1
|
Yuan R, Mu Z, Zhang H, Guo J, Tian Y, Xin Q, Zhu X, Dong Z, Wang H, Shi Y. Ultrasonic Microfluidic Method Used for siHSP47 Loaded in Human Embryonic Kidney Cell-Derived Exosomes for Inhibiting TGF-β1 Induced Fibroblast Differentiation and Migration. Int J Mol Sci 2025; 26:382. [PMID: 39796239 PMCID: PMC11722050 DOI: 10.3390/ijms26010382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion. Exosomes (EXOs) have been investigated for drug delivery due to their superior carrier properties. However, their loading efficiency has been a limiting factor in widely application as drug carriers. In this study, an ultrasonic microfluidic method was employed to enhance the loading efficiency of siHSP47 into EXOs, achieving 31.1% efficiency rate. EXOs were isolated from human embryonic kidney cells (293F) and loaded with siHSP47 (EXO-siHSP47). The findings indicated that EXO-siHSP47 penetrated the collagen barrier and effectively silenced HSP47 expression in activated fibroblasts in vitro. Western blotting and immunofluorescence analyses confirmed that EXO-siHSP47 significantly reduced the secretion and deposition of extracellular matrix (ECM) proteins. Wound healing and Transwell migration assays demonstrated that EXO-siHSP47 inhibited fibroblast differentiation and migration. In conclusion, 293F-derived EXOs loaded with siHSP47 present a promising therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Ranran Yuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (R.Y.); (Z.M.); (H.Z.); (Y.T.); (Q.X.)
| | - Zhen Mu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (R.Y.); (Z.M.); (H.Z.); (Y.T.); (Q.X.)
| | - Houqian Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (R.Y.); (Z.M.); (H.Z.); (Y.T.); (Q.X.)
| | - Jianwei Guo
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China;
| | - Yu Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (R.Y.); (Z.M.); (H.Z.); (Y.T.); (Q.X.)
| | - Quanlin Xin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (R.Y.); (Z.M.); (H.Z.); (Y.T.); (Q.X.)
| | - Xiaojing Zhu
- Guangdong Laboratory of Chemistry and Fine Chemical Engineering, Shantou 515031, China; (X.Z.); (Z.D.)
| | - Zhengya Dong
- Guangdong Laboratory of Chemistry and Fine Chemical Engineering, Shantou 515031, China; (X.Z.); (Z.D.)
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (R.Y.); (Z.M.); (H.Z.); (Y.T.); (Q.X.)
| | - Yanan Shi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (R.Y.); (Z.M.); (H.Z.); (Y.T.); (Q.X.)
| |
Collapse
|
2
|
Boiko JR, Hill GR. Chronic Graft-versus-host Disease: Immune Insights, Therapeutic Advances, and Parallels for Solid Organ Transplantation. Transplantation 2024:00007890-990000000-00959. [PMID: 39682018 DOI: 10.1097/tp.0000000000005298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Chronic graft-versus-host disease remains a frequent and morbid outcome of allogeneic hematopoietic cell transplantation, in which the donor-derived immune system attacks healthy recipient tissue. Preceding tissue damage mediated by chemoradiotherapy and alloreactive T cells compromise central and peripheral tolerance mechanisms, leading to aberrant donor T cell and germinal center B cell differentiation, culminating in pathogenic macrophage infiltration and differentiation in a target tissue, with ensuant fibrosis. This process results in a heterogeneous clinical syndrome with significant morbidity and mortality, frequently requiring prolonged therapy. In this review, we discuss the processes that interrupt immune tolerance, the subsequent clinical manifestations, and new Food and Drug Administration-approved therapeutic approaches that have been born from a greater understanding of disease pathogenesis in preclinical systems, linking to parallel processes following solid organ transplantation.
Collapse
Affiliation(s)
- Julie R Boiko
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Cunha J, Ventura FV, Charrueau C, Ribeiro AJ. Alternative routes for parenteral nucleic acid delivery and related hurdles: highlights in RNA delivery. Expert Opin Drug Deliv 2024; 21:1415-1439. [PMID: 39271564 DOI: 10.1080/17425247.2024.2405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Nucleic acid-based therapies are promising advancements in medicine. They offer unparalleled efficacy in treating previously untreatable diseases through precise gene manipulation techniques. However, the challenge of achieving targeted delivery to specific cells remains a significant obstacle. AREAS COVERED This review thoroughly examines the physicochemical properties of nucleic acids, focusing on their interaction with carriers and exploring various delivery routes, including oral, pulmonary, ocular, and dermal routes. It also examines the nonviral vector delivery efficiency of nucleic acids, focusing on RNA, and provides regulatory landscapes. EXPERT OPINION The role of carriers in improving the effectiveness of nucleic acid-based therapies is emphasized. The discussion of published results covers regulatory frameworks, including insights into European Medicines Agency guidelines. It highlights cutting-edge biotechnological innovations and a quality-by-design approach that could facilitate clinical translation and smooth regulatory obstacles.
Collapse
Affiliation(s)
- Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Fátima V Ventura
- Medicines Evaluation Department, National Authority of Medicines and Health Products (INFARMED), Lisbon, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | | | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Hasegawa Y, Hashimoto D, Zhang Z, Miyajima T, Saito Y, Li W, Kikuchi R, Senjo H, Sekiguchi T, Tateno T, Chen X, Yokoyama E, Takahashi S, Ohigashi H, Ara T, Hayase E, Yokota I, Teshima T. GVHD targets organoid-forming bile duct stem cells in a TGF-β-dependent manner. Blood 2024; 144:904-913. [PMID: 38905638 DOI: 10.1182/blood.2023023060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Graft-versus-host disease (GVHD) is a major life-threatening complication that occurs after allogeneic hematopoietic cell transplantation (HCT). Although adult tissue stem cells have been identified as targets of GVHD in the skin and gut, their role in hepatic GVHD is yet to be clarified. In the current study, we explored the fate of bile duct stem cells (BDSCs), capable of generating liver organoids in vitro, during hepatic GVHD after allogeneic HCT. We observed a significant expansion of biliary epithelial cells (BECs) on injury early after allogeneic HCT. Organoid-forming efficiency from the bile duct was also significantly increased early after allogeneic HCT. Subsequently, the organoid-forming efficiency from bile ducts was markedly decreased in association with the reduction of BECs and the elevation of plasma concentrations of bilirubin, suggesting that GVHD targets BDSCs and impairs the resilience of BECs. The growth of liver organoids in the presence of liver-infiltrating mononuclear cells from allogeneic recipients, but not from syngeneic recipients, was significantly reduced in a transforming growth factor-β (TGF-β)-dependent manner. Administration of SB-431542, an inhibitor of TGF-β signaling, from day 14 to day 28, protected organoid-forming BDSCs against GVHD and mitigated biliary dysfunction after allogeneic HCT, suggesting that BDSCs are a promising therapeutic target for hepatic GVHD.
Collapse
Affiliation(s)
- Yuta Hasegawa
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Zixuan Zhang
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Toru Miyajima
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Yumika Saito
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Wenyu Li
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Ryo Kikuchi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Hajime Senjo
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Tomoko Sekiguchi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Takahiro Tateno
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Xuanzhong Chen
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Emi Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Shuichiro Takahashi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Hiroyuki Ohigashi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Takahide Ara
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Eiko Hayase
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Isao Yokota
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Khan ES, Däinghaus T. HSP47 in human diseases: Navigating pathophysiology, diagnosis and therapy. Clin Transl Med 2024; 14:e1755. [PMID: 39135385 PMCID: PMC11319607 DOI: 10.1002/ctm2.1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024] Open
Abstract
Heat shock protein 47 (HSP47) is a chaperone protein responsible for regulating collagen maturation and transport, directly impacting collagen synthesis levels. Aberrant HSP47 expression or malfunction has been associated with collagen-related disorders, most notably fibrosis. Recent reports have uncovered new functions of HSP47 in various cellular processes. Hsp47 dysregulation in these alternative roles has been linked to various diseases, such as cancer, autoimmune and neurodegenerative disorders, thereby highlighting its potential as both a diagnostic biomarker and a therapeutic target. In this review, we discuss the pathophysiological roles of HSP47 in human diseases, its potential as a diagnostic tool, clinical screening techniques and its role as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Essak. S. Khan
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
- German Consortium for Translational Cancer Research (DKTK)DKFZ Frankfurt‐MainzFrankfurt am MainGermany
| | - Tobias Däinghaus
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
| |
Collapse
|
6
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
7
|
Zamora ME, Omo-Lamai S, Patel MN, Wu J, Arguiri E, Muzykantov VR, Myerson JW, Marcos-Contreras OA, Brenner JS. Combination of Physicochemical Tropism and Affinity Moiety Targeting of Lipid Nanoparticles Enhances Organ Targeting. NANO LETTERS 2024. [PMID: 38598417 DOI: 10.1021/acs.nanolett.3c05031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Two camps have emerged for targeting nanoparticles to specific organs and cell types: affinity moiety targeting and physicochemical tropism. Here we directly compare and combine both using intravenous (IV) lipid nanoparticles (LNPs) designed to target the lungs. We utilized PECAM antibodies as affinity moieties and cationic lipids for physicochemical tropism. These methods yield nearly identical lung uptake, but aPECAM LNPs show higher endothelial specificity. LNPs combining these targeting methods had >2-fold higher lung uptake than either method alone and markedly enhanced epithelial uptake. To determine if lung uptake is because the lungs are the first organ downstream of IV injection, we compared IV vs intra-arterial (IA) injection into the carotid artery, finding that IA combined-targeting LNPs achieve 35% of the injected dose per gram (%ID/g) in the first-pass organ, the brain, among the highest reported. Thus, combining the affinity moiety and physicochemical strategies provides benefits that neither targeting method achieves alone.
