here, we review recent advances in characterizing tumour-infiltrating Tregs with a focus on the functional roles of costimulatory and inhibitory receptors in Tregs, evaluate their potential as clinical targets, and systematically summarize their roles in potential treatment strategies. Also, we propose modalities to integrate our increasing knowledge on Tregs phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Finally, we propose possible treatment strategies that can be used to develop Treg-targeted therapies.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
20
|
Mohammadpour H, Sarow JL, MacDonald CR, Chen GL, Qiu J, Sharma UC, Cao X, Herr MM, Hahn TE, Blazar BR, Repasky EA, McCarthy PL. β2-Adrenergic receptor activation on donor cells ameliorates acute GvHD. JCI Insight 2020; 5:137788. [PMID: 32437333 DOI: 10.1172/jci.insight.137788] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acute graft versus host disease (aGvHD) remains a major impediment to successful allogeneic hematopoietic cell transplantation (allo-HCT). To solve this problem, a greater knowledge of factors that regulate the differentiation of donor T cells toward cytotoxic cells or Tregs is necessary. We report that the β2-adrenergic receptor (β2-AR) is critical for regulating this differentiation and that its manipulation can control aGvHD without impairing the graft-versus-tumor (GvT) effect. Donor T cell β2-AR expression and signaling is associated with decreased aGvHD when compared with recipients of β2-AR-/- donor T cells. We determined that β2-AR activation skewed CD4+ T cell differentiation in vitro and in vivo toward Tregs rather than the T helper 1 (Th1) phenotype. Treatment of allo-HCT recipients with a selective β2-agonist (bambuterol) ameliorated aGvHD severity. This was associated with increased Tregs, decreased cytotoxic T cells, and increased donor BM-derived myeloid-derived suppressor cells (MDSCs) in allogeneic and humanized xenogeneic aGvHD models. β2-AR signaling resulted in increased Treg generation through glycogen synthase kinase-3 activation. Bambuterol preserved the GvT effect by inducing NKG2D+ effector cells and central memory T cells. These data reveal how β-AR signaling can be targeted to ameliorate GvHD severity while preserving GvT effect.
Collapse
Affiliation(s)
| | | | | | - George L Chen
- Medicine, Transplant and Cellular Therapy Program, and
| | - Jingxin Qiu
- Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Umesh C Sharma
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, Buffalo, New York, USA
| | - Xuefang Cao
- Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Megan M Herr
- Medicine, Transplant and Cellular Therapy Program, and
| | | | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
21
|
IL-27Rα: A Novel Molecular Imaging Marker for Allograft Rejection. Int J Mol Sci 2020; 21:ijms21041315. [PMID: 32075272 PMCID: PMC7072931 DOI: 10.3390/ijms21041315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Non-invasively monitoring allogeneic graft rejection with a specific marker is of great importance for prognosis of patients. Recently, data revealed that IL-27Rα was up-regulated in alloreactive CD4+ T cells and participated in inflammatory diseases. Here, we evaluated whether IL-27Rα could be used in monitoring allogeneic graft rejection both in vitro and in vivo. Allogeneic (C57BL/6 donor to BALB/c recipient) and syngeneic (BALB/c both as donor and recipient) skin grafted mouse models were established. The expression of IL-27Rα in grafts was detected. The radio-probe, 125I-anti-IL-27Rα mAb, was prepared. Dynamic whole-body phosphor-autoradiography, ex vivo biodistribution and immunofluorescence staining were performed. The results showed that the highest expression of IL-27Rα was detected in allogeneic grafts on day 10 post transplantation (top period of allorejection). 125I-anti-IL-27Rα mAb was successfully prepared with higher specificity and affinity. Whole-body phosphor-autoradiography showed higher radioactivity accumulation in allogeneic grafts than syngeneic grafts on day 10. The uptake of 125I-anti-IL-27Rα mAb in allogeneic grafts could be almost totally blocked by pre-injection with excess unlabeled anti-IL-27Rα mAb. Interestingly, we found that 125I-anti-IL-27Rα mAb accumulated in allogeneic grafts, along with weaker inflammation earlier on day 6. The high uptake of 125I-anti-IL-27Rα mAb was correlated with the higher infiltrated IL-27Rα positive cells (CD3+/CD68+) in allogeneic grafts. In conclusion, IL-27Rα may be a novel molecular imaging marker to predict allorejection.
