1
|
Del Rio Verduzco A, Al Darobi A, Heimbigner A, Heers H, Ulrickson M. Enasidenib in relapsed aggressive systemic mastocytosis with IDH2 mutation. Leuk Lymphoma 2024:1-4. [PMID: 39439062 DOI: 10.1080/10428194.2024.2410942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Affiliation(s)
| | - Ali Al Darobi
- Banner MD Anderson Cancer Center, Hematology Research Representative, Gilbert, AZ, USA
| | | | - Hayley Heers
- Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | | |
Collapse
|
2
|
Cilloni D, Maffeo B, Savi A, Danzero AC, Bonuomo V, Fava C. Detection of KIT Mutations in Systemic Mastocytosis: How, When, and Why. Int J Mol Sci 2024; 25:10885. [PMID: 39456668 PMCID: PMC11507058 DOI: 10.3390/ijms252010885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
More than 90% of patients affected by mastocytosis are characterized by a somatic point mutation of KIT, which induces ligand-independent activation of the receptor and downstream signal triggering, ultimately leading to mast cell accumulation and survival. The most frequent mutation is KIT p.D816V, but other rarer mutations can also be found. These mutations often have a very low variant allele frequency (VAF), well below the sensitivity of common next-generation sequencing (NGS) methods used in routine diagnostic panels. Highly sensitive methods are developing for detecting mutations. This review summarizes the current indications on the recommended methods and on how to manage and interpret molecular data for the diagnosis and follow-up of patients with mastocytosis.
Collapse
Affiliation(s)
- Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Mauriziano Hospital, 10128 Turin, Italy; (B.M.); (A.S.); (A.C.D.); (V.B.); (C.F.)
| | | | | | | | | | | |
Collapse
|
3
|
Tremblay D, Wagner NE, Mascarenhas J. Management of Advanced Systemic Mastocytosis: Clinical Challenges. J Blood Med 2024; 15:421-433. [PMID: 39279879 PMCID: PMC11402342 DOI: 10.2147/jbm.s366367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024] Open
Abstract
Advanced systemic mastocytosis (AdvSM) is a rare hematologic malignancy with organ damage and compromised life expectancy arising from organ accumulation of neoplastic mast cells. Identification of the gain-of-function KITD816V in the majority of cases has accelerated pharmaceutical development culminating with the development of selective KIT inhibitors such as avapritinib. While the advent of these therapies has improved the quality and quantity of life in patients with AdvSM, current challenges remain in the management of this disease. In this review, we summarize the present and future therapeutics landscape of AdvSM, highlighting the development of novel KIT inhibitors including elenestinib and bezuclastinib. We also explore the continued role of additional treatment modalities including allogeneic stem cell transplantation before discussing unresolved clinical challenges in the management of AdvSM.
Collapse
Affiliation(s)
- Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole E Wagner
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Chifotides HT, Bose P. SOHO State of the Art Update and Next Questions: Current and Emerging Therapies for Systemic Mastocytosis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)00239-8. [PMID: 39168723 DOI: 10.1016/j.clml.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 08/23/2024]
Abstract
Systemic mastocytosis (SM) is a heterogeneous myeloid neoplasm, characterized by clonal proliferation of mast cells (MCs) in ≥ 1 extracutaneous organs, including the bone marrow (BM) and gastrointestinal tract. Aberrant MC proliferation is driven by mutation KIT D816V in ≈90-95% of SM patients. Indolent SM (ISM) is the most common SM subtype with various symptoms that can be severe. Advanced SM (AdvSM) has markedly poor prognosis. The advent of KIT inhibitors, targeting mutant KIT and neoplastic MCs, led to a paradigm shift in SM management and markedly improved outcomes. Midostaurin inaugurated the era of KIT inhibitors and was approved for AdvSM in 2017. Avapritinib is the first highly potent and selective inhibitor of KIT D816V that was approved to treat AdvSM and symptomatic ISM (platelets ≥ 50 × 109/L), in the US, in 2021 and 2023, respectively. Pooled analysis of the EXPLORER and PATHFINDER studies, assessing avapritinib in AdvSM, demonstrated rapid and profound reductions (≥ 50%) in markers of MC burden, high response rates (71-75%), and prolonged survival. In the PIONEER study, avapritinib significantly and rapidly improved symptoms/quality of life, and reduced markers of MC burden in ISM patients. The investigational agents bezuclastinib and elenestinib are highly potent and selective inhibitors of KIT D816V with minimal blood-brain barrier penetration. Bezuclastinib reduced markers of MC burden by ≥ 50% in ≈50% of AdvSM patients and ≈90-100% of nonAdvSM patients and reduced symptoms (≥ 50%) in the APEX and SUMMIT studies, respectively. Elenestinib demonstrated dose-dependent efficacy in reducing MC burden markers and improved symptoms in ISM patients in the HARBOR study.
Collapse
Affiliation(s)
- Helen T Chifotides
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
5
|
McLornan DP, Czerw T, Damaj G, Ethell M, Gurnari C, Hernández-Boluda JC, Polverelli N, Schwaab J, Sockel K, Raffaella G, Onida F, Sánchez-Ortega I, Battipaglia G, Elena C, Gotlib J, Reiter A, Rossignol J, Ustun C, Valent P, Yakoub-Agha I, Radia DH. Allogeneic haematopoietic cell transplantation for advanced systemic mastocytosis: Best practice recommendations on behalf of the EBMT Practice Harmonisation and Guidelines Committee. Leukemia 2024; 38:699-711. [PMID: 38472477 DOI: 10.1038/s41375-024-02182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Systemic Mastocytosis (SM) is a multifaceted clinically heterogeneous disease. Advanced SM (AdvSM) comprises three entities: aggressive SM (ASM), mast cell leukaemia (MCL) and SM with an associated hematologic neoplasm (SM-AHN), the latter accounting for 60-70% of all AdvSM cases. Detection of a disease-triggering mutation in the KIT gene (esp. KIT D816V) in >90% of the patients with ASM or SM-AHN has led to a significant improvement in therapeutic options by the implementation of two KIT-targeting kinase inhibitors: midostaurin and avapritinib. Although complete remissions have been reported, neither of these targeted agents is 'curative' in all patients and the duration of responses varies. The median overall survival, depending on the WHO subtype and scoring result, is approximately 1 to 4 years. Although the European Competence Network on Mastocytosis (ECNM) and American Initiative in Mast Cell Diseases (AIM) consensus groups recommend allogeneic haematopoietic cell transplantation (allo-HCT) in drug-resistant and other high-risk patients, there is a relative lack of information to guide clinicians on which patients with AdvSM should be considered for transplant, and how KIT inhibitors may fit into the transplant algorithm, including their use pre- and post-transplant to optimise outcomes. Following the generation of an expert panel with a specialist interest in allo-HCT and mastocytosis, these best practice recommendations were generated according to the European Society for Blood and Marrow Transplantation (EBMT) Practice Harmonisation and guidelines and ECNM methodology. We aim to provide a practical, clinically relevant and up-to-date framework to guide allo-HCT in AdvsM in 2024 and beyond.
Collapse
Affiliation(s)
- Donal P McLornan
- Chair of the Chronic Malignancies Working Party of the EBMT. Department of Haematology and Stem Cell Transplantation, University College Hospital, London, UK.
| | - Tomasz Czerw
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Gandhi Damaj
- Haematology Institute, Normandy University School of Medicine, Caen, France
| | - Mark Ethell
- Department of Haematology, The Royal Marsden NHS Hospital, Sutton, UK
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Nicola Polverelli
- Unit of Bone Marrow Transplantation, Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Katja Sockel
- Medical Clinic and Policlinic I, University Hospital Dresden, TU Dresden, Germany
| | - Greco Raffaella
- Co-Chair of the Practice Harmonization and Guidelines Committee of EBMT and Chair of the ADWP of the EBMT. Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Hospital, Milano, Italy
| | - Francesco Onida
- Co-Chair of the Practice Harmonization and Guidelines Committee of the EBMT. ASST Fatebenefratelli-Sacco-University of Milan, Milano, Italy
| | - Isabel Sánchez-Ortega
- Secretary of the Practice Harmonization and Guidelines Committee of EBMT, EBMT Medical Officer, Executive Office, Barcelona, Spain
| | | | - Chiara Elena
- Department of Hematology Oncology, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Julien Rossignol
- Center National de Référence des Mastocytoses (CEREMAST), Service d'hématologie adulte, Hôpitaux Necker-Enfants Malades et Cochin, Paris, France
| | - Celalettin Ustun
- Division of Hematology/Oncology/Cell Therapy, Rush University, Chicago, IL, USA
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Director of the Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Coordinator of the European Competence Network on Mastocytosis (ECNM), Vienna, Austria
| | - Ibrahim Yakoub-Agha
- Chair of the EBMT Practice Harmonization and Guidelines Committee. CHU de Lille, Univ Lille, INSERM U1286, Infinite, 59000, Lille, France
| | - Deepti H Radia
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Lübke J, Christen D, Schwaab J, Kaiser A, Naumann N, Shoumariyeh K, Jentzsch M, Sockel K, Schaffrath J, Ayuk FA, Stelljes M, Hilgendorf I, Sala E, Kaivers J, Schönland S, Wittke C, Hertenstein B, Radsak M, Kaiser U, Brückl V, Kröger N, Brümmendorf TH, Hofmann WK, Klein S, Jost E, Reiter A, Panse J. Allogeneic Hematopoietic Cell Transplantation in Advanced Systemic Mastocytosis: A retrospective analysis of the DRST and GREM registries. Leukemia 2024; 38:810-821. [PMID: 38448757 PMCID: PMC10997505 DOI: 10.1038/s41375-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024]
Abstract
We identified 71 patients with AdvSM (aggressive SM [ASM], SM with an associated hematologic neoplasm [SM-AHN, e.g., acute myeloid leukemia, SM-AML], mast cell leukemia [MCL]) in two national registries (DRST/GREM) who received an allogeneic hematopoietic cell transplantation (alloHCT) performed in Germany from 1999-2021. Median overall survival (OS) of ASM/SM-AHN (n = 30, 45%), SM-AML (n = 28, 39%) and MCL ± AHN (n = 13, 19%) was 9.0, 3.3 and 0.9 years (P = 0.007). Improved median OS was associated with response of SM (17/41, 41%; HR 0.4 [0.2-0.9], P = 0.035) and/or of AHN (26/43, 60%, HR 0.3 [0.1-0.7], P = 0.004) prior to alloHCT. Adverse predictors for OS included absence of KIT D816V (10/61, 16%, HR 2.9 [1.2-6.5], P < 0.001) and a complex karyotype (9/60, 15%, HR 4.2 [1.8-10.0], P = 0.016). HLA-match, conditioning type or transplantation at centers reporting above-average alloHCTs (≥7) had no impact on OS. Taking into account competing events at years 1, 3 and 5, relapse-related mortality and non-relapse mortality rate were 15%/23%, 20%/30% and 23%/35%, respectively. Irrespective of subtype, subsequent treatment response was achieved in 13/30 (43%) patients and was highest on midostaurin/avapritinib (7/9, 78%). We conclude that outcome of alloHCT in AdvSM is more affected by disease phenotype and treatment response prior to transplant than by transplant characteristics.
