1
|
Komic H, Nilsson MS, Wennström L, Bandaru TS, Jaako P, Hellstrand K, Thorén FB, Martner A. Single-cell proteo-transcriptomic profiling reveals altered characteristics of stem and progenitor cells in patients receiving cytoreductive hydroxyurea in early-phase chronic myeloid leukemia. Haematologica 2025; 110:117-128. [PMID: 39157872 PMCID: PMC11694111 DOI: 10.3324/haematol.2024.285071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Hydroxyurea (HU) is frequently used in the early phase of chronic myeloid leukemia (CML) to achieve cytoreduction prior to tyrosine kinase inhibitor therapy. However, its impact on CML stem and progenitor cells (SPC) remains largely unknown. This study utilized targeted proteo-transcriptomic expression data on 596 genes and 51 surface proteins in 60,000 CD14-CD34+ cells from chronic phase CML patients to determine effects of short-term HU treatment (4-19 days) on CML SPC. Peripheral blood and bone marrow samples were obtained from 17 CML patients eligible for short-term HU treatment (3 patients before and after HU, 7 patients before HU and 7 patients after HU) and subjected to single-cell CITE-sequencing and/or flow cytometry analysis. The analysis revealed enhanced frequencies of hemoglobin-expressing (HBA1, HBA2, HBB) erythroid progenitor cells in blood and bone marrow following HU treatment. In addition, there was an accumulation of cell subsets with S/G2/M phase-related gene and protein expression, likely representing cells arrested in, or progressing slowly through, the cell cycle. The increased frequency of cells in S/G2/M phase after HU was observed already among the most immature leukemic stem cells (LSC), and patients with a large fraction of LSC in the S/G2/M phase showed poor responsiveness to tyrosine kinase inhibitor treatment. We conclude that short-term HU treatment entails differentiation of erythroid progenitor cells and alters the characteristics of LSC in CML. The results imply that studies of LSC and progenitor populations in CML should take effects of initial HU therapy into account.
Collapse
MESH Headings
- Humans
- Hydroxyurea/therapeutic use
- Hydroxyurea/administration & dosage
- Hydroxyurea/pharmacology
- Single-Cell Analysis
- Gene Expression Profiling
- Male
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Female
- Middle Aged
- Adult
- Aged
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Transcriptome
- Leukemia, Myeloid, Chronic-Phase/drug therapy
- Leukemia, Myeloid, Chronic-Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/pathology
Collapse
Affiliation(s)
- Hana Komic
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin S Nilsson
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lovisa Wennström
- Department of Hematology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tagore Sanketh Bandaru
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pekka Jaako
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik B Thorén
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Warfvinge R, Geironson Ulfsson L, Dhapola P, Safi F, Sommarin M, Soneji S, Hjorth-Hansen H, Mustjoki S, Richter J, Thakur RK, Karlsson G. Single-cell multiomics analysis of chronic myeloid leukemia links cellular heterogeneity to therapy response. eLife 2024; 12:RP92074. [PMID: 39503729 PMCID: PMC11540304 DOI: 10.7554/elife.92074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The advent of tyrosine kinase inhibitors (TKIs) as treatment of chronic myeloid leukemia (CML) is a paradigm in molecularly targeted cancer therapy. Nonetheless, TKI-insensitive leukemia stem cells (LSCs) persist in most patients even after years of treatment and are imperative for disease progression as well as recurrence during treatment-free remission (TFR). Here, we have generated high-resolution single-cell multiomics maps from CML patients at diagnosis, retrospectively stratified by BCR::ABL1IS (%) following 12 months of TKI therapy. Simultaneous measurement of global gene expression profiles together with >40 surface markers from the same cells revealed that each patient harbored a unique composition of stem and progenitor cells at diagnosis. The patients with treatment failure after 12 months of therapy had a markedly higher abundance of molecularly defined primitive cells at diagnosis compared to the optimal responders. The multiomic feature landscape enabled visualization of the primitive fraction as a mixture of molecularly distinct BCR::ABL1+ LSCs and BCR::ABL1-hematopoietic stem cells (HSCs) in variable ratio across patients, and guided their prospective isolation by a combination of CD26 and CD35 cell surface markers. We for the first time show that BCR::ABL1+ LSCs and BCR::ABL1- HSCs can be distinctly separated as CD26+CD35- and CD26-CD35+, respectively. In addition, we found the ratio of LSC/HSC to be higher in patients with prospective treatment failure compared to optimal responders, at diagnosis as well as following 3 months of TKI therapy. Collectively, this data builds a framework for understanding therapy response and adapting treatment by devising strategies to extinguish or suppress TKI-insensitive LSCs.
Collapse
Affiliation(s)
- Rebecca Warfvinge
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | | | - Parashar Dhapola
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | - Fatemeh Safi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | - Mikael Sommarin
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | - Shamit Soneji
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | - Henrik Hjorth-Hansen
- Department of Hematology, St Olavs HospitalTrondheimNorway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Satu Mustjoki
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of HelsinkiHelsinkiFinland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer CenterTrondheimNorway
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Johan Richter
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund UniversityLundSweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University HospitalLundSweden
| | - Ram Krishna Thakur
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| |
Collapse
|
3
|
Cruz-Rodriguez N, Tang H, Bateman B, Tang W, Deininger M. BCR::ABL1 Proteolysis-targeting chimeras (PROTACs): The new frontier in the treatment of Ph + leukemias? Leukemia 2024; 38:1885-1893. [PMID: 39098922 PMCID: PMC11569815 DOI: 10.1038/s41375-024-02365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
BCR::ABL1 tyrosine kinase inhibitors (TKIs) have turned chronic myeloid leukemia (CML) from a lethal condition into a chronic ailment. With optimal management, the survival of CML patients diagnosed in the chronic phase is approaching that of age-matched controls. However, only one-third of patients can discontinue TKIs and enter a state of functional cure termed treatment-free remission (TFR), while the remainder require life-long TKI therapy to avoid the recurrence of active leukemia. Approximately 10% of patients exhibit primary or acquired TKI resistance and eventually progress to the blast phase. It is thought that recurrence after attempted TFR originates from CML stem cells (LSCs) surviving despite continued suppression of BCR::ABL1 kinase. Although kinase activity is indispensable for induction of overt CML, kinase-independent scaffold functions of BCR::ABL1 are known to contribute to leukemogenesis, raising the intriguing but as yet hypothetical possibility, that degradation of BCR::ABL1 protein may accomplish what TKIs fail to achieve - eliminate residual LSCs to turn functional into real cures. The advent of BCR::ABL1 proteolysis targeting chimeras (PROTACs), heterobifunctional molecules linking a TKI-based warhead to an E3 ligase recruiter, has moved clinical protein degradation into the realm of the possible. Here we examine the molecular rationale as well as pros and cons of degrading BCR::ABL1 protein. We review reported BCR::ABL1 PROTACs, point out limitations of available data and compounds and suggest directions for future research. Ultimately, clinical testing of a potent and specific BCR::ABL1 degrader will be required to determine the efficacy and tolerability of this approach.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Proteolysis
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm
- Proto-Oncogene Proteins c-abl/metabolism
- Animals
- Proteolysis Targeting Chimera
Collapse
Affiliation(s)
| | - Hua Tang
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Weiping Tang
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Deininger
- Versiti Blood Research Institute, Milwaukee, WI, USA.
- Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Adnan Awad S, Dufva O, Klievink J, Karjalainen E, Ianevski A, Pietarinen P, Kim D, Potdar S, Wolf M, Lotfi K, Aittokallio T, Wennerberg K, Porkka K, Mustjoki S. Integrated drug profiling and CRISPR screening identify BCR::ABL1-independent vulnerabilities in chronic myeloid leukemia. Cell Rep Med 2024; 5:101521. [PMID: 38653245 PMCID: PMC11148568 DOI: 10.1016/j.xcrm.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
BCR::ABL1-independent pathways contribute to primary resistance to tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) and play a role in leukemic stem cell persistence. Here, we perform ex vivo drug screening of CML CD34+ leukemic stem/progenitor cells using 100 single drugs and TKI-drug combinations and identify sensitivities to Wee1, MDM2, and BCL2 inhibitors. These agents effectively inhibit primitive CD34+CD38- CML cells and demonstrate potent synergies when combined with TKIs. Flow-cytometry-based drug screening identifies mepacrine to induce differentiation of CD34+CD38- cells. We employ genome-wide CRISPR-Cas9 screening for six drugs, and mediator complex, apoptosis, and erythroid-lineage-related genes are identified as key resistance hits for TKIs, whereas the Wee1 inhibitor AZD1775 and mepacrine exhibit distinct resistance profiles. KCTD5, a consistent TKI-resistance-conferring gene, is found to mediate TKI-induced BCR::ABL1 ubiquitination. In summary, we delineate potential mechanisms for primary TKI resistance and non-BCR::ABL1-targeting drugs, offering insights for optimizing CML treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Protein Kinase Inhibitors/pharmacology
- CRISPR-Cas Systems/genetics
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Cell Line, Tumor
Collapse
Affiliation(s)
- Shady Adnan Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland; Clinical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt.
| | - Olli Dufva
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Ella Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Paavo Pietarinen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland
| | - Daehong Kim
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kourosh Lotfi
- Department of Medical and Health Sciences, Faculty of Medicine and Health, Linköping University, 58183 Linköping, Sweden
| | - Tero Aittokallio
- Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland; Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, University of Oslo, 0317 Oslo, Norway
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland; Biotech Research & Innovation Centre and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland.
| |
Collapse
|
5
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
6
|
Ruszkowska-Ciastek B, Kwiatkowska K, Marques-da-Silva D, Lagoa R. Cancer Stem Cells from Definition to Detection and Targeted Drugs. Int J Mol Sci 2024; 25:3903. [PMID: 38612718 PMCID: PMC11011379 DOI: 10.3390/ijms25073903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers remain the second leading cause of mortality in the world. Preclinical and clinical studies point an important role of cancer/leukaemia stem cells (CSCs/LSCs) in the colonisation at secondary organ sites upon metastatic spreading, although the precise mechanisms for specific actions are still not fully understood. Reviewing the present knowledge on the crucial role of CSCs/LSCs, their plasticity, and population heterogeneity in treatment failures in cancer patients is timely. Standard chemotherapy, which acts mainly on rapidly dividing cells, is unable to adequately affect CSCs with a low proliferation rate. One of the proposed mechanisms of CSC resistance to anticancer agents is the fact that these cells can easily shift between different phases of the cell cycle in response to typical cell stimuli induced by anticancer drugs. In this work, we reviewed the recent studies on CSC/LSC alterations associated with disease recurrence, and we systematised the functional assays, markers, and novel methods for CSCs screening. This review emphasises CSCs' involvement in cancer progression and metastasis, as well as CSC/LSC targeting by synthetic and natural compounds aiming at their elimination or modulation of stemness properties.