Collapse
|
22
|
Le HT, Keslar K, Nguyen QT, Blazar BR, Hamilton BK, Min B. Interleukin-27 Enforces Regulatory T Cell Functions to Prevent Graft-versus-Host Disease. Front Immunol 2020; 11:181. [PMID: 32117306 PMCID: PMC7028690 DOI: 10.3389/fimmu.2020.00181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Graft-versus-host disease (GvHD) remains a significant complication of allogeneic hematopoietic cell transplantation (HCT), associated with significant morbidity and mortality. GvHD is characterized by dysregulated immune responses and resulting tissue damage of target organs. Recent investigations have focused on Foxp3+ regulatory T cells (Tregs) as a therapeutic tool, based on its regulatory functions in GvHD pathogenesis and their instrumental role in mitigating GvHD severity while preserving graft-versus-leukemia (GvL) activity. There are several challenges to its clinical application, including their paucity, impaired suppressive activity, and instability in vivo. Herein, we report that IL-27 pre-stimulation enhances suppressive functions of both mouse and human Tregs. In a complete MHC mismatched murine bone marrow transplant model, IL-27 pre-stimulated polyclonal iTregs diminish acute (a)GvHD lethality, while preserving the GvL effect. Allo-antigen specificity further improves suppressive functions when combined with IL-27 pre-stimulation. In a xenogeneic (human to mouse) GvHD model, IL-27 pre-stimulated human iTregs are superior in protecting recipients from GvHD. Lastly, we compared gene expression profiles of circulating Tregs isolated from HCT recipients with and without aGvHD and found that Tregs from aGvHD patients express distinct gene signatures enriched in immune activation and inflammation. Therefore, these results highlight a novel function of IL-27 in enforcing Treg functions to prevent aGvHD mediated lethality, proposing the hypothesis that dysregulated Treg functions may account for the potential mechanisms underlying GvHD development.
Collapse
Affiliation(s)
- Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Karen Keslar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Hematology and Medical Oncology, Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Booki Min
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
23
|
De Trez C, Stijlemans B, Bockstal V, Cnops J, Korf H, Van Snick J, Caljon G, Muraille E, Humphreys IR, Boon L, Van Ginderachter JA, Magez S. A Critical Blimp-1-Dependent IL-10 Regulatory Pathway in T Cells Protects From a Lethal Pro-inflammatory Cytokine Storm During Acute Experimental Trypanosoma brucei Infection. Front Immunol 2020; 11:1085. [PMID: 32655552 PMCID: PMC7325990 DOI: 10.3389/fimmu.2020.01085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/05/2020] [Indexed: 01/12/2023] Open
Abstract
In many infectious diseases, the immune response operates as a double-edged sword. While required for protective immunity, infection-induced inflammation can be detrimental if it is not properly controlled, causing collateral body damage and potentially leading to death. It is in this context that the potent anti-inflammatory cytokine interleukin-10 (IL-10) is required to dampen the pro-inflammatory immune response that hallmarks trypanosomosis. Effective control of this infection requires not just the action of antibodies specific for the parasite's variable surface glycoprotein (VSG) coat antigens, but also a pro-inflammatory immune response mediated mainly by IFNγ, TNF, and NO. However, strict control of inflammation is mandatory, as IL-10-deficient mice succumb from an unrestrained cytokine storm within 10 days of a Trypanosome brucei infection. The relevant cellular source of IL-10 and the associated molecular mechanisms implicated in its trypanosomosis associated production are poorly understood. Using an IL-10 reporter mouse strain (Vert-X), we demonstrate here that NK cells, CD8+ T cells and CD4+ T cells as well as B cells and plasma cells constitute potential cellular sources of IL-10 within the spleen and liver during acute infection. The IL-10 wave follows peak pro-inflammatory cytokine production, which accompanied the control of peak parasitemia. Similar results were observed following conventional experimental needle infection and physiological infections via T. brucei-infected tsetse flies. Our results show that conditional T cell-specific ablation of the IL-10 regulating Prdm1 gene (encoding for the Blimp-1 transcription factor), leads to an uncontrolled trypanosome-induced pro-inflammatory syndrome like the one observed in infected IL-10-deficient mice. This result indicates that the biological role of IL-10-derived from non-T cells, including NK cells, is of minor importance when considering host survival. The cytokine IL-27 that is also considered to be an IL-10 regulator, did not affect IL-10 production during infection. Together, these data suggest that T. brucei activates a Blimp-1-dependent IL-10 regulatory pathway in T cells that acts as a critical anti-inflammatory rheostat, mandatory for host survival during the acute phase of parasitemia.
