1
|
Bracken SJ, Suthers AN, DiCioccio RA, Su H, Anand S, Poe JC, Jia W, Visentin J, Basher F, Jordan CZ, McManigle WC, Li Z, Hakim FT, Pavletic SZ, Bhuiya NS, Ho VT, Horwitz ME, Chao NJ, Sarantopoulos S. Heightened TLR7 signaling primes BCR-activated B cells in chronic graft-versus-host disease for effector functions. Blood Adv 2024; 8:667-680. [PMID: 38113462 PMCID: PMC10839617 DOI: 10.1182/bloodadvances.2023010362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
ABSTRACT Chronic graft-versus-host disease (cGVHD) is a debilitating, autoimmune-like syndrome that can occur after allogeneic hematopoietic stem cell transplantation. Constitutively activated B cells contribute to ongoing alloreactivity and autoreactivity in patients with cGVHD. Excessive tissue damage that occurs after transplantation exposes B cells to nucleic acids in the extracellular environment. Recognition of endogenous nucleic acids within B cells can promote pathogenic B-cell activation. Therefore, we hypothesized that cGVHD B cells aberrantly signal through RNA and DNA sensors such as Toll-like receptor 7 (TLR7) and TLR9. We found that B cells from patients and mice with cGVHD had higher expression of TLR7 than non-cGVHD B cells. Using ex vivo assays, we found that B cells from patients with cGVHD also demonstrated increased interleukin-6 production after TLR7 stimulation with R848. Low-dose B-cell receptor (BCR) stimulation augmented B-cell responses to TLR7 activation. TLR7 hyperresponsiveness in cGVHD B cells correlated with increased expression and activation of the downstream transcription factor interferon regulatory factor 5. Because RNA-containing immune complexes can activate B cells through TLR7, we used a protein microarray to identify RNA-containing antigen targets of potential pathological relevance in cGVHD. We found that many of the unique targets of active cGVHD immunoglobulin G (IgG) were nucleic acid-binding proteins. This unbiased assay identified the autoantigen and known cGVHD target Ro-52, and we found that RNA was required for IgG binding to Ro-52. Herein, we find that BCR-activated B cells have aberrant TLR7 signaling responses that promote potential effector responses in cGVHD.
Collapse
Affiliation(s)
- Sonali J. Bracken
- Division of Rheumatology and Immunology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Amy N. Suthers
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Rachel A. DiCioccio
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Hsuan Su
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Sarah Anand
- Division of Hematology and Medical Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Jonathan C. Poe
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Wei Jia
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Jonathan Visentin
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
- UMR CNRS 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Fahmin Basher
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Collin Z. Jordan
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham NC
| | - William C. McManigle
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham NC
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
| | - Frances T. Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Steven Z. Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Nazmim S. Bhuiya
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD
| | - Vincent T. Ho
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Mitchell E. Horwitz
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
- Department of Integrated Immunobiology, Duke University School of Medicine, Durham, NC
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC
- Duke Cancer Institute, Duke University Medical Center, Durham NC
- Department of Integrated Immunobiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
2
|
Stabell SH, Renzi A, Nilsen HR, Antonsen OH, Fosse JH, Haraldsen G, Sundnes O. Detection of native, activated Notch receptors in normal human apocrine-bearing skin and in hidradenitis suppurativa. Exp Dermatol 2024; 33:e14977. [PMID: 38060347 DOI: 10.1111/exd.14977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 01/30/2024]
Abstract
Notch signalling has generated considerable interest as a pathogenetic factor and a drug target in a range of human diseases. The gamma-secretase complex is crucial in the activation of Notch receptors by cleaving the intracellular domain allowing nuclear translocation. In recent years several mutations in gamma-secretase components have been discovered in patients with familial hidradenitis suppurativa (HS). This has led to hypotheses that impaired Notch signalling could be an important driver for HS in general, not only in the monogenic variants. However, no study has examined in situ Notch activation per se in HS, and some reports with conflicting results have instead been based on expression of Notch receptors or indirect measures of Notch target gene expression. In this study we established immunostaining protocols to identify native, activated Notch receptors in human skin tissue. The ability to detect changes in Notch activation was confirmed with an ex vivo skin organ model in which signal was reduced or obliterated in tissue exposed to a gamma-secretase inhibitor. Using these methods on skin biopsies from healthy volunteers and a general HS cohort we demonstrated for the first time the distribution of active Notch signalling in human apocrine-bearing skin. Quantification of activated NOTCH1 & NOTCH2 revealed similar levels in non-lesional and peri-lesional HS to that of healthy controls, thus ruling out a general defect in Notch activation in HS patients. We did find a variable but significant reduction of activated Notch in epidermis of lesional HS with a distribution that appeared related to the extent of surrounding tissue inflammation.