Collapse
Affiliation(s)
- Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Katarzyna Kwiatkowska
- Department of Laboratory Diagnostics, Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland;
| | - Dorinda Marques-da-Silva
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (D.M.-d.-S.); (R.L.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Ricardo Lagoa
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; (D.M.-d.-S.); (R.L.)
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| |
Collapse
|
7
|
Filipek-Gorzała J, Kwiecińska P, Szade A, Szade K. The dark side of stemness - the role of hematopoietic stem cells in development of blood malignancies. Front Oncol 2024; 14:1308709. [PMID: 38440231 PMCID: PMC10910019 DOI: 10.3389/fonc.2024.1308709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs.
Collapse
Affiliation(s)
- Jadwiga Filipek-Gorzała
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Patrycja Kwiecińska
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Huuhtanen J, Adnan-Awad S, Theodoropoulos J, Forstén S, Warfvinge R, Dufva O, Bouhlal J, Dhapola P, Duàn H, Laajala E, Kasanen T, Klievink J, Ilander M, Jaatinen T, Olsson-Strömberg U, Hjorth-Hansen H, Burchert A, Karlsson G, Kreutzman A, Lähdesmäki H, Mustjoki S. Single-cell analysis of immune recognition in chronic myeloid leukemia patients following tyrosine kinase inhibitor discontinuation. Leukemia 2024; 38:109-125. [PMID: 37919606 PMCID: PMC10776410 DOI: 10.1038/s41375-023-02074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Immunological control of residual leukemia cells is thought to occur in patients with chronic myeloid leukemia (CML) that maintain treatment-free remission (TFR) following tyrosine kinase inhibitor (TKI) discontinuation. To study this, we analyzed 55 single-cell RNA and T cell receptor (TCR) sequenced samples (scRNA+TCRαβ-seq) from patients with CML (n = 13, N = 25), other cancers (n = 28), and healthy (n = 7). The high number and active phenotype of natural killer (NK) cells in CML separated them from healthy and other cancers. Most NK cells in CML belonged to the active CD56dim cluster with high expression of GZMA/B, PRF1, CCL3/4, and IFNG, with interactions with leukemic cells via inhibitory LGALS9-TIM3 and PVR-TIGIT interactions. Accordingly, upregulation of LGALS9 was observed in CML target cells and TIM3 in NK cells when co-cultured together. Additionally, we created a classifier to identify TCRs targeting leukemia-associated antigen PR1 and quantified anti-PR1 T cells in 90 CML and 786 healthy TCRβ-sequenced samples. Anti-PR1 T cells were more prevalent in CML, enriched in bone marrow samples, and enriched in the mature, cytotoxic CD8 + TEMRA cluster, especially in a patient maintaining TFR. Our results highlight the role of NK cells and anti-PR1 T cells in anti-leukemic immune responses in CML.
Collapse
Affiliation(s)
- Jani Huuhtanen
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- Department of Computer Science, Aalto University, Espoo, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Shady Adnan-Awad
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Jason Theodoropoulos
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Sofia Forstén
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Rebecca Warfvinge
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Olli Dufva
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jonas Bouhlal
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Parashar Dhapola
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Hanna Duàn
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Essi Laajala
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tiina Kasanen
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jay Klievink
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Mette Ilander
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Taina Jaatinen
- Histocompatibility Testing Laboratory, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Ulla Olsson-Strömberg
- Department of Medical Sciences, Uppsala University and Hematology Section, Uppsala University Hospital, Uppsala, Sweden
| | - Henrik Hjorth-Hansen
- Department of Hematology, St. Olavs Hospital, Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, and University Medical Center Giessen and Marburg, Marburg, Germany
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Kreutzman
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Satu Mustjoki
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
9
|
Zhang Z, Zhou X, Zhou X, Cheng Z, Hu Y. Exploration of treatment-free remission in CML, based on molecular monitoring. Cancer Med 2024; 13:e6849. [PMID: 38133525 PMCID: PMC10807643 DOI: 10.1002/cam4.6849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Typical chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm caused by t(9; 22)(q34; q11) translocation. This chromosomal translocation forms the BCR::ABL1 fusion gene. The tyrosine kinase encoded by the BCR::ABL1 is considered to be the main pathogenic diver. BCR::ABL1 is not only a therapeutic target, but also a monitoring target. Monitoring of BCR::ABL1 reveals the progression of the disease and guides the next treatment. Now for CML, the target of treatment has been focused on treatment-free remission (TFR). METHODS We conducted a literature review of current developments of treatment-free remission and molecular monitoring methods. RESULTS More effective and sensitive CML monitoring methods such as digital droplet PCR (ddPCR) and next generation sequencing (NGS) have further studied the measurable residual disease (MRD) and clonal heterogeneity, which provides strong support for the exploration of TFR. We discussed some of the factors that may be related to TFR outcomes at the molecular level, along with some monitoring strategies. CONCLUSION Currently, predictive indicators for treatment-free remission outcomes and recurrence are lacking in clinical practice. In future, treatment-free remission research should focus on combining the clinical indicators with molecular monitoring and biological markers to personalize patient conditions and guide clinicians to develop individualized treatment plans, so that more patients with CML can achieve safer and stabler treatment-free remission.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Remission Induction
- Fusion Proteins, bcr-abl/genetics
- Neoplasm, Residual/genetics
- High-Throughput Nucleotide Sequencing
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
| | | | - Xin Zhou
- Wuhan Union HospitalWuhanHubeiChina
| | | | - Yu Hu
- Wuhan Union HospitalWuhanHubeiChina
| |
Collapse
|
10
|
Huang W, Paul D, Calin GA, Bayraktar R. miR-142: A Master Regulator in Hematological Malignancies and Therapeutic Opportunities. Cells 2023; 13:84. [PMID: 38201290 PMCID: PMC10778542 DOI: 10.3390/cells13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.
Collapse
Affiliation(s)
- Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Verhagen NE, Koenderink JB, Blijlevens NMA, Janssen JJWM, Russel FGM. Transporter-Mediated Cellular Distribution of Tyrosine Kinase Inhibitors as a Potential Resistance Mechanism in Chronic Myeloid Leukemia. Pharmaceutics 2023; 15:2535. [PMID: 38004514 PMCID: PMC10675650 DOI: 10.3390/pharmaceutics15112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematologic neoplasm characterized by the expression of the BCR::ABL1 oncoprotein, a constitutively active tyrosine kinase, resulting in uncontrolled growth and proliferation of cells in the myeloid lineage. Targeted therapy using tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, dasatinib, bosutinib, ponatinib and asciminib has drastically improved the life expectancy of CML patients. However, treatment resistance occurs in 10-20% of CML patients, which is a multifactorial problem that is only partially clarified by the presence of TKI inactivating BCR::ABL1 mutations. It may also be a consequence of a reduction in cytosolic TKI concentrations in the target cells due to transporter-mediated cellular distribution. This review focuses on drug-transporting proteins in stem cells and progenitor cells involved in the distribution of TKIs approved for the treatment of CML. Special attention will be given to ATP-binding cassette transporters expressed in lysosomes, which may facilitate the extracytosolic sequestration of these compounds.
Collapse
Affiliation(s)
- Noor E. Verhagen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| | - Jan B. Koenderink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| | - Nicole M. A. Blijlevens
- Department of Haematology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.M.A.B.); (J.J.W.M.J.)
| | - Jeroen J. W. M. Janssen
- Department of Haematology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.M.A.B.); (J.J.W.M.J.)
| | - Frans G. M. Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| |
Collapse
|
12
|
Zhang Y, Jiang S, He F, Tian Y, Hu H, Gao L, Zhang L, Chen A, Hu Y, Fan L, Yang C, Zhou B, Liu D, Zhou Z, Su Y, Qin L, Wang Y, He H, Lu J, Xiao P, Hu S, Wang QF. Single-cell transcriptomics reveals multiple chemoresistant properties in leukemic stem and progenitor cells in pediatric AML. Genome Biol 2023; 24:199. [PMID: 37653425 PMCID: PMC10472599 DOI: 10.1186/s13059-023-03031-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Cancer patients can achieve dramatic responses to chemotherapy yet retain resistant tumor cells, which ultimately results in relapse. Although xenograft model studies have identified several cellular and molecular features that are associated with chemoresistance in acute myeloid leukemia (AML), to what extent AML patients exhibit these properties remains largely unknown. RESULTS We apply single-cell RNA sequencing to paired pre- and post-chemotherapy whole bone marrow samples obtained from 13 pediatric AML patients who had achieved disease remission, and distinguish AML clusters from normal cells based on their unique transcriptomic profiles. Approximately 50% of leukemic stem and progenitor populations actively express leukemia stem cell (LSC) and oxidative phosphorylation (OXPHOS) signatures, respectively. These clusters have a higher chance of tolerating therapy and exhibit an enhanced metabolic program in response to treatment. Interestingly, the transmembrane receptor CD69 is highly expressed in chemoresistant hematopoietic stem cell (HSC)-like populations (named the CD69+ HSC-like subpopulation). Furthermore, overexpression of CD69 results in suppression of the mTOR signaling pathway and promotion of cell quiescence and adhesion in vitro. Finally, the presence of CD69+ HSC-like cells is associated with unfavorable genetic mutations, the persistence of residual tumor cells in chemotherapy, and poor outcomes in independent pediatric and adult public AML cohorts. CONCLUSIONS Our analysis reveals leukemia stem cell and OXPHOS as two major chemoresistant features in human AML patients. CD69 may serve as a potential biomarker in defining a subpopulation of chemoresistant leukemia stem cells. These findings have important implications for targeting residual chemo-surviving AML cells.