Collapse
Affiliation(s)
- Carl De Trez
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Benoit Stijlemans
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Centre for Inflammation Research, Brussels, Belgium
| | - Viki Bockstal
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jennifer Cnops
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Jacques Van Snick
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Cancer Research, Brussels Branch, Brussels, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium.,Laboratoire de Parasitologie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ian R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Jo A Van Ginderachter
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Ghent University Global, Incheon, South Korea
| |
Collapse
|
24
|
Yao G, Qi J, Liang J, Shi B, Chen W, Li W, Tang X, Wang D, Lu L, Chen W, Shi S, Hou Y, Sun L. Mesenchymal stem cell transplantation alleviates experimental Sjögren's syndrome through IFN-β/IL-27 signaling axis. Am J Cancer Res 2019; 9:8253-8265. [PMID: 31754394 PMCID: PMC6857067 DOI: 10.7150/thno.37351] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Rationale: Although mesenchymal stem cell (MSC) transplantation has been proved to be an effective therapeutic approach to treat experimental Sjögren's syndrome (SS), the detailed underlying mechanisms remains unknown. IL-27 has diverse influences on the regulation of T cell differentiation and was involved in SS through modulating immune response. Here we aimed to explore whether IL-27-mediated regulation of immune cells was responsible for the beneficial effects of MSC transplantation on SS. Methods: The SS-like symptoms were evaluated in IL-27 deficient and recombinant IL-27-treated NOD mice. The MSCs were infused into NOD mice via the tail vein. The histological features of submandibular glands, saliva flow rate and serum IL-27 were examined. The effects of MSCs on the IL-27 production and Th17/Treg cell in SS patients and mice in vitro and in vivo were determined for the mechanistic study. Results: This study showed that SS patients had decreased IL-27 level and increased ratio of Th17/Treg cells. Consistently, exacerbated SS-like symptoms were observed in IL-27 deficient NOD mice, along with increased ratio of Th17/Treg cells. Importantly, MSC transplantation alleviated SS-like symptoms by elevating the level of IL-27 to restore Th17/Treg balance in NOD mice. Mechanistically, MSC-secreted interferon-β (IFN-β) promote dendritic cells to produce IL-27. Conclusions: Thus, we have revealed a previously unrecognized function of MSC-mediated IL-27 production by DCs in suppressing SS-like syndrome, which provided evidences for clinical application of MSC in patients with SS.