Collapse
Affiliation(s)
- Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Deborah Christen
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany & Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Aachen, Germany
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Kaiser
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany & Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Aachen, Germany
| | - Nicole Naumann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany and German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Madlen Jentzsch
- Clinic and Policlinic for Hematology and Cellular Therapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Katja Sockel
- Medical Department I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Judith Schaffrath
- Department of Internal Medicine IV, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Francis A Ayuk
- Department of Stem Cell Transplantation with Research Department Cell and Gene Therapy University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Stelljes
- Department of Medicine A/Hematology and Oncology, University of Muenster, Münster, Germany
| | - Inken Hilgendorf
- Universitätsklinikum Jena, Klinik für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Jena, Germany
| | - Elisa Sala
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Jennifer Kaivers
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Schönland
- Department of Internal Medicine V, Division of Hematology/Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Wittke
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | | | - Markus Radsak
- 3rd Department of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ulrich Kaiser
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Valeska Brückl
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation with Research Department Cell and Gene Therapy University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim H Brümmendorf
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany & Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Aachen, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Klein
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Edgar Jost
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany & Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Aachen, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany.
| | - Jens Panse
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany & Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Aachen, Germany
| |
Collapse
|
7
|
Pardanani A, Reichard K, Tefferi A. Advanced systemic mastocytosis-Revised classification, new drugs and how we treat. Br J Haematol 2024; 204:402-414. [PMID: 38054381 DOI: 10.1111/bjh.19245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Mastocytosis constitutes the neoplastic proliferation of mast cells and is broadly classified into systemic mastocytosis (SM), cutaneous mastocytosis and mast cell sarcoma. SM is further partitioned into advanced (AdvSM) and non-advanced (SM-non-Adv) subcategories. AdvSM includes aggressive SM (ASM), SM with an associated haematological neoplasm (SM-AHN) and mast cell leukaemia (MCL). In 2022, two separate expert committees representing the 5th edition of the World Health Organization (WHO5) and the International Consensus (ICC) classification systems submitted revised classification criteria for SM, highlighted by the ICC-proposed incorporation of mast cell cytomorphology in the diagnostic criteria for MCL and myeloid-lineage restriction for the AHN component in SM-AHN. Recent developments in SM also include the introduction of KIT-targeting tyrosine kinase inhibitors (KITi), including midostaurin and avapritinib, both drugs have shown potent activity in reducing mast cell and mutant KIT burden and alleviating mast cell-associated organopathy and mediator symptoms; however, their overall impact on survival or superiority over pre-KITi era treatment options (e.g. cladribine) has not been studied in a controlled setting. In the current review, we provide a summary of recent changes in disease classification and an analysis of recent clinical trials and their impact on our current treatment approach in AdvSM.
Collapse
Affiliation(s)
| | - Kaaren Reichard
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Naumann N, Rudelius M, Lübke J, Christen D, Bresser J, Sotlar K, Metzgeroth G, Fabarius A, Hofmann WK, Panse J, Horny HP, Cross NCP, Reiter A, Schwaab J. Poor Applicability of Currently Available Prognostic Scoring Systems for Prediction of Outcome in KIT D816V-Negative Advanced Systemic Mastocytosis. Cancers (Basel) 2024; 16:593. [PMID: 38339343 PMCID: PMC10854835 DOI: 10.3390/cancers16030593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Within our nationwide registry, we identified a KIT D816V mutation (KIT D816Vpos.) in 280/299 (94%) patients with advanced systemic mastocytosis (AdvSM). Age, cytopenias and the presence of additional somatic mutations confer inferior overall survival (OS). However, little is known about the characteristics of KIT D816V-negative (D816Vneg.) AdvSM. In 19 D816Vneg. patients, a combination of clinical, morphological and genetic features revealed three subgroups: (a) KIT D816H- or Y-positive SM (KIT D816H/Ypos., n = 7), predominantly presenting as mast cell leukemia (MCL; 6/7 patients), (b) MCL with negative KIT sequencing (KITneg. MCL, n = 7) and (c) KITneg. SM with associated hematologic neoplasm (KITneg. SM-AHN, n = 5). Although >70% of patients in the two MCL cohorts (KIT D816H/Ypos. and KITneg.) were classified as low/intermediate risk according to prognostic scoring systems (PSS), treatment response was poor and median OS was shorter than in a KIT D816Vpos. MCL control cohort (n = 29; 1.7 vs. 0.9 vs. 2.6 years; p < 0.04). The KITneg. SM-AHN phenotype was dominated by the heterogeneous AHN (low mast cell burden, presence of additional mutations) with a better median OS of 4.5 years. We conclude that (i) in MCL, negativity for D816V is a relevant prognostic factor and (ii) PSS fail to correctly classify D816Vneg. patients.
Collapse
Affiliation(s)
- Nicole Naumann
- Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.)
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilian-University, 80337 Munich, Germany
| | - Johannes Lübke
- Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.)
| | - Deborah Christen
- Department of Oncology, Haematology, Haemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), 52074 Aachen, Germany
| | - Jakob Bresser
- Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.)
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Georgia Metzgeroth
- Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.)
| | - Alice Fabarius
- Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.)
| | - Wolf-Karsten Hofmann
- Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.)
| | - Jens Panse
- Department of Oncology, Haematology, Haemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), 52074 Aachen, Germany
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian-University, 80337 Munich, Germany
| | - Nicholas C. P. Cross
- Wessex Genomics Laboratory Service, Salisbury SP2 8BJ, UK
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Andreas Reiter
- Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.)
| | - Juliana Schwaab
- Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.)
| |
Collapse
|
9
|
Shin MG, Pico AR. Using published pathway figures in enrichment analysis and machine learning. BMC Genomics 2023; 24:713. [PMID: 38007419 PMCID: PMC10676589 DOI: 10.1186/s12864-023-09816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023] Open
Abstract
Pathway Figure OCR (PFOCR) is a novel kind of pathway database approaching the breadth and depth of Gene Ontology while providing rich, mechanistic diagrams and direct literature support. Here, we highlight the utility of PFOCR in disease research in comparison with popular pathway databases through an assessment of disease coverage and analytical applications. In addition to common pathway analysis use cases, we present two advanced case studies demonstrating unique advantages of PFOCR in terms of cancer subtype and grade prediction analyses.
Collapse
Affiliation(s)
- Min-Gyoung Shin
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
10
|
Tashi T, Deininger MW. Management of Advanced Systemic Mastocytosis and Associated Myeloid Neoplasms. Immunol Allergy Clin North Am 2023; 43:723-741. [PMID: 37758409 DOI: 10.1016/j.iac.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Advanced systemic mastocytosis (AdvSM) is a heterogeneous group of disorders characterized by neoplastic mast cell-related organ damage and frequently associated with a myeloid neoplasm. The 3 clinical entities that comprise AdvSM are aggressive SM (ASM), SM-associated hematologic neoplasm, and mast cell leukemia. A gain-of-function KIT D816 V mutation is the primary oncogenic driver found in about 90% of all patients with AdvSM. Midostaurin, an oral multikinase inhibitor with activity against KIT D816V, and avapritinib, an oral selective KIT D816V inhibitor are approved for AdvSM.
Collapse
Affiliation(s)
- Tsewang Tashi
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, 2000, Circle of Hope, Salt Lake City, UT 84112, USA.
| | - Michael W Deininger
- Division of Hematology and Oncology, Medical College of Wisconsin, Versiti Blood Research Institute, 8727 West Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
11
|
Chantran Y, Valent P, Arock M. KIT Mutations and Other Genetic Defects in Mastocytosis: Implications for Disease Pathology and Targeted Therapies. Immunol Allergy Clin North Am 2023; 43:651-664. [PMID: 37758404 DOI: 10.1016/j.iac.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A KIT activating mutation (usually KIT D816V) is detected in neoplastic cells in greater than 90% of indolent patients with systemic mastocytosis (SM). In more advanced variants of SM, additional genetic defects can be found in several myeloid malignancy-related genes, which can be detected by applying next-generation sequencing. Currently, the techniques recommended to detect the KIT D816V mutation and quantify the mutational burden in peripheral blood, bone marrow, or other organs/tissues are allele specific-quantitative PCR or droplet digital PCR. These techniques are useful for diagnosis, prognostication, follow-up and monitoring of therapeutic efficacy of cytoreductive agents in patients with SM.
Collapse
Affiliation(s)
- Yannick Chantran
- Department of Biological Hematology, Pitié-Salpêtrière Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France; Department of Biological Immunology, Saint-Antoine Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France; Health Environmental Risk Assessment (HERA) Team, Centre of Research in Epidemiology and Statistics (CRESS), Inserm / INRAE, Faculty of Pharmacy, Université de Paris, Paris, France
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria; Division of Hematology and Hemostaseology, Department of Internal Medicine, Medical University of Vienna
| | - Michel Arock
- Department of Biological Hematology, Pitié-Salpêtrière Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France; Department of Biological Hematology, Pitié-Salpêtrière Hospital, DMU BioGem, AP-HP.Sorbonne University, Paris, France.
| |
Collapse
|
12
|
Shin MG, Pico A. Using Published Pathway Figures in Enrichment Analysis and Machine Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548037. [PMID: 37461614 PMCID: PMC10350053 DOI: 10.1101/2023.07.06.548037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pathway Figure OCR (PFOCR) is a novel kind of pathway database approaching the breadth and depth of Gene Ontology while providing rich, mechanistic diagrams and direct literature support. PFOCR content is extracted from published pathway figures currently emerging at a rate of 1000 new pathways each month. Here, we compare the pathway information contained in PFOCR against popular pathway databases with respect to overall and disease-specific coverage. In addition to common pathways analysis use cases, we present two advanced case studies demonstrating unique advantages of PFOCR in terms of cancer subtype and grade prediction analyses.
Collapse
|
13
|
Pardanani A. Systemic mastocytosis in adults: 2023 update on diagnosis, risk stratification and management. Am J Hematol 2023; 98:1097-1116. [PMID: 37309222 DOI: 10.1002/ajh.26962] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/14/2023]
Abstract
OVERVIEW Systemic mastocytosis (SM) results from clonal proliferation of mast cells (MC) in extracutaneous organs. DIAGNOSIS The major criterion is presence of multifocal MC clusters in the bone marrow and/or extracutaneous organs. Minor diagnostic criteria include elevated serum tryptase level, MC CD25/CD2/CD30 expression, and presence of activating KIT mutations. RISK STRATIFICATION Establishing SM subtype as per the International Consensus Classification/World Health Organization classification systems is an important first step. Patients either have indolent/smoldering SM (ISM/SSM) or advanced SM, including aggressive SM (ASM), SM with associated myeloid neoplasm (SM-AMN), and mast cell leukemia. Identification of poor-risk mutations (i.e., ASXL1, RUNX1, SRSF2, NRAS) further refines the risk stratification. Several risk models are available to help assign prognosis in SM patients. MANAGEMENT Treatment goals for ISM patients are primarily directed toward anaphylaxis prevention/symptom control/osteoporosis treatment. Patients with advanced SM frequently need MC cytoreductive therapy to reverse disease-related organ dysfunction. Tyrosine kinase inhibitors (TKI) (midostaurin, avapritinib) have changed the treatment landscape in SM. While deep biochemical, histological and molecular responses have been documented with avapritinib treatment, its efficacy as monotherapy against a multimutated AMN disease component in SM-AMN patients remains unclear. Cladribine continues to have a role for MC debulking, whereas interferon-α has a diminishing role in the TKI era. Treatment of SM-AMN primarily targets the AMN component, particularly if an aggressive disease such as acute leukemia is present. Allogeneic stem cell transplant has a role in such patients. Imatinib has a therapeutic role only in the rare patient with an imatinib-sensitive KIT mutation.
Collapse
Affiliation(s)
- Animesh Pardanani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Kennedy VE, Perkins C, Reiter A, Jawhar M, Lübke J, Kluin-Nelemans HC, Shomali W, Langford C, Abuel J, Hermine O, Niedoszytko M, Gorska A, Mital A, Bonadonna P, Zanotti R, Tanasi I, Mattsson M, Hagglund H, Triggiani M, Yavuz AS, Panse J, Christen D, Heizmann M, Shoumariyeh K, Müller S, Elena C, Malcovati L, Fiorelli N, Wortmann F, Vucinic V, Brockow K, Fokoloros C, Papageorgiou SG, Breynaert C, Bullens D, Doubek M, Ilerhaus A, Angelova-Fischer I, Solomianyi O, Várkonyi J, Sabato V, Rüfer A, Schug TD, Hermans MAW, Fortina AB, Caroppo F, Bumbea H, Gulen T, Hartmann K, Elberink HO, Schwaab J, Arock M, Valent P, Sperr WR, Gotlib J. Mast cell leukemia: clinical and molecular features and survival outcomes of patients in the ECNM Registry. Blood Adv 2023; 7:1713-1724. [PMID: 36094848 PMCID: PMC10182174 DOI: 10.1182/bloodadvances.2022008292] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Mast cell leukemia (MCL) is a rare subtype of systemic mastocytosis defined by ≥20% mast cells (MC) on a bone marrow aspirate. We evaluated 92 patients with MCL from the European Competence Network on Mastocytosis registry. Thirty-one (34%) patients had a diagnosis of MCL with an associated hematologic neoplasm (MCL-AHN). Chronic MCL (lack of C-findings) comprised 14% of patients, and only 4.5% had "leukemic MCL" (≥10% circulating MCs). KIT D816V was found in 62/85 (73%) evaluable patients; 9 (11%) individuals exhibited alternative KIT mutations, and no KIT variants were detected in 14 (17%) subjects. Ten evaluable patients (17%) had an abnormal karyotype and the poor-risk SRSF2, ASXL1, and RUNX1 (S/A/R) mutations were identified in 16/36 (44%) patients who underwent next-generation sequencing. Midostaurin was the most common therapy administered to 65% of patients and 45% as first-line therapy. The median overall survival (OS) was 1.6 years. In multivariate analysis (S/A/R mutations excluded owing to low event rates), a diagnosis of MCL-AHN (hazard ratio [HR], 4.7; 95% confidence interval [CI], 1.7-13.0; P = .001) and abnormal karyotype (HR, 5.6; 95% CI, 1.4-13.3; P = .02) were associated with inferior OS; KIT D816V positivity (HR, 0.33; 95% CI, 0.11-0.98; P = .04) and midostaurin treatment (HR, 0.32; 95% CI, 0.08-0.72; P = .008) were associated with superior OS. These data provide the most comprehensive snapshot of the clinicopathologic, molecular, and treatment landscape of MCL to date, and should help further inform subtyping and prognostication of MCL.