Collapse
Affiliation(s)
- Marco E Zamora
- Drexel University, School of Biomedical Engineering, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Serena Omo-Lamai
- University of Pennsylvania, Department of Bioengineering, Philadelphia, Pennsylvania 19104, United States
| | - Manthan N Patel
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jichuan Wu
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Evguenia Arguiri
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Vladmir R Muzykantov
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jacob W Myerson
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A Marcos-Contreras
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jacob S Brenner
- University of Pennsylvania, School of Systems Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Department of Bioengineering, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Park JG, Lim DC, Park JH, Park S, Mok J, Kang KW, Park J. Benzbromarone Induces Targeted Degradation of HSP47 Protein and Improves Hypertrophic Scar Formation. J Invest Dermatol 2024; 144:633-644. [PMID: 37838329 DOI: 10.1016/j.jid.2023.09.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/29/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
Fibrotic diseases are characterized by the abnormal accumulation of collagen in the extracellular matrix, leading to the functional impairment of various organs. In the skin, excessive collagen deposition manifests as hypertrophic scars and keloids, placing a substantial burden on patients and the healthcare system worldwide. HSP47 is essential for proper collagen assembly and contributes to fibrosis. However, identifying clinically applicable HSP47 inhibitors has been a major pharmaceutical challenge. In this study, we identified benzbromarone (BBR) as an HSP47 inhibitor for hypertrophic scarring treatment. BBR inhibited collagen production and secretion in fibroblasts from patients with keloid by binding to HSP47 and inhibiting the interaction between HSP47 and collagen. Interestingly, BBR not only inhibits HSP47 but also acts as a molecular glue degrader that promotes its proteasome-dependent degradation. Through these molecular mechanisms, BBR effectively reduced hypertrophic scarring in mini pigs and rats with burns and/or excisional skin damage. Thus, these findings suggest that BBR can be used to clinically treat hypertrophic scars and, more generally, fibrotic diseases.
Collapse
Affiliation(s)
- Jung Gyu Park
- Innovo Therapeutics, Daejeon, Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | - Jeong Hwan Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Seoah Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Jongsoo Mok
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Joonghoon Park
- Graduate School of International Agricultural Technology, PyeongChang, Korea; Institute of Green Bio Science & Technology, Seoul National University, Pyeongchang, Korea.
| |
Collapse
|
9
|
Choi YJ, Kwon JW, Jee D. The relationship between blood vitamin A levels and diabetic retinopathy: a population-based study. Sci Rep 2024; 14:491. [PMID: 38177180 PMCID: PMC10766637 DOI: 10.1038/s41598-023-49937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
We assessed the relationship between blood vitamin A levels and the risk of diabetic retinopathy. The study was population-based epidemiological study for 11,727 participants aged 40 or older who participated in the Korean National Health and Nutrition Examination Survey. Vitamin A in the blood was classified into quartiles. Diabetic retinopathy was diagnosed by the Early Treatment for Diabetic Retinopathy Study. After adjusting confounding variables such as age, sex, smoking, cholesterol, diabetes prevalence period, glycated hemoglobin levels, and high blood pressure, the odd ratio (OR) of vitamin A at quartile level 4 for diabetic retinopathy was 0.32 (95% confidence interval [CI], 0.14-0.72, P for trend < 0.001). In male, the OR of quartile 3 level vitamin A for diabetic retinopathy was 0.11 (95% CI, 0.01-0.69, P for trend = 0.010). In adults under the age of 60, the OR of vitamin A at quartile level 3 for diabetic retinopathy was 0.10. (95% CI, 0.03-0.29, P for trend < 0.001). Serum vitamin A high levels are associated with low risk of diabetic retinopathy. Particularly, there is a more effective relationship in male and adults under the age of 60.
Collapse
Affiliation(s)
- Yu-Jin Choi
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, Jungbu-daero 93, Paldal-gu, Suwon, 16247, Korea
| | - Jin-Woo Kwon
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, Jungbu-daero 93, Paldal-gu, Suwon, 16247, Korea
| | - Donghyun Jee
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, Jungbu-daero 93, Paldal-gu, Suwon, 16247, Korea.
| |
Collapse
|
10
|
Teshima T, Hashimoto D. Separation of GVL from GVHD -location, location, location. Front Immunol 2023; 14:1296663. [PMID: 38116007 PMCID: PMC10728488 DOI: 10.3389/fimmu.2023.1296663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for various hematologic malignancies. However, alloimmune response is a double-edged sword that mediates both beneficial graft-versus-leukemia (GVL) effects and harmful graft-versus-host disease (GVHD). Separation of GVL effects from GVHD has been a topic of intense research to improve transplant outcomes, but reliable clinical strategies have not yet been established. Target tissues of acute GVHD are the skin, liver, and intestine, while leukemic stem cells reside in the bone marrow. Tissue specific effector T-cell migration is determined by a combination of inflammatory and chemotactic signals that interact with specific receptors on T cells. Specific inhibition of donor T cell migration to GVHD target tissues while preserving migration to the bone marrow may represent a novel strategy to separate GVL from GVHD. Furthermore, tissue specific GVHD therapy, promoting tissue tolerance, and targeting of the tumor immune microenvironment may also help to separate GVHD and GVL.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | |
Collapse
|
11
|
Hong J, Fraebel J, Yang Y, Tkacyk E, Kitko C, Kim TK. Understanding and treatment of cutaneous graft-versus-host-disease. Bone Marrow Transplant 2023; 58:1298-1313. [PMID: 37730800 PMCID: PMC11759061 DOI: 10.1038/s41409-023-02109-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
The skin is the outermost mechanical barrier where dynamic immune reactions take place and is the most commonly affected site in both acute and chronic graft-versus-host disease (GVHD). If not properly treated, pain and pruritis resulting from cutaneous GVHD can increase the risk of secondary infection due to erosions, ulcerations, and damage of underlying tissues. Furthermore, resulting disfiguration can cause distress and significantly impact patients' quality of life. Thus, a deeper understanding of skin-specific findings of GVHD is needed. This review will highlight some promising results of recent pre-clinical studies on the pathophysiology of skin GVHD and summarize the diagnostic and staging/grading procedures according to the clinical manifestations of skin GVHD. In addition, we will summarize outcomes of various GVHD treatments, including skin-specific response rates.
Collapse
Affiliation(s)
- Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Johnathan Fraebel
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yenny Yang
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Tkacyk
- Veterans Affairs Tennessee Valley Health Care, Nashville, TN, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie Kitko
- Monroe Carell Jr Children's Hospital, Vanderbilt Division of Pediatric Hematology-Oncology, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Health Care, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Won Lee J, Kyu Shim M, Kim H, Jang H, Lee Y, Hwa Kim S. RNAi therapies: Expanding applications for extrahepatic diseases and overcoming delivery challenges. Adv Drug Deliv Rev 2023; 201:115073. [PMID: 37657644 DOI: 10.1016/j.addr.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
13
|
Buxbaum NP, Socié G, Hill GR, MacDonald KPA, Tkachev V, Teshima T, Lee SJ, Ritz J, Sarantopoulos S, Luznik L, Zeng D, Paczesny S, Martin PJ, Pavletic SZ, Schultz KR, Blazar BR. Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD. Blood Adv 2023; 7:4886-4902. [PMID: 36322878 PMCID: PMC10463203 DOI: 10.1182/bloodadvances.2022007611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.
Collapse
Affiliation(s)
- Nataliya P. Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gerard Socié
- Hematology-Transplantation, Assistance Publique-Hopitaux de Paris & University of Paris – INSERM UMR 676, Hospital Saint Louis, Paris, France
| | - Geoffrey R. Hill
- Division of Medical Oncology, The University of Washington, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kelli P. A. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Stephanie J. Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Duke Cancer Institute, Durham, NC
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, Hematologic Maligancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Cancer Immunology Program, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneappolis, MN
| |
Collapse
|
14
|
Maurer K, Soiffer RJ. The delicate balance of graft versus leukemia and graft versus host disease after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2023; 16:943-962. [PMID: 37906445 PMCID: PMC11195539 DOI: 10.1080/17474086.2023.2273847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION The curative basis of allogeneic hematopoietic stem cell transplantation (HSCT) relies in part upon the graft versus leukemia (GvL) effect, whereby donor immune cells recognize and eliminate recipient malignant cells. However, alloreactivity of donor cells against recipient tissues may also be deleterious. Chronic graft versus host disease (cGvHD) is an immunologic phenomenon wherein alloreactive donor T cells aberrantly react against host tissues, leading to damaging inflammatory symptoms. AREAS COVERED Here, we discuss biological insights into GvL and cGvHD and strategies to balance the prevention of GvHD with maintenance of GvL in modern HSCT. EXPERT OPINION/COMMENTARY Relapse remains the leading cause of mortality after HSCT with rates as high as 40% for some diseases. GvHD is a major cause of morbidity after HSCT, occurring in up to half of patients and responsible for 15-20% of deaths after HSCT. Intriguingly, the development of chronic GvHD may be linked to lower relapse rates after HSCT, suggesting that GvL and GvHD may be complementary sides of the immunologic foundation of HSCT. The ability to fine tune the balance of GvL and GvHD will lead to improvements in survival, relapse rates, and quality of life for patients undergoing HSCT.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Sun S, Han Y, Lei Y, Yu Y, Dong Y, Chen J. Hematopoietic Stem Cell: Regulation and Nutritional Intervention. Nutrients 2023; 15:nu15112605. [PMID: 37299568 DOI: 10.3390/nu15112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are crucial for the life maintenance of bio-organisms. However, the mechanism of HSC regulation is intricate. Studies have shown that there are various factors, either intrinsically or extrinsically, that shape the profile of HSCs. This review systematically summarizes the intrinsic factors (i.e., RNA-binding protein, modulators in epigenetics and enhancer-promotor-mediated transcription) that are reported to play a pivotal role in the function of HSCs, therapies for bone marrow transplantation, and the relationship between HSCs and autoimmune diseases. It also demonstrates the current studies on the effects of high-fat diets and nutrients (i.e., vitamins, amino acids, probiotics and prebiotics) on regulating HSCs, providing a deep insight into the future HSC research.