Collapse
|
25
|
Bastian D, Wu Y, Betts BC, Yu XZ. The IL-12 Cytokine and Receptor Family in Graft-vs.-Host Disease. Front Immunol 2019; 10:988. [PMID: 31139181 PMCID: PMC6518430 DOI: 10.3389/fimmu.2019.00988] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is performed with curative intent for high- risk blood cancers and bone marrow failure syndromes; yet the development of acute and chronic graft-vs.-host disease (GVHD) remain preeminent causes of death and morbidity. The IL-12 family of cytokines is comprised of IL-12, IL-23, IL-27, IL-35, and IL-39. This family of cytokines is biologically distinct in that they are composed of functional heterodimers, which bind to cognate heterodimeric receptor chains expressed on T cells. Of these, IL-12 and IL-23 share a common β cytokine subunit, p40, as well as a receptor chain: IL-12Rβ1. IL-12 and IL-23 have been documented as proinflammatory mediators of GVHD, responsible for T helper 1 (Th1) differentiation and T helper 17 (Th17) stabilization, respectively. The role of IL-27 is less defined, seemingly immune suppressive via IL-10 secretion by Type 1 regulatory (Tr1) cells yet promoting inflammation through impairing CD4+ T regulatory (Treg) development and/or enhancing Th1 differentiation. More recently, IL-35 was described as a potent anti-inflammatory agent produced by regulatory B and T cells. The role of the newest member, IL-39, has been implicated in proinflammatory B cell responses but has not been explored in the context of allo-HCT. This review is directed at discussing the current literature relevant to each IL-12-family cytokine and cognate receptor engagement, as well as the consequential downstream signaling implications, during GVHD pathogenesis. Additionally, we will provide an overview of translational strategies targeting the IL-12 family cytokines, their receptors, and subsequent signal transduction to control GVHD.
Collapse
Affiliation(s)
- David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Brian C Betts
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
26
|
Yi J, Chen Z, Xu F, Wang Z, Zhang A, Liu T, Zhao N, Xiong Y, Jiang G, Ma J, Luan X. IL-27 Promotes Human Placenta-Derived Mesenchymal Stromal Cell Ability To Induce the Generation of CD4 +IL-10 +IFN-γ + T Cells via the JAK/STAT Pathway in the Treatment of Experimental Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:1124-1136. [PMID: 30651340 DOI: 10.4049/jimmunol.1800963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stromal cells (MSCs) harbor immunomodulatory properties to induce the generation of suppressive T cells. MSCs have been successfully used in treating graft-versus-host disease (GVHD) accompanied by abundant inflammatory cytokines such as IL-27. This study investigated the effects of IL-27 on the human placenta-derived MSCs (hPMSCs) to induce generation of CD4+IL-10+IFN-γ+ T cells in vitro and in the humanized xenogenic GVHD NOD/SCID model. The results showed that the percentages of CD4+IL-10+IFN-γ+ T cells were significantly increased in activated human PBMC from both healthy donors and GVHD patients with hPMSCs and in the liver and spleen of hPMSC-treated GVHD mice, and the level of CD4+IL-10+IFN-γ+ T cells in the liver was greater than that in the spleen in hPMSC-treated GVHD mice. The serum level of IL-27 decreased and the symptoms abated in hPMSC-treated GVHD. Further, in vitro results showed that IL-27 promoted the regulatory effects of hPMSCs by enhancing the generation of CD4+IL-10+IFN-γ+ T cells from activated PBMC. Activation occurred through increases in the expression of programmed death ligand 2 (PDL2) in hPMSCs via the JAK/STAT signaling pathway. These findings indicated that hPMSCs could alleviate GVHD mice symptoms by upregulating the production of CD4+IL-10+IFN-γ+ T cells in the spleen and liver and downregulating serum levels of IL-27. In turn, the ability of hPMSCs to induce the generation of CD4+IL-10+IFN-γ+ T cells could be promoted by IL-27 through increases in PDL2 expression in hPMSCs. The results of this study will be of benefit for the application of hPMSCs in clinical trials.