Collapse
Affiliation(s)
- Siri Hansen Stabell
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Anastasia Renzi
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Guttorm Haraldsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Olav Sundnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Buxbaum NP, Socié G, Hill GR, MacDonald KPA, Tkachev V, Teshima T, Lee SJ, Ritz J, Sarantopoulos S, Luznik L, Zeng D, Paczesny S, Martin PJ, Pavletic SZ, Schultz KR, Blazar BR. Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD. Blood Adv 2023; 7:4886-4902. [PMID: 36322878 PMCID: PMC10463203 DOI: 10.1182/bloodadvances.2022007611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.
Collapse
Affiliation(s)
- Nataliya P. Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gerard Socié
- Hematology-Transplantation, Assistance Publique-Hopitaux de Paris & University of Paris – INSERM UMR 676, Hospital Saint Louis, Paris, France
| | - Geoffrey R. Hill
- Division of Medical Oncology, The University of Washington, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kelli P. A. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Stephanie J. Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Duke Cancer Institute, Durham, NC
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, Hematologic Maligancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Cancer Immunology Program, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneappolis, MN
| |
Collapse
|
4
|
Colella MP, Morini BC, Niemann F, Lopes MR, Saad SO, Favaro P. Lower expression of NOTCH components in peripheral blood mononuclear cells of allogeneic hematopoietic cell transplant patients. Hematol Transfus Cell Ther 2023; 45:324-329. [PMID: 35840487 PMCID: PMC10499572 DOI: 10.1016/j.htct.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Chronic graft-versus-host disease (cGvHD) not only remains the main cause of late mortality after allogeneic hematopoietic cell transplant, but also has the capacity of causing severe organ impairment in those who survive. The Notch, a highly conserved ligand-receptor pathway, is involved in many immunological processes, including inflammatory and regulatory responses. Recently, mouse models have shown that the blockage of canonical Notch signaling prevents GvHD. OBJECTIVE AND METHOD Due to the lack of data on the Notch pathway in human chronic GvHD, we sought to study the expression of NOTCH components in primary samples of patients who received allo-HCT and presented active cGvHD or a long-term clinical tolerance to cGvHD. RESULTS Our results showed a significantly lower expression of NOTCH components in both groups that received allo-HCT, independently of their cGvHD status, when compared to healthy controls. CONCLUSION Moreover, there were no differences in gene expression levels between the active cGvHD and clinically tolerant groups. To our knowledge, this is one of the first studies performed in human primary samples and our data indicate that much remains to be learned regarding NOTCH signaling as a new regulator of GvHD.
Collapse
Affiliation(s)
| | | | - Fernanda Niemann
- Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Sara Olalla Saad
- Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Patricia Favaro
- Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil; Universidade Federal de São Paulo, (Unifesp), Diadema, SP, Brazil.
| |
Collapse
|
5
|
Gail LM, Schell KJ, Łacina P, Strobl J, Bolton SJ, Steinbakk Ulriksen E, Bogunia-Kubik K, Greinix H, Crossland RE, Inngjerdingen M, Stary G. Complex interactions of cellular players in chronic Graft-versus-Host Disease. Front Immunol 2023; 14:1199422. [PMID: 37435079 PMCID: PMC10332803 DOI: 10.3389/fimmu.2023.1199422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic Graft-versus-Host Disease is a life-threatening inflammatory condition that affects many patients after allogeneic hematopoietic stem cell transplantation. Although we have made substantial progress in understanding disease pathogenesis and the role of specific immune cell subsets, treatment options are still limited. To date, we lack a global understanding of the interplay between the different cellular players involved, in the affected tissues and at different stages of disease development and progression. In this review we summarize our current knowledge on pathogenic and protective mechanisms elicited by the major involved immune subsets, being T cells, B cells, NK cells and antigen presenting cells, as well as the microbiome, with a special focus on intercellular communication of these cell types via extracellular vesicles as up-and-coming fields in chronic Graft-versus-Host Disease research. Lastly, we discuss the importance of understanding systemic and local aberrant cell communication during disease for defining better biomarkers and therapeutic targets, eventually enabling the design of personalized treatment schemes.