Collapse
Affiliation(s)
- Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yingxue Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yifei Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yanbin Dong
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100045, China
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
16
|
Beaven E, Kumar R, Bhatt HN, Esquivel SV, Nurunnabi M. Myofibroblast specific targeting approaches to improve fibrosis treatment. Chem Commun (Camb) 2022; 58:13556-13571. [PMID: 36445310 PMCID: PMC9946855 DOI: 10.1039/d2cc04825f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibrosis has been shown to develop in individuals with underlying health conditions, especially chronic inflammatory diseases. Fibrosis is often diagnosed in various organs, including the liver, lungs, kidneys, heart, and skin, and has been described as excessive accumulation of extracellular matrix that can affect specific organs in the body or systemically throughout the body. Fibrosis as a chronic condition can result in organ failure and result in death of the individual. Understanding and identification of specific biomarkers associated with fibrosis has emerging potential in the development of diagnosis and targeting treatment modalities. Therefore, in this review, we will discuss multiple signaling pathways such as TGF-β, collagen, angiotensin, and cadherin and outline the chemical nature of the different signaling pathways involved in fibrogenesis as well as the mechanisms. Although it has been well established that TGF-β is the main catalyst initiating and driving multiple pathways for fibrosis, targeting TGF-β can be challenging as this molecule regulates essential functions throughout the body that help to keep the body in homeostasis. We also discuss collagen, angiotensin, and cadherins and their role in fibrosis. We comprehensively discuss the various delivery systems used to target collagen, angiotensin, and cadherins to manage fibrosis. Nevertheless, understanding the steps by which this molecule drives fibrosis development can aid in the development of specific targets of its cascading mechanism. Throughout the review, we will demonstrate the mechanism of fibrosis targeting to improve targeting delivery and therapy.
Collapse
Affiliation(s)
- Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Stephanie V Esquivel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| |
Collapse
|
17
|
Hsp47 acts as a bridge between NLRP3 inflammasome and hepatic stellate cells activation in arsenic-induced liver fibrosis. Toxicol Lett 2022; 370:7-14. [PMID: 35963424 DOI: 10.1016/j.toxlet.2022.07.816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 10/31/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is a key event during the progression of liver fibrosis (LF). We have previously indicated that NLRP3 inflammasome plays a crucial role in arsenic-induced HSCs activation. However, the mechanism of cascade responses between NLRP3 inflammasome and HSCs activation is unclear. Here, we showed that the transcription and protein level of Hsp47 was upregulated after 4μM arsenic treatment, both in vivo and in vitro. Additionally, arsenic-induced HSCs activation was remarkably alleviated by the interference of Hsp47. Furthermore, blockage of NLRP3 significantly mitigated the activation of the NLRP3 inflammasome and decreased the expression of Hsp47, thereby attenuating the arsenic-induced HSCs activation. However, the ablation of Hsp47 did not affect the activation of the NLRP3 inflammasome. Notably, the protein-protein interaction between NLRP3 and Hsp47 was observed both in vivo and in vitro, and the target amino acid sequences were further identified. In summary, the present study indicated that NaAsO2 induced HSCs activation via the NLRP3 inflammasome-Hsp47 pathway. These findings provide direct evidence that Hsp47 may be a potential therapeutic target for arsenic-induced LF.
Collapse
|
18
|
Xie S, Xing Y, Shi W, Zhang M, Chen M, Fang W, Liu S, Zhang T, Zeng X, Chen S, Wang S, Deng W, Tang Q. Cardiac fibroblast heat shock protein 47 aggravates cardiac fibrosis post myocardial ischemia–reperfusion injury by encouraging ubiquitin specific peptidase 10 dependent Smad4 deubiquitination. Acta Pharm Sin B 2022; 12:4138-4153. [PMID: 36386478 PMCID: PMC9643299 DOI: 10.1016/j.apsb.2022.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Despite complications were significantly reduced due to the popularity of percutaneous coronary intervention (PCI) in clinical trials, reperfusion injury and chronic cardiac remodeling significantly contribute to poor prognosis and rehabilitation in AMI patients. We revealed the effects of HSP47 on myocardial ischemia–reperfusion injury (IRI) and shed light on the underlying molecular mechanism. We generated adult mice with lentivirus-mediated or miRNA (mi1/133TS)-aided cardiac fibroblast-selective HSP47 overexpression. Myocardial IRI was induced by 45-min occlusion of the left anterior descending (LAD) artery followed by 24 h reperfusion in mice, while ischemia-mediated cardiac remodeling was induced by four weeks of reperfusion. Also, the role of HSP47 in fibrogenesis was evaluated in cardiac fibroblasts following hypoxia–reoxygenation (HR). Extensive HSP47 was observed in murine infarcted hearts, human ischemic hearts, and cardiac fibroblasts and accelerated oxidative stress and apoptosis after myocardial IRI. Cardiac fibroblast-selective HSP47 overexpression exacerbated cardiac dysfunction caused by chronic myocardial IRI and presented deteriorative fibrosis and cell proliferation. HSP47 upregulation in cardiac fibroblasts promoted TGFβ1–Smad4 pathway activation and Smad4 deubiquitination by recruiting ubiquitin-specific peptidase 10 (USP10) in fibroblasts. However, cardiac fibroblast specific USP10 deficiency abolished HSP47-mediated fibrogenesis in hearts. Moreover, blockage of HSP47 with Col003 disturbed fibrogenesis in fibroblasts following HR. Altogether, cardiac fibroblast HSP47 aggravates fibrosis post-myocardial IRI by enhancing USP10-dependent Smad4 deubiquitination, which provided a potential strategy for myocardial IRI and cardiac remodeling.
Collapse
Affiliation(s)
- Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Mengya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Shasha Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
- Corresponding author.
| |
Collapse
|
19
|
Liang Y, Shen J, Lan Q, Zhang K, Xu Y, Duah M, Xu K, Pan B. Blockade of PD-1/PD-L1 increases effector T cells and aggravates murine chronic graft-versus-host disease. Int Immunopharmacol 2022; 110:109051. [PMID: 35850051 DOI: 10.1016/j.intimp.2022.109051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/05/2022]
Abstract
T-cells mediated immunopathology is crucial for pathogenesis of chronic graft-versus-host disease (cGVHD), a common complication following allogeneic hematopoietic cell transplantation. Programmed death-1 (PD-1) regulates long-term survival and functional exhaustion of T-cell which might play a role in regulating cGVHD. We examined PD-1 expression on T cells of cGVHD mice and tested the impact of a PD-1 antibody on severity of cGVHD in murine allotransplant models. We also used a murine graft-versus-tumor (GVT) model to explore how tumor cell-derived PD-L1 affect the GVT effect and occurrence of cGVHD. PD-1 fluorescence intensity on CD4+ T-cells increased in mice developing cGVHD. PD-1High T cells expressed higher levels of IFNγ and IL-17, comparing with PD-1Low T cells. Giving the PD-1 antibody increased proportions of Th1, Th17 and Tc1 cells, but decreased proportion of Treg cells in allotransplant mice. The PD-1 antibody decreased survival of recipients and induced severe lung cGVHD. In the GVT model, knockdown of PD-L1 in A20 tumor cells enhanced GVT effect but increased cGVHD. In vitro study showed knockdown of PD-L1 in tumor cells increased cytotoxicity of T cells and reduced apoptosis of T cells. Knockdown of PD-L1 in tumor cells increased protein levels of phosphorylated AKT, Bcl-2 and Mcl-1, but decreased protein levels of Bak and Bax in co-cultured allogeneic T cells. In conclusion, expression of PD-1 on T cells increased in mice undergoing cGVHD. Intervention of the PD-1/PD-L1 pathway showed a significant impact on occurrence of cGVHD and GVT effect.
Collapse
Affiliation(s)
- Yiwen Liang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kexin Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Yan Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
20
|
Functionalization of Nanoparticulate Drug Delivery Systems and Its Influence in Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14051113. [PMID: 35631699 PMCID: PMC9145684 DOI: 10.3390/pharmaceutics14051113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Research into the application of nanocarriers in the delivery of cancer-fighting drugs has been a promising research area for decades. On the other hand, their cytotoxic effects on cells, low uptake efficiency, and therapeutic resistance have limited their therapeutic use. However, the urgency of pressing healthcare needs has resulted in the functionalization of nanoparticles' (NPs) physicochemical properties to improve clinical outcomes of new, old, and repurposed drugs. This article reviews recent research on methods for targeting functionalized nanoparticles to the tumor microenvironment (TME). Additionally, the use of relevant engineering techniques for surface functionalization of nanocarriers (liposomes, dendrimers, and mesoporous silica) and their critical roles in overcoming the current limitations in cancer therapy-targeting ligands used for targeted delivery, stimuli strategies, and multifunctional nanoparticles-were all reviewed. The limitations and future perspectives of functionalized nanoparticles were also finally discussed. Using relevant keywords, published scientific literature from all credible sources was retrieved. A quick search of the literature yielded almost 400 publications. The subject matter of this review was addressed adequately using an inclusion/exclusion criterion. The content of this review provides a reasonable basis for further studies to fully exploit the potential of these nanoparticles in cancer therapy.