Collapse
Affiliation(s)
| | - Cecelia Perkins
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Mohamad Jawhar
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | | | - William Shomali
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA
| | - Cheryl Langford
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA
| | - Justin Abuel
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA
| | - Olivier Hermine
- Imagine Institute Université de Paris, Sorbonne, INSERM U1163, Centre national de référence des mastocytoses, Hôpital Necker, Assistance publique hôpitaux de Paris, Paris, France
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdańsk, Poland
| | - Aleksandra Gorska
- Department of Allergology, Medical University of Gdansk, Gdańsk, Poland
| | - Andrzej Mital
- Department of Hematology, Medical University of Gdansk, Gdańsk, Poland
| | - Patrizia Bonadonna
- Department of Medicine, Section of Hematology, Verona University Hospital, Verona, Italy
| | - Roberta Zanotti
- Department of Medicine, Section of Hematology, Verona University Hospital, Verona, Italy
| | - Ilaria Tanasi
- Department of Medicine, Section of Hematology, Verona University Hospital, Verona, Italy
| | - Mattias Mattsson
- Department of Hematology, Uppsala University Hospital and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hans Hagglund
- Department of Hematology, Uppsala University Hospital and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Akif Selim Yavuz
- Division of Hematology, Istanbul Medical School, University of Istanbul, Istanbul, Turkey
| | - Jens Panse
- Department of Oncology, Haematology, Haemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, and Center for Integrated Oncology, Aachen, Bonn, Cologne, Düsseldorf, Aachen, Germany
| | - Deborah Christen
- Department of Oncology, Haematology, Haemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, and Center for Integrated Oncology, Aachen, Bonn, Cologne, Düsseldorf, Aachen, Germany
| | - Marc Heizmann
- Division of Oncology, Haematology and Transfusion Medicine, Kantonsspital Aarau AG, University Clinic of Medicine, Aarau, Switzerland
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg and German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Sabine Müller
- Department of Dermatology, Medical Center-University of Frieburg, Faculty of Medicine, University of Frieburg, Frieburg, Germany
| | - Chiara Elena
- Hematology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luca Malcovati
- Hematology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Nicolas Fiorelli
- Hematology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Friederike Wortmann
- Klinik für Hämatologie und Onkologie, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | | | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christos Fokoloros
- Mastocytosis Clinic, Allergy Unit, 2nd Department of Dermatology & Venereology, University of Athens, Attikon General University Hospital, Athens, Greece
| | - Sotirios G. Papageorgiou
- Mastocytosis Clinic, Allergy Unit, 2nd Department of Dermatology & Venereology, University of Athens, Attikon General University Hospital, Athens, Greece
- 2nd Propaedeutic Department of Internal Medicine and Research Institute, Hematology Unit, University of Athens, Attikon University Hospital, Athens, Greece
| | - Christine Breynaert
- KU Leuven Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group and MASTeL, University Hospitals Leuven, Leuven, Belgium
| | - Dominique Bullens
- KU Leuven Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group and MASTeL, University Hospitals Leuven, Leuven, Belgium
| | - Michael Doubek
- Brno University Hospital and Faculty of Medicine, Brno, Czechia
| | - Anja Ilerhaus
- Uniklinik Köln, Klinik für Dermatologie und Venerologie, Cologne, Germany
| | | | | | - Judit Várkonyi
- Department of Hematology, Semmelweis University, Budapest, Hungary
| | - Vito Sabato
- Department of Immunology, Allergy, and Rheumatology, Universiteit Antwerpen, Campus Drie Eiken, Antwerp, Belgium
| | - Axel Rüfer
- Luzerner Kantonsspital, Lucerne, Switzerland
| | | | - Maud A. W. Hermans
- Department of Internal Medicine, Section Allergy & Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anna Belloni Fortina
- Pediatric Dermatology, Internal Medicine, Azienda Ospedaliera, Università di Padov, Padua, Italy
| | - Francesca Caroppo
- Pediatric Dermatology, Internal Medicine, Azienda Ospedaliera, Università di Padov, Padua, Italy
| | - Horia Bumbea
- Department of Hematology, Carol Davila University of Medicine, Emergency University Hospital, Bucharest, Romania
| | - Theo Gulen
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, and Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karin Hartmann
- Division of Allergy, Departments of Dermatology and Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hanneke Oude Elberink
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Michel Arock
- Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R. Sperr
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
15
|
Lee HJ. Recent advances in diagnosis and therapy in systemic mastocytosis. Blood Res 2023; 58:96-108. [PMID: 37105564 PMCID: PMC10133845 DOI: 10.5045/br.2023.2023024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Mastocytosis is a heterogeneous neoplasm characterized by accumulation of neoplastic mast cells in various organs. There are three main types: cutaneous mastocytosis (CM), systemic mastocytosis (SM), and mast cell sarcoma. CM mainly affects children and is confined to the skin, whereas SM affects adults and is characterized by extracutaneous involvement, with or without cutaneous involvement. Most cases of SM have an indolent clinical course; however, some types of SM have aggressive behavior and a poor prognosis. Recent advances in the understanding of the molecular changes in SM have changed the diagnosis and treatment of aggressive and advanced SM subtypes. The International Consensus Classification and World Health Organization refined the diagnostic criteria and classification of SM as a result of accumulation of clinical experience and advances in molecular diagnostics. Somatic mutations in the KIT gene, most frequently KIT D816V, are detected in 90% of patients with SM. Expression of CD30 and any KIT mutation were introduced as minor diagnostic criteria after the introduction of highly sensitive screening methods. SM has a wide spectrum of clinical features, and only a few drugs are effective at treating advanced SM. Currently, the mainstay of SM treatment is limited to the management of chronic symptoms related to release of mast cell mediators. Small-molecule kinase inhibitors targeting the KIT-downstream and KIT-independent pathways were recently approved for treating advanced SM. I describe recent advances in diagnosis of SM, and review the currently available and emerging therapeutic options for SM management.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Lübke J, Naumann N, Metzgeroth G, Kreil S, Brand T, Horny HP, Sotlar K, Cross NCP, Fabarius A, Valent P, Hofmann WK, Reiter A, Schwaab J. Response and resistance to cladribine in patients with advanced systemic mastocytosis: a registry-based analysis. Ann Hematol 2023:10.1007/s00277-023-05180-y. [PMID: 37012462 DOI: 10.1007/s00277-023-05180-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
We sought to evaluate the efficacy of the purine analogue cladribine in 79 patients with advanced systemic mastocytosis (AdvSM) using data from the 'German Registry on Disorders of Eosinophils and Mast Cells (GREM)'. The overall response rate according to modified Valent criteria (46 evaluable patients) for first- (1L) and second-line (2L) cladribine treatment was 41% (12/29) and 35% (6/17, P = 0.690), respectively, and the median overall survival (OS, all patients evaluable) was 1.9 years (n = 48) and 1.2 years (n = 31; P = 0.311). Univariate and multivariable analyses of baseline and on-treatment parameters identified diagnosis of mast cell leukemia (hazard ratio [HR] 3.5, 95% confidence interval [CI, 1.3-9.1], P = 0.012), eosinophilia ≥ 1.5 × 109/L (HR 2.9 [CI 1.4-6.2], P = 0.006) and < 3 cycles of cladribine (HR 0.4 [CI 0.2-0.8], P = 0.008) as independent adverse prognostic parameters for OS. There was no impact of other laboratory (anemia, thrombocytopenia, serum tryptase) or genetic markers (mutations in SRSF2, ASXL1 or RUNX1) on OS. In consequence, none of the recently established prognostic scoring systems (MARS, IPSM, MAPS or GPSM) was predictive for OS. Modified Valent criteria were superior to a single factor-based response assessment (HR 2.9 [CI 1.3-6.6], P = 0.026). In conclusion, cladribine is effective in 1L and 2L treatment of AdvSM. Mast cell leukemia, eosinophilia, application of < 3 cycles and a lack of response are adverse prognostic markers.
Collapse
Affiliation(s)
- Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicole Naumann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Kreil
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Timo Brand
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Horny
- Department of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Karl Sotlar
- Department of Pathology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | | - Alice Fabarius
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany.
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
17
|
Decruyenaere P, Mazure D, Moors I, Van Dorpe J, Van der Linden M, Denys B, Hofmans M, Offner F. Systemic mastocytosis with myeloid sarcoma and B-CLL: molecular and clonal heterogeneity in a rare case of SM-AHN with review of literature. Acta Clin Belg 2023; 78:58-66. [PMID: 35098906 DOI: 10.1080/17843286.2022.2033919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Systemic mastocytosis (SM) is a rare myeloproliferative disease that results from a clonal proliferation of abnormal mast cells in one or more extra-cutaneous organs. Systemic mastocytosis with an associated hematological neoplasm (SM-AHN) is the second most common subgroup and is diagnosed when WHO criteria for both SM and a hematological neoplasm of non-mast cell lineage are met. The SM-AHN category as currently proposed is highly heterogeneous in terms of pathogenesis, clinical presentation, and prognosis. CASE PRESENTATION We present the first reported case of SM-AHN associated with two hematological malignancies of different lineages, a monocytic myeloid sarcoma and a B-cell chronic lymphatic leukemia. Cytogenetic and molecular analyses revealed a distinct clonal origin of the two associated malignancies. The SM-myeloid sarcoma clone demonstrated an abnormal karyotype, trisomy 8 and del(13)(q12.3q14.3), as well as mutations in KITD816V, DNMT3A and RUNX1. The DNMT3A mutation could be detected years before disease onset, supporting its potential role as early driver of leukemogenesis. No genetic aberrations could be identified in the CLL clone, which is assumed to present coincidentally. CONCLUSIONS This report highlights the importance of full diagnostic work-up in SM patients in whom an associated hematological malignancy is suspected. Moreover, the importance of genetic analysis is highlighted, as it provides additional insights in the underlying clonal pathogenesis of different phenotypes, can aid in risk stratification, and may help identify potential therapy targets.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, Ghent, Belgium.,OncoRNALab, Cancer Research Institute Ghent (Crig), Ghent University, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Dominiek Mazure
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Ine Moors
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | | | - Barbara Denys
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Mattias Hofmans
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
18
|
Bandara G, Falduto GH, Luker A, Bai Y, Pfeiffer A, Lack J, Metcalfe DD, Olivera A. CRISPR/Cas9-engineering of HMC-1.2 cells renders a human mast cell line with a single D816V-KIT mutation: An improved preclinical model for research on mastocytosis. Front Immunol 2023; 14:1078958. [PMID: 37025992 PMCID: PMC10071028 DOI: 10.3389/fimmu.2023.1078958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
The HMC-1.2 human mast cell (huMC) line is often employed in the study of attributes of neoplastic huMCs as found in patients with mastocytosis and their sensitivity to interventional drugs in vitro and in vivo. HMC-1.2 cells express constitutively active KIT, an essential growth factor receptor for huMC survival and function, due to the presence of two oncogenic mutations (D816V and V560G). However, systemic mastocytosis is commonly associated with a single D816V-KIT mutation. The functional consequences of the coexisting KIT mutations in HMC-1.2 cells are unknown. We used CRISPR/Cas9-engineering to reverse the V560G mutation in HMC-1.2 cells, resulting in a subline (HMC-1.3) with a single mono-allelic D816V-KIT variant. Transcriptome analyses predicted reduced activity in pathways involved in survival, cell-to-cell adhesion, and neoplasia in HMC-1.3 compared to HMC-1.2 cells, with differences in expression of molecular components and cell surface markers. Consistently, subcutaneous inoculation of HMC-1.3 into mice produced significantly smaller tumors than HMC-1.2 cells, and in colony assays, HMC-1.3 formed less numerous and smaller colonies than HMC-1.2 cells. However, in liquid culture conditions, the growth of HMC-1.2 and HMC-1.3 cells was comparable. Phosphorylation levels of ERK1/2, AKT and STAT5, representing pathways associated with constitutive oncogenic KIT signaling, were also similar between HMC-1.2 and HMC-1.3 cells. Despite these similarities in liquid culture, survival of HMC-1.3 cells was diminished in response to various pharmacological inhibitors, including tyrosine kinase inhibitors used clinically for treatment of advanced systemic mastocytosis, and JAK2 and BCL2 inhibitors, making HMC-1.3 more susceptible to these drugs than HMC-1.2 cells. Our study thus reveals that the additional V560G-KIT oncogenic variant in HMC-1.2 cells modifies transcriptional programs induced by D816V-KIT, confers a survival advantage, alters sensitivity to interventional drugs, and increases the tumorigenicity, suggesting that engineered huMCs with a single D816V-KIT variant may represent an improved preclinical model for mastocytosis.