Collapse
Affiliation(s)
- Junzhu Yi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Zhenghua Chen
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province 264100, China
| | - Fenghuang Xu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570102, China
| | - ZhuoYa Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Aiping Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Tongshen Liu
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Nannan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Yanlian Xiong
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Guosheng Jiang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, China; and
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China; .,Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, Shandong Province 264003, China
| |
Collapse
|
27
|
A folding switch regulates interleukin 27 biogenesis and secretion of its α-subunit as a cytokine. Proc Natl Acad Sci U S A 2019; 116:1585-1590. [PMID: 30651310 DOI: 10.1073/pnas.1816698116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A common design principle of heteromeric signaling proteins is the use of shared subunits. This allows encoding of complex messages while maintaining evolutionary flexibility. How cells regulate and control assembly of such composite signaling proteins remains an important open question. An example of particular complexity and biological relevance is the interleukin 12 (IL-12) family. Four functionally distinct αβ heterodimers are assembled from only five subunits to regulate immune cell function and development. In addition, some subunits act as independent signaling molecules. Here we unveil key molecular mechanisms governing IL-27 biogenesis, an IL-12 family member that limits infections and autoimmunity. In mice, the IL-27α subunit is secreted as a cytokine, whereas in humans only heterodimeric IL-27 is present. Surprisingly, we find that differences in a single amino acid determine if IL-27α can be secreted autonomously, acting as a signaling molecule, or if it depends on heterodimerization for secretion. By combining computer simulations with biochemical experiments, we dissect the underlying structural determinants: a protein folding switch coupled to disulfide bond formation regulates chaperone-mediated retention versus secretion. Using these insights, we rationally change folding and assembly control for this protein. This provides the basis for a more human-like IL-27 system in mice and establishes a secretion-competent human IL-27α that signals on its own and can regulate immune cell function. Taken together, our data reveal a close link between protein folding and immunoregulation. Insights into the underlying mechanisms can be used to engineer immune modulators.
Collapse
|
28
|
Gaignage M, Marillier RG, Cochez PM, Dumoutier L, Uyttenhove C, Coutelier JP, Van Snick J. The TLR7 ligand R848 prevents mouse graft- versus-host disease and cooperates with anti-interleukin-27 antibody for maximal protection and regulatory T-cell upregulation. Haematologica 2018; 104:392-402. [PMID: 30213828 PMCID: PMC6355498 DOI: 10.3324/haematol.2018.195628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/07/2018] [Indexed: 11/25/2022] Open
Abstract
In spite of considerable therapeutic progress, acute graft-versus-host disease still limits allogeneic hematopoietic cell transplantation. We recently reported that mouse infection with nidovirus lactate dehydrogenase elevating virus impairs disease in non-conditioned B6D2F1 recipients of parental B6 spleen cells. As this virus activates TLR7, we tested a pharmacological TLR7 ligand, R848, in this model and observed complete survival if donor and recipients were treated before transplantation. Mixed lymphocyte culture performed 48 h after R848-treatment of normal mice demonstrated that both T-cell allo-responsiveness and antigen presentation by CD11b+ and CD8α+ dendritic cells were inhibited. These inhibitions were dependent on IFNAR-1 signaling. In the B6 to B6D2F1 transplantation model, R848 decelerated, but did not abrogate, donor T-cell implantation and activation. However, it decreased interferon-gamma, tumor necrosis factor-alpha and interleukin-27 while upregulating active transforming growth factor-beta 1 plasma levels. In addition, donor and recipient Foxp3+ regulatory T-cell numbers were increased in recipient mice and their elimination compromised disease prevention. R848 also strongly improved survival of lethally irradiated BALB/c recipients of B6 hematopoietic cells and this also correlated with an upregulation of CD4 and CD8 Foxp3+ regulatory T cells that could be further increased by inhibition of interleukin-27. The combination of anti-interleukin-27p28 mono -clonal antibody and R848 showed strong synergy in preventing disease in the B6 to B6D2F1 transplantation model when recipients were sublethally irradiated and this also correlated with upregulation of regulatory T cells. We conclude that R848 modulates multiple aspects of graft-versus-host disease and offers potential for safe allogeneic bone marrow transplantation that can be further optimized by inhibition of interleukin-27.