Collapse
|
21
|
Hu H, Ma J, Li Z, Ding Z, Chen W, Peng Y, Tao Z, Chen L, Luo M, Wang C, Wang X, Li J, Zhong M. CyPA interacts with SERPINH1 to promote extracellular matrix production and inhibit epithelial-mesenchymal transition of trophoblast via enhancing TGF-β/Smad3 pathway in preeclampsia. Mol Cell Endocrinol 2022; 548:111614. [PMID: 35304192 DOI: 10.1016/j.mce.2022.111614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
Abstract
We previously reported that cyclophilin A (CyPA) production is upregulated in preeclampsia (PE). Moreover, CyPA is known to induce PE-like features in pregnant mice and impair trophoblast invasiveness. In this study, we further illustrated the role of CyPA in PE. RNA-seq analysis, RT-qPCR, immunohistochemical (IHC) staining, and western blotting of mouse placentae revealed that CyPA increased the levels of extracellular matrix (ECM) proteins, such as collagen I and fibronectin, and activated the TGF-β/Smad3 signaling pathway. Additionally, CyPA inhibited the expression of genes involved in epithelial-mesenchymal transition (EMT) (e.g., E-cadherin, N-cadherin, and vimentin) in mouse placentae. We then constructed stable overexpressing and knock-down CyPA cell models (using HTR8/SVneo cells) to clarify the molecular mechanism. We found that CyPA regulated the levels of ECM-related proteins and the EMT process through the TGF-β/Smad3 pathway. We also identified SERPINH1 as a putative CyPA-binding protein, using liquid chromatography-electrospray mass spectrometry (LC-MS)/MS. SERPINH1 was found to be upregulated in the placentae of PE. Silencing SERPINH1 expression reversed the upregulation of ECM proteins and inhibition of the EMT process induced by the overexpression of CyPA. These findings revealed the functions of CyPA in the impaired invasiveness of trophoblasts in PE and indicated that CyPA and SERPINH1 may represent promising targets for the treatment of PE.
Collapse
Affiliation(s)
- Haoyue Hu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiju Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziling Ding
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - You Peng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zixin Tao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manling Luo
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chichiu Wang
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xuefei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Ponomarenko OV, Sergeeva LN, Khristenko TA. METHODS FOR QUANTITATIVE ASSESSMENT OF COLLAGEN ACCUMULATION PROCESSES IN DAMAGED TRAUMATIC INTEGUMENTARY TISSUES. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1331-1336. [PMID: 35758454 DOI: 10.36740/wlek202205219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: To study the level of expression of type I, III collagen under conditions of traumatic damage to integumentary tissues and to develop quantitative criteria for collagen formation processes for choosing the volume of reconstruction of a wound defect. PATIENTS AND METHODS Materials and methods: Studies were performed for 62 victims. Clinical group 1 (n = 16) - patients with wound surface sizes of the body surface area, group 2 (n = 32) consisted of patients who received integumentary tissue defects due to or together with damage osteoarticular apparatus of the limb, group 3 (n = 14) - patients with combined trauma. RESULTS Results: In the skin samples of patients of groups 1 and 2 of the affected groups, a statistically significant difference was established between the indicators of the relative accumulation area of type I, type III collagen (W = 675, p = 0.01 and W = 697, p = 0.03, respectively). In patients of groups 2 and 3, when analyzing relationships, a direct moderate strength was observed between the areas of collagen deposition of type I, type III (rs = 0.52 and 0.54). Collagen deposition coefficient (Кd) was used as a quantitative criterion for assessing the prognosis of the results of restoration of integumentary tissues according to the proposed scale, which made it possible to obtain postoperative complications in only 3.2 % of cases. CONCLUSION Conclusions: A positive treatment result taking into account the quantitative criterion (Kd) was obtained in 96.8 % of the examined patients.
Collapse
|
23
|
Wolff D, Radojcic V, Lafyatis R, Cinar R, Rosenstein RK, Cowen EW, Cheng GS, Sheshadri A, Bergeron A, Williams KM, Todd JL, Teshima T, Cuvelier GDE, Holler E, McCurdy SR, Jenq RR, Hanash AM, Jacobsohn D, Santomasso BD, Jain S, Ogawa Y, Steven P, Luo ZK, Dietrich-Ntoukas T, Saban D, Bilic E, Penack O, Griffith LM, Cowden M, Martin PJ, Greinix HT, Sarantopoulos S, Socie G, Blazar BR, Pidala J, Kitko CL, Couriel DR, Cutler C, Schultz KR, Pavletic SZ, Lee SJ, Paczesny S. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2020 Highly morbid forms report. Transplant Cell Ther 2021; 27:817-835. [PMID: 34217703 PMCID: PMC8478861 DOI: 10.1016/j.jtct.2021.06.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) can be associated with significant morbidity, in part because of nonreversible fibrosis, which impacts physical functioning (eye, skin, lung manifestations) and mortality (lung, gastrointestinal manifestations). Progress in preventing severe morbidity and mortality associated with chronic GVHD is limited by a complex and incompletely understood disease biology and a lack of prognostic biomarkers. Likewise, treatment advances for highly morbid manifestations remain hindered by the absence of effective organ-specific approaches targeting "irreversible" fibrotic sequelae and difficulties in conducting clinical trials in a heterogeneous disease with small patient numbers. The purpose of this document is to identify current gaps, to outline a roadmap of research goals for highly morbid forms of chronic GVHD including advanced skin sclerosis, fasciitis, lung, ocular and gastrointestinal involvement, and to propose strategies for effective trial design. The working group made the following recommendations: (1) Phenotype chronic GVHD clinically and biologically in future cohorts, to describe the incidence, prognostic factors, mechanisms of organ damage, and clinical evolution of highly morbid conditions including long-term effects in children; (2) Conduct longitudinal multicenter studies with common definitions and research sample collections; (3) Develop new approaches for early identification and treatment of highly morbid forms of chronic GVHD, especially biologically targeted treatments, with a special focus on fibrotic changes; and (4) Establish primary endpoints for clinical trials addressing each highly morbid manifestation in relationship to the time point of intervention (early versus late). Alternative endpoints, such as lack of progression and improvement in physical functioning or quality of life, may be suitable for clinical trials in patients with highly morbid manifestations. Finally, new approaches for objective response assessment and exploration of novel trial designs for small populations are required.
Collapse
Affiliation(s)
- Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Vedran Radojcic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Rachel K Rosenstein
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland
| | - Guang-Shing Cheng
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Bergeron
- Department of Pulmonary Medicine, AP-HP Saint Louis Hospital & University of Paris, Paris, France
| | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Jamie L Todd
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, North Carolina
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Geoffrey D E Cuvelier
- Pediatric Blood and Marrow Transplant, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ernst Holler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Shannon R McCurdy
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alan M Hanash
- Departments of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - David Jacobsohn
- Children's National Hospital, George Washington University, Washington, District of Columbia
| | - Bianca D Santomasso
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York New York
| | - Sandeep Jain
- Department of Ophthalmology, University of Illinois Eye & Ear Infirmary, Chicago, Illinois
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Philipp Steven
- Division for Dry-Eye and ocular GvHD, Department of Ophthalmology, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Zhonghui Katie Luo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Tina Dietrich-Ntoukas
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität Berlin, Department of Ophthalmology, Berlin, Germany
| | - Daniel Saban
- Department of Ophthalmology and Department of Immunology, Duke University School of Medicine, Durham, North Carolina
| | - Ervina Bilic
- Department of Neurology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Olaf Penack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - Linda M Griffith
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | | | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke University Department of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Gerard Socie
- Hematology Transplantation, AP-HP Saint Louis Hospital & University of Paris, Paris, France
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota
| | - Joseph Pidala
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy. H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Carrie L Kitko
- Pediatric Stem Cell Transplant Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel R Couriel
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kirk R Schultz
- Pediatric Hematology/Oncology/BMT, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
24
|
Teshima T, Hill GR. The Pathophysiology and Treatment of Graft- Versus-Host Disease: Lessons Learnt From Animal Models. Front Immunol 2021; 12:715424. [PMID: 34489966 PMCID: PMC8417310 DOI: 10.3389/fimmu.2021.715424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative treatment for hematologic malignancies, bone marrow failure syndromes, and inherited immunodeficiencies and metabolic diseases. Graft-versus-host disease (GVHD) is the major life-threatening complication after allogeneic HCT. New insights into the pathophysiology of GVHD garnered from our understanding of the immunological pathways within animal models have been pivotal in driving new therapeutic paradigms in the clinic. Successful clinical translations include histocompatibility matching, GVHD prophylaxis using cyclosporine and methotrexate, posttransplant cyclophosphamide, and the use of broad kinase inhibitors that inhibit cytokine signaling (e.g. ruxolitinib). New approaches focus on naïve T cell depletion, targeted cytokine modulation and the inhibition of co-stimulation. This review highlights the use of animal transplantation models to guide new therapeutic principles.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Medical Oncology, The University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Graft-versus-host disease: a disorder of tissue regeneration and repair. Blood 2021; 138:1657-1665. [PMID: 34370823 DOI: 10.1182/blood.2021011867] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Regenerative failure at barrier surfaces and maladaptive repair leading to fibrosis are hallmarks of graft-versus-host disease (GVHD). Although immunosuppressive treatment can control inflammation, impaired tissue homeostasis leads to prolonged organ damage and impaired quality of life. In this Spotlight article, we review recent research that addresses the critical failures in tissue regeneration and repair that underpin treatment-resistant GVHD. We highlight current interventions designed to overcome these defects and provide our assessment of the future therapeutic landscape.