Collapse
Affiliation(s)
- Geethani Bandara
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guido H. Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrea Luker
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yun Bai
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Justin Lack
- National Institute of Allergy and Infectious Diseases (NIAID), Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dean D. Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Ana Olivera,
| |
Collapse
|
19
|
Gotlib J. Available and emerging therapies for bona fide advanced systemic mastocytosis and primary eosinophilic neoplasms. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:34-46. [PMID: 36485158 PMCID: PMC9821059 DOI: 10.1182/hematology.2022000368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The historically poor prognosis of patients with advanced systemic mastocytosis (AdvSM) and primary eosinophilic neoplasms has shifted to increasingly favorable outcomes with the discovery of druggable targets. The multikinase/KIT inhibitor midostaurin and the highly selective KIT D816V inhibitor avapritinib can elicit marked improvements in measures of mast cell (MC) burden as well as reversion of MC-mediated organ damage (C-findings) and disease symptoms. With avapritinib, the achievement of molecular remission of KIT D816V and improved survival compared with historical therapy suggests a potential to affect disease natural history. BLU-263 and bezuclastinib are KIT D816V inhibitors currently being tested in trials of AdvSM. In the new World Health Organization and International Consensus Classifications, the category of "myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase (TK) gene fusions" is inclusive of rearrangements involving PDGFRA, PDGFRB, FGFR1, JAK2, FLT3, and ETV6::ABL1. While the successful outcomes with imatinib in FIP1L1::PDGFRA-positive cases and PDGFRB-rearranged neoplasms have become the "poster children" of these disorders, the responses of the other TK-driven neoplasms to small-molecule inhibitors are more variable. The selective FGFR inhibitor pemigatinib, approved in August 2022, is a promising therapy in aggressive FGFR1-driven diseases and highlights the role of such agents in bridging patients to allogeneic transplantation. This review summarizes the data for these approved and investigational agents and discusses open questions and future priorities regarding the management of these rare diseases.
Collapse
Affiliation(s)
- Jason Gotlib
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
20
|
Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, Jaiswal S, Malcovati L, Vannucchi AM, Patel KP, Arber DA, Arcila ME, Bejar R, Berliner N, Borowitz MJ, Branford S, Brown AL, Cargo CA, Döhner H, Falini B, Garcia-Manero G, Haferlach T, Hellström-Lindberg E, Kim AS, Klco JM, Komrokji R, Lee-Cheun Loh M, Loghavi S, Mullighan CG, Ogawa S, Orazi A, Papaemmanuil E, Reiter A, Ross DM, Savona M, Shimamura A, Skoda RC, Solé F, Stone RM, Tefferi A, Walter MJ, Wu D, Ebert BL, Cazzola M. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood 2022; 140:2228-2247. [PMID: 36130297 PMCID: PMC10488320 DOI: 10.1182/blood.2022015853] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.
Collapse
Affiliation(s)
- Eric J. Duncavage
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Courtney D. DiNardo
- Division of Cancer Medicine, Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Lucy A. Godley
- Section of Hematology and Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia & Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Alessandro M. Vannucchi
- Department of Hematology, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence and Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Keyur P. Patel
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Maria E. Arcila
- Department of Pathology, Memorial Sloan Lettering Cancer Center, New York, NY
| | - Rafael Bejar
- Division of Hematology and Oncology, University of California San Diego, La Jolla, CA
| | - Nancy Berliner
- Division of Hematology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Michael J. Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Center for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Anna L. Brown
- Department of Pathology, South Australia Heath Alliance, Adelaide, Australia
| | - Catherine A. Cargo
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Brunangelo Falini
- Department of Hematology, CREO, University of Perugia, Perugia, Italy
| | | | | | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rami Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Mignon Lee-Cheun Loh
- Department of Pediatrics, Ben Towne Center for Childhood Cancer Research, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Sanam Loghavi
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Seishi Ogawa
- University of Kyoto School of Medicine, Kyoto, Japan
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX
| | | | - Andreas Reiter
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - David M. Ross
- Haematology Directorate, SA Pathology, Adelaide, Australia
| | - Michael Savona
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Akiko Shimamura
- Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Radek C. Skoda
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Francesc Solé
- MDS Group, Institut de Recerca contra la Leucèmia Josep Carreras, Barcelona, Spain
| | - Richard M. Stone
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mario Cazzola
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Avapritinib for advanced systemic mastocytosis. Blood 2022; 140:1667-1673. [PMID: 35877999 DOI: 10.1182/blood.2021014612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/16/2022] [Indexed: 11/20/2022] Open
Abstract
Avapritinib, a highly selective inhibitor of KIT D816V, was approved by the Food and Drug Administration in 2021 for treatment of advanced systemic mastocytosis (AdvSM) and by the European Medicines Agency in 2022 for AdvSM after prior systemic therapy. The phase 1 EXPLORER and phase 2 PATHFINDER trials demonstrated that avapritinib can elicit complete and durable clinical responses and molecular remission of KIT D816V. Key management challenges relate to the complex mutational landscape of AdvSM, often found with an associated hematologic neoplasm.
Collapse
|
22
|
Radia DH, Moonim MT. Update on diagnostic approaches and therapeutic strategies in systemic mastocytosis. Best Pract Res Clin Haematol 2022; 35:101380. [DOI: 10.1016/j.beha.2022.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
|
23
|
Crupi F, Sordi B, Vanderwert F, Gesullo F, Amorosi A, Mannelli F, Santi R. Histopathology and Molecular Genetics in Systemic Mastocytosis: Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23158772. [PMID: 35955907 PMCID: PMC9369381 DOI: 10.3390/ijms23158772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The diagnosis of systemic mastocytosis (SM) is based on various clinical, dermatological, serological, and hematological findings but essentially relies on histological evidence of an abnormal increase in tissue-localized mast cells (MCs). The extra-cutaneous organ most frequently affected is the bone marrow (BM), and therefore, histological examination of trephine biopsy specimens of the iliac crest is mandatory on suspicion of SM. At microscopic examination, neoplastic MCs show aberrant morphology, usually with prominent spindling. Immunohistochemistry is a useful tool in the diagnosis of SM because mast cell (MC) infiltrates may be slight and scarce, in a mixed background of lymphohistiocytic cells, eosinophils, and plasma cells. Moreover, neoplastic MCs exhibit an aberrant phenotype. Recent evidence, largely derived from molecular genetics, has enhanced the diagnostic capability of SM, also providing the basis for adequate prognostic and therapeutic evaluation. The cases herein reported illustrate the variable clinical manifestations and disease course of SM, focusing on diagnostic and therapeutic challenges. In accordance with the World Health Organization (WHO) classification and the International Consensus Classification (ICC) systems, our findings emphasize the importance of an integrated diagnostic approach for SM, with proper application of diverse assessment methodologies in order to improve SM classification and treatment effectiveness.
Collapse
Affiliation(s)
- Francesca Crupi
- Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, 50134 Firenze, Italy
| | - Benedetta Sordi
- Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, 50134 Firenze, Italy
| | - Fiorenza Vanderwert
- Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, 50134 Firenze, Italy
| | - Francesca Gesullo
- Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, 50134 Firenze, Italy
| | - Andrea Amorosi
- Dipartimento di Scienze della Salute, Università Magna Grecia, 88100 Catanzaro, Italy
| | - Francesco Mannelli
- Centro Ricerca e Innovazione Malattie Mieloproliferative (CRIMM), AOU Careggi, 50134 Firenze, Italy
| | - Raffaella Santi
- Sezione di Anatomia Patologica, Dipartimento di Scienze della Salute, Università degli Studi di Firenze, 50121 Firenze, Italy
- Correspondence:
| |
Collapse
|
24
|
Gotlib J, Schwaab J, Shomali W, George TI, Radia DH, Castells M, Carter MC, Hartmann K, Álvarez-Twose I, Brockow K, Bonadonna P, Hermine O, Niedoszytko M, Hoermann G, Sperr WR, Elberink HO, Siebenhaar F, Butterfield JH, Ustun C, Zanotti R, Triggiani M, Schwartz LB, Lyons JJ, Orfao A, Sotlar K, Horny HP, Arock M, Metcalfe DD, Akin C, Lübke J, Valent P, Reiter A. Proposed European Competence Network on Mastocytosis-American Initiative in Mast Cell Diseases (ECNM-AIM) Response Criteria in Advanced Systemic Mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2025-2038.e1. [PMID: 35724948 DOI: 10.1016/j.jaip.2022.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022]
Abstract
Advanced systemic mastocytosis (AdvSM) is characterized by the presence of KIT D816V and other somatic mutations (eg, in SRSF2, ASXL1, and RUNX1) in 95% and 60% to 70% of patients, respectively. The biological and clinical consequences of AdvSM include multilineage involvement (eg, associated hematologic neoplasm) in 60% to 80% of patients, variable infiltration and damage (C-findings) of predominantly bone marrow and visceral organs through affected mast cell (MC) and non-MC lineages, and elevated levels of serum tryptase. Recently, the treatment landscape has substantially changed with the introduction of the multikinase/KIT inhibitor midostaurin and the selective KIT D816V inhibitor avapritinib. In this review, we discuss the evolution of AdvSM response criteria that have been developed to better capture clinical benefit (eg, improved responses and progression-free and overall survival). We propose refined response criteria from European Competence Network on Mastocytosis and American Initiative in Mast Cell Diseases investigators that use a tiered approach to segregate the effects of histopathologic (eg, bone marrow MC burden, tryptase), molecular (eg, KIT D816V variant allele frequency), clinical (eg, C-findings), and symptom response on long-term outcomes. These response criteria require evaluation in future prospective clinical trials of selective KIT inhibitors and other novel agents.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif.
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - William Shomali
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif
| | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Deepti H Radia
- Department of Clinical Haematology, Guys and St Thomas' NHS Hospitals, London, United Kingdom
| | - Mariana Castells
- Division of Allergy and Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Melody C Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Ivan Álvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha and Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Hospital Virgen del Valle, Toledo, Spain
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Olivier Hermine
- Imagine Institute Université de Paris, Sorbonne, INSERM U1163, Centre National de Référence des Mastocytoses, Hôpital Necker, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Gregor Hoermann
- MLL Munich Leukemia Laboratory, Munich, Germany; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Hanneke Oude Elberink
- Department of Allergology, University Medical Center Groningen and GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | | | - Celalettin Ustun
- Department of Medicine, Division of Hematology, Oncology, and Cell Therapy, Coleman Foundation Blood and Marrow Transplant Center at Rush University Medical Center, Chicago, Ill
| | - Roberta Zanotti
- Section of Hematology, Multidisciplinary Outpatients Clinics for Mastocytosis, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - Lawrence B Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, Va
| | - Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alberto Orfao
- Servicio Central de Citometria (NUCLEUS), Instituto de Biología Molecular y Celular del Cáncer (IBMCC) Instituto Biosanitario de Salamanca, CIBERONC and Department of Medicine, University of Salamanca, Salamanca, Spain; Utah
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University, Paris, France
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
25
|
Systemic Mastocytosis and Other Entities Involving Mast Cells: A Practical Review and Update. Cancers (Basel) 2022; 14:cancers14143474. [PMID: 35884535 PMCID: PMC9322501 DOI: 10.3390/cancers14143474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Evidence in the recent literature suggests that the presentation spectrum of mast cell neoplasms is broad. In this article, we elaborate on recent data pertaining to minor diagnostic criteria of systemic mastocytosis (SM), including sensitive testing methods for detection of activating mutations in the KIT gene or its variants, and adjusted serum tryptase levels in cases with hereditary α-tryptasemia. We also summarize entities that require differential diagnosis, such as the recently reclassified SM subtype named bone marrow mastocytosis, mast cell leukemia (an SM subtype that can be acute or chronic); the rare morphological variant of all SM subtypes known as well-differentiated systemic mastocytosis; the extremely rare myelomastocytic leukemia and its differentiating features from mast cell leukemia; and mast cell activation syndrome. In addition, we provide a concise clinical update of the latest adjusted risk stratification model incorporating genomic data to define prognosis in SM and new treatments that were approved for advanced SM (midostaurin, avapritinib).