Collapse
Affiliation(s)
- Yongping Zhang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Shuting Jiang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuhong He
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Tian
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Haiyang Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Gao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Lin Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aili Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Liyan Fan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Bi Zhou
- SuZhou Hospital of Anhui Medical University, Suzhou, China
| | - Dan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Zihan Zhou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxun Su
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Qin
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Hailong He
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Peifang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Abruzzese E, Bocchia M, Trawinska MM, Raspadori D, Bondanini F, Sicuranza A, Pacelli P, Re F, Cavalleri A, Farina M, Malagola M, Russo D, De Fabritiis P, Bernardi S. Minimal Residual Disease Detection at RNA and Leukemic Stem Cell (LSC) Levels: Comparison of RT-qPCR, d-PCR and CD26+ Stem Cell Measurements in Chronic Myeloid Leukemia (CML) Patients in Deep Molecular Response (DMR). Cancers (Basel) 2023; 15:4112. [PMID: 37627140 PMCID: PMC10452239 DOI: 10.3390/cancers15164112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
A Deep Molecular Response (DMR), defined as a BCR::ABL1 transcript at levels ≤ 0.01% by RT-qPCR, is the prerequisite for the successful interruption of treatment among patients with Chronic Myeloid Leukemia (CML). However, approximately 50% of patients in Treatment-Free Remission (TFR) studies had to resume therapy after their BCR::ABL1 transcript levels rose above the 0.1% threshold. To improve transcript detection sensitivity and accuracy, transcript levels can be analyzed using digital PCR (dPCR). dPCR increases BCR::ABL1 transcript detection sensitivity 10-100 fold; however, its ability to better select successful TFR patients remains unclear. Beyond the role of the immune system, relapses may be due to the presence of residual leukemic stem cells (LSCs) that are transcriptionally silent. Flow cytometry can be used to identify and quantify circulating bone marrow Ph+ LSCs CD34+/CD38- co-expressing CD26 (dipeptidylpeptidase-IV). To date, the significance of circulating Ph+ LSCs in TFR is unclear. The aim of this work is to compare and examine the values obtained using the three different methods of detecting minimal residual disease (MRD) in CML at RNA (RT-qPCR and dPCR) and LSC (flowcytometry) levels among patients in TFR or exhibiting a DMR. The twenty-seven patients enrolled received treatment with either imatinib (12), dasatinib (6), nilotinib (7), bosutinib (1), or interferon (1). Twelve patients were in TFR, while the rest exhibited a DMR. The TFR patients had stopped therapy for less than 1 year (3), <3 years (2), 6 years (6), and 17 years (1). Blood samples were collected and tested using the three methods at the same time. Both d-PCR and LSCs showed higher sensitivity than RT-qPCR, exhibiting positive results in samples that were undetectable using RT-qPCR (17/27). None of the patients tested negative with d-PCR; however, 23/27 were under the threshold of 0.468 copies/μL, corresponding to a stable DMR. The results were divided into quartiles, and the lowest quartiles defined the lowest MRD. These data were strongly correlated in 15/27 patients, corresponding to almost half of the TFR patients. Indeed, the TFR patients, some lasting up to 17 years, corresponded to the lowest detectable DMR categories. To the best of our knowledge, this is the first attempt to analyze and compare DMRs in a CML population using standard (RT-qPCR) and highly sensitive (dPCR and LSCs) methods.
Collapse
Affiliation(s)
- Elisabetta Abruzzese
- Hematology Unit, S. Eugenio Hospital, ASL Roma 2, Tor Vergata University, 00144 Rome, Italy; (M.M.T.); (P.D.F.)
| | - Monica Bocchia
- Chair of Hematology, University of Siena, Azienda Ospedaliera Universitaria, 53100 Siena, Italy; (M.B.); (D.R.); (A.S.); (P.P.)
| | - Malgorzata Monika Trawinska
- Hematology Unit, S. Eugenio Hospital, ASL Roma 2, Tor Vergata University, 00144 Rome, Italy; (M.M.T.); (P.D.F.)
| | - Donatella Raspadori
- Chair of Hematology, University of Siena, Azienda Ospedaliera Universitaria, 53100 Siena, Italy; (M.B.); (D.R.); (A.S.); (P.P.)
| | - Francesco Bondanini
- Laboratory Medicine Unit, S. Eugenio Hospital, ASL Roma 2, 00144 Rome, Italy;
| | - Anna Sicuranza
- Chair of Hematology, University of Siena, Azienda Ospedaliera Universitaria, 53100 Siena, Italy; (M.B.); (D.R.); (A.S.); (P.P.)
| | - Paola Pacelli
- Chair of Hematology, University of Siena, Azienda Ospedaliera Universitaria, 53100 Siena, Italy; (M.B.); (D.R.); (A.S.); (P.P.)
| | - Federica Re
- Bone Marrow Transplant Unit, ASST-Spedali Civili di Brescia, Chair of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (A.C.); (M.F.); (M.M.); (D.R.)
| | - Alessia Cavalleri
- Bone Marrow Transplant Unit, ASST-Spedali Civili di Brescia, Chair of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (A.C.); (M.F.); (M.M.); (D.R.)
| | - Mirko Farina
- Bone Marrow Transplant Unit, ASST-Spedali Civili di Brescia, Chair of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (A.C.); (M.F.); (M.M.); (D.R.)
| | - Michele Malagola
- Bone Marrow Transplant Unit, ASST-Spedali Civili di Brescia, Chair of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (A.C.); (M.F.); (M.M.); (D.R.)
| | - Domenico Russo
- Bone Marrow Transplant Unit, ASST-Spedali Civili di Brescia, Chair of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (A.C.); (M.F.); (M.M.); (D.R.)
| | - Paolo De Fabritiis
- Hematology Unit, S. Eugenio Hospital, ASL Roma 2, Tor Vergata University, 00144 Rome, Italy; (M.M.T.); (P.D.F.)
| | - Simona Bernardi
- Bone Marrow Transplant Unit, ASST-Spedali Civili di Brescia, Chair of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (A.C.); (M.F.); (M.M.); (D.R.)
| |
Collapse
|
14
|
Chen Y, Möbius S, Riege K, Hoffmann S, Hochhaus A, Ernst T, Rudolph KL. Genetic separation of chronic myeloid leukemia stem cells from normal hematopoietic stem cells at single-cell resolution. Leukemia 2023; 37:1561-1566. [PMID: 37237078 PMCID: PMC10317832 DOI: 10.1038/s41375-023-01929-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Yulin Chen
- Research Group on Stem Cell Aging, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Susanne Möbius
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, 07747, Jena, Germany
| | - Konstantin Riege
- The Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Steve Hoffmann
- The Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Andreas Hochhaus
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, 07747, Jena, Germany
| | - Thomas Ernst
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, 07747, Jena, Germany.
| | - Karl Lenhard Rudolph
- Research Group on Stem Cell Aging, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
- Faculty of Medicine, University Hospital Jena (UKJ), Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
15
|
Lim J, Chin V, Fairfax K, Moutinho C, Suan D, Ji H, Powell JE. Transitioning single-cell genomics into the clinic. Nat Rev Genet 2023:10.1038/s41576-023-00613-w. [PMID: 37258725 DOI: 10.1038/s41576-023-00613-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
The use of genomics is firmly established in clinical practice, resulting in innovations across a wide range of disciplines such as genetic screening, rare disease diagnosis and molecularly guided therapy choice. This new field of genomic medicine has led to improvements in patient outcomes. However, most clinical applications of genomics rely on information generated from bulk approaches, which do not directly capture the genomic variation that underlies cellular heterogeneity. With the advent of single-cell technologies, research is rapidly uncovering how genomic data at cellular resolution can be used to understand disease pathology and mechanisms. Both DNA-based and RNA-based single-cell technologies have the potential to improve existing clinical applications and open new application spaces for genomics in clinical practice, with oncology, immunology and haematology poised for initial adoption. However, challenges in translating cellular genomics from research to a clinical setting must first be overcome.
Collapse
Affiliation(s)
- Jennifer Lim
- Cellular Science, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Department of Oncology, St George Hospital, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Venessa Chin
- Cellular Science, Garvan Institute of Medical Research, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kirsten Fairfax
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Catia Moutinho
- Cellular Science, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Dan Suan
- Cellular Science, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Hanlee Ji
- School of Medicine, Stanford University, Palo Alto, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
| | - Joseph E Powell
- Cellular Science, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
16
|
El-Masry OS. Gene expression profile and presentation of novel gene variants of <i>COX7B</i> and <i>COX7C</i> in a cohort of patients with chronic myeloid leukemia. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2023. [DOI: 10.29333/ejgm/12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic myeloid leukemia (CML) is a common blood malignancy awaiting decisive cure. Understanding the genomic nature of the disease could help to improve treatment strategies and introduce novel therapeutic targets. The purpose of this study was to sequence the entire transcriptome of a cohort of CML patients to understand differences in gene expression profiles and gene variants compared to healthy controls. RNA was extracted from 10 CML and four healthy control subjects and sequenced by the DNBSEQ platform. Differential gene expression was evaluated and confirmed by the q-RT-PCR technique. Gene variants were also analyzed. The results showed that <i>COX7B</i> and <i>COX7C</i> were upregulated in CML patients than in controls; this was confirmed by quantitative PCR. In addition, novel single nucleotide and insertion/deletion variants were also found in both genes. In conclusion, the results of this study recommend further exploration of <i>COX7B</i> and <i>COX7C</i> and their novel variants in myeloid leukemogenesis.
Collapse
Affiliation(s)
- Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, SAUDI ARABIA
| |
Collapse
|
17
|
DNA Damage Response (DDR) Is Associated With Treatment-free Remission in Chronic Myeloid Leukemia Patients. Hemasphere 2023; 7:e852. [PMID: 36860269 PMCID: PMC9970272 DOI: 10.1097/hs9.0000000000000852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/27/2023] [Indexed: 03/03/2023] Open
|
18
|
Shah M, Kumar H, Qiu S, Li H, Harris M, He J, Abraham A, Crossman DK, Paterson A, Welner RS, Bhatia R. Low c-Kit expression identifies primitive, therapy-resistant CML stem cells. JCI Insight 2023; 8:e157421. [PMID: 36413413 PMCID: PMC9870079 DOI: 10.1172/jci.insight.157421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the efficacy of tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML), malignant long-term hematopoietic stem cells (LT-HSCs) persist as a source of relapse. However, LT-HSCs are heterogenous and the most primitive, drug-resistant LT-HSC subpopulations are not well characterized. In normal hematopoiesis, self-renewal and long-term reconstitution capacity are enriched within LT-HSCs with low c-Kit expression (c-KITlo). Here, using a transgenic CML mouse model, we found that long-term engraftment and leukemogenic capacity were restricted to c-KITlo CML LT-HSCs. CML LT-HSCs demonstrated enhanced differentiation with expansion of mature progeny following exposure to the c-KIT ligand, stem cell factor (SCF). Conversely, SCF deletion led to depletion of normal LT-HSCs but increase in c-KITlo and total CML LT-HSCs with reduced generation of mature myeloid cells. CML c-KITlo LT-HSCs showed reduced cell cycling and expressed enhanced quiescence and inflammatory gene signatures. SCF administration led to enhanced depletion of CML primitive progenitors but not LT-HSCs after TKI treatment. Human CML LT-HSCs with low or absent c-KIT expression were markedly enriched after TKI treatment. We conclude that CML LT-HSCs expressing low c-KIT levels are enriched for primitive, quiescent, drug-resistant leukemia-initiating cells and represent a critical target for eliminating disease persistence.
Collapse
Affiliation(s)
- Mansi Shah
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Harish Kumar
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shaowei Qiu
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Li
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mason Harris
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jianbo He
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ajay Abraham
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Andrew Paterson
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert S. Welner
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ravi Bhatia
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Haase C, Gustafsson K, Mei S, Yeh SC, Richter D, Milosevic J, Turcotte R, Kharchenko PV, Sykes DB, Scadden DT, Lin CP. Image-seq: spatially resolved single-cell sequencing guided by in situ and in vivo imaging. Nat Methods 2022; 19:1622-1633. [PMID: 36424441 PMCID: PMC9718684 DOI: 10.1038/s41592-022-01673-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
Abstract
Tissue function depends on cellular organization. While the properties of individual cells are increasingly being deciphered using powerful single-cell sequencing technologies, understanding their spatial organization and temporal evolution remains a major challenge. Here, we present Image-seq, a technology that provides single-cell transcriptional data on cells that are isolated from specific spatial locations under image guidance, thus preserving the spatial information of the target cells. It is compatible with in situ and in vivo imaging and can document the temporal and dynamic history of the cells being analyzed. Cell samples are isolated from intact tissue and processed with state-of-the-art library preparation protocols. The technique therefore combines spatial information with highly sensitive RNA sequencing readouts from individual, intact cells. We have used both high-throughput, droplet-based sequencing as well as SMARTseq-v4 library preparation to demonstrate its application to bone marrow and leukemia biology. We discovered that DPP4 is a highly upregulated gene during early progression of acute myeloid leukemia and that it marks a more proliferative subpopulation that is confined to specific bone marrow microenvironments. Furthermore, the ability of Image-seq to isolate viable, intact cells should make it compatible with a range of downstream single-cell analysis tools including multi-omics protocols.