Collapse
Affiliation(s)
| | | | | | | | - Catherine Uyttenhove
- de Duve Institute, Université Catholique de Louvain.,Ludwig Cancer Research, Brussels, Belgium
| | | | - Jacques Van Snick
- de Duve Institute, Université Catholique de Louvain .,Ludwig Cancer Research, Brussels, Belgium
| |
Collapse
|
29
|
Soluble interleukin-27 receptor alpha is a valuable prognostic biomarker for acute graft-versus-host disease after allogeneic haematopoietic stem cell transplantation. Sci Rep 2018; 8:10328. [PMID: 29985424 PMCID: PMC6037712 DOI: 10.1038/s41598-018-28614-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a major life-threatening complication after allogeneic haematopoietic stem cell transplantation. Interleukin-27 receptor alpha (IL-27Rα) is a co-receptor of IL-27, an inflammatory cytokine that possesses extensive immunological functions. It has been reported that IL-27Rα can exist in its soluble form (sIL-27Rα) in human serum and can function as a natural IL-27 antagonist. In this study, we examined serum sIL-27Rα levels and evaluated their prognostic value in aGVHD. A total of 152 subjects were prospectively recruited and separated into the training group (n = 72) and the validation group (n = 80). Serum sIL-27Rα at neutrophil engraftment was measured by ELISA. In the training set, a cut-off value of sIL-27Rα = 59.40 ng/ml was identified to predict grade II–IV aGVHD (AUC = 0.735, 95% CI 0.618–0.853, P = 0.001). Cumulative incidences of grade II–IV aGVHD (P = 0.004), relapse rate (P = 0.008), and non-relapse mortality (P = 0.008) in patients with low serum sIL-27Rα (≥59.40 ng/ml) were significantly higher than those of patients with high serum sIL-27Rα (<59.40 ng/ml). Multivariate analysis confirmed that low sIL-27Rα level (HR = 2.83 95% CI 1.29–6.19, P < 0.01) was an independent risk factor for predicting grade II-IV aGVHD. In addition, serum sIL-27Rα was positively correlated with IL-27 (R = 0.27, P = 0.029), IL-10 (R = 0.37, P = 0.0015) and HGF (R = 0.27, P = 0.0208), but was negatively correlated with TNFR1 (R = −0.365, P = 0.0022) and ST2 (R = −0.334, P = 0.0041), elafin (R = −0.29, P = 0.0117), and REG3α (R = −0.417, P = 0.0003). More importantly, the threshold value of sIL-27Rα was then validated in an independent cohort of 80 patients (AUC = 0.790, 95% CI 0.688–0.892, P < 0.001). Taken together, our findings suggested that serum sIL-27Rα at neutrophil engraftment maybe a valuable prognostic biomarker in predicting the incidence of moderate-to-severe aGVHD.
Collapse
|
30
|
Bastian D, Liu Y, Wu Y, Schutt S, Nguyen HD, Daenthanasanmak A, Sofi M, Zhang M, Iamsuwat S, Yu XZ. IL-27 Receptor Signaling on T cells Augments GVHD Severity through Enhancing Th1 Responses. JOURNAL OF IMMUNOLOGY RESEARCH AND THERAPY 2018; 3:151-157. [PMID: 30906912 PMCID: PMC6426137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
IL-27 is a heterodimeric cytokine comprised of IL-27p28 and EBI3. As a relatively new member of the IL-12 family, the biological mechanisms associated with the role of IL-27 in the immune response are ambiguous, displaying both proinflammatory and suppressive functions that seem to be dependent on the disease model. A recent report demonstrates that pharmacological blockade of IL-27p28 alleviates graft-versus-host disease (GVHD) in mice. However, the specific role of the IL-27Rα/gp130 signaling complex that forms the IL-27 receptor (IL-27R) on T cells has not been well characterized in the context of allogeneic hematopoietic stem cell transplantation (allo-HCT). Here, we demonstrate that IL-27Rα expression on T cells exacerbates GVHD after allo-HCT, which was consistent across 3 different MHC- mismatched murine models of allo-HCT. Expression of IL-27Rα on T cells was required for acquisition of optimal Th1 effector function and subsequent inhibition of Th2 and T regulatory subsets after allo-HCT. Furthermore, administration of IL-27significantly increased mortality after allo-HCT; suggesting that the suppressive functions linked to IL-27 in T cell responses may be relatively modest in this model. Hence, IL-27Rα signaling on T cells promotes the development of GVHD.