Collapse
|
26
|
Efficacy of avapritinib versus best available therapy in the treatment of advanced systemic mastocytosis. Leukemia 2022; 36:2108-2120. [PMID: 35790816 PMCID: PMC9343245 DOI: 10.1038/s41375-022-01615-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022]
Abstract
Advanced systemic mastocytosis (AdvSM) is a rare myeloid neoplasm associated with poor overall survival (OS). This study (NCT04695431) compared clinical outcomes between patients with AdvSM treated with avapritinib in the Phase 1 EXPLORER (NCT0256198) and Phase 2 PATHFINDER (NCT03580655) trials (N = 176) and patients treated with best available therapy (BAT; N = 141). A multi-center, observational, retrospective chart review study was conducted at six study sites (four European, two American) to collect data from patients with AdvSM who received BAT; these data were pooled with data from EXPLORER and PATHFINDER. Comparisons between outcomes of OS, duration of treatment (DOT), and maximum reduction in serum tryptase were conducted between the treatment cohorts, with adjustment for key covariates. The results indicated that the avapritinib cohort had significantly better survival (adjusted hazard ratio (HR) (95% confidence interval (CI)): 0.48 (0.29, 0.79); p = 0.004) and significantly longer DOT (HR: 0.36 (0.26, 0.51); p < 0.001) compared to the BAT cohort. Additionally, the mean difference in percentage maximum reduction in serum tryptase levels was 60.3% greater in the avapritinib cohort (95% CI: −72.8, −47.9; p < 0.001). With no randomized controlled trials comparing avapritinib to BAT, these data offer crucial insights into the improved efficacy of avapritinib for the treatment of AdvSM.
Collapse
|
27
|
Sciumè M, De Magistris C, Galli N, Ferretti E, Milesi G, De Roberto P, Fabris S, Grifoni FI. Target Therapies for Systemic Mastocytosis: An Update. Pharmaceuticals (Basel) 2022; 15:ph15060738. [PMID: 35745657 PMCID: PMC9229771 DOI: 10.3390/ph15060738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Systemic mastocytosis (SM) results from a clonal proliferation of abnormal mast cells (MCs) in extra-cutaneous organs. It could be divided into indolent SM, smoldering SM, SM with an associated hematologic (non-MC lineage) neoplasm, aggressive SM, and mast cell leukemia. SM is generally associated with the presence of a gain-of-function somatic mutation in KIT at codon 816. Clinical features could be related to MC mediator release or to uncontrolled infiltration of MCs in different organs. Whereas indolent forms have a near-normal life expectancy, advanced diseases have a poor prognosis with short survival times. Indolent forms should be considered for symptom-directed therapy, while cytoreductive therapy represents the first-line treatment for advanced diseases. Since the emergence of tyrosine kinase inhibitors (TKIs), KIT inhibition has been an attractive approach. Initial reports showed that only the rare KITD816V negative cases were responsive to first-line TKI imatinib. The development of new TKIs with activity against the KITD816V mutation, such as midostaurin or avapritinib, has changed the management of this disease. This review aims to focus on the available clinical data of therapies for SM and provide insights into possible future therapeutic targets.
Collapse
Affiliation(s)
- Mariarita Sciumè
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
- Correspondence: ; Tel.: +39-02-5503-3466
| | - Claudio De Magistris
- Department of Oncology and Oncohaematology, Università degli Studi di Milano, 20122 Milan, Italy; (C.D.M.); (N.G.)
| | - Nicole Galli
- Department of Oncology and Oncohaematology, Università degli Studi di Milano, 20122 Milan, Italy; (C.D.M.); (N.G.)
| | - Eleonora Ferretti
- Direzione Scientifica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Giulia Milesi
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Pasquale De Roberto
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Federica Irene Grifoni
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| |
Collapse
|
28
|
González-López O, Muñoz-González JI, Orfao A, Álvarez-Twose I, García-Montero AC. Comprehensive Analysis of Acquired Genetic Variants and Their Prognostic Impact in Systemic Mastocytosis. Cancers (Basel) 2022; 14:cancers14102487. [PMID: 35626091 PMCID: PMC9139197 DOI: 10.3390/cancers14102487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/27/2023] Open
Abstract
Systemic mastocytosis (SM) is a rare clonal haematopoietic stem cell disease in which activating KIT mutations (most commonly KIT D816V) are present in virtually every (>90%) adult patient at similar frequencies among non-advanced and advanced forms of SM. The KIT D816V mutation is considered the most common pathogenic driver of SM. Acquisition of this mutation early during haematopoiesis may cause multilineage involvement of haematopoiesis by KIT D816V, which has been associated with higher tumour burden and additional mutations in other genes, leading to an increased rate of transformation to advanced SM. Thus, among other mutations, alterations in around 30 genes that are also frequently mutated in other myeloid neoplasms have been reported in SM cases. From these genes, 12 (i.e., ASXL1, CBL, DNMT3A, EZH2, JAK2, KRAS, NRAS, SF3B1, RUNX1, SF3B1, SRSF2, TET2) have been recurrently reported to be mutated in SM. Because of all the above, assessment of multilineage involvement of haematopoiesis by the KIT D816V mutation, in the setting of multi-mutated haematopoiesis as revealed by a limited panel of genes (i.e., ASXL1, CBL, DNMT3A, EZH2, NRAS, RUNX1 and SRSF2) and associated with a poorer patient outcome, has become of great help to identify SM patients at higher risk of disease progression and/or poor survival who could benefit from closer follow-up and eventually also early cytoreductive treatment.
Collapse
Affiliation(s)
- Oscar González-López
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Javier I. Muñoz-González
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Iván Álvarez-Twose
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast, Virgen del Valle Hospital) and REMA, 45071 Toledo, Spain
| | - Andrés C. García-Montero
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
29
|
Hoermann G, Sotlar K, Jawhar M, Kristensen T, Bachelot G, Nedoszytko B, Carter MC, Horny HP, Bonadonna P, Sperr WR, Hartmann K, Brockow K, Lyons JJ, Kluin-Nelemans HC, Hermine O, Akin C, Broesby-Olsen S, Triggiani M, Butterfield JH, Schwaab J, Reiter A, Gotlib J, Metcalfe DD, George TI, Orfao A, Valent P, Arock M. Standards of Genetic Testing in the Diagnosis and Prognostication of Systemic Mastocytosis in 2022: Recommendations of the EU-US Cooperative Group. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1953-1963. [PMID: 35283331 DOI: 10.1016/j.jaip.2022.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Mastocytosis comprises rare heterogeneous diseases characterized by an increased accumulation of abnormal mast cells in various organs/tissues. The pathogenesis of mastocytosis is strongly linked to the presence of KIT-activating mutations. In systemic mastocytosis (SM), the most frequent mutation encountered is KIT p.D816V, whose presence constitutes one of the minor diagnostic criteria. Different techniques are used to search and quantify the KIT p.D816V mutant; however, allele-specific quantitative PCR and droplet digital PCR are today the most sensitive. The analysis of the KIT p.D816V allele burden has undeniable interest for diagnostic, prognostic, and therapeutic monitoring. The analysis of non-mast cell hematological compartments in SM is similarly important because KIT p.D816V multilineage involvement is associated with a worse prognosis. In addition, in advanced forms of SM, mutations in genes other than KIT are frequently identified and affect negatively disease outcome and response to therapy. Thus, combined quantitative and sensitive analysis of KIT mutations and next-generation sequencing of other recurrently involved myeloid genes make it possible to better characterize the extent of the affected cellular compartments and additional molecular aberrations, providing a more detailed overview of the complex mutational landscape of SM, in relation with the clinical heterogeneity of the disease. In this article, we report the latest recommendations of the EU-US Cooperative Group presented in September 2020 in Vienna during an international working conference, on the techniques we consider standard to detect and quantify the KIT p.D816V mutant in SM and additional myeloid mutations found in SM subtypes.
Collapse
Affiliation(s)
- Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; MLL Munich Leukemia Laboratory, Munich, Germany.
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Mohamad Jawhar
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Thomas Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Guillaume Bachelot
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), Paris, France
| | - Boguslaw Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Melody C Carter
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel, Basel, Switzerland; University of Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Jonathan J Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hanneke C Kluin-Nelemans
- Department of Haematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Olivier Hermine
- Imagine Institute, Université Paris Descartes, Sorbonne, Paris Cité, Centre national de référence des mastocytoses, Paris, France
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Mich
| | - Sigurd Broesby-Olsen
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | | | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, Calif
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Tracy I George
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Alberto Orfao
- Servicio Central de Citometria, Centro de Investigacion del Cancer (IBMCC; CSIC/USAL), Instituto Biosanitario de Salamanca, Salamanca, Spain; Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), Paris, France.
| |
Collapse
|
30
|
Lübke J, Schwaab J, Naumann N, Horny HP, Weiß C, Metzgeroth G, Kreil S, Cross NCP, Sotlar K, Fabarius A, Hofmann WK, Valent P, Gotlib J, Jawhar M, Reiter A. Superior Efficacy of Midostaurin Over Cladribine in Advanced Systemic Mastocytosis: A Registry-Based Analysis. J Clin Oncol 2022; 40:1783-1794. [PMID: 35235417 DOI: 10.1200/jco.21.01849] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE On the basis of data from the German Registry on Disorders of Eosinophils and Mast Cells, we compared the efficacy of midostaurin and cladribine in patients with advanced systemic mastocytosis (AdvSM). PATIENTS AND METHODS Patients with AdvSM (n = 139) were treated with midostaurin only (n = 63, 45%), cladribine only (n = 23, 17%), or sequentially (midostaurin-cladribine, n = 30, 57%; cladribine-midostaurin, n = 23, 43%). Prognosis was assessed through the Mutation-Adjusted Risk Score (MARS). Besides the comparison of efficacy between midostaurin and cladribine on response (eg, organ dysfunction, bone marrow mast cell [MC] infiltration, and tryptase), overall survival (OS), and leukemia-free survival, we focused on the impact of treatment on involved non-MC lineages, for example, monocytes or eosinophils, and the KIT D816V expressed allele burden. RESULTS Midostaurin only was superior to cladribine only with effects from responses on MC and non-MC lineages conferring on a significantly improved OS (median 4.2 v 1.9 years, P = .033) and leukemia-free survival (2.7 v 1.3 years, P = .044) on the basis of a propensity score-weighted analysis of parameters included in MARS. Midostaurin compensated the inferior efficacy of cladribine in first- and second-line treatment. On midostaurin in any line, response of eosinophilia did not improve its baseline adverse prognostic impact, whereas response of monocytosis proved to be a positive on-treatment parameter. Multivariable analysis allowed to establish three risk categories (low/intermediate/high) through the combination of MARS and the reduction of the KIT D816V expressed allele burden of ≥ 25% at month 6 (median OS not reached v 3.0 years v 1.0 year; P < .001). CONCLUSION In this registry-based analysis, midostaurin revealed superior efficacy over cladribine in patients with AdvSM. In midostaurin-treated patients, the combination of baseline MARS and molecular response provided a compelling three-tier risk categorization (MARSv2.0) for OS.