Collapse
Affiliation(s)
- Laura Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kimberly Julia Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Steven J. Bolton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Hildegard Greinix
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rachel Emily Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
6
|
Holtan SG, Savid-Frontera C, Walton K, Eaton AA, Demorest C, Hoeschen A, Zhang L, Reid K, Kurian T, Sayegh Z, Julia E, Maakaron J, Bachanova V, Jurdi NE, MacMillan ML, Weisdorf DJ, Felices M, Miller JS, Blazar BR, Davila ML, Betts BC. Human Effectors of Acute and Chronic GVHD Overexpress CD83 and Predict Mortality. Clin Cancer Res 2023; 29:1114-1124. [PMID: 36622700 PMCID: PMC10011883 DOI: 10.1158/1078-0432.ccr-22-2837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
PURPOSE Acute and chronic GVHD remain major causes of transplant-related morbidity and mortality (TRM) after allogeneic hematopoietic cell transplantation (alloHCT). We have shown CD83 chimeric antigen receptor (CAR) T cells prevent GVHD and kill myeloid leukemia cell lines. In this pilot study, we investigate CD83 expression on GVHD effector cells, correlate these discoveries with clinical outcomes, and evaluate critical therapeutic implications for transplant recipients. EXPERIMENTAL DESIGN CD83 expression was evaluated among circulating CD4+ T cells, B-cell subsets, T follicular helper (Tfh) cells, and monocytes from patients with/without acute or chronic GVHD (n = 48 for each group), respectively. CD83 expression was correlated with survival, TRM, and relapse after alloHCT. Differential effects of GVHD therapies on CD83 expression was determined. RESULTS CD83 overexpression on CD4+ T cells correlates with reduced survival and increased TRM. Increased CD83+ B cells and Tfh cells, but not monocytes, are associated with poor posttransplant survival. CD83 CAR T eliminate autoreactive CD83+ B cells isolated from patients with chronic GVHD, without B-cell aplasia as observed with CD19 CAR T. We demonstrate robust CD83 antigen density on human acute myeloid leukemia (AML), and confirm potent antileukemic activity of CD83 CAR T in vivo, without observed myeloablation. CONCLUSIONS CD83 is a promising diagnostic marker of GVHD and warrants further investigation as a therapeutic target of both GVHD and AML relapse after alloHCT.
Collapse
Affiliation(s)
- Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Constanza Savid-Frontera
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kelly Walton
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Anne A. Eaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Connor Demorest
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kayla Reid
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Tony Kurian
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zena Sayegh
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Estefania Julia
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joseph Maakaron
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Najla El Jurdi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Margaret L. MacMillan
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Bruce R. Blazar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Marco L. Davila
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brian C. Betts
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
7
|
Kansu E, Ward D, Sanchez AP, Cunard R, Hayran M, Huseyin B, Vaughan M, Ku G, Curtin P, Mulroney C, Costello C, Castro JE, Wieduwilt M, Corringham S, Ihasz-Davis A, Nelson C, Ball ED. Extracorporeal photopheresis for the treatment of chronic graft versus host disease. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:785-794. [PMID: 35802815 DOI: 10.1080/16078454.2022.2095884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Chronic graft versus host disease (chronic GVHD) still remains the leading cause of late morbidity and mortality for allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients. In this retrospective study, 53 consecutive allo-HSCT patients with chronic GVHD refractory to corticosteroids were treated with extracorporeal photopheresis (ECP). METHODS This study was performed as a retrospective single-center study. Medical records of a total of 59 patients treated with ECP for chronic GVHD were reviewed. RESULTS Best organ responses to ECP were observed in skin, mouth mucosa, eyes and liver. Overall response rate (ORR) to ECP was 81.2% (CR 17% and PR 64.2%). Overall survival (OS) was 84.9% and 36.7%, at 1 and 3 years, respectively. Female sex appears to have an advantage on ORR. Patients achieving ORR were able to maintain their responses with a prolonged continuation of treatments for +6 and +12 months indicating the benefits of longer ECP treatment. DISCUSSION We found that patients with chronic GVHD who were treated with ECP for 12 months or longer had a higher response rate. Our findings in line with the data reported previously suggest that patients responding to ECP should continue longer therapy schedules to achieve a better and sustained response. In our cohort, long-term ECP therapy was safe and well-tolerated with no significant adverse effects. Best responses were observed in the patients with skin, eye, liver and oral involvement. The ECP procedure offers the advantage relative to the problems with typical immunosuppressive agents. The female sex appeared to have an advantage based on the cumulative probability of the OR after ECP for chronic GVHD.
