1
|
Li W, Han G, Wang X, Shen K, Xie Y. Identification of EPOR and JAK2 double heterozygous variants in twin cases with familial erythrocytosis. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2786-5. [PMID: 39671116 DOI: 10.1007/s11427-024-2786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/16/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Wenqian Li
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, 810007, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guoxiong Han
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Xiaorui Wang
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Kuo Shen
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Youbang Xie
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, 810007, China.
| |
Collapse
|
2
|
Lim J, Ross DM, Brown AL, Scott HS, Hahn CN. Germline genetic variants that predispose to myeloproliferative neoplasms and hereditary myeloproliferative phenotypes. Leuk Res 2024; 146:107566. [PMID: 39316992 DOI: 10.1016/j.leukres.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Epidemiological evidence of familial predispositions to myeloid malignancies and myeloproliferative neoplasms (MPN) has long been recognised, but recent studies have added to knowledge of specific germline variants in multiple genes that contribute to the familial risk. These variants may be common risk alleles in the general population but have low penetrance and cause sporadic MPN, such as the JAK2 46/1 haplotype, the variant most strongly associated with MPN. Association studies are increasingly identifying other MPN susceptibility genes such as TERT, MECOM, and SH2B3, while some common variants in DDX41 and RUNX1 appear to lead to a spectrum of myeloid malignancies. RBBP6 and ATM variants have been identified in familial MPN clusters and very rare germline variants such as chromosome 14q duplication cause hereditary MPN with high penetrance. Rarely, there are hereditary non-malignant diseases with an MPN-like phenotype. Knowledge of those genes and germline genetic changes which lead to MPN or diseases that mimic MPN helps to improve accuracy of diagnosis, aids with counselling regarding familial risk, and may contribute to clinical decision-making. Large scale population exome and genome sequencing studies will improve our knowledge of both common and rare germline genetic contributions to MPN.
Collapse
Affiliation(s)
- Jonathan Lim
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, Australia; Haematology Directorate, SA Pathology, Adelaide, Australia.
| | - David M Ross
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, Australia; Haematology Directorate, SA Pathology, Adelaide, Australia; Department of Haematology and Genetic Pathology, Flinders University and Medical Centre, Adelaide, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Anna L Brown
- Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Hamish S Scott
- Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Christopher N Hahn
- Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| |
Collapse
|
3
|
Song J, Lanikova L, Kim SJ, Papadopoulos N, Meznarich J, Constantinescu SN, Parsegov B, Prchal JF, Prchal JT. Novel germline JAK2 R715T mutation causing PV-like erythrocytosis in 3 generations. Amelioration by Ropeg-Interferon. Am J Hematol 2024; 99:1220-1229. [PMID: 38629639 DOI: 10.1002/ajh.27311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024]
Abstract
Polycythemia vera (PV) is a clonal disorder arising from the acquired somatic mutations of the JAK2 gene, including JAK2V617F or several others in exon 12. A 38-year-old female had a stroke at age 32 and found to have elevated hemoglobin, normal leukocytes, normal platelets, and tested negative for JAK2V617F and exon 12 mutations. Next generation sequencing revealed a novel mutation: JAK2R715T in the pseudokinase domain (JH2) at 47.5%. Its presence in her nail DNA confirmed a germline origin. Her mother and her son similarly had erythrocytosis and a JAK2R715T mutation. Computer modeling indicated gain-of-function JAK2 activity. The propositus and her mother had polyclonal myelopoiesis, ruling out another somatic mutation-derived clonal hematopoiesis. Some erythroid progenitors of all three generations grew without erythropoietin, a hallmark of PV. The in vitro reporter assay confirmed increased activity of the JAK2R715T kinase. Similar to PV, the JAK2R715T native cells have increased STAT5 phosphorylation, augmented transcripts of prothrombotic and inflammatory genes, and decreased KLF2 transcripts. The propositus was not controlled by hydroxyurea, and JAK2 inhibitors were not tolerated; however, Ropeginterferon-alfa-2b (Ropeg-IFN-α) induced a remission. Ropeg-IFN-α treatment also reduced JAK2 activity in the propositus, her mother and JAK2V617F PV subjects. We report dominantly inherited erythrocytosis secondary to a novel germline JAK2R715T gain-of-function mutation with many but not all comparable molecular features to JAK2V617F PV. We also document a previously unreported inhibitory mechanism of JAK2 signaling by Ropeg-IFN-α.
Collapse
Affiliation(s)
- Jihyun Song
- Division of Hematology & Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Lucie Lanikova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Soo Jin Kim
- Division of Hematology & Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Nicolas Papadopoulos
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, Brussels, Belgium
| | - Jessica Meznarich
- Division of Hematology-Oncology, Department of Pediatrics, University of Utah and Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, Brussels, Belgium
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Brynn Parsegov
- Division of Hematology & Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | - Josef T Prchal
- Division of Hematology & Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Wang Z, Tian X, Ma J, Zhang Y, Ta W, Duan Y, Li F, Zhang H, Chen L, Yang S, Liu E, Lin Y, Yuan W, Ru K, Bai J. Clinical laboratory characteristics and gene mutation spectrum of Ph-negative MPN patients with atypical variants of JAK2, MPL, or CALR. Cancer Med 2024; 13:e7123. [PMID: 38618943 PMCID: PMC11017299 DOI: 10.1002/cam4.7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVE To evaluate the incidence, clinical laboratory characteristics, and gene mutation spectrum of Ph-negative MPN patients with atypical variants of JAK2, MPL, or CALR. METHODS We collected a total of 359 Ph-negative MPN patients with classical mutations in driver genes JAK2, MPL, or CALR, and divided them into two groups based on whether they had additional atypical variants of driver genes JAK2, MPL, or CALR: 304 patients without atypical variants of driver genes and 55 patients with atypical variants of driver genes. We analyzed the relevant characteristics of these patients. RESULTS This study included 359 patients with Ph-negative MPNs with JAK2, MPL, or CALR classical mutations and found that 55 (15%) patients had atypical variants of JAK2, MPL, or CALR. Among them, 28 cases (51%) were male, and 27 (49%) were female, with a median age of 64 years (range, 21-83). The age of ET patients with atypical variants was higher than that of ET patients without atypical variants [70 (28-80) vs. 61 (19-82), p = 0.03]. The incidence of classical MPL mutations in ET patients with atypical variants was higher than in ET patients without atypical variants [13.3% (2/15) vs. 0% (0/95), p = 0.02]. The number of gene mutations in patients with atypical variants of driver genes PV, ET, and Overt-PMF is more than in patients without atypical variants of PV, ET, and Overt-PMF [PV: 3 (2-6) vs. 2 (1-7), p < 0.001; ET: 4 (2-8) vs. 2 (1-7), p < 0.05; Overt-PMF: 5 (2-9) vs. 3 (1-8), p < 0.001]. The incidence of SH2B3 and ASXL1 mutations were higher in MPN patients with atypical variants than in those without atypical variants (SH2B3: 16% vs. 6%, p < 0.01; ASXL1: 24% vs. 13%, p < 0.05). CONCLUSION These data indicate that classical mutations of JAK2, MPL, and CALR may not be completely mutually exclusive with atypical variants of JAK2, MPL, and CALR. In this study, 30 different atypical variants of JAK2, MPL, and CALR were identified, JAK2 G127D being the most common (42%, 23/55). Interestingly, JAK2 G127D only co-occurred with JAK2V617F mutation. The incidence of atypical variants of JAK2 in Ph-negative MPNs was much higher than that of the atypical variants of MPL and CALR. The significance of these atypical variants will be further studied in the future.
Collapse
Affiliation(s)
- Zhanlong Wang
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Xin Tian
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Jinyu Ma
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yuhui Zhang
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Wenru Ta
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Yifan Duan
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Fengli Li
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Hong Zhang
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Long Chen
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Shaobin Yang
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Enbin Liu
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Yani Lin
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Kun Ru
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
- Department of Pathology and Lab MedicineShandong Cancer HospitalJinanChina
| | - Jie Bai
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
5
|
Torres DG, Barbosa Alves EV, Araújo de Sousa M, Laranjeira WH, Paes J, Alves E, Canté D, Costa AG, Malheiro A, Abreu R, Nascimento L, Fraiji NA, Silva GA, Mourão LPDS, Tarragô AM. Molecular landscape of the JAK2 gene in chronic myeloproliferative neoplasm patients from the state of Amazonas, Brazil. Biomed Rep 2023; 19:98. [PMID: 37954635 PMCID: PMC10633817 DOI: 10.3892/br.2023.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
JAK2V617F (dbSNP: rs77375493) is the most frequent and most-studied variant in BCR::ABL1 negative myeloproliferative neoplasms and in the JAK2 gene. The present study aimed to molecularly characterize variants in the complete coding region of the JAK2 gene in patients with BCR::ABL1 negative chronic myeloproliferative neoplasms. The study included 97 patients with BCR::ABL1 negative myeloproliferative neoplasms, including polycythemia vera (n=38), essential thrombocythemia (n=55), and myelofibrosis (n=04). Molecular evaluation was performed using conventional PCR and Sanger sequencing to detect variants in the complete coding region of the JAK2 gene. The presence of missense variants in the JAK2 gene including rs907414891, rs2230723, rs77375493 (JAK2V617F), and rs41316003 were identified. The coexistence of variants was detected in polycythemia vera and essential thrombocythemia. Thus, individuals with high JAK2V617F variant allele frequency (≥50% VAF) presented more thrombo-hemorrhagic events and manifestations of splenomegaly compared with those with low JAK2V617F variant allele frequency (<50% VAF). In conclusion, individuals with BCR::ABL1 negative neoplasms can display >1 variant in the JAK2 gene, especially rs2230722, rs2230724, and rs77375493 variants, and those with high JAK2V617F VAF show alterations in the clinical-laboratory profile compared with those with low JAK2V617F VAF.