Collapse
Affiliation(s)
- Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicole Naumann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Horny
- Department of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Christel Weiß
- Department of Medical Statistics and Biomathematics, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Kreil
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicholas C P Cross
- Wessex Regional Genetics Laboratory, Salisbury, United Kingdom.,University of Southampton, Southampton, United Kingdom
| | - Karl Sotlar
- Department of Pathology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Alice Fabarius
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Jason Gotlib
- Hematology Division, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA
| | - Mohamad Jawhar
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
31
|
Shah A, Bhan R, Pey EP, Riordan H, Khan F. Systemic Mastocytosis Presenting as Pathologic Intertrochanteric Femur Fracture. J Am Acad Orthop Surg Glob Res Rev 2022; 6:e21.00137. [PMID: 35020710 PMCID: PMC8754187 DOI: 10.5435/jaaosglobal-d-21-00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Systemic mastocytosis (SM) is pathologically characterized by the proliferation of mast cells with infiltrates in various organs, almost always including bone marrow, leading to defects in bone remodeling. Osteoporosis and subsequent fragility fractures are the most common and clinically relevant presentation, although pathologic fracture through the focal lytic lesions can also be observed. Here, we report the case of a 54-year-old woman, with a recent history of unexplained severe allergic reactions, presenting with intertrochanteric fracture of the left femur which on careful history, physical and radiological evaluation was determined to be pathological. The patient was found to have lytic lesions on the CT scan at the fracture site and the pelvis, bilateral femurs, ribs, and sternum, raising suspicion for malignancy. The malignancy workup failed to reveal a primary neoplasm, and the patient was indicated for intramedullary fixation of the left femur along with intraoperative biopsy. Pathologic evaluation of the femoral biopsy was positive for aggregates of mast cells with CD117 (c-KIT, D816V). This finding prompted a bone marrow biopsy, which ultimately led to the diagnosis of aggressive SM. Femoral intramedullary fixation was done with a trochanteric femoral nail, and the patient was postoperatively started on calcium, vitamin D, and physical therapy. Systemic disease was managed by the hematology-oncology team, and the patient was given an epinephrine autoinjector (EpiPen) and managed with midostaurin (Rydapt, Novartis Pharmaceuticals). Treating surgeons should be aware that a pathological long bone fracture can be the initial presentation of SM. Furthermore, surgeons should consider following patients with SM for longer than usual considering a higher risk of complications, such as implant loosening, nonunion, and refracture due to poor and progressively worsening quality of the bone. Our patient was followed with routine visits for 30 months and showed no clinical or radiographical signs of any complications.
Collapse
Affiliation(s)
- Aadit Shah
- From the Stony Brook University Hospital, Department of Orthopaedics, Stony Brook, NY (Dr. Shah, Riordan and Dr. Khan); and the Stony Brook University Renaissance School of Medicine, Stony Brook, NY (Bhan and Pey)
| | | | | | | | | |
Collapse
|
32
|
DeAngelo DJ, Radia DH, George TI, Robinson WA, Quiery AT, Drummond MW, Bose P, Hexner EO, Winton EF, Horny HP, Tugnait M, Schmidt-Kittler O, Evans EK, Lin HM, Mar BG, Verstovsek S, Deininger MW, Gotlib J. Safety and efficacy of avapritinib in advanced systemic mastocytosis: the phase 1 EXPLORER trial. Nat Med 2021; 27:2183-2191. [PMID: 34873347 PMCID: PMC8674134 DOI: 10.1038/s41591-021-01538-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
Advanced systemic mastocytosis (AdvSM) is a rare hematologic neoplasm driven by the KIT D816V mutation and associated with poor survival. This phase 1 study (NCT02561988) evaluated avapritinib (BLU-285), a selective KIT D816V inhibitor, in patients with AdvSM. The primary endpoints were the maximum tolerated dose, recommended phase 2 dose and safety of avapritinib. Secondary endpoints included overall response rate and changes in measures of mast cell burden. Avapritinib was evaluated at doses of 30–400 mg once daily in 86 patients, 69 with centrally confirmed AdvSM. Maximum tolerated dose was not reached, and 200 mg and 300 mg daily were studied in dose-expansion cohorts. The most frequent adverse events observed were periorbital edema (69%), anemia (55%), diarrhea (45%), thrombocytopenia (44%) and nausea (44%). Intracranial bleeding occurred in 13% overall, but in only 1% of patients without severe thrombocytopenia (platelets <50 × 109/l). In 53 response-evaluable patients, the overall response rate was 75%. The complete remission rate was 36%. Avapritinib elicited ≥50% reductions in marrow mast cells and serum tryptase in 92% and 99% of patients, respectively. Avapritinib induced deep and durable responses, including molecular remission of KIT D816V in patients with AdvSM, and was well tolerated at the recommended phase 2 dose of 200 mg daily. In a phase 1 trial of patients with advanced systemic mastocytosis, avapritinib, a selective KIT inhibitor, was generally well tolerated, elicited durable clinical responses and led to reductions in mast cell disease burden.
Collapse
Affiliation(s)
- Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | | | - Tracy I George
- ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | | | | | | | - Prithviraj Bose
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth O Hexner
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Elliott F Winton
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | - Hui-Min Lin
- Blueprint Medicines Corporation, Cambridge, MA, USA
| | | | - Srdan Verstovsek
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael W Deininger
- Versiti Blood Research Institute and Division Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason Gotlib
- Stanford University School of Medicine and Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
33
|
Jackson CW, Pratt CM, Rupprecht CP, Pattanaik D, Krishnaswamy G. Mastocytosis and Mast Cell Activation Disorders: Clearing the Air. Int J Mol Sci 2021; 22:ijms222011270. [PMID: 34681933 PMCID: PMC8540348 DOI: 10.3390/ijms222011270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Mast cells are derived from hematopoietic stem cell precursors and are essential to the genesis and manifestations of the allergic response. Activation of these cells by allergens leads to degranulation and elaboration of inflammatory mediators, responsible for regulating the acute dramatic inflammatory response seen. Mast cells have also been incriminated in such diverse disorders as malignancy, arthritis, coronary artery disease, and osteoporosis. There has been a recent explosion in our understanding of the mast cell and the associated clinical conditions that affect this cell type. Some mast cell disorders are associated with specific genetic mutations (such as the D816V gain-of-function mutation) with resultant clonal disease. Such disorders include cutaneous mastocytosis, systemic mastocytosis (SM), its variants (indolent/ISM, smoldering/SSM, aggressive systemic mastocytosis/ASM) and clonal (or monoclonal) mast cell activation disorders or syndromes (CMCAS/MMAS). Besides clonal mast cell activations disorders/CMCAS (also referred to as monoclonal mast cell activation syndromes/MMAS), mast cell activation can also occur secondary to allergic, inflammatory, or paraneoplastic disease. Some disorders are idiopathic as their molecular pathogenesis and evolution are unclear. A genetic disorder, referred to as hereditary alpha-tryptasemia (HαT) has also been described recently. This condition has been shown to be associated with increased severity of allergic and anaphylactic reactions and may interact variably with primary and secondary mast cell disease, resulting in complex combined disorders. The role of this review is to clarify the classification of mast cell disorders, point to molecular aspects of mast cell signaling, elucidate underlying genetic defects, and provide approaches to targeted therapies that may benefit such patients.
Collapse
Affiliation(s)
- Clayton Webster Jackson
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
| | - Cristina Marie Pratt
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
| | | | - Debendra Pattanaik
- The Division of Allergy and Immunology, UT Memphis College of Medicine, Memphis, TN 38103, USA;
| | - Guha Krishnaswamy
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
- The Bill Hefner VA Medical Center, The Division of Allergy and Immunology, Salisbury, NC 28144, USA
- Correspondence: or
| |
Collapse
|
34
|
Hanbazazh M, Harada S, Reddy V, Mackinnon AC, Harbi D, Morlote D. The Interpretation of Sequence Variants in Myeloid Neoplasms. Am J Clin Pathol 2021; 156:728-748. [PMID: 34155503 DOI: 10.1093/ajcp/aqab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To provide an overview of the challenges encountered during the interpretation of sequence variants detected by next-generation sequencing (NGS) in myeloid neoplasms, as well as the limitations of the technology with the goal of preventing the over- or undercalling of alterations that may have a significant effect on patient management. METHODS Review of the peer-reviewed literature on the interpretation, reporting, and technical challenges of NGS assays for myeloid neoplasms. RESULTS NGS has been integrated widely and rapidly into the standard evaluating of myeloid neoplasms. Review of the literature reveals that myeloid sequence variants are challenging to detect and interpret. Large insertions and guanine-cytosine-heavy areas prove technically challenging while frameshift and truncating alterations may be classified as variants of uncertain significance by tertiary analysis informatics pipelines due to their absence in the literature and databases. CONCLUSIONS The analysis and interpretation of NGS results in myeloid neoplasia are challenging due to the varied number of detectable gene alterations. Familiarity with the genomic landscape of myeloid malignancies and knowledge of the tools available for the interpretation of sequence variants are essential to facilitate translation into clinical and therapy decisions.
Collapse
Affiliation(s)
- Mehenaz Hanbazazh
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shuko Harada
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishnu Reddy
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander Craig Mackinnon
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Djamel Harbi
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diana Morlote
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
35
|
Low risk of contrast media-induced hypersensitivity reactions in all subtypes of systemic mastocytosis. Ann Allergy Asthma Immunol 2021; 128:314-318. [PMID: 34637924 DOI: 10.1016/j.anai.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Patients with systemic mastocytosis (SM) are at increased risk of hypersensitivity reactions (HRs). Although Hymenoptera venoms are the predominant triggers, cases of contrast media-induced HR (CMIHR) have also been reported and prophylactic premedication is often performed. However, data from larger series are limited and differences between indolent and advanced SM have not yet been investigated. OBJECTIVE To determine the incidence and severity of CMIHR in all subtypes of SM. METHODS We analyzed 162 adult patients with SM (indolent systemic mastocytosis [ISM], n = 65; advanced systemic mastocytosis [advSM], n = 97). First, the cumulative incidence of CMIHR was retrospectively assessed in the patient's history. Second, at our institution, patients underwent 332 contrast media (CM)-enhanced imaging including 80 computed tomography (CT) scans with iodine-based contrast agent and 252 magnetic resonance imaging (MRI) with a gadolinium-based contrast agent, and tolerance was assessed. RESULTS Previous CMIHRs to CT (vomiting, n = 1, erythema, n = 1, cardiovascular shock, n = 1), and MRI (dyspnea, n = 1, cardiovascular shock, n = 1) had been reported by 4 out of 162 (2.5%) patients (ISM, n = 3; advSM, n = 1). In contrast, during or after 332 CM-enhanced CT or MRI examinations at our institution, no CMIHRs were reported. Premedication was solely given to 3 patients before CT scans, including 1 with previous CMIHR, who tolerated the imaging well. CONCLUSION We conclude that: (1) there is a substantial discrepancy between the perception and prevalence of HRs to CM in SM; (2) reactions are scarce in ISM and even rarer in advSM; and (3) in SM patients without previous history of CM hypersensitivity, prophylactic premedication before CM-enhanced CT or MRI is dispensable.
Collapse
|
36
|
Liman AD, Shields J, Liman AK. A Rare Case of Systemic Mastocytosis With Associated Clonal Hematological Non-Mast Cell Lineage Disease That Transformed to Acute Leukemia With IDH2 Mutation. J Med Cases 2021; 11:317-319. [PMID: 34434337 PMCID: PMC8383603 DOI: 10.14740/jmc3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/02/2022] Open
Abstract
An elderly 72-year-old man presented with anemia, thrombocytopenia, monocytosis, splenomegaly and lymphadenopathy. Bone marrow biopsy was consistent with mast cell neoplasm with positive CD117, CD25, CD34 myeloblasts and polymerase chain reaction (PCR) revealed mutation of D816V. He developed bilateral femoral neck fractures and biopsy confirmed that he has systemic mastocytosis (SM). He received cladribine and midostaurin with stable disease for 21 months. His SM with associated clonal hematological non-mast cell lineage disease (SM-AHNMD) transformed to acute myelogenous leukemia with isocitrate dehydrogenase 2 (IDH2) mutation. A trial of enasidenib was given for 5 months but without any response. Patient decided to go with home hospice and died afterwards.
Collapse
Affiliation(s)
- Andrew D Liman
- Hematology and Oncology, VA Central California Health Care System, Fresno, CA, USA.,University of California San Francisco at Fresno, Fresno, CA, USA
| | - Jenna Shields
- Pharmacy, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Agnes K Liman
- Pathology and Laboratory Medicine, VA Central California Health Care System, Fresno, CA, USA
| |
Collapse
|
37
|
Horny HP, Valent P. Mastozytose – eine kurze Übersicht. AKTUELLE DERMATOLOGIE 2021. [DOI: 10.1055/a-1539-1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungDie Mastozytose ist eine ungewöhnliche Erkrankung des hämatopoetischen Gewebes (Knochenmark) mit heterogenem klinischem Erscheinungsbild und dementsprechend ganz unterschiedlicher Prognose. Prinzipiell wird eine rein kutane Mastozytose (fast immer bei Kindern) von einer systemischen Mastozytose (bei Erwachsenen) mit fakultativem, gleichwohl häufigem Hautbefall unterschieden. Im Zentrum der Diagnose steht der Histopathologe mit Nachweis einer Zunahme atypischer Mastzellen im Gewebeschnitt, häufig unter Ausbildung kompakter Infiltrate.