Collapse
Affiliation(s)
- Christa Haase
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shu-Chi Yeh
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Dmitry Richter
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Raphaël Turcotte
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Altos Labs, San Diego, CA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Charles P Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
20
|
Frenay J, Bellaye PS, Oudot A, Helbling A, Petitot C, Ferrand C, Collin B, Dias AMM. IL-1RAP, a Key Therapeutic Target in Cancer. Int J Mol Sci 2022; 23:ijms232314918. [PMID: 36499246 PMCID: PMC9735758 DOI: 10.3390/ijms232314918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer is a major cause of death worldwide and especially in high- and upper-middle-income countries. Despite recent progress in cancer therapies, such as chimeric antigen receptor T (CAR-T) cells or antibody-drug conjugate (ADC), new targets expressed by the tumor cells need to be identified in order to selectively drive these innovative therapies to tumors. In this context, IL-1RAP recently showed great potential to become one of these new targets for cancer therapy. IL-1RAP is highly involved in the inflammation process through the interleukins 1, 33, and 36 (IL-1, IL-33, IL-36) signaling pathways. Inflammation is now recognized as a hallmark of carcinogenesis, suggesting that IL-1RAP could play a role in cancer development and progression. Furthermore, IL-1RAP was found overexpressed on tumor cells from several hematological and solid cancers, thus confirming its potential involvement in carcinogenesis. This review will first describe the structure and genetics of IL-1RAP as well as its role in tumor development. Finally, a focus will be made on the therapies based on IL-1RAP targeting, which are now under preclinical or clinical development.
Collapse
Affiliation(s)
- Jame Frenay
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Pierre-Simon Bellaye
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Alexandra Oudot
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Alex Helbling
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Camille Petitot
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Christophe Ferrand
- INSERM UMR1098, EFS BFC, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- CanCell Therapeutics, 25000 Besançon, France
| | - Bertrand Collin
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, 21000 Dijon, France
| | - Alexandre M M Dias
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| |
Collapse
|
21
|
Patel SB, Kuznetsova V, Matkins VR, Franceski AM, Bassal MA, Welner RS. Ex Vivo Expansion of Phenotypic and Transcriptomic Chronic Myeloid Leukemia Stem Cells. Exp Hematol 2022; 115:1-13. [PMID: 36115580 DOI: 10.1016/j.exphem.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
Despite decades of research, standard therapies remain ineffective for most leukemias, pushing toward an essential unmet need for targeted drug screens. Moreover, preclinical drug testing is an important consideration for success of clinical trials without affecting non-transformed stem cells. Using the transgenic chronic myeloid leukemia (CML) mouse model, we determine that leukemic stem cells (LSCs) are transcriptionally heterogenous with a preexistent drug-insensitive signature. To test targeting of potentially important pathways, we establish ex vivo expanded LSCs that have long-term engraftment and give rise to multilineage hematopoiesis. Expanded LSCs share transcriptomic signatures with primary LSCs including enrichment in Wnt, JAK-STAT, MAPK, mTOR and transforming growth factor β signaling pathways. Drug testing on expanded LSCs show that transforming growth factor β and Wnt inhibitors had significant effects on the viability of LSCs, but not leukemia-exposed healthy HSCs. This platform allows testing of multiple drugs at the same time to identify vulnerabilities of LSCs.
Collapse
Affiliation(s)
- Sweta B Patel
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL; Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Valeriya Kuznetsova
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL
| | - Victoria R Matkins
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL
| | - Alana M Franceski
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA; Cancer Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL.
| |
Collapse
|
22
|
Identification of key microRNAs as predictive biomarkers of Nilotinib response in chronic myeloid leukemia: a sub-analysis of the ENESTxtnd clinical trial. Leukemia 2022; 36:2443-2452. [PMID: 35999259 DOI: 10.1038/s41375-022-01680-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
Despite the effectiveness of tyrosine kinase inhibitors (TKIs) against chronic myeloid leukemia (CML), they are not usually curative as some patients develop drug-resistance or are at risk of disease relapse when treatment is discontinued. Studies have demonstrated that primitive CML cells display unique miRNA profiles in response to TKI treatment. However, the utility of miRNAs in predicting treatment response is not yet conclusive. Here, we analyzed differentially expressed miRNAs in CD34+ CML cells pre- and post-nilotinib (NL) therapy from 58 patients enrolled in the Canadian sub-analysis of the ENESTxtnd phase IIIb clinical trial which correlated with sensitivity of CD34+ cells to NL treatment in in vitro colony-forming cell (CFC) assays. We performed Cox Proportional Hazard (CoxPH) analysis and applied machine learning algorithms to generate multivariate miRNA panels which can predict NL response at treatment-naïve or post-treatment time points. We demonstrated that a combination of miR-145 and miR-708 are effective predictors of NL response in treatment-naïve patients whereas miR-150 and miR-185 were significant classifiers at 1-month and 3-month post-NL therapy. Interestingly, incorporation of NL-CFC output in these panels enhanced predictive performance. Thus, this novel predictive model may be developed into a prognostic tool for use in the clinic.
Collapse
|
23
|
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias. Biomedicines 2022; 10:biomedicines10081841. [PMID: 36009388 PMCID: PMC9405586 DOI: 10.3390/biomedicines10081841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. To illustrate the multi-dimensional landscape of LSC-mediated leukemogenesis, in this review, we present phenotypical characteristics of LSCs, address the LSC-associated leukemic stromal microenvironment, highlight molecular aberrations that occur in the transcriptome, epigenome, proteome, and metabolome of LSCs, and showcase promising novel therapeutic strategies that potentially target the molecular vulnerabilities of LSCs.
Collapse
|
24
|
Vuelta E, Ordoñez JL, Sanz DJ, Ballesteros S, Hernández-Rivas JM, Méndez-Sánchez L, Sánchez-Martín M, García-Tuñón I. CRISPR/Cas9-Directed Gene Trap Constitutes a Selection System for Corrected BCR/ABL Leukemic Cells in CML. Int J Mol Sci 2022; 23:ijms23126386. [PMID: 35742831 PMCID: PMC9224210 DOI: 10.3390/ijms23126386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic myeloid leukaemia (CML) is a haematological neoplasm driven by the BCR/ABL fusion oncogene. The monogenic aspect of the disease and the feasibility of ex vivo therapies in haematological disorders make CML an excellent candidate for gene therapy strategies. The ability to abolish any coding sequence by CRISPR-Cas9 nucleases offers a powerful therapeutic opportunity to CML patients. However, a definitive cure can only be achieved when only CRISPR-edited cells are selected. A gene-trapping approach combined with CRISPR technology would be an ideal approach to ensure this. Here, we developed a CRISPR-Trap strategy that efficiently inserts a donor gene trap (SA-CMV-Venus) cassette into the BCR/ABL-specific fusion point in the CML K562 human cell line. The trapping cassette interrupts the oncogene coding sequence and expresses a reporter gene that enables the selection of edited cells. Quantitative mRNA expression analyses showed significantly higher level of expression of the BCR/Venus allele coupled with a drastically lower level of BCR/ABL expression in Venus+ cell fractions. Functional in vitro experiments showed cell proliferation arrest and apoptosis in selected Venus+ cells. Finally, xenograft experiments with the selected Venus+ cells showed a large reduction in tumour growth, thereby demonstrating a therapeutic benefit in vivo. This study represents proof of concept for the therapeutic potential of a CRISPR-Trap system as a novel strategy for gene elimination in haematological neoplasms.
Collapse
Affiliation(s)
- Elena Vuelta
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José L. Ordoñez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - David J. Sanz
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
| | - Sandra Ballesteros
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
| | - Jesús M. Hernández-Rivas
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Lucía Méndez-Sánchez
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Manuel Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Servicio de Transgénesis, NUCLEUS, Universidad de Salamanca, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.S.-M.); (I.G.-T.)
| | - Ignacio García-Tuñón
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain; (E.V.); (S.B.); (J.M.H.-R.)
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.S.-M.); (I.G.-T.)
| |
Collapse
|
25
|
Ebian HF, Abdelnabi ALSM, Abdelazem AS, Khamis T, Fawzy HM, Hussein S. Peripheral Blood CD26 Positive Leukemic Stem Cells as a Possible Diagnostic and Prognostic Marker in Chronic Myeloid Leukemia. Leuk Res Rep 2022; 17:100321. [PMID: 35602932 PMCID: PMC9118510 DOI: 10.1016/j.lrr.2022.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background CD26 is expressed in all chronic myeloid leukemia (CML) patients. This study investigated the role of CD26+ LSCs in diagnosis and follow up of CML patients. Method Flow cytometry was performed to evaluate CD26+ LSC in peripheral blood (PB) in CML patients. BCR-ABL1 transcript level measurement was performed using standard qRT-PCR technique. Results CD26+ LSCs were significantly correlated with BCR-ABL1 transcript level at diagnosis and after three months of treatment. CD26+ LSCs also were significantly associated with the risk score after 12 months of treatment. Conclusion CD26+ LSCs can be a useful marker in diagnosis and follow up of patients with CML.