Collapse
Affiliation(s)
- Dania G. Torres
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Molecular Biology Center, University of Central America, Managua 14003, Nicaragua
| | - Emanuela V. Barbosa Alves
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Miliane Araújo de Sousa
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Wanessa H. Laranjeira
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Jhemerson Paes
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Erycka Alves
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Deborah Canté
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Allyson G. Costa
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Manaus School of Nursing, Federal University of Amazonas, Manaus, Amazonas State 69057-070, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| | - Adriana Malheiro
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| | - Rosângela Abreu
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Leny Nascimento
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - Nelson A. Fraiji
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
| | - George A.V. Silva
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
- Leonidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas State 69027-070, Brazil
| | - Lucivana P. de Souza Mourão
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Superior School of Health Sciences, Amazonas State University, Manaus, Amazonas State 69065-001, Brazil
| | - Andréa M. Tarragô
- Post-graduate Program in Sciences Applied to Hematology, University of Amazonas State, Manaus, Amazonas State 69850-001, Brazil
- Board of Teaching and Research, Hospital Foundation for Hematology and Hemotherapy of Amazonas, Manaus, Amazonas State 69050-001, Brazil
- Post-graduate Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas State 69067-005, Brazil
- Amazon Genomic Health Surveillance Network Coordination, Manaus, Amazonas State 69040-010, Brazil
| |
Collapse
|
6
|
Rodríguez-Ubreva J, Calvillo CL, Forbes Satter LR, Ballestar E. Interplay between epigenetic and genetic alterations in inborn errors of immunity. Trends Immunol 2023; 44:902-916. [PMID: 37813732 PMCID: PMC10615875 DOI: 10.1016/j.it.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA; William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, TX, USA
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
7
|
Dvořáček L, Marková J, Holoubek A, Grebeňová D, Kundrát D, Kuželová K, Schwarz J. A novel germline hyperactivating JAK2 mutation L604F. Ann Hematol 2023; 102:2725-2734. [PMID: 37639050 PMCID: PMC10492870 DOI: 10.1007/s00277-023-05423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
Somatic JAK2 mutations are the main molecular cause of the vast majority of polycythemia vera (PV) cases. According to a recent structural model, the prevalent acquired V617F mutation improves the stability of the JAK2 dimer, thereby enhancing the constitutive JAK2 kinase activity. Germline JAK2 mutations usually do not largely alter JAK2 signaling, although they may modulate the impact of V617F. We found an unusual germline JAK2 mutation L604F in homozygous form in a young PV patient, along with a low allele burden JAK2 V617F mutation, and in her apparently healthy sister. Their father with a PV-like disease had L604F in a heterozygous state, without V617F. The functional consequences of JAK2 L604Fmutation were compared with those induced by V617F in two different in vitro model systems: (i) HEK293T cells were transfected with plasmids for exogenous JAK2-GFP expression, and (ii) endogenous JAK2 modifications were introduced into HeLa cells using CRISPR/Cas9. Both mutations significantly increased JAK2 constitutive activity in transfected HEK293T cells. In the second model, JAK2 modification resulted in reduced total JAK2 protein levels. An important difference was also detected: as described previously, the effect of V617F on JAK2 kinase activity was abrogated in the absence of the aromatic residue F595. In contrast, JAK2 hyperactivation by L604F was only partially inhibited by the F595 change to alanine. We propose that the L604F mutation increases the probability of spontaneous JAK2 dimer formation, which is physiologically mediated by F595. In addition, L604F may contribute to dimer stabilization similarly to V617F.
Collapse
Affiliation(s)
- Lukáš Dvořáček
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jana Marková
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Dana Grebeňová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - David Kundrát
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | - Jiří Schwarz
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
8
|
Maaziz N, Garrec C, Airaud F, Bobée V, Contentin N, Cayssials E, Rimbert A, Aral B, Bézieau S, Gardie B, Girodon F. Germline JAK2 E846D Substitution as the Cause of Erythrocytosis? Genes (Basel) 2023; 14:genes14051066. [PMID: 37239426 DOI: 10.3390/genes14051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The discovery in 2005 of the JAK2 V617F gain-of-function mutation in myeloproliferative neoplasms and more particularly in polycythemia vera has deeply changed the diagnostic and therapeutic approaches to polycythemia. More recently, the use of NGS in routine practice has revealed a large number of variants, although it is not always possible to classify them as pathogenic. This is notably the case for the JAK2 E846D variant for which for which questions remain unanswered. In a large French national cohort of 650 patients with well-characterized erythrocytosis, an isolated germline heterozygous JAK2 E846D substitution was observed in only two cases. For one of the patients, a family study could be performed, without segregation of the variant with the erythrocytosis phenotype. On the other hand, based on the large UK Biobank resource cohort including more than half a million UK participants, the JAK2 E846D variant was found in 760 individuals, associated with a moderate increase in hemoglobin and hematocrit values, but with no significant difference to the mean values of the rest of the studied population. Altogether, our data as well as UK Biobank cohort analyses suggest that the occurrence of an absolute polycythemia cannot be attributed to the sole demonstration of an isolated JAK2 E846D variant. However, it must be accompanied by other stimuli or favoring factors in order to generate absolute erythrocytosis.
Collapse
Affiliation(s)
- Nada Maaziz
- Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, 21000 Dijon, France
| | - Céline Garrec
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
| | - Fabrice Airaud
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
| | - Victor Bobée
- Service d'Hématologie Biologique, CHU de Rouen, 76000 Rouen, France
| | | | - Emilie Cayssials
- Service d'Oncologie Hématologique, CHU de Poitiers, 86000 Poitiers, France
| | - Antoine Rimbert
- l'Institut du Thorax, INSERM, Nantes Université, CHU Nantes, 44300 Nantes, France
| | - Bernard Aral
- Laboratoire de Génétique Chromosomique et Moléculaire, Pôle Biologie, CHU de Dijon, 21000 Dijon, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
- l'Institut du Thorax, INSERM, Nantes Université, CHU Nantes, 44300 Nantes, France
| | - Betty Gardie
- l'Institut du Thorax, INSERM, Nantes Université, CHU Nantes, 44300 Nantes, France
- Ecole Pratique des Hautes Etudes, Université PSL, 75006 Paris, France
- Laboratory of Excellence GR-Ex, Imagine Institute, 75015 Paris, France
| | - François Girodon
- Laboratory of Excellence GR-Ex, Imagine Institute, 75015 Paris, France
- Service d'Hématologie Biologique, Pôle Biologie, CHU de Dijon, 21000 Dijon, France
- Inserm U1231, Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
9
|
Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood 2023; 141:1909-1921. [PMID: 36347013 PMCID: PMC10646774 DOI: 10.1182/blood.2022017578] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are clonal diseases originating from a single hematopoietic stem cell that cause excessive production of mature blood cells. The 3 subtypes, that is, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are diagnosed according to the World Health Organization (WHO) and international consensus classification (ICC) criteria. Acquired gain-of-function mutations in 1 of 3 disease driver genes (JAK2, CALR, and MPL) are the causative events that can alone initiate and promote MPN disease without requiring additional cooperating mutations. JAK2-p.V617F is present in >95% of PV patients, and also in about half of the patients with ET or PMF. ET and PMF are also caused by mutations in CALR or MPL. In ∼10% of MPN patients, those referred to as being "triple negative," none of the known driver gene mutations can be detected. The common theme between the 3 driver gene mutations and triple-negative MPN is that the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is constitutively activated. We review the recent advances in our understanding of the early events after the acquisition of a driver gene mutation. The limiting factor that determines the frequency at which MPN disease develops with a long latency is not the acquisition of driver gene mutations, but rather the expansion of the clone. Factors that control the conversion from clonal hematopoiesis to MPN disease include inherited predisposition, presence of additional mutations, and inflammation. The full extent of knowledge of the mutational landscape in individual MPN patients is now increasingly being used to predict outcome and chose the optimal therapy.
Collapse
Affiliation(s)
- Damien Luque Paz
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Subbotina TN, Maslyukova IE, Semashchenko KS, Khodos GA, Kurochkin DV, Shalyova AA, Mikhalev MA, Vasiliev EV, Osadchaya MG, Dunaeva EA, Esman AS, Mironov KO. Analysis of somatic mutations in the <i>JAK2</i>, <i>CALR</i>, <i>MPL</i> and <i>ASXL1</i> genes and evaluation of their impact on the survival of patients with myelofibrosis. ONCOHEMATOLOGY 2023. [DOI: 10.17650/1818-8346-2023-18-1-63-75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Background. The development of myelofibrosis (MF) is driven by complex molecular genetic events that include driver somatic mutations responsible for the constitutive activation of the JAK/STAT signaling pathway (JAK2, CALR, and MPL), additional mutations affecting epigenetic regulators (TET2, ASXL1, IDH1/2, etc.) and RNA splicing (SRSF2, U2AF1, SF3B1, etc.), as well as genetic aberrations that contribute to genomic instability and disease progression.Aim. To analyze driver (JAK2, CALR, MPL) and prognostic (ASXL1) somatic mutations in patients with MF and evaluate their impact on survival.Materials and methods. The study included 29 patients diagnosed with MF, selected by hematologists from the City Clinical Hospital No. 7 and Regional Clinical Hospital (Krasnoyarsk).Results. 26 (89.6 %) out of 29 examined patients had some driver mutations in JAK2, CALR, MPL genes. The p.V617F mutation in the JAK2 gene was found in 20 (68.9 %) patients. Mutations in the CALR gene were detected in 4 (13.8 %) patients, mutations in the MPL gene were found in 3 patients (10.3 %). In 1 of 26 patients, 2 driver mutations were present simultaneously. 3 (10.3 %) patients were triple negative. Mutations in the ASXL1 gene were detected in 12 (41.4 %) out of 29 examined patients. Conducted targeted NGS (next generation sequencing) for 13 out of 29 patients revealed additional genetic variants that contribute to the understanding of the development mechanism and disease course. When evaluating the overall survival in the groups of patients diagnosed with MF examined by us, depending on the combination of driver (JAK2, CALR, MPL) and prognostic (ASXL1) mutations, no statistically significant differences were found (p = 0.12). This appears to be due to the small sample size. At the same time, assessment of patient survival depending on ASXL1 status showed that in the presence of mutations in the ASXL1 gene, the median survival was 45 months (range 7–120 months), while in the absence of mutations it was 48 months (range 21–359 months) (p = 0.03).Conclusion. The results obtained allow us to assume that the presence of mutations in the ASXL1 gene is an unfavorable factor in the course of the disease.