Collapse
Affiliation(s)
- Hans-Peter Horny
- Europäisches Referenzzentrum für Mastozytose im ECNM, Institut für Pathologie der LMU, München
| | - Peter Valent
- Europäisches Referenzzentrum für Mastozytose im ECNM, Institut für Pathologie der LMU, München
| |
Collapse
|
38
|
Abstract
INTRODUCTION Systemic mastocytosis (SM) is a rare myeloid neoplasm driven in ≈95% of cases by activating KIT mutations, usually D816V. SM can be indolent (ISM), smoldering (SSM) and advanced (AdvSM), the latter characterized by organ damage resulting from infiltrating neoplastic mast cells. The vast majority of cases are indolent, with near-normal life expectancy, although symptoms can be severe. AdvSM, comprising aggressive SM, SM with an associated hematologic neoplasm and mast cell leukemia, however, carries a poor prognosis. Avapritinib is a highly potent and selective inhibitor of mutant KIT. AREAS COVERED We provide an overview of SM, including the current therapeutic landscape, and discuss avapritinib in detail: its chemistry and discovery, pharmacodynamic and pharmacokinetic data, current approval status and safety and efficacy profiles in both advanced and non-advanced SM. EXPERT OPINION With a response rate of 75% amongst evaluable patients with AdvSM and marked reductions observed in measures of mast cell and disease burden, avapritinib stands out as a highly effective targeted therapy for this mutant KIT-driven disease. Cognitive impairment may occur, and intracranial hemorrhage has been reported, particularly in association with severe thrombocytopenia. Early results in patients with ISM/SSM are encouraging. Avapritinib is now approved in the US for AdvSM.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
Systemic Mastocytosis: Molecular Landscape and Implications for Treatment. Mediterr J Hematol Infect Dis 2021; 13:e2021046. [PMID: 34276915 PMCID: PMC8265368 DOI: 10.4084/mjhid.2021.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
Over the past decade, we have witnessed significant advances in the molecular characterization of systemic mastocytosis (SM). This has provided important information for a better understanding of the pathogenesis of the disease but has also practically impacted the way we diagnose and manage it. Advances in molecular testing have run in parallel with advances in therapeutic targeting of constitutive active KIT, the major driver of the disease. Therefore, assessing the molecular landscape in each SM patient is essential for diagnosis, prognosis, treatment, and therapeutic efficacy monitoring. This is facilitated by the routine availability of novel technologies like digital PCR and NGS. This review aims to summarize the pathogenesis of the disease, discuss the value of molecular diagnostic testing and how it should be performed, and provide an overview of present and future therapeutic concepts based on fine molecular characterization of SM patients.
Collapse
|
40
|
Naumann N, Lübke J, Shomali W, Reiter L, Horny HP, Jawhar M, Dangelo V, Fabarius A, Metzgeroth G, Kreil S, Sotlar K, Oni C, Harrison C, Hofmann WK, Cross NCP, Valent P, Radia D, Gotlib J, Reiter A, Schwaab J. Clinical and histopathological features of myeloid neoplasms with concurrent Janus kinase 2 (JAK2) V617F and KIT proto-oncogene, receptor tyrosine kinase (KIT) D816V mutations. Br J Haematol 2021; 194:344-354. [PMID: 34060083 DOI: 10.1111/bjh.17567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 01/23/2023]
Abstract
We report on 45 patients with myeloid neoplasms and concurrent Janus kinase 2 (JAK2) V617F and KIT proto-oncogene, receptor tyrosine kinase (KIT) D816V (JAK2pos . /KITpos . ) mutations, which are individually identified in >60% of patients with classical myeloproliferative neoplasms (MPN) and >90% of patients with systemic mastocytosis (SM) respectively. In SM, the concurrent presence of a clonal non-mast cell neoplasm [SM with associated haematological neoplasm (SM-AHN)] usually constitutes a distinct subtype associated with poor survival. All 45 patients presented with a heterogeneous combination of clinical/morphological features typical of the individual disorders (e.g. leuco-/erythro-/thrombocytosis and elevated lactate dehydrogenase for MPN; elevated serum tryptase and alkaline phosphatase for SM). Overlapping features identified in 70% of patients included splenomegaly, cytopenia(s), bone marrow fibrosis and additional somatic mutations. Molecular dissection revealed discordant development of variant allele frequency for both mutations and absence of concurrently positive single-cell derived colonies, indicating disease evolution in two independent clones rather than monoclonal disease in >60% of patients examined. Overall survival of JAK2pos . /KITpos . patients without additional somatic high-risk mutations [HRM, e.g. in serine and arginine-rich splicing factor 2 (SRSF2), additional sex combs like-1 (ASXL1) or Runt-related transcription factor 1 (RUNX1)] at 5 years was 77%, indicating that the mutual impact of JAK2 V617F and KIT D816V on prognosis is fundamentally different from the adverse impact of additional HRM in the individual disorders.
Collapse
Affiliation(s)
- Nicole Naumann
- Haematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Lübke
- Haematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - William Shomali
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA, USA
| | - Lukas Reiter
- Haematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian-University, Munich, Germany
| | - Mohamad Jawhar
- Haematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vito Dangelo
- Haematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alice Fabarius
- Haematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Haematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Kreil
- Haematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Claire Oni
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Claire Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Wolf-Karsten Hofmann
- Haematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicholas C P Cross
- Wessex Regional Genetics Laboratory, Salisbury, UK.,School of Medicine, University of Southampton, Southampton, UK
| | - Peter Valent
- Department of Internal Medicine I, Division of Haematology and Ludwig Boltzmann Institute for Haematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Deepti Radia
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas Reiter
- Haematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliana Schwaab
- Haematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
41
|
Clonal evolution and heterogeneity in advanced systemic mastocytosis revealed by single-cell DNA sequencing. Blood Adv 2021; 5:1733-1736. [PMID: 33734329 DOI: 10.1182/bloodadvances.2020003980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 11/20/2022] Open
|
42
|
Gupta A, Singh J, García-Valverde A, Serrano C, Flynn DL, Smith BD. Ripretinib and MEK Inhibitors Synergize to Induce Apoptosis in Preclinical Models of GIST and Systemic Mastocytosis. Mol Cancer Ther 2021; 20:1234-1245. [PMID: 33947686 DOI: 10.1158/1535-7163.mct-20-0824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
The majority of gastrointestinal stromal tumors (GIST) harbor constitutively activating mutations in KIT tyrosine kinase. Imatinib, sunitinib, and regorafenib are available as first-, second-, and third-line targeted therapies, respectively, for metastatic or unresectable KIT-driven GIST. Treatment of patients with GIST with KIT kinase inhibitors generally leads to a partial response or stable disease but most patients eventually progress by developing secondary resistance mutations in KIT. Tumor heterogeneity for secondary resistant KIT mutations within the same patient adds further complexity to GIST treatment. Several other mechanisms converge and reactivate the MAPK pathway upon KIT/PDGFRA-targeted inhibition, generating treatment adaptation and impairing cytotoxicity. To address the multiple potential pathways of drug resistance in GIST, the KIT/PDGFRA inhibitor ripretinib was combined with MEK inhibitors in cell lines and mouse models. Ripretinib potently inhibits a broad spectrum of primary and drug-resistant KIT/PDGFRA mutants and is approved by the FDA for the treatment of adult patients with advanced GIST who have received previous treatment with 3 or more kinase inhibitors, including imatinib. Here we show that ripretinib treatment in combination with MEK inhibitors is effective at inducing and enhancing the apoptotic response and preventing growth of resistant colonies in both imatinib-sensitive and -resistant GIST cell lines, even after long-term removal of drugs. The effect was also observed in systemic mastocytosis (SM) cells, wherein the primary drug-resistant KIT D816V is the driver mutation. Our results show that the combination of KIT and MEK inhibition has the potential to induce cytocidal responses in GIST and SM cells.
Collapse
Affiliation(s)
- Anu Gupta
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Jarnail Singh
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Alfonso García-Valverde
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Bryan D Smith
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts.
| |
Collapse
|
43
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
44
|
Nintedanib targets KIT D816V neoplastic cells derived from induced pluripotent stem cells of systemic mastocytosis. Blood 2021; 137:2070-2084. [PMID: 33512435 DOI: 10.1182/blood.2019004509] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. Therefore, KIT D816V represents a prime therapeutic target for SM. Here, we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model for mechanistic and drug-discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib, a US Food and Drug Administration-approved angiokinase inhibitor that targets vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V-targeted therapy of advanced SM.
Collapse
|
45
|
Pardanani A. Systemic mastocytosis in adults: 2021 Update on diagnosis, risk stratification and management. Am J Hematol 2021; 96:508-525. [PMID: 33524167 DOI: 10.1002/ajh.26118] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
OVERVIEW Systemic mastocytosis (SM) results from a clonal proliferation of abnormal mast cells (MC) in extra-cutaneous organs. DIAGNOSIS The major criterion is presence of multifocal clusters of spindled MC in the bone marrow. Minor diagnostic criteria include elevated serum tryptase level, abnormal MC CD25 expression, and presence of KITD816V mutation. RISK STRATIFICATION Establishing SM subtype as per the World Health Organization classification system is an important first step. Broadly, patients either have indolent/smoldering SM (ISM/SSM) or advanced SM, the latter includes aggressive SM (ASM), SM with associated hematological neoplasm (SM-AHN), and mast cell leukemia (MCL). Identification of poor-risk mutations (ie, ASXL1, RUNX1, SRSF2, NRAS) further refines the risk stratification. Recently, clinical and hybrid clinical-molecular risk models have been developed to more accurately assign prognosis in SM patients. MANAGEMENT Treatment goals for ISM patients are primarily directed towards anaphylaxis prevention/symptom control/osteoporosis treatment. Patients with advanced SM frequently need MC cytoreductive therapy to ameliorate disease-related organ dysfunction. High response rates have been seen with small-molecule inhibitors that target mutant-KIT, including midostaurin (Food and Drug Administration approved) or avapritinib (investigational). Other options for MC cytoreduction include cladribine or interferon-α, although head-to-head comparisons are lacking. Treatment of SM-AHN primarily targets the AHN component, particularly if an aggressive disease such as acute myeloid leukemia is present. Allogeneic stem cell transplant can be considered in such patients, or in those with relapsed/refractory advanced SM. Imatinib has a limited therapeutic role in SM; effective cytoreduction is limited to those with imatinib-sensitive KIT mutations.
Collapse
Affiliation(s)
- Animesh Pardanani
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota
| |
Collapse
|
46
|
Response Criteria in Advanced Systemic Mastocytosis: Evolution in the Era of KIT Inhibitors. Int J Mol Sci 2021; 22:ijms22062983. [PMID: 33804174 PMCID: PMC8001403 DOI: 10.3390/ijms22062983] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic mastocytosis (SM) is a rare clonal hematologic neoplasm, driven, in almost all cases, by the activating KIT D816V mutation that leads to the growth and accumulation of neoplastic mast cells. While patients with advanced forms of SM have a poor prognosis, the introduction of KIT inhibitors (e.g., midostaurin, and avapritinib) has changed their outlook. Because of the heterogenous nature of advanced SM (advSM), successive iterations of response criteria have tried to capture different dimensions of the disease, including measures of mast cell burden (percentage of bone marrow mast cells and serum tryptase level), and mast cell-related organ damage (referred to as C findings). Historically, response criteria have been anchored to reversion of one or more organ damage finding(s) as a minimal criterion for response. This is a central principle of the Valent criteria, Mayo criteria, and International Working Group-Myeloproliferative Neoplasms Research and Treatment and European Competence Network on Mastocytosis (IWG-MRT-ECNM) consensus criteria. Irrespective of the response criteria, an ever-present challenge is how to apply response criteria in patients with SM and an associated hematologic neoplasm, where the presence of both diseases complicates assignment of organ damage and adjudication of response. In the context of trials with the selective KIT D816V inhibitor avapritinib, pure pathologic response (PPR) criteria, which rely solely on measures of mast cell burden and exclude consideration of organ damage findings, are being explored as more robust surrogate of overall survival. In addition, the finding that avapritinib can elicit complete molecular responses of KIT D816V allele burden, establishes a new benchmark for advSM and motivates the inclusion of definitions for molecular response in future criteria. Herein, we also outline how the concept of PPR can inform a proposal for new response criteria which use a tiered evaluation of pathologic, molecular, and clinical responses.