Collapse
Affiliation(s)
- David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, USA
| | - Yuejun Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, USA
- Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, China
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, USA
| | - Steven Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina, USA
| | - Hung D. Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, USA
| | | | - M.Hanief Sofi
- Department of Microbiology and Immunology, Medical University of South Carolina, USA
| | - Mengmeng Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, USA
| | - Supinya Iamsuwat
- Department of Microbiology and Immunology, Medical University of South Carolina, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, USA
- Department of Medicine, Medical University of South Carolina, USA
| |
Collapse
|
31
|
Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood 2018; 131:2651-2660. [PMID: 29728401 DOI: 10.1182/blood-2017-11-785865] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Current approaches to prevent and treat graft-versus-host disease (GVHD) after stem cell transplantation rely principally on pharmacological immune suppression. Such approaches are limited by drug toxicity, nonspecific immune suppression, and a requirement for long-term therapy. Our increased understanding of the regulatory cells and molecular pathways involved in limiting pathogenic immune responses opens the opportunity for the use of these cell subsets to prevent and/or GVHD. The theoretical advantages of this approach is permanency of effect, potential for facilitating tissue repair, and induction of tolerance that obviates a need for ongoing drug therapy. To date, a number of potential cell subsets have been identified, including FoxP3+ regulatory T (Treg) and FoxP3negIL-10+ (FoxP3-negative) regulatory T (Tr1), natural killer (NK) and natural killer T (NKT) cells, innate lymphoid cells, and various myeloid suppressor populations of hematopoietic (eg, myeloid derived suppressor cells) and stromal origin (eg, mesenchymal stem cells). Despite initial technical challenges relating to large-scale selection and expansion, these regulatory lineages are now undergoing early phase clinical testing. To date, Treg therapies have shown promising results in preventing clinical GVHD when infused early after transplant. Results from ongoing studies over the next 5 years will delineate the most appropriate cell lineage, source (donor, host, third party), timing, and potential exogenous cytokine support needed to achieve the goal of clinical transplant tolerance.
Collapse
|
32
|
Xu F, Yi J, Wang Z, Hu Y, Han C, Xue Q, Zhang X, Luan X. IL-27 regulates the adherence, proliferation, and migration of MSCs and enhances their regulatory effects on Th1 and Th2 subset generations. Immunol Res 2018; 65:903-912. [PMID: 28612255 PMCID: PMC5544780 DOI: 10.1007/s12026-017-8929-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin 27 (IL-27) regulates T cell function and is involved in inflammation. It has been reported that human placenta-derived mesenchymal stromal cells (hPMSCs) can inhibit T cell responses and attenuate inflammation reactions. However, it is unclear whether IL-27 can regulate hPMSC function. Here, we examined the effects of IL-27 upon adherence, migration, and proliferation as well as the immunomodulatory effects of hPMSCs. The results show that IL-27 receptor α chain (IL-27Rα) is expressed in hPMSCs. IL-27 at 30 ng/ml inhibited hPMSC adherence and proliferation, while the migration of hPMSCs was promoted with IL-27 at doses of 20 or 30 ng/ml, as determined with use of real-time cell analysis (RTCA). Moreover, IL-27 promoted regulatory effects of hPMSCs through enhancing Th2 and suppressing Th1 subset generation from activated T cells in human peripheral blood. IL-27 also enhanced the ability of hPMSCs to secrete IL-10 from CD4+T cells through increased expression levels of the programmed death ligand 1 (PDL1) in hPMSCs via the Janus kinase (JAK)/signal transducer and activator of transcription 1 (STAT1) signaling pathway. In conclusion, IL-27 has significant modulatory effects on adherence, proliferation, and migration of hPMSCs. IL-27 increased PDL1 expression levels in hPMSCs via the JAK/STAT1 pathway, which then enhanced the regulatory effects of hPMSCs upon Th1 and Th2 cell generations and IL-10 secretion from CD4+T cells.