Collapse
Affiliation(s)
- T. N. Subbotina
- Siberian Federal University; Federal Siberian Research and Clinical Center, Federal Medical and Biological Agency
| | - I. E. Maslyukova
- Siberian Federal University; Federal Siberian Research and Clinical Center, Federal Medical and Biological Agency
| | | | | | - D. V. Kurochkin
- Siberian Federal University; Federal Siberian Research and Clinical Center, Federal Medical and Biological Agency
| | - A. A. Shalyova
- Siberian Federal University; Federal Siberian Research and Clinical Center, Federal Medical and Biological Agency
| | | | | | | | - E. A. Dunaeva
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
| | - A. S. Esman
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
| | - K. O. Mironov
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
| |
Collapse
|
11
|
Genomic Mutations of the STAT5 Transcription Factor Are Associated with Human Cancer and Immune Diseases. Int J Mol Sci 2022; 23:ijms231911297. [PMID: 36232600 PMCID: PMC9569778 DOI: 10.3390/ijms231911297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Signal transducer and activation of transcription 5 (STAT5) is a key transcription factor that regulates various biological processes in mammalian development. Aberrant regulation of STAT5 has also been causally linked to many diseases, including cancers and immune-related diseases. Although persistent activation of STAT5 due to dysregulation of the signaling cascade has been reported to be associated with the progression of solid tumors and leukemia, various genomic mutations of STAT5 have also been found to cause a wide range of diseases. The present review comprehensively summarizes results of recent studies evaluating the intrinsic function of STAT5 and the link between STAT5 mutations and human diseases. This review also describes the types of disease models useful for investigating the mechanism underlying STAT5-driven disease progression. These findings provide basic knowledge for understanding the regulatory mechanisms of STAT5 and the progression of various diseases resulting from aberrant regulation of STAT5. Moreover, this review may provide insights needed to create optimal disease models that reflect human disease associated STAT5 mutations and to design gene therapies to correct STAT5 mutations.
Collapse
|
12
|
Tun PWW, Buka RJ, Graham J, Dyer P. Heterozygous, germline JAK2 E846D substitution as the cause of familial erythrocytosis. Br J Haematol 2022; 198:923-926. [PMID: 35764421 DOI: 10.1111/bjh.18320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Phyo Wint Wint Tun
- Department of Clinical Haematology, University Hospitals of North Midlands, Stoke-on-Trent, UK
| | - Richard J Buka
- Department of Clinical Haematology, University Hospitals of North Midlands, Stoke-on-Trent, UK.,Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Jane Graham
- Department of Clinical Haematology, University Hospitals of North Midlands, Stoke-on-Trent, UK
| | - Peter Dyer
- Department of Clinical Haematology, University Hospitals of North Midlands, Stoke-on-Trent, UK
| |
Collapse
|
13
|
Yang F, Long N, Anekpuritanang T, Bottomly D, Savage JC, Lee T, Solis-Ruiz J, Borate U, Wilmot B, Tognon C, Bock AM, Pollyea DA, Radhakrishnan S, Radhakrishnan S, Patel P, Collins RH, Tantravahi S, Deininger MW, Fan G, Druker B, Shinde U, Tyner JW, Press RD, McWeeney S, Agarwal A. Identification and prioritization of myeloid malignancy germline variants in a large cohort of adult patients with AML. Blood 2022; 139:1208-1221. [PMID: 34482403 PMCID: PMC9211447 DOI: 10.1182/blood.2021011354] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
Inherited predisposition to myeloid malignancies is more common than previously appreciated. We analyzed the whole-exome sequencing data of paired leukemia and skin biopsy samples from 391 adult patients from the Beat AML 1.0 consortium. Using the 2015 American College of Medical Genetics and Genomics (ACMG) guidelines for variant interpretation, we curated 1547 unique variants from 228 genes. The pathogenic/likely pathogenic (P/LP) germline variants were identified in 53 acute myeloid leukemia (AML) patients (13.6%) in 34 genes, including 6.39% (25/391) of patients harboring P/LP variants in genes considered clinically actionable (tier 1). 41.5% of the 53 patients with P/LP variants were in genes associated with the DNA damage response. The most frequently mutated genes were CHEK2 (8 patients) and DDX41 (7 patients). Pathogenic germline variants were also found in new candidate genes (DNAH5, DNAH9, DNMT3A, and SUZ12). No strong correlation was found between the germline mutational rate and age of AML onset. Among 49 patients who have a reported history of at least one family member affected with hematological malignancies, 6 patients harbored known P/LP germline variants and the remaining patients had at least one variant of uncertain significance, suggesting a need for further functional validation studies. Using CHEK2 as an example, we show that three-dimensional protein modeling can be one of the effective methodologies to prioritize variants of unknown significance for functional studies. Further, we evaluated an in silico approach that applies ACMG curation in an automated manner using the tool for assessment and (TAPES) prioritization in exome studies, which can minimize manual curation time for variants. Overall, our findings suggest a need to comprehensively understand the predisposition potential of many germline variants in order to enable closer monitoring for disease management and treatment interventions for affected patients and families.
Collapse
Affiliation(s)
- Fei Yang
- Department of Pathology and Laboratory Medicine and
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Nicola Long
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Tauangtham Anekpuritanang
- Department of Pathology and Laboratory Medicine and
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Bioinformatics & Computational Biology and
| | - Jonathan C Savage
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| | - Tiffany Lee
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Jose Solis-Ruiz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Uma Borate
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Beth Wilmot
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Bioinformatics & Computational Biology and
| | - Cristina Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Allison M Bock
- Department of Medicine, University of Colorado, Aurora, CO
| | | | | | | | - Prapti Patel
- University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | | | - Guang Fan
- Department of Pathology and Laboratory Medicine and
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Brian Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Ujwal Shinde
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental & Cancer Biology
| | - Richard D Press
- Department of Pathology and Laboratory Medicine and
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Shannon McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Division of Bioinformatics & Computational Biology and
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental & Cancer Biology
- Division of Hematology and Oncology, and
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
14
|
Luo Y, Alexander M, Gadina M, O'Shea JJ, Meylan F, Schwartz DM. JAK-STAT signaling in human disease: From genetic syndromes to clinical inhibition. J Allergy Clin Immunol 2021; 148:911-925. [PMID: 34625141 PMCID: PMC8514054 DOI: 10.1016/j.jaci.2021.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
Since its discovery, the Janus kinase-signal transduction and activation of transcription (JAK-STAT) pathway has become recognized as a central mediator of widespread and varied human physiological processes. The field of JAK-STAT biology, particularly its clinical relevance, continues to be shaped by 2 important advances. First, the increased use of genomic sequencing has led to the discovery of novel clinical syndromes caused by mutations in JAK and STAT genes. This has provided insights regarding the consequences of aberrant JAK-STAT signaling for immunity, lymphoproliferation, and malignancy. In addition, since the approval of ruxolitinib and tofacitinib, the therapeutic use of JAK inhibitors (jakinibs) has expanded to include a large spectrum of diseases. Efficacy and safety data from over a decade of clinical studies have provided additional mechanistic insights while improving the care of patients with inflammatory and neoplastic conditions. This review discusses major advances in the field, focusing on updates in genetic diseases and in studies of clinical jakinibs in human disease.
Collapse
Affiliation(s)
- Yiming Luo
- Vasculitis Translational Research Program, Systemic Autoimmunity Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Madison Alexander
- Translational Immunology Section, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Massimo Gadina
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Francoise Meylan
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
15
|
Tomc J, Debeljak N. Molecular Pathways Involved in the Development of Congenital Erythrocytosis. Genes (Basel) 2021; 12:1150. [PMID: 34440324 PMCID: PMC8391844 DOI: 10.3390/genes12081150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.