Collapse
Affiliation(s)
- Huda F Ebian
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | - Tarek Khamis
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hebatallah M. Fawzy
- Public Health and Community Medicine Department, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry& Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Corresponding author.
| |
Collapse
|
26
|
Pearson S, Whetton AD, Pierce A. Combination of curaxin and tyrosine kinase inhibitors display enhanced killing of primitive Chronic Myeloid Leukaemia cells. PLoS One 2022; 17:e0266298. [PMID: 35358275 PMCID: PMC8970494 DOI: 10.1371/journal.pone.0266298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the big increase in precision medicine targeted therapies developing curative treatments for many cancers is still a major challenge due mainly to the development of drug resistance in cancer stem cells. The cancer stem cells are constantly evolving to survive and targeted drug treatment often increases the selective pressure on these cells from which the disease develops. Chronic myeloid leukaemia is a paradigm of cancer stem cell research. Targeted therapies to the causative oncogene, BCR/ABL, have been developed but drug resistance remains a problem. The introduction of tyrosine kinase inhibitors targeting BCR/ABL were transformative in the management of CML. However, patients are rarely cured as the tyrosine kinase inhibitors fail to eradicate the leukaemic stem cell which often leads to loss of response to therapy as drug resistance develops and progression to more fatal forms of acute leukaemia occurs. New treatment strategies targeting other entities within the leukemic stem cell either alone or in combination with tyrosine kinase are therefore required. Drawing on our previous published work on the development of potential novel targets in CML and other myeloproliferative diseases along with analysis of the facilitates chromatin transcription (FACT) complex in CML we hypothesised that curaxin, a drug that targets the FACT complex and is in clinical trial for the treatment of other cancers, could be of use in the treatment of CML. We therefore assessed the curaxin CBL0137 as a new agent to extinguish CML primitive cells and show its ability to preferentially target CML cells compared to healthy control cells, especially in combination with clinically relevant tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Withington, Manchester, United Kingdom
| | - Anthony D. Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Withington, Manchester, United Kingdom
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, The University of Manchester, Withington, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
New insights into Human Hematopoietic Stem and Progenitor Cells via Single-Cell Omics. Stem Cell Rev Rep 2022; 18:1322-1336. [PMID: 35318612 PMCID: PMC8939482 DOI: 10.1007/s12015-022-10330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 10/25/2022]
Abstract
Residing at the apex of the hematopoietic hierarchy, hematopoietic stem and progenitor cells (HSPCs) give rise to all mature blood cells. In the last decade, significant progress has been made in single-cell RNA sequencing as well as multi-omics technologies that have facilitated elucidation of the heterogeneity of previously defined human HSPCs. From the embryonic stage through the adult stage to aging, single-cell studies have enabled us to trace the origins of hematopoietic stem cells (HSCs), demonstrating different hematopoietic differentiation during development, as well as identifying novel cell populations. In both hematological benign diseases and malignancies, single-cell omics technologies have begun to reveal tissue heterogeneity and have permitted mapping of microenvironmental ecosystems and tracking of cell subclones, thereby greatly broadening our understanding of disease development. Furthermore, advances have also been made in elucidating the molecular mechanisms for relapse and identifying therapeutic targets of hematological disorders and other non-hematological diseases. Extensive exploration of hematopoiesis at the single-cell level may thus have great potential for broad clinical applications of HSPCs, as well as disease prognosis.
Collapse
|
28
|
Stuckey R, López Rodríguez JF, Gómez-Casares MT. Discontinuation of Tyrosine Kinase Inhibitors in Patients with Chronic Myeloid Leukemia: a Review of the Biological Factors Associated with Treatment-Free Remission. Curr Oncol Rep 2022; 24:415-426. [PMID: 35141859 PMCID: PMC8930955 DOI: 10.1007/s11912-022-01228-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Purpose of Review Clinical factors alone do not enable us to differentiate which patients will maintain treatment-free remission (TFR) from those who are likely to relapse. Thus, patient-specific factors must also play a role. This review will update the reader on the most recent studies presenting biological factors that can help predict tyrosine kinase inhibitor (TKI) discontinuation success. Recent Findings Cellular and molecular factors with a suggested role in TFR include immune factors and leukemic stem cell (LSC) persistence; the BCR::ABL1 transcript type, halving time, and BCR::ABL1 DNA and RNA positivity; as well as other molecular factors such as somatic mutations, RNA expression, and telomere length. Summary Our review presents several biomarkers with predictive value for TFR but also highlights areas of unmet need. Future discontinuation guidelines will likely include biological factors for the personalization of TFR prediction. However, it will be important that such advances do not prevent more patients from making a TKI discontinuation attempt.
Collapse
Affiliation(s)
- Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Barranco de la Ballena s/n, Las Palmas, Spain.
| | | | - María Teresa Gómez-Casares
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Barranco de la Ballena s/n, Las Palmas, Spain
- Medical Science Department, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
29
|
Zhao H, Pomicter AD, Eiring AM, Franzini A, Ahmann J, Hwang JY, Senina A, Helton B, Iyer S, Yan D, Khorashad JS, Zabriskie MS, Agarwal A, Redwine HM, Bowler AD, Clair PM, McWeeney SK, Druker BJ, Tyner JW, Stirewalt DL, Oehler VG, Varambally S, Berrett KC, Vahrenkamp JM, Gertz J, Varley KE, Radich JP, Deininger MW. MS4A3 promotes differentiation in chronic myeloid leukemia by enhancing common β-chain cytokine receptor endocytosis. Blood 2022; 139:761-778. [PMID: 34780648 PMCID: PMC8814676 DOI: 10.1182/blood.2021011802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
The chronic phase of chronic myeloid leukemia (CP-CML) is characterized by the excessive production of maturating myeloid cells. As CML stem/progenitor cells (LSPCs) are poised to cycle and differentiate, LSPCs must balance conservation and differentiation to avoid exhaustion, similar to normal hematopoiesis under stress. Since BCR-ABL1 tyrosine kinase inhibitors (TKIs) eliminate differentiating cells but spare BCR-ABL1-independent LSPCs, understanding the mechanisms that regulate LSPC differentiation may inform strategies to eliminate LSPCs. Upon performing a meta-analysis of published CML transcriptomes, we discovered that low expression of the MS4A3 transmembrane protein is a universal characteristic of LSPC quiescence, BCR-ABL1 independence, and transformation to blast phase (BP). Several mechanisms are involved in suppressing MS4A3, including aberrant methylation and a MECOM-C/EBPε axis. Contrary to previous reports, we find that MS4A3 does not function as a G1/S phase inhibitor but promotes endocytosis of common β-chain (βc) cytokine receptors upon GM-CSF/IL-3 stimulation, enhancing downstream signaling and cellular differentiation. This suggests that LSPCs downregulate MS4A3 to evade βc cytokine-induced differentiation and maintain a more primitive, TKI-insensitive state. Accordingly, knockdown (KD) or deletion of MS4A3/Ms4a3 promotes TKI resistance and survival of CML cells ex vivo and enhances leukemogenesis in vivo, while targeted delivery of exogenous MS4A3 protein promotes differentiation. These data support a model in which MS4A3 governs response to differentiating myeloid cytokines, providing a unifying mechanism for the differentiation block characteristic of CML quiescence and BP-CML. Promoting MS4A3 reexpression or delivery of ectopic MS4A3 may help eliminate LSPCs in vivo.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Down-Regulation
- Endocytosis
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Receptors, Cytokine/metabolism
- Transcriptome
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Helong Zhao
- Versiti Blood Research Institute, Milwaukee, WI
- Medical College of Wisconsin, Milwaukee, WI
- Division of Hematology and Hematologic Malignancies and
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | | | | | - Anca Franzini
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Jonathan Ahmann
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Jae-Yeon Hwang
- Department of Oncological Sciences, The University of Utah, Salt Lake City, UT
| | - Anna Senina
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Bret Helton
- Department of Chemistry, University of Washington, Seattle, WA
| | - Siddharth Iyer
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Dongqing Yan
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Jamshid S Khorashad
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | | | - Anupriya Agarwal
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Hannah M Redwine
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Amber D Bowler
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Phillip M Clair
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Shannon K McWeeney
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Brian J Druker
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Jeffrey W Tyner
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | | | | | | | | | | | - Jason Gertz
- Department of Oncological Sciences, The University of Utah, Salt Lake City, UT
| | - Katherine E Varley
- Department of Oncological Sciences, The University of Utah, Salt Lake City, UT
| | | | - Michael W Deininger
- Versiti Blood Research Institute, Milwaukee, WI
- Medical College of Wisconsin, Milwaukee, WI
- Division of Hematology and Hematologic Malignancies and
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| |
Collapse
|
30
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
31
|
Eliminating chronic myeloid leukemia stem cells by IRAK1/4 inhibitors. Nat Commun 2022; 13:271. [PMID: 35022428 PMCID: PMC8755781 DOI: 10.1038/s41467-021-27928-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Leukemia stem cells (LSCs) in chronic myeloid leukemia (CML) are quiescent, insensitive to BCR-ABL1 tyrosine kinase inhibitors (TKIs) and responsible for CML relapse. Therefore, eradicating quiescent CML LSCs is a major goal in CML therapy. Here, using a G0 marker (G0M), we narrow down CML LSCs as G0M- and CD27- double positive cells among the conventional CML LSCs. Whole transcriptome analysis reveals NF-κB activation via inflammatory signals in imatinib-insensitive quiescent CML LSCs. Blocking NF-κB signals by inhibitors of interleukin-1 receptor-associated kinase 1/4 (IRAK1/4 inhibitors) together with imatinib eliminates mouse and human CML LSCs. Intriguingly, IRAK1/4 inhibitors attenuate PD-L1 expression on CML LSCs, and blocking PD-L1 together with imatinib also effectively eliminates CML LSCs in the presence of T cell immunity. Thus, IRAK1/4 inhibitors can eliminate CML LSCs through inhibiting NF-κB activity and reducing PD-L1 expression. Collectively, the combination of TKIs and IRAK1/4 inhibitors is an attractive strategy to achieve a radical cure of CML.
Collapse
|
32
|
Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res Ther 2021; 12:603. [PMID: 34922630 PMCID: PMC8684082 DOI: 10.1186/s13287-021-02659-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm driven by BCR-ABL1 oncoprotein, which plays a pivotal role in CML pathology, diagnosis, and treatment as confirmed by the success of tyrosine kinase inhibitor (TKI) therapy. Despite advances in the development of more potent tyrosine kinase inhibitors, some mechanisms particularly in terms of CML leukemic stem cell (CML LSC) lead to intrinsic or acquired therapy resistance, relapse, and disease progression. In fact, the maintenance CML LSCs in patients who are resistance to TKI therapy indicates the role of CML LSCs in resistance to therapy through survival mechanisms that are not completely dependent on BCR-ABL activity. Targeting therapeutic approaches aim to eradicate CML LSCs through characterization and targeting genetic alteration and molecular pathways involving in CML LSC survival in a favorable leukemic microenvironment and resistance to apoptosis, with the hope of providing a functional cure. In other words, it is possible to develop the combination therapy of TKs with drugs targeting genes or molecules more specifically, which is required for survival mechanisms of CML LSCs, while sparing normal HSCs for clinical benefits along with TKIs.