Collapse
|
26
|
Moreno-Montañés J, Bleau AM, Martínez T, Vargas B, González MV, Jiménez AI. siRNA Therapeutics in Ocular Diseases. Methods Mol Biol 2021; 2282:417-442. [PMID: 33928588 DOI: 10.1007/978-1-0716-1298-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The field of RNAi therapeutics has quickly adapted to the treatment of ocular diseases. Although the eye provides a unique system for the delivery of siRNAs, its complex structure and composition fostered the development of novel strategies for efficient gene silencing in the target compartment. Moreover, anterior and posterior segments differ in their multiple drug barriers and clearance mechanisms. This chapter summarizes the recent achievements in terms of routes of administration, chemical modifications, and delivery systems for siRNAs that specifically apply to eye disorders. Methods employed for siRNA detection/quantitation in ocular tissues are also described, together with safety concerns that need to be addressed to fulfill regulatory requirements of new drug approval. Even though RNAi therapies for ocular diseases have not yet translated into patient care, we document herein the rising number of candidate drugs currently under preclinical or clinical development.
Collapse
|
27
|
Liu Y, Liu J, Quimbo A, Xia F, Yao J, Clamme JP, Zabludoff S, Zhang J, Ying W. Anti-HSP47 siRNA lipid nanoparticle ND-L02-s0201 reverses interstitial pulmonary fibrosis in preclinical rat models. ERJ Open Res 2021; 7:00733-2020. [PMID: 34109242 PMCID: PMC8181707 DOI: 10.1183/23120541.00733-2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/19/2021] [Indexed: 11/05/2022] Open
Abstract
ND-L02-s0201 is a lipid nanoparticle encapsulating an siRNA which inhibits expression of heat shock protein 47 (HSP47), a collagen-specific chaperone. Accumulated evidence demonstrates a close association between increased level of HSP47 and excessive accumulation of collagen in fibrotic diseases. Our objective was to test ND-L02-s0201 efficacy in preclinical lung fibrosis models and characterise the downstream histological and functional consequences of inhibiting the expression of HSP47. Comprehensive optimisation and characterisation of bleomycin (BLM) and silica-induced rat lung fibrosis models were conducted, which ensured progressive pathological changes were sustained throughout the study during evaluation of the anti-fibrotic potential of ND-L02-s0201. In the BLM model, we demonstrated dose-dependent and statistically significant reduction in the relative lung weight, collagen deposition and histology, and fibrosis scores following ND-L02-s0201 treatment. Lung tissue mRNA profiling demonstrated that 11 out of 84 fibrosis-relevant genes were upregulated following BLM induction and were downregulated by approximately 4.5-fold following ND-L02-s0201 treatment. Epithelial-mesenchymal transition was characterised in the BLM model following ND-L02-s0201 treatment. Cell enrichment demonstrated that myofibroblasts contained the highest HSP47 mRNA expression. BLM led to more than a five-fold increase in myofibroblasts and ND-L02-s0201 treatment reduced the myofibroblasts to sham levels. Statistically significant improvement in lung function was noted in the BLM model which was determined by running endurance capacity using a 7-minute treadmill test. Comparable anti-fibrotic efficacy was also observed in the silica model. Results from two robust chronic rodent models of pulmonary fibrosis demonstrated significant anti-fibrotic effects and improved lung function which support the evaluation of ND-L02-s0201 in subjects with idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yun Liu
- Nitto Biopharma Inc., San Diego, CA, USA.,These authors contributed equally
| | - Jian Liu
- Nitto Biopharma Inc., San Diego, CA, USA.,These authors contributed equally
| | | | | | - Jiping Yao
- Nitto Biopharma Inc., San Diego, CA, USA
| | | | | | - Jun Zhang
- Cellagen Technology, San Diego, CA, USA
| | | |
Collapse
|
28
|
Williams KM, Inamoto Y, Im A, Hamilton B, Koreth J, Arora M, Pusic I, Mays JW, Carpenter PA, Luznik L, Reddy P, Ritz J, Greinix H, Paczesny S, Blazar BR, Pidala J, Cutler C, Wolff D, Schultz KR, Pavletic SZ, Lee SJ, Martin PJ, Socie G, Sarantopoulos S. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2020 Etiology and Prevention Working Group Report. Transplant Cell Ther 2021; 27:452-466. [PMID: 33877965 DOI: 10.1016/j.jtct.2021.02.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Preventing chronic graft-versus-host disease (GVHD) remains challenging because the unique cellular and molecular pathways that incite chronic GVHD are poorly understood. One major point of intervention for potential prevention of chronic GVHD occurs at the time of transplantation when acute donor anti-recipient immune responses first set the events in motion that result in chronic GVHD. After transplantation, additional insults causing tissue injury can incite aberrant immune responses and loss of tolerance, further contributing to chronic GVHD. Points of intervention are actively being identified so that chronic GVHD initiation pathways can be targeted without affecting immune function. The major objective in the field is to continue basic studies and to translate what is learned about etiopathology to develop targeted prevention strategies that decrease the risk of morbid chronic GVHD without increasing the risks of cancer relapse or infection. Development of strategies to predict the risk of developing debilitating or deadly chronic GVHD is a high research priority. This working group recommends further interrogation into the mechanisms underpinning chronic GVHD development, and we highlight considerations for future trial design in prevention trials.
Collapse
Affiliation(s)
- Kirsten M Williams
- Division of Blood and Marrow Transplantation, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Annie Im
- Division of Hematology Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Betty Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - John Koreth
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Mukta Arora
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Iskra Pusic
- BMT and Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline W Mays
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pavan Reddy
- Divsion of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Hildegard Greinix
- Clinical Division of Hematology, Medical University of Graz, Graz, Austria
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Joseph Pidala
- Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Corey Cutler
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Kirk R Schultz
- Pediatric Oncology, Hematology, and Bone Marrow Transplant, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Gerard Socie
- Hematology Transplantation, Saint Louis Hospital, AP-HP, and University of Paris, INSERM U976, Paris, France.
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke Cancer Institute, Durham, North Carolina.
| |
Collapse
|
29
|
Hong C, Jin R, Dai X, Gao X. Functional Contributions of Antigen Presenting Cells in Chronic Graft-Versus-Host Disease. Front Immunol 2021; 12:614183. [PMID: 33717098 PMCID: PMC7943746 DOI: 10.3389/fimmu.2021.614183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is one of the most common reasons of late non-relapse morbidity and mortality of patients with allogeneic hematopoietic stem cell transplantation (allo-HSCT). While acute GVHD is considered driven by a pathogenic T cell dominant mechanism, the pathogenesis of cGVHD is much complicated and involves participation of a variety of immune cells other than pathogenic T cells. Existing studies have revealed that antigen presenting cells (APCs) play crucial roles in the pathophysiology of cGVHD. APCs could not only present auto- and alloantigens to prime and activate pathogenic T cells, but also directly mediate the pathogenesis of cGVHD via multiple mechanisms including infiltration into tissues/organs, production of inflammatory cytokines as well as auto- and alloantibodies. The studies of this field have led to several therapies targeting different APCs with promising results. This review will focus on the important roles of APCs and their contributions in the pathophysiology of cGVHD after allo-HSCT.
Collapse
Affiliation(s)
- Chao Hong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Rong Jin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoqiu Dai
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Novel strategies of third level (Organelle-specific) drug targeting: An innovative approach of modern therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Bellaye PS, Burgy O, Bonniaud P, Kolb M. HSP47: a potential target for fibrotic diseases and implications for therapy. Expert Opin Ther Targets 2021; 25:49-62. [PMID: 33287600 DOI: 10.1080/14728222.2021.1861249] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Chronic fibrotic disorders are challenging clinical problems. The major challenge is the identification of specific targets expressed selectively in fibrotic tissues. Collagen accumulation is the hallmark fibrosis. HSP47 is a collagen-specific chaperon with critical role in collagen folding. This review discusses the anti-fibrotic potential of HSP47. Areas covered: This review compiles data retrieved from the PubMed database with keywords 'HSP47+fibrosis' from 01/2005 to 06/2020. We examined 1) collagen biology and its role in fibrotic diseases, 2) HSP47 role in fibrosis, 3) HSP47 inhibition strategies and 4) clinical investigations. The identification of the HSP47-collagen binding site led to the development of methods to screen HSP47 inhibitors with anti-fibrotic potential. Specific in vivo delivery systems of HSP47 siRNA to fibrotic tissue reduced collagen production/secretion associated with fibrosis inhibition in preclinical models. This strategy is about to be tested in clinical trials. Expert opinion: As a collagen-specific chaperon, HSP47 is a promising therapeutic target in fibrosis. Preclinical models have shown encouraging anti-fibrotic results. Anti-HSP47 strategies need to be further evaluated in clinical trials. The increase in circulating-HSP47 in lung fibrosis patients highlights the potential of HSP47 as a noninvasive biomarker and may represent an important step toward personalized medicine in fibrotic disorders.