Collapse
Affiliation(s)
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
16
|
Kristan A, Pajič T, Maver A, Režen T, Kunej T, Količ R, Vuga A, Fink M, Žula Š, Podgornik H, Anžej Doma S, Preložnik Zupan I, Rozman D, Debeljak N. Identification of Variants Associated With Rare Hematological Disorder Erythrocytosis Using Targeted Next-Generation Sequencing Analysis. Front Genet 2021; 12:689868. [PMID: 34349782 PMCID: PMC8327209 DOI: 10.3389/fgene.2021.689868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
An erythrocytosis is present when the red blood cell mass is increased, demonstrated as elevated hemoglobin and hematocrit in the laboratory evaluation. Congenital predispositions for erythrocytosis are rare, with germline variants in several genes involved in oxygen sensing (VHL, EGLN1, and EPAS1), signaling for hematopoietic cell maturation (EPOR and EPO), and oxygen transfer (HBB, HBA1, HBA2, and BPGM) that were already associated with the eight congenital types (ECYT1–8). Screening for variants in known congenital erythrocytosis genes with classical sequencing approach gives a correct diagnosis for only up to one-third of the patients. The genetic background of erythrocytosis is more heterogeneous, and additional genes involved in erythropoiesis and iron metabolism could have a putative effect on the development of erythrocytosis. This study aimed to detect variants in patients with yet unexplained erythrocytosis using the next-generation sequencing (NGS) approach, targeting genes associated with erythrocytosis and increased iron uptake and implementing the diagnostics of congenital erythrocytosis in Slovenia. Selected 25 patients with high hemoglobin, high hematocrit, and no acquired causes were screened for variants in the 39 candidate genes. We identified one pathogenic variant in EPAS1 gene and three novel variants with yet unknown significance in genes EPAS1, JAK2, and SH2B3. Interestingly, a high proportion of patients were heterozygous carriers for two variants in HFE gene, otherwise pathogenic for the condition of iron overload. The association between the HFE variants and the development of erythrocytosis is not clearly understood. With a targeted NGS approach, we determined an actual genetic cause for the erythrocytosis in one patient and contributed to better management of the disease for the patient and his family. The effect of variants of unknown significance on the enhanced production of red blood cells needs to be further explored with functional analysis. This study is of great significance for the improvement of diagnosis of Slovenian patients with unexplained erythrocytosis and future research on the etiology of this rare hematological disorder.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Pajič
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Biochemistry, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Količ
- Kemomed Research and Development, Kemomed Ltd., Ljubljana, Slovenia
| | - Andrej Vuga
- Kemomed Research and Development, Kemomed Ltd., Ljubljana, Slovenia
| | - Martina Fink
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Špela Žula
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Helena Podgornik
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Saša Anžej Doma
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Preložnik Zupan
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Kristan A, Gašperšič J, Režen T, Kunej T, Količ R, Vuga A, Fink M, Žula Š, Anžej Doma S, Preložnik Zupan I, Pajič T, Podgornik H, Debeljak N. Genetic analysis of 39 erythrocytosis and hereditary hemochromatosis-associated genes in the Slovenian family with idiopathic erythrocytosis. J Clin Lab Anal 2021; 35:e23715. [PMID: 33534944 PMCID: PMC8059723 DOI: 10.1002/jcla.23715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/10/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Erythrocytosis is a condition with an excessive number of erythrocytes, accompanied by an elevated haemoglobin and/or haematocrit value. Congenital erythrocytosis has a diverse genetic background with several genes involved in erythropoiesis. In clinical practice, nine genes are usually examined, but in approximately 70% of patients, no causative mutation can be identified. In this study, we screened 39 genes, aiming to identify potential disease-driving variants in the family with erythrocytosis of unknown cause. PATIENTS AND METHODS Two affected family members with elevated haemoglobin and/or haematocrit and negative for acquired causes and one healthy relative from the same family were selected for molecular-genetic analysis of 24 erythrocytosis and 15 hereditary haemochromatosis-associated genes with targeted NGS. The identified variants were further analysed for pathogenicity using various bioinformatic tools and review of the literature. RESULTS Of the 12 identified variants, two heterozygous variants, the missense variant c.471G>C (NM_022051.2) (p.(Gln157His)) in the EGLN1 gene and the intron variant c.2572-13A>G (NM_004972.3) in the JAK2 gene, were classified as low-frequency variants in European population. None of the two variants were present in a healthy family member. Variant c.2572-13A>G has potential impact on splicing by one prediction tool. CONCLUSION For the first time, we included 39 genes in the erythrocytosis clinical panel and identified two potential disease-driving variants in the Slovene family studied. Based on the reported functional in vitro studies combined with our bioinformatics analysis, we suggest further functional analysis of variant in the JAK2 gene and evaluation of a cumulative effect of both variants.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Jernej Gašperšič
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio‐ChipsFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Tanja Kunej
- Department of Animal ScienceBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Rok Količ
- Kemomed Research and DevelopmentKemomed LtdKranjSlovenia
| | - Andrej Vuga
- Kemomed Research and DevelopmentKemomed LtdKranjSlovenia
| | - Martina Fink
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Špela Žula
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Saša Anžej Doma
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Irena Preložnik Zupan
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Department of Internal MedicineFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Tadej Pajič
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Clinical Institute of Genomic MedicineUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Helena Podgornik
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Chair of Clinical BiochemistryFaculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Nataša Debeljak
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
18
|
Favoino E, Prete M, Catacchio G, Ruscitti P, Navarini L, Giacomelli R, Perosa F. Working and safety profiles of JAK/STAT signaling inhibitors. Are these small molecules also smart? Autoimmun Rev 2021; 20:102750. [PMID: 33482338 DOI: 10.1016/j.autrev.2021.102750] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
The Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway is an important intracellular route through which many different extracellular soluble molecules, by reaching membrane receptors, can signal the nucleus. The spectrum of soluble molecules that use the JAK/STAT pathway through their corresponding receptors is quite large (almost 50 different molecules), and includes some cytokines involved in the pathogenesis of many immune-mediated diseases. Such diseases, when left untreated, present an evident hyperactivation of JAK/STAT signaling. Therefore, given the pathogenetic role of JAK/STAT, drugs known as JAK inhibitors (JAKi), that target one or more JAKs, have been developed to counteract JAK/STAT signal hyperactivation. As some hematological malignancies present an intrinsic JAK/STAT hyperactivation due to a JAK mutation, some JAKi have also been successfully used in this context. Regulatory agencies for drug administration in different countries have already approved a few JAKi in the setting of either immune-mediated diseases or hematological malignancies. Aim of this review is to describe the physiology of intracellular JAK/STAT pathway signaling and the pathological conditions associated to its dysregulation. Then, the rationale for targeting JAK in rheumatic autoimmune diseases is discussed, along with clinical data from registration studies showing the efficacy of these drugs. Finally, the excellent safety profile of JAKi is discussed in the context of the apparent poor specificity of JAK/STAT pathway signal.
Collapse
Affiliation(s)
- Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Marcella Prete
- Internal Medicine, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Giacomo Catacchio
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luca Navarini
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy.
| |
Collapse
|
19
|
Hwa V. Human growth disorders associated with impaired GH action: Defects in STAT5B and JAK2. Mol Cell Endocrinol 2021; 519:111063. [PMID: 33122102 PMCID: PMC7736371 DOI: 10.1016/j.mce.2020.111063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 12/25/2022]
Abstract
Growth hormone (GH) promotes postnatal human growth primarily by regulating insulin-like growth factor (IGF)-I production through activation of the GH receptor (GHR)-JAK2-signal transducer and activator of transcription (STAT)-5B signaling pathway. Inactivating STAT5B mutations, both autosomal recessive (AR) and dominant-negative (DN), are causal of a spectrum of GH insensitivity (GHI) syndrome, IGF-I deficiency and postnatal growth failure. Only AR STAT5B defects, however, confer additional characteristics of immune dysfunction which can manifest as chronic, potentially fatal, pulmonary disease. Somatic activating STAT5B and JAK2 mutations are associated with a plethora of immune abnormalities but appear not to impact human linear growth. In this review, molecular defects associated with STAT5B deficiency is highlighted and insights towards understanding human growth and immunity is emphasized.
Collapse
Affiliation(s)
- Vivian Hwa
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, United States.
| |
Collapse
|
20
|
Bellanné-Chantelot C, Rabadan Moraes G, Schmaltz-Panneau B, Marty C, Vainchenker W, Plo I. Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. Blood Rev 2020; 42:100710. [PMID: 32532454 DOI: 10.1016/j.blre.2020.100710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 04/08/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Myeloproliferative neoplasms (MPN) are clonal hematological malignancies that lead to overproduction of mature myeloid cells. They are due to acquired mutations in genes encoding for AK2, MPL and CALR that result in the activation of the cytokine receptor/JAK2 signaling pathway. In addition, it exists germline variants that can favor the initiation of the disease or may affect its phenotype. First, they can be common risk alleles, which correspond to frequent single nucleotide variants present in control population and that contribute to the development of either sporadic or familial MPN. Second, some variants predispose to the onset of MPN with a higher penetrance and lead to familial clustering of MPN. Finally, some extremely rare genetic variants can induce MPN-like hereditary disease. We will review these different subtypes of germline genetic variants and discuss how they impact the initiation and/or development of the MPN disease.