Collapse
|
47
|
Adverse Prognostic Impact of the KIT D816V Transcriptional Activity in Advanced Systemic Mastocytosis. Int J Mol Sci 2021; 22:ijms22052562. [PMID: 33806359 PMCID: PMC7961551 DOI: 10.3390/ijms22052562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
In systemic mastocytosis (SM), qualitative and serial quantitative assessment of the KIT D816V mutation is of diagnostic and prognostic relevance. We investigated peripheral blood and bone marrow samples of 161 patients (indolent SM (ISM), n = 40; advanced SM, AdvSM, n = 121) at referral and during follow-up for the KIT D816V variant allele frequency (VAF) at the DNA-level and the KIT D816V expressed allele burden (EAB) at the RNA-level. A round robin test with four participating laboratories revealed an excellent correlation (r > 0.99, R2 > 0.98) between three different DNA-assays. VAF and EAB strongly correlated in ISM (r = 0.91, coefficient of determination, R2 = 0.84) but only to a lesser extent in AdvSM (r = 0.71; R2 = 0.5). However, as compared to an EAB/VAF ratio ≤2 (cohort A, 77/121 patients, 64%) receiver operating characteristic (ROC) analysis identified an EAB/VAF ratio of >2 (cohort B, 44/121 patients, 36%) as predictive for an advanced phenotype and a significantly inferior median survival (3.3 vs. 11.7 years; p = 0.005). In terms of overall survival, Cox-regression analysis was only significant for the EAB/VAF ratio >2 (p = 0.006) but not for VAF or EAB individually. This study demonstrates for the first time that the transcriptional activity of KIT D816V may play an important role in the pathophysiology of SM.
Collapse
|
48
|
Tzankov A, Duncavage E, Craig FE, Kelemen K, King RL, Orazi A, Quintanilla-Martinez L, Reichard KK, Rimsza LM, Wang SA, Horny HP, George TI. Mastocytosis. Am J Clin Pathol 2021; 155:239-266. [PMID: 33313644 DOI: 10.1093/ajcp/aqaa183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The 2019 Workshop of the Society for Hematopathology/European Association for Haematopathology received and reviewed cases covering the spectrum of mastocytosis and related diseases, including morphologic mimics, focusing on recent updates and relevant findings for pathologists. METHODS The workshop panel reviewed 99 cases of cutaneous and systemic mastocytosis (SM) and SM and associated hematologic neoplasms (SM-AHN). RESULTS Despite a common theme of KIT mutation (particularly D816V), mastocytosis is a heterogeneous neoplasm with a wide variety of presentations. This spectrum, including rare subtypes and extramedullary organ involvement, is discussed and illustrated by representative cases. CONCLUSIONS In the age of targeted treatment aimed at KIT, the accurate diagnosis and classification of mastocytosis has major implications for therapy and further interventions. Understanding the clinical, pathologic, and genetic findings of mastocytosis is crucial for selecting the proper tests to perform and subsequent arrival at a correct diagnosis in this rare disease.
Collapse
Affiliation(s)
- Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Eric Duncavage
- Department of Pathology, Washington University, St Louis, MO
| | - Fiona E Craig
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | | | | | - Attilio Orazi
- Department of Pathology, Texas Tech Health Sciences Center, El Paso
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | | | - Lisa M Rimsza
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | - Sa A Wang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Tracy I George
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| |
Collapse
|
49
|
Proposed global prognostic score for systemic mastocytosis: a retrospective prognostic modelling study. LANCET HAEMATOLOGY 2021; 8:e194-e204. [PMID: 33508247 DOI: 10.1016/s2352-3026(20)30400-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Several risk stratification models have been proposed in recent years for systemic mastocytosis but have not been directly compared. Here we designed and validated a risk stratification model for progression-free survival (PFS) and overall survival (OS) in systemic mastocytosis on the basis of all currently available prognostic factors, and compared its predictive capacity for patient outcome with that of other risk scores. METHODS We did a retrospective prognostic modelling study based on patients diagnosed with systemic mastocytosis between March 1, 1983, and Oct 11, 2019. In a discovery cohort of 422 patients from centres of the Spanish Network on Mastocytosis (REMA), we evaluated previously identified, independent prognostic features for prognostic effect on PFS and OS by multivariable analysis, and designed a global prognostic score for mastocytosis (GPSM) aimed at predicting PFS (GPSM-PFS) and OS (GPSM-OS) by including only those variables that showed independent prognostic value (p<0·05). The GPSM scores were validated in an independent cohort of 853 patients from centres in Europe and the USA, and compared with pre-existing risk models in the total patient series (n=1275), with use of Harrells' concordance index (C-index) as a readout of the ability of each model to risk-stratify patients according to survival outcomes. FINDINGS Our GPSM-PFS and GPSM-OS models were based on unique combinations of independent prognostic factors for PFS (platelet count ≤100 × 109 cells per L, serum β2-microglobulin ≥2·5 μg/mL, and serum baseline tryptase ≥125 μg/L) and OS (haemoglobin ≤110 g/L, serum alkaline phosphatase ≥140 IU/L, and at least one mutation in SRSF2, ASXL1, RUNX1, or DNMT3A). The models showed clear discrimination between low-risk and high-risk patients in terms of worse PFS and OS prognoses in the discovery and validation cohorts, and further discrimination of intermediate-risk patients. The GPSM-PFS score was an accurate predictor of PFS in systemic mastocytosis (C-index 0·90 [95% CI 0·87-0·93], vs values ranging from 0·85 to 0·88 for pre-existing models), particularly in non-advanced systemic mastocytosis (C-index 0·85 [0·76-0·92], within the range for pre-existing models of 0·80 to 0·93). Additionally, the GPSM-OS score was able to accurately predict OS in the entire cohort (C-index 0·92 [0·89-0·94], vs 0·67 to 0·90 for pre-existing models), and showed some capacity to predict OS in advanced systemic mastocytosis (C-index 0·72 [0·66-0·78], vs 0·64 to 0·73 for pre-existing models). INTERPRETATION All evaluated risk classifications predicted survival outcomes in systemic mastocytosis. The REMA-PFS and GPSM-PFS models for PFS, and the International Prognostic Scoring System for advanced systemic mastocytosis and GPSM-OS model for OS emerged as the most accurate models, indicating that robust prognostication might be prospectively achieved on the basis of biomarkers that are accessible in diagnostic laboratories worldwide. FUNDING Carlos III Health Institute, European Regional Development Fund, Spanish Association of Mastocytosis and Related Diseases, Rare Diseases Strategy of the Spanish National Health System, Junta of Castile and León, Charles and Ann Johnson Foundation, Stanford Cancer Institute Innovation Fund, Austrian Science Fund.
Collapse
|
50
|
Fuchs D, Kilbertus A, Kofler K, von Bubnoff N, Shoumariyeh K, Zanotti R, Bonadonna P, Scaffidi L, Doubek M, Elberink HO, Span LFR, Hermine O, Elena C, Benvenuti P, Yavuz AS, Brockow K, Zink A, Aberer E, Gorska A, Romantowski J, Hadzijusufovic E, Fortina AB, Caroppo F, Perkins C, Illerhaus A, Panse J, Vucinic V, Jawhar M, Sabato V, Triggiani M, Parente R, Bergström A, Breynaert C, Gotlib J, Reiter A, Hartmann K, Niedoszytko M, Arock M, Kluin-Nelemans HC, Sperr WR, Greul R, Valent P. Scoring the Risk of Having Systemic Mastocytosis in Adult Patients with Mastocytosis in the Skin. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:1705-1712.e4. [PMID: 33346151 DOI: 10.1016/j.jaip.2020.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mastocytosis in adults often presents with skin lesions. A bone marrow biopsy is necessary to confirm or exclude the presence of systemic mastocytosis (SM) in these cases. When a bone marrow biopsy is not performed, the provisional diagnosis is mastocytosis in the skin (MIS). No generally accepted scoring system has been established to estimate the risk of SM in these patients. OBJECTIVE To develop a risk score to predict SM in adults with MIS. METHODS We examined 1145 patients with MIS from the European Competence Network on Mastocytosis Registry who underwent a bone marrow biopsy. A total of 944 patients had SM and 201 patients had cutaneous mastocytosis; 63.7% were female, and 36.3% were male. Median age was 44 ± 13.3 years. The median serum tryptase level amounted to 29.3 ± 81.9 ng/mL. We established a multivariate regression model using the whole population of patients as a training and validation set (bootstrapping). A risk score was developed and validated with receiver-operating curves. RESULTS In the multivariate model, the tryptase level (P < .001), constitutional/cardiovascular symptoms (P = .014), and bone symptoms/osteoporosis (P < .001) were independent predictors of SM (P < .001; sensitivity, 90.7%; specificity, 69.1%). A 6-point risk score was established (risk, 10.7%-98.0%) and validated. CONCLUSIONS Using a large data set of the European Competence Network on Mastocytosis Registry, we created a risk score to predict the presence of SM in patients with MIS. Although the score will need further validation in independent cohorts, our score seems to discriminate safely between patients with SM and with pure cutaneous mastocytosis.
Collapse
Affiliation(s)
- David Fuchs
- Department for Hematology and Internal Oncology, Kepler University Hospital, Linz, Austria; Johannes Kepler University, Linz, Austria.
| | - Alex Kilbertus
- Department of Dermatology and Venerology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Karin Kofler
- Department for Hematology and Internal Oncology, Kepler University Hospital, Linz, Austria
| | - Nikolas von Bubnoff
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Hematology and Oncology, Medical Center, University of Schleswig Holstein, Campus Lübeck, Lübeck, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) Partner site Freiburg, Freiburg, Germany
| | - Roberta Zanotti
- Section of Hematology, Department of Medicine, Verona University Hospital, Verona, Italy
| | | | - Luigi Scaffidi
- Section of Hematology, Department of Medicine, Verona University Hospital, Verona, Italy
| | | | - Hanneke Oude Elberink
- Department of Internal Medicine, Section of Allergy, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lambert F R Span
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Olivier Hermine
- Imagine Institute Université Paris Descartes, Sorbonne, Paris Cité, Centre national de référence des mastocytoses, Paris, France
| | - Chiara Elena
- Department of Hematology Oncology, IRCCS Policlinico San Matteo Foundation Pavia, Pavia, Italy
| | - Pietro Benvenuti
- Department of Hematology Oncology, School of Hematology, University of Pavia and IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Akif Selim Yavuz
- Division of Hematology, Department of Internal Medicine, University of Istanbul, Istanbul, Turkey
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Zink
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Elisabeth Aberer
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Aleksandra Gorska
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jan Romantowski
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Emir Hadzijusufovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Department/Hospital for Companion Animals and Horses, University Clinic for Small Animals, Internal Medicine Small Animals, University of Veterinary Medicine, Vienna, Austria
| | - Anna Belloni Fortina
- Pediatric Dermatology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Francesca Caroppo
- Pediatric Dermatology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Cecelia Perkins
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif
| | - Anja Illerhaus
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Jens Panse
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Mohamad Jawhar
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Vito Sabato
- Faculty of Medicine and Health Sciences, Department of Immunology-Allergology-Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerpen, Belgium
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Salerno, Salerno, Italy
| | - Roberta Parente
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Salerno, Salerno, Italy
| | - Anna Bergström
- Department of Dermatology and Venereology, Akademiska University Hospital, Uppsala, and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Christine Breynaert
- Department of General Internal Medicine - Allergy and Clinical Immunology (MASTEL), University Hospitals Leuven and KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, Calif
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Karin Hartmann
- Department of Dermatology, University of Cologne, Cologne, Germany; Division of Allergy, Department of Dermatology, University of Basel, Basel, Switzerland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Paris Sorbonne University, Paris, France
| | - Hanneke C Kluin-Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Rosemarie Greul
- Department for Hematology and Internal Oncology, Kepler University Hospital, Linz, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|