Collapse
Affiliation(s)
- Pierre-Simon Bellaye
- Centre George-Franrçois Leclerc, Nuclear Medicine department, Plateforme d'imagerie et de radiothérapie préclinique, 1 rue du professeur Marion, Dijon, France.,Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adultes de Dijon, Réseau OrphaLung, Filère RespiFil, Centre Hospitalier Universitaire de Bourgogne , Dijon,France
| | - Olivier Burgy
- Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adultes de Dijon, Réseau OrphaLung, Filère RespiFil, Centre Hospitalier Universitaire de Bourgogne , Dijon,France.,INSERM U1231 Department HSP-pathies 7 Boulevard Jeanne d'Arc ,Dijon France
| | - Philippe Bonniaud
- Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adultes de Dijon, Réseau OrphaLung, Filère RespiFil, Centre Hospitalier Universitaire de Bourgogne , Dijon,France
| | - Martin Kolb
- McMaster University, Department of medicine, FIRH, 50 Charlton Avenue East, Hamilton , Ontario, Canada
| |
Collapse
|
32
|
The Effect of Lecithins Coupled Decorin Nanoliposomes on Treatment of Carbon Tetrachloride-Induced Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8815904. [PMID: 33415158 PMCID: PMC7752282 DOI: 10.1155/2020/8815904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the effect of bile duct-targeting lecithins- (PC-) coupled decorin (DCN) (PC-DCN) nanoliposomes against liver fibrosis in vitro and in vivo. We prepared PC-DCN nanoliposomes by using rat astrocytes, HSC-T6, to verify the antifibrosis effect of PC-DCN in vitro. First, we established a rat model of carbon tetrachloride-induced fibrosis. PC-DCN nanoliposomes were then injected into fibrotic rats via the portal vein or bile duct. The EdU assay was performed to analyze cell proliferation. Immunofluorescence staining was used to detect α-smooth muscle actin (α-SMA) expression. Western blot was performed to examine the expression of α-SMA, collagen type I alpha 1 (COL1A1), and transforming growth factor-β (TGF-β) protein. The levels of aspartate transaminase (AST), alanine transaminase (ALT), and total bilirubin (TBIL) were examined by enzyme-linked immunosorbent assay (ELISA) analysis. Hematoxylin and eosin (H&E) staining and Masson trichrome staining were used to determine liver tissue lesions and liver fibrosis. Compared with TGF-β group, PC-DCN treatment could significantly reduce cell proliferation. Western blot analysis indicated that the expression of α-SMA, COL1A1, and TGF-β was downregulated after treatment with PC-DCN in vitro and in vivo. Immunofluorescence staining confirmed that α-SMA expression was reduced by PC-DCN. Furthermore, H&E staining and Masson trichrome staining showed that the administration of PC-DCN nanoliposomes via the bile duct could reduce the extent of liver fibrosis. PCR analysis showed that PC-DCN administration could reduce proinflammatory cytokines IL-6, TNF-α, and IL-1β expression via the bile duct. The administration of PC-DCN nanoliposomes also significantly downregulated liver function indicators ALT, AST, and TBIL. The results of our study indicated that PC-DCN could effectively reduce the extent of liver fibrosis.
Collapse
|
33
|
Will PA, Rafiei A, Pretze M, Gazyakan E, Ziegler B, Kneser U, Engel H, Wängler B, Kzhyshkowska J, Hirche C. Evidence of stage progression in a novel, validated fluorescence-navigated and microsurgical-assisted secondary lymphedema rodent model. PLoS One 2020; 15:e0235965. [PMID: 32701960 PMCID: PMC7377415 DOI: 10.1371/journal.pone.0235965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/25/2020] [Indexed: 11/19/2022] Open
Abstract
Secondary lymphedema (SL)is a frequent and devastating complication of modern oncological therapy and filarial infections. A lack of a reliable preclinical model to investigate the underlying mechanism of clinical stage progression has limited the development of new therapeutic strategies. Current first line treatment has shown to be merely symptomatic and relies on lifetime use of compression garments and decongestive physiotherapy. In this study, we present the development of a secondary lymphedema model in 35 rats using pre- and intraoperative fluorescence-guided mapping of the lymphatics and microsurgical induction. In contrast to the few models reported so far, we decided to avoid the use of radiation for lymphedema induction. It turned out, that the model is nearly free of complications and capable of generating a statistically significant limb volume increase by water displacement measurements, sustained for at least 48 days. A translational, accurate lymphatic dysfunction was visualized by a novel VIS-NIR X-ray ICG-Clearance-Capacity imaging technology. For the first-time SL stage progression was validated by characteristic histological alterations, such as subdermal mast cell infiltration, adipose tissue deposition, and fibrosis by increased skin collagen content. Immunofluorescence confocal microscopy analysis suggested that stage progression is related to the presence of a characteristic α SMA+/HSP-47+/vimentin+ fibroblast subpopulation phenotype. These findings demonstrate that the in-vivo model is a reliable and clinically relevant SL model for the development of further secondary lymphedema therapeutic strategies and the analysis of the veiled molecular mechanisms of lymphatic dysfunction.
Collapse
Affiliation(s)
- P. A. Will
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG-Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - A. Rafiei
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG-Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - M. Pretze
- Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - E. Gazyakan
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG-Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - B. Ziegler
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG-Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - U. Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG-Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - H. Engel
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG-Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
- Ethianum Klinik Heidelberg, Heidelberg, Germany
| | - B. Wängler
- Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - J. Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Frankfurt, Germany
| | - C. Hirche
- Department of Hand, Plastic, and Reconstructive Surgery, Microsurgery, Burn Centre, BG-Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| |
Collapse
|
34
|
Ocular instillation of vitamin A-coupled liposomes containing HSP47 siRNA ameliorates dry eye syndrome in chronic GVHD. Blood Adv 2020; 3:1003-1010. [PMID: 30940635 DOI: 10.1182/bloodadvances.2018028431] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic graft-versus-host disease (GVHD) profoundly affects the quality of life of long-term survivors of allogeneic hematopoietic stem cell transplantation (SCT). The eyes are frequently involved, and dry eye syndrome is the most common manifestation of ocular chronic GVHD. We explored the role of heat shock protein 47 (HSP47) in ocular GVHD and developed a novel antifibrotic topical therapy using vitamin A-coupled liposomes containing HSP47 small interfering RNA (siRNA) against HSP47 (VA-lip HSP47). In a mouse model of chronic GVHD, infiltration of HSP47+ fibroblasts and massive fibrosis surrounding the lacrimal ducts were observed after allogeneic SCT, leading to impaired tear secretion. After ocular instillation, VA-lip HSP47 was distributed to the lacrimal glands, knocked down HSP47 expression in fibroblasts, reduced collagen deposition, and restored tear secretion after allogeneic SCT. Ocular instillation of VA-lip HSP47 also ameliorated established lacrimal gland fibrosis and dry eye syndrome. VA-lip HSP47 eye drops are a promising prophylactic and therapeutic option against dry eye syndrome in chronic GVHD.
Collapse
|
35
|
Song I, Ise H. Development of a Gene Delivery System of Oligonucleotides for Fibroses by Targeting Cell-Surface Vimentin-Expressing Cells with N-Acetylglucosamine-Bearing Polymer-Conjugated Polyethyleneimine. Polymers (Basel) 2020; 12:polym12071508. [PMID: 32645972 PMCID: PMC7407634 DOI: 10.3390/polym12071508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023] Open
Abstract
Targeting myofibroblasts and activated stellate cells in lesion sites of fibrotic tissues is an important approach to treat fibroses. Herein, we focused on targeting the cytoskeletal proteins vimentin, which are reportedly highly expressed on the surface of these cells and have N-acetylglucosamine (GlcNAc)-binding activity. A GlcNAc-bearing polymer synthesized via radical polymerization with a reversible addition-fragmentation chain transfer reagent has been previously found to interact with cell-surface vimentin-expressing cells. We designed a GlcNAc-bearing polymer-conjugated polyethyleneimine (PEI), as the gene carrier to target cell-surface vimentin-expressing cells and specifically deliver nuclear factor-κB decoy oligonucleotides (ODNs) and heat shock protein 47 (HSP47)-small interfering RNA (siRNA) to normal human dermal fibroblasts (NHDFs) that express cell-surface vimentin. The results showed that the expression of tumor necrosis factor-α in lipopolysaccharide-stimulated NHDFs and HSP47 in transforming growth factor-β1-stimulated NHDFs was suppressed by cellular uptake of the GlcNAc-bearing polymer-conjugated PEI/nuclear factor (NF)-κB decoy ODNs and HSP47-siRNA complexes through cell-surface vimentin, respectively. These findings suggest that the effective and specific delivery of ODNs and siRNA for cell-surface vimentin-expressing cells such as myofibroblasts and activated stellate cells can be achieved using GlcNAc-bearing polymer-conjugated PEI. This therapeutic approach could prove advantageous to prevent the promotion of various fibroses.