Collapse
Affiliation(s)
- Christine Bellanné-Chantelot
- Department of Genetics, Assistance Publique-Hôpitaux de Paris (APHP), Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Sorbonne Université, Paris, France; INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France
| | - Graciela Rabadan Moraes
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris Diderot (Paris 7), UMR1287, Gustave Roussy, Villejuif, France; Gustave Roussy, Villejuif, France
| | - Barbara Schmaltz-Panneau
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France
| | - Caroline Marty
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France
| | - William Vainchenker
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Laboratory of Excellence GR-Ex, Villejuif, France; Gustave Roussy, Villejuif, France; Université Paris XI, UMR1287, Gustave Roussy, Villejuif, France.
| |
Collapse
|
21
|
Eichstaedt CA, Verweyen J, Halank M, Benjamin N, Fischer C, Mayer E, Guth S, Wiedenroth CB, Egenlauf B, Harutyunova S, Xanthouli P, Marra AM, Wilkens H, Ewert R, Hinderhofer K, Grünig E. Myeloproliferative Diseases as Possible Risk Factor for Development of Chronic Thromboembolic Pulmonary Hypertension-A Genetic Study. Int J Mol Sci 2020; 21:ijms21093339. [PMID: 32397294 PMCID: PMC7246715 DOI: 10.3390/ijms21093339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease which is often caused by recurrent emboli. These are also frequently found in patients with myeloproliferative diseases. While myeloproliferative diseases can be caused by gene defects, the genetic predisposition to CTEPH is largely unexplored. Therefore, the objective of this study was to analyse these genes and further genes involved in pulmonary hypertension in CTEPH patients. A systematic screening was conducted for pathogenic variants using a gene panel based on next generation sequencing. CTEPH was diagnosed according to current guidelines. In this study, out of 40 CTEPH patients 4 (10%) carried pathogenic variants. One patient had a nonsense variant (c.2071A>T p.Lys691*) in the BMPR2 gene and three further patients carried the same pathogenic variant (missense variant, c.1849G>T p.Val617Phe) in the Janus kinase 2 (JAK2) gene. The latter led to a myeloproliferative disease in each patient. The prevalence of this JAK2 variant was significantly higher than expected (p < 0.0001). CTEPH patients may have a genetic predisposition more often than previously thought. The predisposition for myeloproliferative diseases could be an additional risk factor for CTEPH development. Thus, clinical screening for myeloproliferative diseases and genetic testing may be considered also for CTEPH patients.
Collapse
Affiliation(s)
- Christina A. Eichstaedt
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH, Heidelberg University Hospital, Röntgenstr. 1, 69126 Heidelberg, Germany; (J.V.); (N.B.); (B.E.); (S.H.); (P.X.); (A.M.M.); (E.G.)
- Translational Lung Research Centre (TLRC), German Centre for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; (C.F.); (K.H.)
- Correspondence: ; Tel.: +49-6221-396-1221; Fax: +49-6221-396-1222
| | - Jeremias Verweyen
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH, Heidelberg University Hospital, Röntgenstr. 1, 69126 Heidelberg, Germany; (J.V.); (N.B.); (B.E.); (S.H.); (P.X.); (A.M.M.); (E.G.)
- Translational Lung Research Centre (TLRC), German Centre for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Michael Halank
- Department of Internal Medicine I, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - Nicola Benjamin
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH, Heidelberg University Hospital, Röntgenstr. 1, 69126 Heidelberg, Germany; (J.V.); (N.B.); (B.E.); (S.H.); (P.X.); (A.M.M.); (E.G.)
- Translational Lung Research Centre (TLRC), German Centre for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Christine Fischer
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; (C.F.); (K.H.)
| | - Eckhard Mayer
- Kerckhoff Heart and Thorax Center, Department of Thoracic Surgery, Benekestr. 2–8, 61231 Bad Nauheim, Germany; (S.G.); (C.B.W.); (E.M.)
| | - Stefan Guth
- Kerckhoff Heart and Thorax Center, Department of Thoracic Surgery, Benekestr. 2–8, 61231 Bad Nauheim, Germany; (S.G.); (C.B.W.); (E.M.)
| | - Christoph B. Wiedenroth
- Kerckhoff Heart and Thorax Center, Department of Thoracic Surgery, Benekestr. 2–8, 61231 Bad Nauheim, Germany; (S.G.); (C.B.W.); (E.M.)
| | - Benjamin Egenlauf
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH, Heidelberg University Hospital, Röntgenstr. 1, 69126 Heidelberg, Germany; (J.V.); (N.B.); (B.E.); (S.H.); (P.X.); (A.M.M.); (E.G.)
- Translational Lung Research Centre (TLRC), German Centre for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Satenik Harutyunova
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH, Heidelberg University Hospital, Röntgenstr. 1, 69126 Heidelberg, Germany; (J.V.); (N.B.); (B.E.); (S.H.); (P.X.); (A.M.M.); (E.G.)
- Translational Lung Research Centre (TLRC), German Centre for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Panagiota Xanthouli
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH, Heidelberg University Hospital, Röntgenstr. 1, 69126 Heidelberg, Germany; (J.V.); (N.B.); (B.E.); (S.H.); (P.X.); (A.M.M.); (E.G.)
- Translational Lung Research Centre (TLRC), German Centre for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Alberto M. Marra
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH, Heidelberg University Hospital, Röntgenstr. 1, 69126 Heidelberg, Germany; (J.V.); (N.B.); (B.E.); (S.H.); (P.X.); (A.M.M.); (E.G.)
- Translational Lung Research Centre (TLRC), German Centre for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- IRCCS SDN Research Institute, Via F. Crispi 8, 80121 Naples, Italy
| | - Heinrike Wilkens
- Department of Internal Medicine V—Pneumology, Allergology and Critical Care Medicine, University Hospital of Saarland, Kirrberger Str., 66424 Homburg, Saar, Germany;
| | - Ralf Ewert
- Department of Internal Medicine B—Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University of Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
| | - Katrin Hinderhofer
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; (C.F.); (K.H.)
| | - Ekkehard Grünig
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH, Heidelberg University Hospital, Röntgenstr. 1, 69126 Heidelberg, Germany; (J.V.); (N.B.); (B.E.); (S.H.); (P.X.); (A.M.M.); (E.G.)
- Translational Lung Research Centre (TLRC), German Centre for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Ilinca A, Martinez-Majander N, Samuelsson S, Piccinelli P, Truvé K, Cole J, Kittner S, Soller M, Kristoffersson U, Tatlisumak T, Puschmann A, Putaala J, Lindgren A. Whole-Exome Sequencing in 22 Young Ischemic Stroke Patients With Familial Clustering of Stroke. Stroke 2020; 51:1056-1063. [PMID: 32172663 DOI: 10.1161/strokeaha.119.027474] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Backgrounds and Purpose- Although new methods for genetic analyses are rapidly evolving, there are currently knowledge gaps in how to detect Mendelian forms of stroke. Methods- We performed whole-exome sequencing in 22 probands, under 56 years at their first ischemic stroke episode, from multi-incident stroke families. With the use of a comprehensive stroke-gene panel, we searched for variants in stroke-related genes. The probands' clinical stroke subtype was related to clinical characteristics previously associated with pathogenic variants in these genes. Relatives were genotyped in 7 families to evaluate stroke-gene variants of unknown significance. In 2 larger families with embolic stroke of unknown source, whole-exome sequencing was performed in additional members to examine the possibility of identifying new stroke genes. Results- Six of 22 probands carried pathogenic or possibly pathogenic variants in genes reported to be associated with their stroke subtype. A known pathogenic variant in NOTCH3 and a possibly pathogenic variant in ACAD9 gene were identified. A novel JAK2:c.3188G>A (p.Arg1063His) mutation was seen in a proband with embolic stroke of undetermined source and prothrombotic status. However, penetrance in the family was incomplete. COL4A2:c.3368A>G (p.Glu1123Gly) was detected in 2 probands but did not cosegregate with the disease in their families. Whole-exome sequencing in multiple members of 2 pedigrees with embolic stroke of undetermined source revealed possibly pathogenic variants in genes not previously associated with stroke, GPR142:c.148C>G (p.Leu50Val), and PTPRN2:c.2416A>G (p.Ile806Val); LRRC1 c.808A>G (p.Ile270Val), SLC7A10c.1294dupG (p.Val432fs), IKBKB: c.1070C>T (p.Ala357Val), and OXGR1 c.392G>A (p.Arg131His), respectively. Conclusions- Screening with whole-exome sequencing using a comprehensive stroke-gene panel may identify rare monogenic forms of stroke, but careful evaluation of clinical characteristics and potential pathogenicity of novel variants remain important. In our study, the majority of individuals with familial aggregation of stroke lacked any identified genetic causes.
Collapse
Affiliation(s)
- Andreea Ilinca
- From the Department of Clinical Sciences Lund, Neurology (A.I., A.P., A.L.), Lund University, Sweden.,Department of Neurology and Rehabilitation Medicine, Neurology, Skåne University Hospital, Sweden (A.L., A.P., A.L.)
| | | | - Sofie Samuelsson
- Department of Clinical Genetics and Pathology (S.S., P.P.), Lund University, Sweden
| | - Paul Piccinelli
- Department of Clinical Genetics and Pathology (S.S., P.P.), Lund University, Sweden
| | - Katarina Truvé
- Bioinformatics Core Facility, Sahlgrenska Academy at University of Gothenburg, Sweden (K.T.)
| | - John Cole
- Department of Neurology, Veterans Affairs Maryland Health Care System (J.C., S.K.), University of Maryland School of Medicine, Baltimore
| | - Steven Kittner
- Department of Neurology, Veterans Affairs Maryland Health Care System (J.C., S.K.), University of Maryland School of Medicine, Baltimore.,Department of Neurology (S.K.), University of Maryland School of Medicine, Baltimore
| | - Maria Soller
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden (M.S.)
| | - Ulf Kristoffersson
- Division of Clinical Genetics, Laboratory Medicine (U.K.), Lund University, Sweden
| | - Turgut Tatlisumak
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (T.T.)
| | - Andreas Puschmann
- From the Department of Clinical Sciences Lund, Neurology (A.I., A.P., A.L.), Lund University, Sweden.,Department of Neurology and Rehabilitation Medicine, Neurology, Skåne University Hospital, Sweden (A.L., A.P., A.L.)
| | - Jukka Putaala
- Department of Neurology, Helsinki University Hospital, Finland (N.M.-M., J.P.)
| | - Arne Lindgren
- From the Department of Clinical Sciences Lund, Neurology (A.I., A.P., A.L.), Lund University, Sweden.,Department of Neurology and Rehabilitation Medicine, Neurology, Skåne University Hospital, Sweden (A.L., A.P., A.L.)