Collapse
Affiliation(s)
- Hanieh Mojtahedi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Leukemia Stem Cells as a Potential Target to Achieve Therapy-Free Remission in Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13225822. [PMID: 34830976 PMCID: PMC8616035 DOI: 10.3390/cancers13225822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Leukemia stem cells (LSCs, also known as leukemia-initiating cells) not only drive leukemia initiation and progression, but also contribute to drug resistance and/or disease relapse. Therefore, eradication of every last LSC is critical for a patient's long-term cure. Chronic myeloid leukemia (CML) is a myeloproliferative disorder that arises from multipotent hematopoietic stem and progenitor cells. Tyrosine kinase inhibitors (TKIs) have dramatically improved long-term outcomes and quality of life for patients with CML in the chronic phase. Point mutations of the kinase domain of BCR-ABL1 lead to TKI resistance through a reduction in drug binding, and as a result, several new generations of TKIs have been introduced to the clinic. Some patients develop TKI resistance without known mutations, however, and the presence of LSCs is believed to be at least partially associated with resistance development and CML relapse. We previously proposed targeting quiescent LSCs as a therapeutic approach to CML, and a number of potential strategies for targeting insensitive LSCs have been presented over the last decade. The identification of specific markers distinguishing CML-LSCs from healthy HSCs, and the potential contributions of the bone marrow microenvironment to CML pathogenesis, have also been explored. Nonetheless, 25% of CML patients are still expected to switch TKIs at least once, and various TKI discontinuation studies have shown a wide range in the incidence of molecular relapse (from 30% to 60%). In this review, we revisit the current knowledge regarding the role(s) of LSCs in CML leukemogenesis and response to pharmacological treatment and explore how durable treatment-free remission may be achieved and maintained after discontinuing TKI treatment.
Collapse
|
34
|
Ichii M, Oritani K, Toda J, Hosen N, Matsuda T, Kanakura Y. Signal-transducing adaptor protein-1 and protein-2 in hematopoiesis and diseases. Exp Hematol 2021; 105:10-17. [PMID: 34780812 DOI: 10.1016/j.exphem.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/04/2022]
Abstract
Inflammatory and immune signals are involved in stressed hematopoiesis under myeloablation, infection, chronic inflammation, and aging. These signals also affect malignant pathogenesis, and the dysregulated immune environment which causes the resistance to treatment. On activation, various types of protein tyrosine kinases in the cytoplasm mediate the cascade, leading to the transcription of target genes in the nucleus. Adaptor molecules are commonly defined as proteins that lack enzymatic activity, DNA-binding or receptor functions and possess protein-protein or protein-lipid interaction domains. By binding to specific domains of signaling molecules, adaptor proteins adjust the signaling responses after the ligation of receptors of soluble factors, including cytokines, chemokines, and growth factors, as well as pattern recognition receptors such as toll-like receptors. The signal-transducing adaptor protein (STAP) family regulates various intracellular signaling pathways. These proteins have a pleckstrin homology domain in the N-terminal region and an SRC-homology 2-like domain in the central region, representing typical binding structures as adapter proteins. Following the elucidation of the effects of STAPs on terminally differentiated immune cells, such as macrophages, T cells, mast cells, and basophils, recent findings have indicated the critical roles of STAP-2 in B-cell progenitor cells in marrow under hematopoietic stress and STAP-1 and -2 in BCR-ABL-transduced leukemogenesis. In this review, we focus on the role of STAPs in the bone marrow.
Collapse
Affiliation(s)
- Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Kenji Oritani
- Department of Hematology, Graduate School of Medical Science, International University of Health and Welfare, Narita, Japan
| | - Jun Toda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Sumitomo Hospital, Osaka, Japan
| |
Collapse
|
35
|
Matsushita M. Novel Treatment Strategies Utilizing Immune Reactions against Chronic Myelogenous Leukemia Stem Cells. Cancers (Basel) 2021; 13:cancers13215435. [PMID: 34771599 PMCID: PMC8582551 DOI: 10.3390/cancers13215435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Although tyrosine kinase inhibitors (TKIs) are highly effective in the treatment of patients with chronic myelogenous leukemia (CML), leukemic stem cells (LSCs) are known to be resistant to TKIs. As a result, the application of immunotherapies against LSCs may cure CML. Abstract Introduction of tyrosine kinase inhibitors (TKIs) has improved the prognosis of patients with chronic myelogenous leukemia (CML), and treatment-free remission (TFR) is now a treatment goal. However, about half of the patients experience molecular relapse after cessation of TKIs, suggesting that leukemic stem cells (LSCs) are resistant to TKIs. Eradication of the remaining LSCs using immunotherapies including interferon-alpha, vaccinations, CAR-T cells, and other drugs would be a key strategy to achieve TFR.
Collapse
Affiliation(s)
- Maiko Matsushita
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
36
|
Biological Therapies in the Treatment of Cancer-Update and New Directions. Int J Mol Sci 2021; 22:ijms222111694. [PMID: 34769123 PMCID: PMC8583892 DOI: 10.3390/ijms222111694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Biological therapies have changed the face of oncology by targeting cancerous cells while reducing the effect on normal tissue. This publication focuses mainly on new therapies that have contributed to the advances in treatment of certain malignancies. Immunotherapy, which has repeatedly proven to be a breakthrough therapy in melanoma, as well as B-ALL therapy with CAR T cells, are of great merit in this progress. These therapies are currently being developed by modifying bispecific antibodies and CAR T cells to improve their efficiency and bioavailability. Work on improving the therapy with oncolytic viruses is also progressing, and efforts are being made to improve the immunogenicity and stability of cancer vaccines. Combining various biological therapies, immunotherapy with oncolytic viruses or cancer vaccines is gaining importance in cancer therapy. New therapeutic targets are intensively sought among neoantigens, which are not immunocompromised, or antigens associated with tumor stroma cells. An example is fibroblast activation protein α (FAPα), the overexpression of which is observed in the case of tumor progression. Universal therapeutic targets are also sought, such as the neurotrophic receptor tyrosine kinase (NTRK) gene fusion, a key genetic driver present in many types of cancer. This review also raises the problem of the tumor microenvironment. Stromal cells can protect tumor cells from chemotherapy and contribute to relapse and progression. This publication also addresses the problem of cancer stem cells resistance to treatment and presents attempts to avoid this phenomenon. This review focuses on the most important strategies used to improve the selectivity of biological therapies.
Collapse
|
37
|
Krishnan V, Kim DDH, Hughes TP, Branford S, Ong ST. Integrating genetic and epigenetic factors in chronic myeloid leukemia risk assessment: toward gene expression-based biomarkers. Haematologica 2021; 107:358-370. [PMID: 34615339 PMCID: PMC8804571 DOI: 10.3324/haematol.2021.279317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer treatment is constantly evolving from a one-size-fits-all towards bespoke approaches for each patient. In certain solid cancers, including breast and lung, tumor genome profiling has been incorporated into therapeutic decision-making. For chronic phase chronic myeloid leukemia (CML), while tyrosine kinase inhibitor therapy is the standard treatment, current clinical scoring systems cannot accurately predict the heterogeneous treatment outcomes observed in patients. Biomarkers capable of segregating patients according to outcome at diagnosis are needed to improve management, and facilitate enrollment in clinical trials seeking to prevent blast crisis transformation and improve the depth of molecular responses. To this end, gene expression (GE) profiling studies have evaluated whether GE signatures at diagnosis are clinically informative. Patient material from a variety of sources has been profiled using microarrays, RNA sequencing and, more recently, single-cell RNA sequencing. However, differences in the cell types profiled, the technologies used, and the inherent complexities associated with the interpretation of genomic data pose challenges in distilling GE datasets into biomarkers with clinical utility. The goal of this paper is to review previous studies evaluating GE profiling in CML, and explore their potential as risk assessment tools for individualized CML treatment. We also review the contribution that acquired mutations, including those seen in clonal hematopoiesis, make to GE profiles, and how a model integrating contributions of genetic and epigenetic factors in resistance to tyrosine kinase inhibitors and blast crisis transformation can define a route to GE-based biomarkers. Finally, we outline a four-stage approach for the development of GE-based biomarkers in CML.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore; International Chronic Myeloid Leukemia Foundation
| | - Dennis Dong Hwan Kim
- International Chronic Myeloid Leukemia Foundation; Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto
| | - Timothy P Hughes
- International Chronic Myeloid Leukemia Foundation; School of Medicine, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Department of Haematology, Royal Adelaide Hospital, Adelaide
| | - Susan Branford
- International Chronic Myeloid Leukemia Foundation; School of Medicine, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Pharmacy and Medical Science, University of South Australia, Adelaide
| | - S Tiong Ong
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Medical School, Singapore, Singapore; International Chronic Myeloid Leukemia Foundation; Department of Haematology, Singapore General Hospital, Singapore, Singapore; Department of Medical Oncology, National Cancer Centre Singapore; Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|
38
|
Jiang G, Huang Z, Yuan Y, Tao K, Feng W. Intracellular delivery of anti-BCR/ABL antibody by PLGA nanoparticles suppresses the oncogenesis of chronic myeloid leukemia cells. J Hematol Oncol 2021; 14:139. [PMID: 34488814 PMCID: PMC8422775 DOI: 10.1186/s13045-021-01150-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The pathogenesis of chronic myeloid leukemia (CML) is the formation of the BCR/ABL protein, which is encoded by the bcr/abl fusion gene, possessing abnormal tyrosine kinase activity. Despite the wide application of tyrosine kinase inhibitors (TKIs) in CML treatment, TKIs drug resistance or intolerance limits their further usage in a subset of patients. Furthermore, TKIs inhibit the tyrosine kinase activity of the BCR/ABL oncoprotein while failing to eliminate the pathologenic oncoprotein. To develop alternative strategies for CML treatment using therapeutic antibodies, and to address the issue that antibodies cannot pass through cell membranes, we have established a novel intracellular delivery of anti-BCR/ABL antibodies, which serves as a prerequisite for CML therapy. METHODS Anti-BCR/ABL antibodies were encapsulated in poly(D, L-lactide-co-glycolide) nanoparticles (PLGA NPs) by a double emulsion method, and transferrin was labeled on the surface of the nanoparticles (Ab@Tf-Cou6-PLGA NPs). The characteristics of nanoparticles were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cellular uptake of nanoparticles was measured by flow cytometry (FCM). The effect of nanoparticles on the apoptosis and proliferation of CML cells was testified by FCM and CCK-8 assay. In addition, the anti-cancer impact of nanoparticles was evaluated in mouse models of CML. RESULTS The results demonstrated that the Ab@Tf-Cou6-PLGA NPs functioned as an intracellular deliverer of antibodies, and exhibited an excellent effect on degrading BCR/ABL oncoprotein in CML cells via the Trim-Away pathway. Treatment with Ab@Tf-Cou6-PLGA NPs inhibited the proliferation and induced the apoptosis of CML cells in vitro as well as impaired the oncogenesis ability of CML cells in vivo. CONCLUSIONS In conclusion, our study indicated that this approach achieved safe and efficient intracellular delivery of antibodies and degraded BCR/ABL oncoprotein via the Trim-Away pathway, which provides a promising therapeutic strategy for CML patients, particularly those with TKI resistance.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinogenesis/pathology
- Cell Line, Tumor
- Drug Carriers/chemistry
- Female
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice, SCID
- Nanoparticles/chemistry
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- Mice
Collapse
Affiliation(s)
- Guoyun Jiang
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zhenglan Huang
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ying Yuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Kun Tao
- Department of Immunology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Wenli Feng
- Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
39
|
Soverini S, De Santis S, Monaldi C, Bruno S, Mancini M. Targeting Leukemic Stem Cells in Chronic Myeloid Leukemia: Is It Worth the Effort? Int J Mol Sci 2021; 22:ijms22137093. [PMID: 34209376 PMCID: PMC8269304 DOI: 10.3390/ijms22137093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a classical example of stem cell cancer since it arises in a multipotent hematopoietic stem cell upon the acquisition of the t(9;22) chromosomal translocation, that converts it into a leukemic stem cell (LSC). The resulting BCR-ABL1 fusion gene encodes a deregulated tyrosine kinase that is recognized as the disease driver. Therapy with tyrosine kinase inhibitors (TKIs) eliminates progenitor and more differentiated cells but fails to eradicate quiescent LSCs. Thus, although many patients obtain excellent responses and a proportion of them can even attempt treatment discontinuation (treatment free remission [TFR]) after some years of therapy, LSCs persist, and represent a potentially dangerous reservoir feeding relapse and hampering TFR. Over the past two decades, intensive efforts have been devoted to the characterization of CML LSCs and to the dissection of the cell-intrinsic and -extrinsic mechanisms sustaining their persistence, in an attempt to find druggable targets enabling LSC eradication. Here we provide an overview and an update on these mechanisms, focusing in particular on the most recent acquisitions. Moreover, we provide a critical appraisal of the clinical relevance and feasibility of LSC targeting in CML.