Collapse
Affiliation(s)
- Inu Song
- Graduate School of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan;
| | - Hirohiko Ise
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
- Correspondence: ; Tel.: +81-092-802-2503
| |
Collapse
|
36
|
Zhou R, Ren S, Li C, Zhang X, Zhang W. miR-29a is a potential protective factor for fibrogenesis in gluteal muscle contracture. Physiol Res 2020; 69:467-479. [PMID: 32469233 DOI: 10.33549/physiolres.934295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Circulating miRNAs have been proposed as the effective diagnostic biomarkers for muscular fibrosis-associated diseases. However, circulating biomarkers for early diagnosis of contracture muscles are limited in gluteal muscle contracture (GMC) patients. Here we sought to explore the abnormally expressed miRNAs in plasma and contraction bands of GMC patients. The results showed miR-29a-3p expression in plasma and contraction bands tissue was significantly reduced in GMC patients compared with normal control. Cell viability and levels of proliferation-associated protein cyclin D1 and cyclin-dependent-kinase 2 (CDK2) were powerfully inhibited by miR-29a mimics and enhanced by miR-29a inhibitor compared with negative control. Furthermore, miR-29a mimics effectively impeded, while miR-29a inhibitor enhanced the expression of collagen I and collagen III, followed by the secretion of transforming growth factor beta1 (TGF-beta1), TGF-beta3 and connective tissue growth factor (CTGF) in primary human contraction bands (CB) fibroblasts. The miR-29a-3p negatively regulated the expression of TGF-beta1 through binding to the 3´ UTR region of SERPINH1 (encoding heat shock protein HSP47), but had no effect on Smad2 activity. The miR-29a-3p was inversely correlated with HSP47 in contraction bands tissue from GMC patients. Collectively, miR-29a was notably depressed and regulated cell viability and fibrosis by directly targeting HSP47 in GMC, which suggest that circulating miR-29a might be a potential biomarker for early diagnosis and provides a novel therapeutic target for GMC.
Collapse
Affiliation(s)
- R Zhou
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | | | | | | | | |
Collapse
|
37
|
Huang Y, Lu J, Xu Y, Xiong C, Tong D, Hu N, Yang H. Xiaochaihu decorction relieves liver fibrosis caused by Schistosoma japonicum infection via the HSP47/TGF-β pathway. Parasit Vectors 2020; 13:254. [PMID: 32410640 PMCID: PMC7227055 DOI: 10.1186/s13071-020-04121-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatic fibrosis caused by chronic infection with Schistosoma japonica remains a serious public health problem in the world. Symptoms include inflammation, liver granuloma and fibrosis, whilst treatment options are still limited. This study aims to investigate whether and how traditional Chinese medicine Xiaochaihu decoction (XCH) could mitigate liver fibrosis caused by S. japonicum infection. Methods BALB/c mice were infected with S. japonicum cercariae and treated with XCH for 16 weeks. Liver pathological changes were assessed by H&E and Masson staining. NIH3T3 and Raw264.7 cells were treated with S. japonicum egg antigens with or without XCH treatment. Quantitative real-time PCR, western blot, immunfluorescence and ELISA were performed to determine the changes of levels of fibrogenic markers. Results XCH protected mouse liver from injuries and fibrosis caused by S. japonicum infection and considerably reduced egg burden in a dose-dependent manner. Infection with S. japonicum caused elevation of serum ALT, AST, ALP, HA and PIIINP levels and reduction of ALB and GLOB levels, which was markedly suppressed by XCH. The upregulation of TGF-β1, Hsp47, α-SMA, Col1A1 and Col3A1 in S. japonicum-infected mouse liver was also significantly inhibited by XCH. Schistosoma japonicum egg antigens promoted the expression of Hsp47, TGF-β1, Timp-1, α-SMA, Col1A1 and Col3A1 in NIH3T3 cells, and TGF-β1, CTGF, IL-13, IL-17 and IL-6 in Raw264.7 cells, which was inhibited by XCH, LY2157299 and shRNA-Hsp47. Conclusions These results demonstrated that the hepatic protective effects of Xiaochaihu decoction were mediated by HSP47/TGF-β axis.![]()
Collapse
Affiliation(s)
- Yuzheng Huang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China. .,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China. .,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Jin Lu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Deshen Tong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Nannan Hu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haitao Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China. .,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China. .,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
38
|
Khan AA, Allemailem KS, Almatroodi SA, Almatroudi A, Rahmani AH. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 2020; 10:163. [PMID: 32206497 PMCID: PMC7062946 DOI: 10.1007/s13205-020-2144-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/16/2020] [Indexed: 01/02/2023] Open
Abstract
Liposomes are very useful biocompatible tools used in diverse scientific disciplines, employed for the vehiculation and delivery of lipophilic, ampiphilic or hydrophilic compounds. Liposomes have gained the importance as drug carriers, as the drugs alone have limited targets, higher toxicity and develop resistance when used in higher doses. Conventional liposomes suffer from several drawbacks like encapsulation inefficiencies and partially controlled particle size. The surface chemistry of liposome technology started from simple conventional vesicles to second generation liposomes by modulating their lipid composition and surface with different ligands. Introduction of polyethylene glycol to lipid anchor was the first innovative strategy which increased circulation time, delayed clearance and opsonin resistance. PEGylated liposomes have been found to possess higher drug loading capacity up to 90% or more and some drugs like CPX-1 encapsuled in such liposomes have increased the disease control up to 73% patients suffering from colorectal cancer. The surface of liposomes have been further liganded with small molecules, vitamins, carbohydrates, peptides, proteins, antibodies, aptamers and enzymes. These advanced liposomes exhibit greater solubility, higher stability, long-circulating time and specific drug targeting properties. The immense utility and demand of surface modified liposomes in different areas have led their way to the modern market. In addition to this, the multi-drug carrier approach of targeted liposomes is an innovative method to overcome drug resistance while treating ceratin tumors. Presently, several second-generation liposomal formulations of different anticancer drugs are at various stages of clinical trials. This review article summarizes briefly the preparation of liposomes, strategies of disease targeting and exclusively the surface modifications with different entities and their clinical applications especially as drug delivery system.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Khaled S. Allemailem
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Ahmed Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| |
Collapse
|
39
|
Yoneda A, Sakai-Sawada K, Minomi K, Tamura Y. Heat Shock Protein 47 Maintains Cancer Cell Growth by Inhibiting the Unfolded Protein Response Transducer IRE1α. Mol Cancer Res 2020; 18:847-858. [PMID: 32102897 DOI: 10.1158/1541-7786.mcr-19-0673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/06/2019] [Accepted: 02/21/2020] [Indexed: 11/16/2022]
Abstract
HSP47 is a collagen-specific protein chaperone expressed in fibroblasts, myofibroblasts, and stromal cells. HSP47 is also expressed in and involved in growth of cancer cells in which collagen levels are extremely low. However, its role in cancer remains largely unclear. Here, we showed that HSP47 maintains cancer cell growth via the unfolded protein response (UPR), the activation of which is well known to be induced by endoplasmic reticulum (ER) stress. We observed that HSP47 forms a complex with both the UPR transducer inositol-requiring enzyme 1α (IRE1α) and ER chaperone BiP in cancer cells. Moreover, HSP47 silencing triggered dissociation of BiP from IRE1α and IRE1α activation, followed by an increase in the intracellular level of reactive oxygen species (ROS). Increase in ROS induced accumulation of 4-hydroxy-2-nonenal-protein adducts and activated two UPR transducers, PKR-like ER kinase (PERK) and activating transcription factor 6α (ATF6α), resulting in impaired cancer cell growth. Our work indicates that HSP47 expressed in cancer cells relieves the ER stress arising from protein synthesis overload within these cells and tumor environments, such as stress induced by hypoxia, low glucose, and pH. We also propose that HSP47 has a biological role that is distinct from its normal function as a collagen-specific chaperone. IMPLICATIONS: HSP47 maintains cancer cell growth by inhibiting IRE1α.
Collapse
Affiliation(s)
- Akihiro Yoneda
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan.
| | - Kaori Sakai-Sawada
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
| | - Kenjiro Minomi
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan.,Research & Development Department, Nucleic Acid Medicine Business Division, Nitto Denko Corporation, Osaka, Japan
| | - Yasuaki Tamura
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
| |
Collapse
|
40
|
Pan B, Wang D, Li L, Shang L, Xia F, Zhang F, Zhang Y, Gale RP, Xu M, Li Z, Xu K. IL-22 Accelerates Thymus Regeneration via Stat3/Mcl-1 and Decreases Chronic Graft-versus-Host Disease in Mice after Allotransplants. Biol Blood Marrow Transplant 2019; 25:1911-1919. [PMID: 31195136 DOI: 10.1016/j.bbmt.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 01/05/2023]
Abstract
High-dose chemotherapy and/or radiation given before an allogeneic hematopoietic cell transplantation severely damage thymic epithelial cells (TECs), resulting in poor post-transplant immune recovery. IL-22 mediates recovery of TECs via a proregenerative effect, but the precise mechanism by which this occurs is unknown. In this study, we found IL-22 improved thymus recovery after damage from irradiation in association with increased number of TECs. This effect was blocked by ruxolitinib, a JAK1/JAK2 inhibitor. IL-22 increased the number of TECs via a Stat3-dependent signaling in the mTEC1 murine thymic epithelial cell line. This, in turn, upregulated transcription of myeloid cell leukemia sequence 1 (Mcl1), resulting in increased number of TECs. Similar effects were seen in irradiated mice given IL-22. Defects in IL-22 resulted in delayed thymus recovery in irradiated mice and had an impact on levels of thymus function-related genes such as Foxn1, Aire, and Kgf. In mice, post-transplant use of IL-22 improved repair of TECs, increased the numbers of thymus T cells, increased the intrathymic levels of Aire, and increased the proportion of natural regulatory T cells, resulting in decreased severity of chronic graft-versus-host disease (GVHD). Our data highlight the critical role of the IL-22/Stat3/Mcl-1 pathway in the regeneration of TECs after damage from irradiation in mice and highlight circumstances where normalizing thymus T cell function with IL-22 decreases GVHD after allotransplants.