| |
Collapse
|
23
|
Patel AB, Franzini A, Leroy E, Kim SJ, Pomicter AD, Genet L, Xiao M, Yan D, Ahmann JM, Agarwal AM, Clair P, Addada J, Lambert J, Salmon M, Gleich GJ, Cross NCP, Constantinescu SN, O'Hare T, Prchal JT, Deininger MW. JAK2 ex13InDel drives oncogenic transformation and is associated with chronic eosinophilic leukemia and polycythemia vera. Blood 2019; 134:2388-2398. [PMID: 31697804 PMCID: PMC6933291 DOI: 10.1182/blood.2019001385] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
The V617F mutation in the JH2 domain of Janus kinase 2 (JAK2) is an oncogenic driver in several myeloproliferative neoplasms (MPNs), including essential thrombocythemia, myelofibrosis, and polycythemia vera (PV). Other mutations in JAK2 have been identified in MPNs, most notably exon 12 mutations in PV. Here, we describe a novel recurrent mutation characterized by a common 4-amino-acid deletion and variable 1-amino-acid insertion (Leu583-Ala586DelInsSer/Gln/Pro) within the JH2 domain of JAK2. All 4 affected patients had eosinophilia, and both patients with Leu583-Ala586DelInsSer fulfilled diagnostic criteria of both PV and chronic eosinophilic leukemia (CEL). Computational and functional studies revealed that Leu583-Ala586DelInsSer (herein referred to as JAK2ex13InDel) deregulates JAK2 through a mechanism similar to JAK2V617F, activates signal transducer and activator of transcription 5 and extracellular signal-regulated kinase, and transforms parental Ba/F3 cells to growth factor independence. In contrast to JAK2V617F, JAK2ex13InDel does not require an exogenous homodimeric type 1 cytokine receptor to transform Ba/F3 cells and is capable of activating β common chain family cytokine receptor (interleukin-3 receptor [IL-3R], IL-5R, and granulocyte-macrophage colony stimulating factor receptor) signaling in the absence of ligand, with the maximum effect observed for IL-5R, consistent with the clinical phenotype of eosinophilia. Recognizing this new PV/CEL-overlap MPN has significant clinical implications, as both PV and CEL patients are at high risk for thrombosis, and concomitant cytoreduction of red cells, neutrophils, and eosinophils may be required for prevention of thromboembolic events. Targeted next-generation sequencing for genes recurrently mutated in myeloid malignancies in patients with unexplained eosinophilia may reveal additional cases of Leu583-Ala586DelInsSer/Gln/Pro, allowing for complete characterization of this unique MPN.
Collapse
Affiliation(s)
- Ami B Patel
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Anca Franzini
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Emilie Leroy
- Ludwig Cancer Research Brussels and de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Soo Jin Kim
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | | | - Lidvine Genet
- Ludwig Cancer Research Brussels and de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Michael Xiao
- Department of Biochemistry, The University of Utah School of Medicine, Salt Lake City, UT
| | - Dongqing Yan
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Jonathan M Ahmann
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Archana M Agarwal
- Division of Clinical Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Phillip Clair
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT
| | - Juanah Addada
- Department of Haematology, Royal Derby Hospital, Derby, United Kingdom
| | - Jonathan Lambert
- Department of Clinical Haematology, University College London Hospitals, London, United Kingdom
| | - Matthew Salmon
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, United Kingdom
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Gerald J Gleich
- Department of Dermatology and
- Department of Medicine, The University of Utah, Salt Lake City, UT; and
| | - Nicholas C P Cross
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, United Kingdom
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Stefan N Constantinescu
- Ludwig Cancer Research Brussels and de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Josef T Prchal
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT
- Veteran Administration Medical Center, Salt Lake City, UT
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| |
Collapse
|
24
|
McMullin MF. Diagnostic workflow for hereditary erythrocytosis and thrombocytosis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:391-396. [PMID: 31808840 PMCID: PMC6913500 DOI: 10.1182/hematology.2019000047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the patient presenting with an elevated blood count who does not have an acquired clonal disorder causing a myeloproliferative neoplasm, hereditary erythrocytosis or hereditary thrombocytosis needs to be considered as a possible explanation. A young patient and/or those with a family history of myeloproliferative neoplasm should specifically raise this possibility. Among the causes of hereditary erythrocytosis are mutations in the genes in the oxygen sensing pathway and high-affinity hemoglobins. Hereditary thrombocytosis has been shown to be accounted for by mutations in THPO, MPL, and JAK2 genes. In those who have a possible hereditary erythrocytosis or thrombocytosis, the investigative pathway includes specific investigation to rule out the more common acquired clonal disorders, and, if indicated, other secondary causes, measurement of specific cytokines as indicated, and search for specific identified molecular lesions that have been shown to cause these hereditary disorders. There remain individuals who appear to have a hereditary disorder in whom a genetic lesion cannot currently be identified.
Collapse
|
25
|
Experimental Modeling of Myeloproliferative Neoplasms. Genes (Basel) 2019; 10:genes10100813. [PMID: 31618985 PMCID: PMC6826898 DOI: 10.3390/genes10100813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 12/25/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are genetically very complex and heterogeneous diseases in which the acquisition of a somatic driver mutation triggers three main myeloid cytokine receptors, and phenotypically expresses as polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The course of the diseases may be influenced by germline predispositions, modifying mutations, their order of acquisition and environmental factors such as aging and inflammation. Deciphering these contributory elements, their mutual interrelationships, and their contribution to MPN pathogenesis brings important insights into the diseases. Animal models (mainly mouse and zebrafish) have already significantly contributed to understanding the role of several acquired and germline mutations in MPN oncogenic signaling. Novel technologies such as induced pluripotent stem cells (iPSCs) and precise genome editing (using CRISPR/Cas9) contribute to the emerging understanding of MPN pathogenesis and clonal architecture, and form a convenient platform for evaluating drug efficacy. In this overview, the genetic landscape of MPN is briefly described, with an attempt to cover the main discoveries of the last 15 years. Mouse and zebrafish models of the driver mutations are discussed and followed by a review of recent progress in modeling MPN with patient-derived iPSCs and CRISPR/Cas9 gene editing.
Collapse
|
26
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
27
|
Benton CB, Boddu PC, DiNardo CD, Bose P, Wang F, Assi R, Pemmaraju N, KC D, Pierce S, Patel K, Konopleva M, Ravandi F, Garcia‐Manero G, Kadia TM, Cortes J, Kantarjian HM, Andreeff M, Verstovsek S. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Cancer 2019; 125:1855-1866. [DOI: 10.1002/cncr.31986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Christopher B. Benton
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prajwal C. Boddu
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Courtney D. DiNardo
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prithviraj Bose
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Feng Wang
- Department of Genomic Medicine The University of Texas MD Anderson Cancer Center Houston Texas
| | - Rita Assi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Naveen Pemmaraju
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Devendra KC
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Sherry Pierce
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Keyur Patel
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas
| | - Marina Konopleva
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Farhad Ravandi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | | | - Tapan M. Kadia
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Jorge Cortes
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Hagop M. Kantarjian
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Michael Andreeff
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Srdan Verstovsek
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
28
|
Cooccurring JAK2 V617F and R1063H mutations increase JAK2 signaling and neutrophilia in myeloproliferative neoplasms. Blood 2018; 132:2695-2699. [PMID: 30377194 DOI: 10.1182/blood-2018-04-843060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
29
|
Bacher U, Shumilov E, Flach J, Porret N, Joncourt R, Wiedemann G, Fiedler M, Novak U, Amstutz U, Pabst T. Challenges in the introduction of next-generation sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. Blood Cancer J 2018; 8:113. [PMID: 30420667 PMCID: PMC6232163 DOI: 10.1038/s41408-018-0148-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Given the vast phenotypic and genetic heterogeneity of acute and chronic myeloid malignancies, hematologists have eagerly awaited the introduction of next-generation sequencing (NGS) into the routine diagnostic armamentarium to enable a more differentiated disease classification, risk stratification, and improved therapeutic decisions. At present, an increasing number of hematologic laboratories are in the process of integrating NGS procedures into the diagnostic algorithms of patients with acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPNs). Inevitably accompanying such developments, physicians and molecular biologists are facing unexpected challenges regarding the interpretation and implementation of molecular genetic results derived from NGS in myeloid malignancies. This article summarizes typical challenges that may arise in the context of NGS-based analyses at diagnosis and during follow-up of myeloid malignancies.
Collapse
Affiliation(s)
- Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Center for Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Evgenii Shumilov
- Department of Hematology and Medical Oncology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany
| | - Naomi Porret
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raphael Joncourt
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gertrud Wiedemann
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Fiedler
- Center for Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ursula Amstutz
- Center for Laboratory Medicine (ZLM)/University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
30
|
Maslah N, Verger E, Schlageter MH, Miclea JM, Kiladjian JJ, Giraudier S, Chomienne C, Cassinat B. Next-generation sequencing for JAK2 mutation testing: advantages and pitfalls. Ann Hematol 2018; 98:111-118. [PMID: 30259120 DOI: 10.1007/s00277-018-3499-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/16/2023]
Abstract
The JAK2V617F mutation is part of the major criteria for diagnosis of myeloproliferative neoplasms (MPN). Allele-specific quantitative PCR (qPCR) is the most prevalent method used in laboratories but with the advent of next-generation sequencing (NGS) techniques, we felt necessary to evaluate this approach for JAK2 mutations testing. Among DNA samples from 427 patients analyzed by qPCR and NGS, we found an excellent concordance between both methods when allelic burden was superior to 2% (the detection limit of our NGS assay). Only one sample among 298 was found negative by NGS while allelic burden by qPCR was 3%. Because NGS detection limit is higher, sensitivity was lower as exemplified by 21 samples found negative whereas qPCR measured allelic burdens between 0.1 and 1%. Importantly, quantitative data of samples found positive by both techniques were highly correlated (R2 = 0.9477). We also evaluated 40 samples tested for JAK2 exon 12 mutations by HRM. The concordance with NGS was of 100%. Using NGS, the full coding region of JAK2 was analyzed leading to identification of several variants outside of exon 12 and 14 which were previously described or not. Interestingly, we found one somatic mutation (c.1034A>T p.H345L) which induced constitutive activation of the JAK/STAT pathway leading to an increased proliferation of BaF/3 cells with low-dose EPO. This study showed that NGS is a robust method highly correlated to qPCR, although less sensitive, but providing the opportunity to identify other JAK2 variants with potential impact on disease initiation or evolution.