Collapse
Affiliation(s)
- Fenghuang Xu
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Junzhu Yi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Zhuoya Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Yejia Hu
- Department of Pathophysiology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Chunlei Han
- Department of Health Statistics, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Qun Xue
- Medical College of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Xueguang Zhang
- Medical College of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China. .,Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China.
| |
Collapse
|
33
|
Pishnamaz MR, Jafarzadehpour E, Pishnamaz R. Regulatory T Cells and Ocular Graft Versus Host Disease: A Novel Treatment Approach. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2018; 7:119-121. [PMID: 30386800 PMCID: PMC6205679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Graft Versus Host Disease (GVHD) is an inflammatory immune disease, mediated by the donor's immune cells and can arise after allogeneic Hematopoietic Stem Cell Transplantation (HSCT) for the treatment of hematologic malignancies. It can lead to destructive manifestations in various tissues, particularly dermatological, gastrointestinal, and ocular tissues. The most common ocular morbidity is dry eyes, which is often the first manifestation of GVHD. Regulatory T cells (Tr) can be broadly classified as natural or adaptive (induced). After Bone-Marrow Transplantation (BMT), excessively increased levels of type 1 Tr (Tr1) are generally observed with absence of a GVHD, while low levels are seen with severe GVHD. Treatment of patients, undergoing BMT with Interleukin-10 (IL-10)-anergized donor T cells, led to immune reconstitution without the development of GVHD, which resulted in protection against infection and against the return of the cancer. Surprisingly, in both naive syngeneic mouse models of skin and cardiac allografts, graft retention was augmented after infusion of in vitro generated double-negative Tr (DN Tr). In addition, GVHD was reduced in mice with a genetic deficiency in the IL-27 receptor (IL-27R-/-) and in mice treated with anti-IL-27p28-specific antibody. Considering above mentioned findings we would suggest carrying out experiments, using animal models of GVHD, in order to evaluate the potential role of Tr, as an innovative approach to overcome severe ocular morbidity caused by ocular GVHD.
Collapse
Affiliation(s)
- Mohammad Reza Pishnamaz
- Optometry Department, Iran University of Medical Sciences, Tehran, Iran,Correspondence to: Mohammad Reza Pishnamaz MSc, Optometry Department, Iran University of Medical Sciences, Tehran, Iran. E-mail:
| | | | - Razieh Pishnamaz
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Zhang P, Lee JS, Gartlan KH, Schuster IS, Comerford I, Varelias A, Ullah MA, Vuckovic S, Koyama M, Kuns RD, Locke KR, Beckett KJ, Olver SD, Samson LD, Montes de Oca M, de Labastida Rivera F, Clouston AD, Belz GT, Blazar BR, MacDonald KP, McColl SR, Thomas R, Engwerda CR, Degli-Esposti MA, Kallies A, Tey SK, Hill GR. Eomesodermin promotes the development of type 1 regulatory T (T R1) cells. Sci Immunol 2017; 2:2/10/eaah7152. [PMID: 28738016 DOI: 10.1126/sciimmunol.aah7152] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 12/20/2022]
Abstract
Type 1 regulatory T (TR1) cells are Foxp3- interleukin-10 (IL-10)-producing CD4+ T cells with potent immunosuppressive properties, but their requirements for lineage development have remained elusive. We show that TR1 cells constitute the most abundant regulatory population after allogeneic bone marrow transplantation (BMT), express the transcription factor Eomesodermin (Eomes), and are critical for the prevention of graft-versus-host disease. We demonstrate that Eomes is required for TR1 cell differentiation, during which it acts in concert with the transcription factor B lymphocyte-induced maturation protein-1 (Blimp-1) by transcriptionally activating IL-10 expression and repressing differentiation into other T helper cell lineages. We further show that Eomes induction in TR1 cells requires T-bet and donor macrophage-derived IL-27. Thus, we define the cellular and transcriptional control of TR1 cell differentiation during BMT, opening new avenues to therapeutic manipulation.
Collapse
Affiliation(s)
- Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.
| | - Jason S Lee
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Iona S Schuster
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Iain Comerford
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Md Ashik Ullah
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Motoko Koyama
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kelly R Locke
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kirrilee J Beckett
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Stuart D Olver
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Luke D Samson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | | | | | | | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bruce R Blazar
- Pediatric Blood and Marrow Transplantation Program, University of Minnesota, Minneapolis, MN 55454, USA
| | - Kelli P MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Shaun R McColl
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | | | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Axel Kallies
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Queensland 4006, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia. .,Royal Brisbane and Women's Hospital, Brisbane, Queensland 4006, Australia
| |
Collapse
|
35
|
|