Collapse
Affiliation(s)
- Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Dong Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Longmei Shang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Fan Xia
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Fan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ying Zhang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Robert Peter Gale
- Centre for Haematology Research, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
41
|
|
42
|
Weng Y, Xiao H, Zhang J, Liang XJ, Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv 2019; 37:801-825. [PMID: 31034960 DOI: 10.1016/j.biotechadv.2019.04.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Recently, United States Food and Drug Administration (FDA) and European Commission (EC) approved Alnylam Pharmaceuticals' RNA interference (RNAi) therapeutic, ONPATTRO™ (Patisiran), for the treatment of the polyneuropathy of hereditary transthyretin-mediated (hATTR) amyloidosis in adults. This is the first RNAi therapeutic all over the world, as well as the first FDA-approved treatment for this indication. As a milestone event in RNAi pharmaceutical industry, it means, for the first time, people have broken through all development processes for RNAi drugs from research to clinic. With this achievement, RNAi approval may soar in the coming years. In this paper, we introduce the basic information of ONPATTRO and the properties of RNAi and nucleic acid therapeutics, update the clinical and preclinical development activities, review its complicated development history, summarize the key technologies of RNAi at early stage, and discuss the latest advances in delivery and modification technologies. It provides a comprehensive view and biotechnological insights of RNAi therapy for the broader audiences.
Collapse
Affiliation(s)
- Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
43
|
Kishimoto Y, Yamashita M, Wei A, Toya Y, Ye S, Kendziorski C, Welham NV. Reversal of Vocal Fold Mucosal Fibrosis Using siRNA against the Collagen-Specific Chaperone Serpinh1. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:616-625. [PMID: 31100613 PMCID: PMC6520554 DOI: 10.1016/j.omtn.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Vocal fold (VF) mucosal fibrosis results in substantial voice impairment and is recalcitrant to current treatments. To reverse this chronic disorder, anti-fibrotic therapies should target the molecular pathology of aberrant collagen accumulation in the extracellular matrix. We investigated the therapeutic potential of siRNA against Serpinh1, a collagen-specific chaperone that enables cotranslational folding and assembly of procollagens in the endoplasmic reticulum. We implemented a previously validated siRNA construct, conducted transfection experiments using in vitro and in vivo rat models, and measured knockdown efficiency, dose responses, delivery strategies, and therapeutic outcomes. Liposome-mediated delivery of Serpinh1-siRNA downregulated collagen production in naive and scar VF fibroblasts as well as naive VF mucosa; moreover, sustained Serpinh1 knockdown in fibrotic VF mucosa reversed scar-associated collagen accumulation within 4 weeks. Analysis of therapeutic effects at the transcriptome level showed evidence of cell cycle upregulation, catabolism, matrix disassembly, and morphogenesis. These findings indicate that Serpinh1-siRNA holds potential as a molecular therapy for chronic VF mucosal fibrosis.
Collapse
Affiliation(s)
- Yo Kishimoto
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Masaru Yamashita
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Alice Wei
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Yutaka Toya
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Shuyun Ye
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
44
|
Pan B, Zhang F, Lu Z, Li L, Shang L, Xia F, Fu R, Xu M, Zeng L, Xu K. Donor T-cell-derived interleukin-22 promotes thymus regeneration and alleviates chronic graft-versus-host disease in murine allogeneic hematopoietic cell transplant. Int Immunopharmacol 2019; 67:194-201. [PMID: 30557822 DOI: 10.1016/j.intimp.2018.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 01/21/2023]
Abstract
Defect of thymus results in poor posttransplant immune recovery and dysfunction of immune tolerance after allogeneic hematopoietic cell transplants (allo-HCT). Improving thymus regeneration represents a potential strategy to accelerate recovery of T-cell immunity. IL-22 was reported to mediate thymus regeneration after injury. In this study, we found donor T-cell is a major source of IL-22 in allotransplant recipient. Through applying IL-22 knock out (IL-22KO) mice in allo-HCT, we found donor T-cell derived IL-22 promotes thymus regeneration in association with increased level of intra-thymic IL-22. IL-22KO T-cell-transplanted recipients show deficient thymus recovery which is reversed by injection of exogenous IL-22. T-cell derived IL-22 promotes proliferation of thymic epithelial cells (TECs) in vitro. In addition, donor T-cell derived IL-22 increases expression level of Aire in the thymus and decreases skin chronic graft-versus-host disease (GVHD). Furthermore, short-term use of exogenous IL-22 posttransplant accelerates recovery of thymus without increasing severity of acute GVHD. Our data indicate that cross-talk between T-cell and TECs is an important mechanism to mediate reconstitution of T-cell immunity after allo-HCT.
Collapse
Affiliation(s)
- Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Fan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Zhenzhen Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Longmei Shang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Fan Xia
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ruixue Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
45
|
Hamers AAJ, Joshi SK, Pillai AB. Innate Immune Determinants of Graft-Versus-Host Disease and Bidirectional Immune Tolerance in Allogeneic Transplantation. ACTA ACUST UNITED AC 2019; 3. [PMID: 33511333 PMCID: PMC7839993 DOI: 10.21926/obm.transplant.1901044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The success of tissue transplantation from a healthy donor to a diseased individual (allo-transplantation) is regulated by the immune systems of both donor and recipient. Developing a state of specific non-reactivity between donor and recipient, while maintaining the salutary effects of immune function in the recipient, is called “immune (transplantation) tolerance”. In the classic early post-transplant period, minimizing bidirectional donor ←→ recipient reactivity requires the administration of immunosuppressive drugs, which have deleterious side effects (severe immunodeficiency, opportunistic infections, and neoplasia, in addition to drug-specific reactions and organ toxicities). Inducing immune tolerance directly through donor and recipient immune cells, particularly via subsets of immune regulatory cells, has helped to significantly reduce side effects associated with multiple immunosuppressive drugs after allo-transplantation. The innate and adaptive arms of the immune system are both implicated in inducing immune tolerance. In the present article, we will review innate immune subset manipulations and their potential applications in hematopoietic stem cell transplantation (HSCT) to cure malignant and non-malignant hematological disorders by inducing long-lasting donor ←→ recipient (bidirectional) immune tolerance and reduced graft-versus-host disease (GVHD). These innate immunotherapeutic strategies to promote long-term immune allo-transplant tolerance include myeloid-derived suppressor cells (MDSCs), regulatory macrophages, tolerogenic dendritic cells (tDCs), Natural Killer (NK) cells, invariant Natural Killer T (iNKT) cells, gamma delta T (γδ-T) cells and mesenchymal stromal cells (MSCs).
Collapse
Affiliation(s)
- Anouk A J Hamers
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Asha B Pillai
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
46
|
Ito S, Nagata K. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J Biol Chem 2018; 294:2133-2141. [PMID: 30541925 DOI: 10.1074/jbc.tm118.002812] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heat shock protein 47 (Hsp47) is an endoplasmic reticulum (ER)-resident molecular chaperone essential for correct folding of procollagen in mammalian cells. In this Review, we discuss the role and function of Hsp47 in vertebrate cells and its role in connective tissue disorders. Hsp47 binds to collagenous (Gly-Xaa-Arg) repeats within triple-helical procollagen in the ER and can prevent its local unfolding or aggregate formation, resulting in accelerating triple-helix formation of procollagen. Hsp47 pH-dependently dissociates from procollagen in the cis-Golgi or ER-Golgi intermediate compartment and is then transported back to the ER. Although Hsp47 belongs to the serine protease inhibitor (serpin) superfamily, it does not possess serine protease inhibitory activity. Whereas general molecular chaperones such as Hsp70 and Hsp90 exhibit broad substrate specificity, Hsp47 has narrower specificity mainly for procollagens. However, other Hsp47-interacting proteins have been recently reported, suggesting a much broader role for Hsp47 in the cell that warrants further investigation. Other ER-resident stress proteins, such as binding immunoglobulin protein (BiP), are induced by ER stress, whereas Hsp47 is induced only by heat shock. Constitutive expression of Hsp47 is always correlated with expression of various collagen types, and disruption of the Hsp47 gene in mice causes embryonic lethality due to impaired basement membrane and collagen fibril formation. Increased Hsp47 expression is associated with collagen-related disorders such as fibrosis, characterized by abnormal collagen accumulation, highlighting Hsp47's potential as a clinically relevant therapeutic target.
Collapse
Affiliation(s)
| | - Kazuhiro Nagata
- From the Institute for Protein Dynamics, .,Department of Molecular Biosciences, Faculty of Life Sciences, and.,CREST, Japan Science and Technology Agency, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
47
|
Santos e Sousa P, Bennett CL, Chakraverty R. Unraveling the Mechanisms of Cutaneous Graft-Versus-Host Disease. Front Immunol 2018; 9:963. [PMID: 29770141 PMCID: PMC5940745 DOI: 10.3389/fimmu.2018.00963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
The skin is the most common target organ affected by graft-versus-host disease (GVHD), with severity and response to therapy representing important predictors of patient survival. Although many of the initiating events in GVHD pathogenesis have been defined, less is known about why treatment resistance occurs or why there is often a permanent failure to restore tissue homeostasis. Emerging data suggest that the unique immune microenvironment in the skin is responsible for defining location- and context-specific mechanisms of injury that are distinct from those involved in other target organs. In this review, we address recent advances in our understanding of GVHD biology in the skin and outline the new research themes that will ultimately enable design of precision therapies.
Collapse
Affiliation(s)
- Pedro Santos e Sousa
- UCL Cancer Institute, University College London, London, United Kingdom
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Clare L. Bennett
- UCL Cancer Institute, University College London, London, United Kingdom
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Ronjon Chakraverty
- UCL Cancer Institute, University College London, London, United Kingdom
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|