Collapse
Affiliation(s)
- Nabih Maslah
- APHP, Laboratoire de Biologie Cellulaire, Hopital Saint-Louis, 1 avenue Claude Vellefaux, 75010, Paris, France
- INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Hopital Saint-Louis, Université Paris-Diderot, Paris, France
| | - Emmanuelle Verger
- APHP, Laboratoire de Biologie Cellulaire, Hopital Saint-Louis, 1 avenue Claude Vellefaux, 75010, Paris, France
- INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Hopital Saint-Louis, Université Paris-Diderot, Paris, France
| | - Marie-Helene Schlageter
- APHP, Laboratoire de Biologie Cellulaire, Hopital Saint-Louis, 1 avenue Claude Vellefaux, 75010, Paris, France
- INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Hopital Saint-Louis, Université Paris-Diderot, Paris, France
| | - Jean-Michel Miclea
- Service d'Oncologie et d'Hematologie, Hopital Louis Pasteur, Chartres, France
| | - Jean-Jacques Kiladjian
- INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Hopital Saint-Louis, Université Paris-Diderot, Paris, France
- APHP, Centre d'Investigations Cliniques, Hopital Saint-Louis, Paris, France
- Universite Paris Diderot, Paris, France
| | - Stephane Giraudier
- APHP, Laboratoire de Biologie Cellulaire, Hopital Saint-Louis, 1 avenue Claude Vellefaux, 75010, Paris, France
- INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Hopital Saint-Louis, Université Paris-Diderot, Paris, France
- Universite Paris Diderot, Paris, France
| | - Christine Chomienne
- APHP, Laboratoire de Biologie Cellulaire, Hopital Saint-Louis, 1 avenue Claude Vellefaux, 75010, Paris, France
- INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Hopital Saint-Louis, Université Paris-Diderot, Paris, France
- Universite Paris Diderot, Paris, France
| | - Bruno Cassinat
- APHP, Laboratoire de Biologie Cellulaire, Hopital Saint-Louis, 1 avenue Claude Vellefaux, 75010, Paris, France.
- INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Hopital Saint-Louis, Université Paris-Diderot, Paris, France.
| |
Collapse
|
31
|
Zmajkovic J, Lundberg P, Nienhold R, Torgersen ML, Sundan A, Waage A, Skoda RC. A Gain-of-Function Mutation in EPO in Familial Erythrocytosis. N Engl J Med 2018. [PMID: 29514032 DOI: 10.1056/nejmoa1709064] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Familial erythrocytosis with elevated erythropoietin levels is frequently caused by mutations in genes that regulate oxygen-dependent transcription of the gene encoding erythropoietin ( EPO). We identified a mutation in EPO that cosegregated with disease with a logarithm of the odds (LOD) score of 3.3 in a family with autosomal dominant erythrocytosis. This mutation, a single-nucleotide deletion (c.32delG), introduces a frameshift in exon 2 that interrupts translation of the main EPO messenger RNA (mRNA) transcript but initiates excess production of erythropoietin from what is normally a noncoding EPO mRNA transcribed from an alternative promoter located in intron 1. (Funded by the Gebert Rüf Foundation and others.).
Collapse
Affiliation(s)
- Jakub Zmajkovic
- From the Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel (J.Z., P.L., R.N., R.C.S.), and Diagnostic Hematology, University Hospital Basel (P.L.), Basel, Switzerland; and the Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (M.L.T., A.S., A.W.), and the Department of Hematology, St. Olavs Hospital (A.W.) - both in Trondheim, Norway
| | - Pontus Lundberg
- From the Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel (J.Z., P.L., R.N., R.C.S.), and Diagnostic Hematology, University Hospital Basel (P.L.), Basel, Switzerland; and the Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (M.L.T., A.S., A.W.), and the Department of Hematology, St. Olavs Hospital (A.W.) - both in Trondheim, Norway
| | - Ronny Nienhold
- From the Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel (J.Z., P.L., R.N., R.C.S.), and Diagnostic Hematology, University Hospital Basel (P.L.), Basel, Switzerland; and the Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (M.L.T., A.S., A.W.), and the Department of Hematology, St. Olavs Hospital (A.W.) - both in Trondheim, Norway
| | - Maria L Torgersen
- From the Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel (J.Z., P.L., R.N., R.C.S.), and Diagnostic Hematology, University Hospital Basel (P.L.), Basel, Switzerland; and the Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (M.L.T., A.S., A.W.), and the Department of Hematology, St. Olavs Hospital (A.W.) - both in Trondheim, Norway
| | - Anders Sundan
- From the Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel (J.Z., P.L., R.N., R.C.S.), and Diagnostic Hematology, University Hospital Basel (P.L.), Basel, Switzerland; and the Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (M.L.T., A.S., A.W.), and the Department of Hematology, St. Olavs Hospital (A.W.) - both in Trondheim, Norway
| | - Anders Waage
- From the Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel (J.Z., P.L., R.N., R.C.S.), and Diagnostic Hematology, University Hospital Basel (P.L.), Basel, Switzerland; and the Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (M.L.T., A.S., A.W.), and the Department of Hematology, St. Olavs Hospital (A.W.) - both in Trondheim, Norway
| | - Radek C Skoda
- From the Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel (J.Z., P.L., R.N., R.C.S.), and Diagnostic Hematology, University Hospital Basel (P.L.), Basel, Switzerland; and the Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (M.L.T., A.S., A.W.), and the Department of Hematology, St. Olavs Hospital (A.W.) - both in Trondheim, Norway
| |
Collapse
|
32
|
Ayres-Silva JP, Bonamino MH, Gouveia ME, Monte-Mor BCR, Coutinho DF, Daumas AH, Solza C, Braggio E, Zalcberg IR. Genetic Alterations in Essential Thrombocythemia Progression to Acute Myeloid Leukemia: A Case Series and Review of the Literature. Front Oncol 2018. [PMID: 29515972 PMCID: PMC5826070 DOI: 10.3389/fonc.2018.00032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genetic events associated with transformation of myeloproliferative neoplasms (MPNs) to secondary acute myeloid leukemia (sAML), particularly in the subgroup of essential thrombocythemia (ET) patients, remain incompletely understood. Deep studies using high-throughput methods might lead to a better understanding of genetic landscape of ET patients who transformed to sAML. We performed array-based comparative genomic hybridization (aCGH) and whole exome sequencing (WES) to analyze paired samples from ET and sAML phases. We investigated five patients with previous history of MPN, which four had initial diagnosis of ET (one case harboring JAK2 p.Val617Phe and the remaining three CALR type II p.Lys385fs*47), and one was diagnosed with MPN/myelodysplastic syndrome with thrombocytosis (SF3B1 p.Lys700Glu). All were homogeneously treated with hydroxyurea, but subsequently transformed to sAML (mean time of 6 years/median of 4 years to transformation). Two of them have chromosomal abnormalities, and both acquire 2p gain and 5q deletion at sAML stage. The molecular mechanisms associated with leukemic progression in MPN patients are not clear. Our WES data showed TP53 alterations recurrently observed as mutations (missense and frameshift) and monoallelic loss. On the other hand, aCGH showed novel chromosome abnormalities (+2p and del5q) potentially associated with disease progression. The results reported here add valuable information to the still fragmented molecular basis of ET to sAML evolution. Further studies are necessary to identify minimal deleted/amplified region and genes relevant to sAML transformation.