Collapse
MESH Headings
- Drug Delivery Systems
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Neoplastic Stem Cells/enzymology
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Simona Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, 40138 Bologna, Italy; (S.D.S.); (C.M.); (S.B.)
- Correspondence: ; Tel.: +39-051-214-3832
| | - Sara De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, 40138 Bologna, Italy; (S.D.S.); (C.M.); (S.B.)
| | - Cecilia Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, 40138 Bologna, Italy; (S.D.S.); (C.M.); (S.B.)
| | - Samantha Bruno
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, 40138 Bologna, Italy; (S.D.S.); (C.M.); (S.B.)
| | - Manuela Mancini
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
40
|
Delineation of target expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML. Blood Adv 2021; 4:5118-5132. [PMID: 33085758 DOI: 10.1182/bloodadvances.2020001742] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
In an attempt to identify novel markers and immunological targets in leukemic stem cells (LSCs) in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), we screened bone marrow (BM) samples from patients with AML (n = 274) or CML (n = 97) and controls (n = 288) for expression of cell membrane antigens on CD34+/CD38- and CD34+/CD38+ cells by multicolor flow cytometry. In addition, we established messenger RNA expression profiles in purified sorted CD34+/CD38- and CD34+/CD38+ cells using gene array and quantitative polymerase chain reaction. Aberrantly expressed markers were identified in all cohorts. In CML, CD34+/CD38- LSCs exhibited an almost invariable aberration profile, defined as CD25+/CD26+/CD56+/CD93+/IL-1RAP+. By contrast, in patients with AML, CD34+/CD38- cells variably expressed "aberrant" membrane antigens, including CD25 (48%), CD96 (40%), CD371 (CLL-1; 68%), and IL-1RAP (65%). With the exception of a subgroup of FLT3 internal tandem duplication-mutated patients, AML LSCs did not exhibit CD26. All other surface markers and target antigens detected on AML and/or CML LSCs, including CD33, CD44, CD47, CD52, CD105, CD114, CD117, CD133, CD135, CD184, and roundabout-4, were also found on normal BM stem cells. However, several of these surface targets, including CD25, CD33, and CD123, were expressed at higher levels on CD34+/CD38- LSCs compared with normal BM stem cells. Moreover, antibody-mediated immunological targeting through CD33 or CD52 resulted in LSC depletion in vitro and a substantially reduced LSC engraftment in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Together, we have established surface marker and target expression profiles of AML LSCs and CML LSCs, which should facilitate LSC enrichment, diagnostic LSC phenotyping, and development of LSC-eradicating immunotherapies.
Collapse
|
41
|
Mutation accumulation in cancer genes relates to nonoptimal outcome in chronic myeloid leukemia. Blood Adv 2021; 4:546-559. [PMID: 32045476 DOI: 10.1182/bloodadvances.2019000943] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm accounting for ∼15% of all leukemia. Progress of the disease from an indolent chronic phase to the more aggressive accelerated phase or blast phase (BP) occurs in a minority of cases and is associated with an accumulation of somatic mutations. We performed genetic profiling of 85 samples and transcriptome profiling of 12 samples from 59 CML patients. We identified recurrent somatic mutations in ABL1 (37%), ASXL1 (26%), RUNX1 (16%), and BCOR (16%) in the BP and observed that mutation signatures in the BP resembled those of acute myeloid leukemia (AML). We found that mutation load differed between the indolent and aggressive phases and that nonoptimal responders had more nonsilent mutations than did optimal responders at the time of diagnosis, as well as in follow-up. Using RNA sequencing, we identified other than BCR-ABL1 cancer-associated hybrid genes in 6 of the 7 BP samples. Uncovered expression alterations were in turn associated with mechanisms and pathways that could be targeted in CML management and by which somatic alterations may emerge in CML. Last, we showed the value of genetic data in CML management in a personalized medicine setting.
Collapse
|
42
|
Westermann J, Bullinger L. Precision medicine in myeloid malignancies. Semin Cancer Biol 2021; 84:153-169. [PMID: 33895273 DOI: 10.1016/j.semcancer.2021.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Myeloid malignancies have always been at the forefront of an improved understanding of the molecular pathogenesis of cancer. In accordance, over the last years, basic research focusing on the aberrations underlying malignant transformation of myeloid cells has provided the basis for precision medicine approaches and subsequently has led to the development of powerful therapeutic strategies. In this review article, we will recapitulate what has happened since in the 1980s the use of all-trans retinoic acid (ATRA), as a first targeted cancer therapy, has changed one of the deadliest leukemia subtypes, acute promyelocytic leukemia (APL), into one that can be cured without classical chemotherapy today. Similarly, imatinib, the first molecularly designed cancer therapy, has revolutionized the management of chronic myeloid leukemia (CML). Thus, targeted treatment approaches have become the paradigm for myeloid malignancy, but many questions still remain unanswered, especially how identical mutations can be associated with different phenotypes. This might be linked to the impact of the cell of origin, gene-gene interactions, or the tumor microenvironment including the immune system. Continuous research in the field of myeloid neoplasia has started to unravel the molecular pathways that are not only crucial for initial treatment response, but also resistance of leukemia cells under therapy. Ongoing studies focusing on leukemia cell vulnerabilities do already point to novel (targetable) "Achilles heels" that can further improve myeloid cancer therapy.
Collapse
Affiliation(s)
- Jörg Westermann
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
43
|
Wu M, Xu J, Zhu S, Lei J, Gao J. Fuzzy C-Means based LSED analysis model of single-cell RNA sequencing data for gene expression difference data. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-189659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Analysis of single-cell RNA sequencing (scRNA-seq) data is often complicate due to the sparsity and high data dimensionality. In this work, we proposed Fuzzy C-means based linear stable-exponential distribution (LSED) model for analyzing scRNA-seq count data of chronic myeloid leukemia (CML) patients. We propose pipelines stages for analysis in which noisy and inconsistent data form sequencing is removed during data preprocessing, this process data then form the cluster of gene feature using fuzzy c-means (FCM) clustering, relevant features are extracted during feature extraction approach. These extracted features are then fed into LSED model in order to difference feature data of gene expression. Finally we evaluate the performance for proposed analysis model based on parameter estimation, distribution comparison and parameter analysis. From the result analysis it was observed that proposed analysis model parameter reflect change in condition of patient more effectively as well as this model fits difference data of gene expression in more better way in comparison to Cauchy and stable distribution. Additional, the results of Gene-set enrichment analysis specify the affinity of proposed model can replicate the distinct enhancement of BCR-ABL+ stem cell as well as BCR-ABL- stem cells. Significantly, proposed FCM based LSED analysis model studies CML from the perspective of statistical models, which present a new sight for CML scientific research.
Collapse
Affiliation(s)
- Min Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Junhua Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Shanshan Zhu
- School of Science, Jiangnan University, Wuxi, China
| | - Jinzhi Lei
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, China
| | - Jie Gao
- School of Science, Jiangnan University, Wuxi, China
| |
Collapse
|
44
|
Ilhan O, Narli Ozdemir Z, Dalva K, Arslan A, Okay Ozgeyik M, Ipek S, Saydam G, Haznedaroglu IC. Leukemic stem cells shall be searched in the bone marrow before "tyrosine kinase inhibitor-discontinuation" in chronic myeloid leukemia. Int J Lab Hematol 2021; 43:1110-1116. [PMID: 33834631 DOI: 10.1111/ijlh.13528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Leukemic stem cells (LSCs) of chronic myeloid leukemia (CML), persisting in the bone marrow (BM) niche, could be responsible for the relapses within the patients of whom the treatment-free remission (TFR) had been attempted. We assessed the presence of the CML LSCs in the peripheral blood (PB) and concurrently in the BM in the patients with chronic-phase CML (CP CML). PATIENTS AND METHODS Thirty-eight patients with CP CML were included into the study. CD45+ /CD34+ /CD38- cells with positive CD26 expression were considered as CML LSCs (CD26+ LSC) by using multiparameter flow cytometry (FCM). RESULTS Mean BCR-ABL, PB LSC, and BM LSC were 58.528 IS (37.405-83.414 IS), 237.5 LSC/μL (16-737.5 LSC/μL), and 805 LSC/106 WBCs (134.6-2470 LSC/106 WBCs), respectively, in newly diagnosed CML patients. In the patients with BCR-ABL positive hematopoiesis, mean BCR-ABL, PB LSCs, and BM LSCs were 30.09 IS (0.024-147.690 IS), 13.5 LSC/μL (0-248.7 LSC/μL) and 143.5 LSC/106 WBCs (9-455.2 LSC/106 WBCs), respectively. No CML LSCs were detected in PB of patients who achieved deep molecular response (DMR). BM LSCs of the patients who were in DMR were 281.1 LSC/106 WBCs (3.1-613.7 LSC/106 WBCs). The amount of PB LSCs was highest in patients with newly diagnosed CML (P < .001). CONCLUSION LSCs persisted in the BM of the patients with DMR, whereas there was no LSCs in the peripheral blood. The investigation of the CML LSCs in bone marrow before deciding TKI discontinuation could be justified to achieve and maintain stable TFR.