Collapse
Affiliation(s)
- Jackline P Ayres-Silva
- Bone Marrow Transplantation Unit, Specialized Laboratories, Laboratory of Molecular Biology, National Cancer Institute (INCa), Rio de Janeiro, Brazil
| | - Martin H Bonamino
- Programa de Carcinogênese Molecular, National Cancer Institute (INCa), Rio de Janeiro, Brazil.,Vice-presidência de Pesquisa e Coleções Biológicas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria E Gouveia
- Hematology Department, Chemotherapy Unit, Hospital Universitario Antonio Pedro - HUAP, Rio de Janeiro, Brazil
| | - Barbara C R Monte-Mor
- Bone Marrow Transplantation Unit, Specialized Laboratories, Laboratory of Molecular Biology, National Cancer Institute (INCa), Rio de Janeiro, Brazil
| | - Diego F Coutinho
- Bone Marrow Transplantation Unit, Specialized Laboratories, Laboratory of Molecular Biology, National Cancer Institute (INCa), Rio de Janeiro, Brazil
| | - Adelmo H Daumas
- Hematology Department, Chemotherapy Unit, Hospital Universitario Antonio Pedro - HUAP, Rio de Janeiro, Brazil
| | - Cristiana Solza
- Hematology Unit, Hospital Universitario Pedro Ernesto - HUPE, Rio de Janeiro, Brazil
| | - Esteban Braggio
- Department of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, United States
| | - Ilana Renault Zalcberg
- Bone Marrow Transplantation Unit, Specialized Laboratories, Laboratory of Molecular Biology, National Cancer Institute (INCa), Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Myelodysplastic Syndrome/Acute Myeloid Leukemia Arising in Idiopathic Erythrocytosis. Case Rep Hematol 2018; 2018:4378310. [PMID: 29682367 PMCID: PMC5842720 DOI: 10.1155/2018/4378310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
The term “idiopathic erythrocytosis (IE)” is applied to those cases where a causal clinical or pathological event cannot be elucidated and likely reflects a spectrum of underlying medical and molecular abnormalities. The clinical course of a patient with IE is described manifesting as a persistent erythrocytosis with a low serum erythropoietin level, mild eosinophilia, and with evidence of a thrombotic event. The patient subsequently developed a myelodysplasic syndrome (MDS) and acute myeloid leukemia (AML), an event not observed in erythrocytosis patients other than those with polycythemia vera (PV). Application of a next-generation sequencing (NGS) approach targeted for myeloid malignancies confirmed wild-type JAK2 exons 12–15 and identified a common SH2B3 W262R single-nucleotide polymorphism associated with the development of hematological features of myeloproliferative neoplasms (MPNs). Further NGS analysis detected a CBL L380P mutated clone expanding in parallel with the development of MDS and subsequent AML. Despite the absence of JAK2, MPL exon 10, or CALR exon 9 mutations, a similarity with the disease course of PV/MPN was evident. A clonal link between the erythrocytosis and AML could be neither confirmed nor excluded. Future molecular identification of the mechanisms underlying IE is likely to provide a more refined therapeutic approach.
Collapse
|
34
|
The erythropoietin-derived peptide MK-X and erythropoietin have neuroprotective effects against ischemic brain damage. Cell Death Dis 2017; 8:e3003. [PMID: 28817120 PMCID: PMC5596568 DOI: 10.1038/cddis.2017.381] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/28/2022]
Abstract
Erythropoietin (EPO) has been well known as a hematopoietic cytokine over the past decades. However, recent reports have demonstrated that EPO plays a neuroprotective role in the central nervous system, and EPO has been considered as a therapeutic target in neurodegenerative diseases such as ischemic stroke. Despite the neuroprotective effect of EPO, clinical trials have shown its unexpected side effects, including undesirable proliferative effects such as erythropoiesis and tumor growth. Therefore, the development of EPO analogs that would confer neuroprotection without adverse effects has been attempted. In this study, we examined the potential of a novel EPO-based short peptide, MK-X, as a novel drug for stroke treatment in comparison with EPO. We found that MK-X administration with reperfusion dramatically reduced brain injury in an in vivo mouse model of ischemic stroke induced by middle cerebral artery occlusion, whereas EPO had little effect. Similar to EPO, MK-X efficiently ameliorated mitochondrial dysfunction followed by neuronal death caused by glutamate-induced oxidative stress in cultured neurons. Consistent with this effect, MK-X significantly decreased caspase-3 cleavage and nuclear translocation of apoptosis-inducing factor induced by glutamate. MK-X completely mimicked the effect of EPO on multiple activation of JAK2 and its downstream PI3K/AKT and ERK1/2 signaling pathways, and this signaling process was involved in the neuroprotective effect of MK-X. Furthermore, MK-X and EPO induced similar changes in the gene expression patterns under glutamate-induced excitotoxicity. Interestingly, the most significant difference between MK-X and EPO was that MK-X better penetrated into the brain across the brain–blood barrier than did EPO. In conclusion, we suggest that MK-X might be used as a novel drug for protection from brain injury caused by ischemic stroke, which penetrates into the brain faster in comparison with EPO, even though MK-X and EPO have similar protective effects against excitotoxicity.
Collapse
|
35
|
Whole-exome sequencing in evaluation of patients with venous thromboembolism. Blood Adv 2017; 1:1224-1237. [PMID: 29296762 DOI: 10.1182/bloodadvances.2017005249] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/26/2017] [Indexed: 01/05/2023] Open
Abstract
Genetics play a significant role in venous thromboembolism (VTE), yet current clinical laboratory-based testing identifies a known heritable thrombophilia (factor V Leiden, prothrombin gene mutation G20210A, or a deficiency of protein C, protein S, or antithrombin) in only a minority of VTE patients. We hypothesized that a substantial number of VTE patients could have lesser-known thrombophilia mutations. To test this hypothesis, we performed whole-exome sequencing (WES) in 64 patients with VTE, focusing our analysis on a novel 55-gene extended thrombophilia panel that we compiled. Our extended thrombophilia panel identified a probable disease-causing genetic variant or variant of unknown significance in 39 of 64 study patients (60.9%), compared with 6 of 237 control patients without VTE (2.5%) (P < .0001). Clinical laboratory-based thrombophilia testing identified a heritable thrombophilia in only 14 of 54 study patients (25.9%). The majority of WES variants were either associated with thrombosis based on prior reports in the literature or predicted to affect protein structure based on protein modeling performed as part of this study. Variants were found in major thrombophilia genes, various SERPIN genes, and highly conserved areas of other genes with established or potential roles in coagulation or fibrinolysis. Ten patients (15.6%) had >1 variant. Sanger sequencing performed in family members of 4 study patients with and without VTE showed generally concordant results with thrombotic history. WES and extended thrombophilia testing are promising tools for improving our understanding of VTE pathogenesis and identifying inherited thrombophilias.
Collapse
|
36
|
Rumi E, Cazzola M. Advances in understanding the pathogenesis of familial myeloproliferative neoplasms. Br J Haematol 2017; 178:689-698. [PMID: 28444727 DOI: 10.1111/bjh.14713] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are generally acquired as a result of a somatic stem cell mutation leading to clonal expansion of myeloid precursors. In addition to sporadic cases, familial MPN occurs when one or several MPN affect different relatives of the same family. MPN driver mutations (JAK2, CALR, MPL) are somatically acquired also in familial cases, so a genetic predisposition to acquire one of the MPN driver mutations would be inherited, even though the causative germline mutations underlying familial MPN remain largely unknown. Recently some germline variants [ATG2B and GSKIP duplication, RBBP6 mutations, SH2B3 (LNK) mutations], which can cause familial MPN, have been reported but these mutations are rare and do not explain most familial cases. Patients with familial MPN show the same clinical features and suffer the same complications as those with sporadic disease. This review aims to offer up-to-date information regarding the genetics of familial MPN.
Collapse
Affiliation(s)
- Elisa Rumi
- Department of Haematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mario Cazzola
- Department of Haematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
37
|
Abstract
Myeloproliferative neoplasms (MPNs) are a group of related clonal hematologic disorders characterized by excess accumulation of one or more myeloid cell lineages and a tendency to transform to acute myeloid leukemia. Deregulated JAK2 signaling has emerged as the central phenotypic driver of BCR -ABL1-negative MPNs and a unifying therapeutic target. In addition, MPNs show unexpected layers of genetic complexity, with multiple abnormalities associated with disease progression, interactions between inherited factors and phenotype driver mutations, and effects related to the order in which mutations are acquired. Although morphology and clinical laboratory analysis continue to play an important role in defining these conditions, genomic analysis is providing a platform for better disease definition, more accurate diagnosis, direction of therapy, and refined prognostication. There is an emerging consensus with regard to many prognostic factors, but there is a clear need to synthesize genomic findings into robust, clinically actionable and widely accepted scoring systems as well as the need to standardize the laboratory methodologies that are used.
Collapse
Affiliation(s)
- Katerina Zoi
- Katerina Zoi, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Nicholas C.P. Cross, Salisbury District Hospital, Salisbury; and University of Southampton, Southampton, United Kingdom
| | - Nicholas C P Cross
- Katerina Zoi, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Nicholas C.P. Cross, Salisbury District Hospital, Salisbury; and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
38
|
Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood 2016; 129:680-692. [PMID: 28028026 DOI: 10.1182/blood-2016-10-695957] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Philadelphia-negative classical myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues includes new criteria for the diagnosis of these disorders. Somatic mutations in the 3 driver genes, that is, JAK2, CALR, and MPL, represent major diagnostic criteria in combination with hematologic and morphological abnormalities. PV is characterized by erythrocytosis with suppressed endogenous erythropoietin production, bone marrow panmyelosis, and JAK2 mutation. Thrombocytosis, bone marrow megakaryocytic proliferation, and presence of JAK2, CALR, or MPL mutation are the main diagnostic criteria for ET. PMF is characterized by bone marrow megakaryocytic proliferation, reticulin and/or collagen fibrosis, and presence of JAK2, CALR, or MPL mutation. Prefibrotic myelofibrosis represents an early phase of myelofibrosis, and is characterized by granulocytic/megakaryocytic proliferation and lack of reticulin fibrosis in the bone marrow. The genomic landscape of MPNs is more complex than initially thought and involves several mutant genes beyond the 3 drivers. Comutated, myeloid tumor-suppressor genes contribute to phenotypic variability, phenotypic shifts, and progression to more aggressive disorders. Patients with myeloid neoplasms are at variable risk of vascular complications, including arterial or venous thrombosis and bleeding. Current prognostic models are mainly based on clinical and hematologic parameters, but innovative models that include genetic data are being developed for both clinical and trial settings. In perspective, molecular profiling of MPNs might also allow for accurate evaluation and monitoring of response to innovative drugs that target the mutant clone.
Collapse
|
39
|
Coexistence of gain-of-function JAK2 germ line mutations with JAK2V617F in polycythemia vera. Blood 2016; 128:2266-2270. [PMID: 27647865 DOI: 10.1182/blood-2016-04-711283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|