Collapse
Affiliation(s)
- Osman Ilhan
- Department of Hematology, Ankara University School of Medicine, Ankara, Turkey
| | - Zehra Narli Ozdemir
- Department of Hematology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Klara Dalva
- Department of Hematology, Ankara University School of Medicine, Ankara, Turkey
| | - Aysenur Arslan
- Department of Hematology, Ege University School of Medicine, İzmir, Turkey
| | - Mufide Okay Ozgeyik
- Department of Hematology, Ministry of Health Eskisehir City Hospital, Eskisehir, Turkey
| | - Senay Ipek
- Department of Hematology, Ankara University School of Medicine, Ankara, Turkey
| | - Guray Saydam
- Department of Hematology, Ege University School of Medicine, İzmir, Turkey
| | | |
Collapse
|
45
|
Targeting Chronic Myeloid Leukemia Stem/Progenitor Cells Using Venetoclax-Loaded Immunoliposome. Cancers (Basel) 2021; 13:cancers13061311. [PMID: 33804056 PMCID: PMC8000981 DOI: 10.3390/cancers13061311] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
CML is a hematopoietic stem-cell disorder emanating from breakpoint cluster region/Abelson murine leukemia 1 (BCR/ABL) translocation. Introduction of different TKIs revolutionized treatment outcome in CML patients, but CML LSCs seem insensitive to TKIs and are detectable in newly diagnosed and resistant CML patients and in patients who discontinued therapy. It has been reported that CML LSCs aberrantly express some CD markers such as CD26 that can be used for the diagnosis and for targeting. In this study, we confirmed the presence of CD26+ CML LSCs in newly diagnosed and resistant CML patients. To selectively target CML LSCs/progenitor cells that express CD26 and to spare normal HSCs/progenitor cells, we designed a venetoclax-loaded immunoliposome (IL-VX). Our results showed that by using this system we could selectively target CD26+ cells while sparing CD26- cells. The efficiency of venetoclax in targeting CML LSCs has been reported and our system demonstrated a higher potency in cell death induction in comparison to free venetoclax. Meanwhile, treatment of patient samples with IL-VX significantly reduced CD26+ cells in both stem cells and progenitor cells population. In conclusion, this approach showed that selective elimination of CD26+ CML LSCs/progenitor cells can be obtained in vitro, which might allow in vivo reduction of side effects and attainment of treatment-free, long-lasting remission in CML patients.
Collapse
|
46
|
Zhao H, Deininger M. Eradicating residual chronic myeloid leukaemia: basic research lost in translation. LANCET HAEMATOLOGY 2021; 8:e101-e104. [PMID: 33513367 DOI: 10.1016/s2352-3026(21)00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Helong Zhao
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT 84112, USA
| | - Michael Deininger
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
47
|
Ruiz MS, Sánchez MB, Bonecker S, Furtado C, Koile D, Yankilevich P, Cranco S, Custidiano MDR, Freitas J, Moiraghi B, Pérez MA, Pavlovsky C, Varela AI, Ventriglia V, Sánchez Ávalos JC, Larripa I, Zalcberg I, Mordoh J, Valent P, Bianchini M. miRNome profiling of LSC-enriched CD34 +CD38 -CD26 + fraction in Ph + CML-CP samples from Argentinean patients: a potential new pharmacogenomic tool. Front Pharmacol 2021; 11:612573. [PMID: 33569005 PMCID: PMC7869017 DOI: 10.3389/fphar.2020.612573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloid stem cell neoplasm characterized by an expansion of myeloid progenitor cells and the presence of BCR-ABL1 oncoprotein. Since the introduction of specific BCR-ABL1 tyrosine kinase inhibitors (TKI), overall survival has improved significantly. However, under long-term therapy patients may have residual disease that originates from TKI-resistant leukemic stem cells (LSC). In this work, we analyzed the miRNome of LSC-enriched CD34+CD38−CD26+ and normal hematopoietic stem cells (HSC) fractions obtained from the same chronic phase (CP) CML patients, and stem and progenitor cells obtained from healthy donors (HD) by next-generation sequencing. We detected a global decrease of microRNA levels in LSC-enriched CD34+CD38−CD26+ and HSC fractions from CML-CP patients, and decreased levels of microRNAs and snoRNAs from a genomic cluster in chromosome 14, suggesting a mechanism of silencing of multiple non-coding RNAs. Surprisingly, HSC from CML-CP patients, despite the absence of BCR-ABL1 expression, showed an altered miRNome. We confirmed by RT-qPCR that the levels of miR-196a-5p were increased more than nine-fold in CD26+ (BCR-ABL1+) vs. CD26− (BCR-ABL1−) CD34+CD38− fractions from CML-CP patients at diagnosis, and in silico analysis revealed a significant association to lipid metabolism and hematopoiesis functions. In the light of recent descriptions of increased oxidative metabolism in CML LSC-enriched fractions, these results serve as a guide for future functional studies that evaluate the role of microRNAs in this process. Metabolic vulnerabilities in LSCs open the road for new therapeutic strategies. This is the first report of the miRNome of CML-CP CD34+CD38− fractions that distinguishes between CD26+ (BCR-ABL1+) and their CD26− (BCR-ABL1-) counterparts, providing valuable data for future studies.
Collapse
Affiliation(s)
- María Sol Ruiz
- Centro de Investigaciones Oncológicas-Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Belén Sánchez
- Centro de Investigaciones Oncológicas-Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| | - Simone Bonecker
- Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Carolina Furtado
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Daniel Koile
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricio Yankilevich
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Cranco
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | - Beatriz Moiraghi
- Hospital J. M. Ramos Mejía, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | - Ana Inés Varela
- Hospital J. M. Ramos Mejía, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | - Irene Larripa
- Instituto de Medicina Experimental, CONICET/Academia Nacional de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ilana Zalcberg
- Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - José Mordoh
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos, Aires, Argentina.,IIBBA-CONICET, Fundación Instituto Leloir, Buenos, Aires, Argentina.,Instituto Alexander Fleming, Buenos, Aires, Argentina
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Michele Bianchini
- Centro de Investigaciones Oncológicas-Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
48
|
Minciacchi VR, Kumar R, Krause DS. Chronic Myeloid Leukemia: A Model Disease of the Past, Present and Future. Cells 2021; 10:cells10010117. [PMID: 33435150 PMCID: PMC7827482 DOI: 10.3390/cells10010117] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia (CML) has been a "model disease" with a long history. Beginning with the first discovery of leukemia and the description of the Philadelphia Chromosome and ending with the current goal of achieving treatment-free remission after targeted therapies, we describe here the journey of CML, focusing on molecular pathways relating to signaling, metabolism and the bone marrow microenvironment. We highlight current strategies for combination therapies aimed at eradicating the CML stem cell; hopefully the final destination of this long voyage.
Collapse
MESH Headings
- Epigenesis, Genetic
- History, 20th Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/history
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Models, Biological
- Molecular Targeted Therapy
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Valentina R. Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
| | - Daniela S. Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt, Germany
- Faculty of Medicine, Medical Clinic II, Johann Wolfgang Goethe University, 60596 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-63395-500; Fax: +49-69-63395-519
| |
Collapse
|
49
|
Improving outcomes in chronic myeloid leukemia through harnessing the immunological landscape. Leukemia 2021; 35:1229-1242. [PMID: 33833387 PMCID: PMC8102187 DOI: 10.1038/s41375-021-01238-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
The quest for treatment-free remission (TFR) and deep molecular response (DMR) in chronic myeloid leukemia (CML) has been profoundly impacted by tyrosine kinase inhibitors (TKIs). Immunologic surveillance of residual leukemic cells is hypothesized to be one of the critical factors in successful TFR, with self-renewing leukemic stem cells implicated in relapse. Immunological characterization in CML may help to develop novel immunotherapies that specifically target residual leukemic cells upon TKI discontinuation to improve TFR rates. This review focuses on immune dysfunction in newly diagnosed CML patients, and the role that TKIs and other therapies have in restoring immune surveillance. Immune dysfunction and immunosurveillance in CML points towards several emerging areas in the key goals of DMR and TFR, including: (1) Aspects of innate immune system, in particular natural killer cells and the newly emerging target plasmacytoid dendritic cells. (2) The adaptive immune system, with promise shown in regard to leukemia-associated antigen vaccine-induced CD8 cytotoxic T-cells (CTL) responses, increased CTL expansion, and immune checkpoint inhibitors. (3) Immune suppressive myeloid-derived suppressor cells and T regulatory cells that are reduced in DMR and TFR. (4) Immunomodulator mesenchymal stromal cells that critically contribute to leukomogenesis through immunosuppressive properties and TKI- resistance. Therapeutic strategies that leverage existing immunological approaches include donor lymphocyte infusions, that continue to be used, often in combination with TKIs, in patients relapsing following allogeneic stem cell transplant. Furthermore, previous standards-of-care, including interferon-α, hold promise in attaining TFR in the post-TKI era. A deeper understanding of the immunological landscape in CML is therefore vital for both the development of novel and the repurposing of older therapies to improve TFR outcomes.
Collapse
|
50
|
Jeanpierre S, Arizkane K, Thongjuea S, Grockowiak E, Geistlich K, Barral L, Voeltzel T, Guillemin A, Gonin-Giraud S, Gandrillon O, Nicolini FE, Mead AJ, Maguer-Satta V, Lefort S. The quiescent fraction of chronic myeloid leukemic stem cells depends on BMPR1B, Stat3 and BMP4-niche signals to persist in patients in remission. Haematologica 2021; 106:111-122. [PMID: 32001529 PMCID: PMC7776261 DOI: 10.3324/haematol.2019.232793] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic myeloid leukemia arises from the transformation of hematopoietic stem cells by the BCR-ABL oncogene. Though transformed cells are predominantly BCR-ABL-dependent and sensitive to tyrosine kinase inhibitor treatment, some BMPR1B+ leukemic stem cells are treatment-insensitive and rely, among others, on the bone morphogenetic protein (BMP) pathway for their survival via a BMP4 autocrine loop. Here, we further studied the involvement of BMP signaling in favoring residual leukemic stem cell persistence in the BM of patients having achieved remission under treatment. We demonstrate by single-cell RNASequencing analysis that a sub-fraction of surviving BMPR1B+ leukemic stem cells are co-enriched in BMP signaling, quiescence and stem cell signatures, without modulation of the canonical BMP target genes, but enrichment in actors of the Jak2/Stat3 signaling pathway. Indeed, based on a new model of persisting CD34+CD38– leukemic stem cells, we show that BMPR1B+ cells display co-activated Smad1/5/8 and Stat3 pathways. Interestingly, we reveal that only the BMPR1B+ cells adhering to stromal cells display a quiescent status. Surprisingly, this quiescence is induced by treatment, while non-adherent BMPR1B+ cells treated with tyrosine kinase inhibitors continued to proliferate. The subsequent targeting of BMPR1B and Jak2 pathways decreased quiescent leukemic stem cells by promoting their cell cycle re-entry and differentiation. Moreover, while Jak2-inhibitors alone increased BMP4 production by mesenchymal cells, the addition of the newly described BMPR1B inhibitor (E6201) impaired BMP4-mediated production by stromal cells. Altogether, our data demonstrate that targeting both BMPR1B and Jak2/Stat3 efficiently impacts persisting and dormant leukemic stem cells hidden in their BM microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Lea Barral
- Centre de Recherche en Cancérologie de Lyon
| | | | - Anissa Guillemin
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Superieure - Lyon
| | - Sandrine Gonin-Giraud
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Superieure - Lyon
| | - Olivier Gandrillon
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Superieure - Lyon
| | | | | | | | | |
Collapse
|