Collapse
Affiliation(s)
- Emin Kansu
- Hacettepe University Cancer Institute, Ankara, Turkey
| | - David Ward
- Division of Nephrology and Hypertension, Apheresis Unit, University of California San Diego Health, La Jolla, CA, USA
| | - Amber P Sanchez
- Division of Nephrology and Hypertension, Apheresis Unit, University of California San Diego Health, La Jolla, CA, USA
| | - Robyn Cunard
- Division of Nephrology and Hypertension, Apheresis Unit, University of California San Diego Health, La Jolla, CA, USA
| | - Mutlu Hayran
- Hacettepe University Cancer Institute, Ankara, Turkey
| | - Beril Huseyin
- Hacettepe University Cancer Institute, Ankara, Turkey
| | - Majella Vaughan
- Division of Blood and Marrow Transplantation, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Grace Ku
- Genentech, Inc. South San Francisco, CA, USA
| | | | - Carolyn Mulroney
- Division of Blood and Marrow Transplantation, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Caitlin Costello
- Division of Blood and Marrow Transplantation, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | | | - Matthew Wieduwilt
- Division of Blood and Marrow Transplantation, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Sue Corringham
- Division of Blood and Marrow Transplantation, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Anita Ihasz-Davis
- Division of Blood and Marrow Transplantation, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Connie Nelson
- Division of Blood and Marrow Transplantation, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| | - Edward D Ball
- Division of Blood and Marrow Transplantation, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, USA
| |
Collapse
|
8
|
Mina A, Curtis L, West K, Yau YY, Cowen EW, Hakim F, Pavletic SZ. Collection of peripheral blood mononucleated cells for chronic graft-versus-host disease immunology research: safety and effectiveness of leukapheresis in 132 patients. J Transl Med 2022; 20:519. [DOI: 10.1186/s12967-022-03708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Chronic graft-versus-host disease (GVHD) is a major cause of late morbidity and non-relapse mortality in recipients of allogeneic hematopoietic cell transplantation (HCT). Its biology, however, remains poorly understood, making the studies of its biology and immunomodulatory therapies a difficult task. Such research is often hampered by lymphopenia which is common in these patients and precludes studies of critical cellular subsets across the spectrum of severity of disease. This study explores the potential of leukapheresis to safely acquire and efficiently store immune cells for immunology research in chronic GVHD.
Methods
This is a cross-sectional study in which 132 consecutively accrued patients undergo optional research leukapheresis and a one-week comprehensive outpatient evaluation. Baseline clinical and laboratory data and efficiency of the procedure were reported.
Results
Ninety-four of 132 patients (71%) achieved the goal collection of 2 × 10^9 PBMNCs with a mean volume processed of 4.6 L. Only mild decreases in hemoglobin, platelet, lymphocyte and monocytes were observed. All adverse events were mild (grade 1) and had resolved by the time of discharge from the apheresis unit.
Conclusion
This study demonstrates feasibility, safety, and efficiency of research leukapheresis in a frail patient population. Results presented promote leukapheresis as a standard research practice option in studies of chronic GVHD in humans which may expedite advances in our understanding of this complex multisystem disease.
Collapse
|
9
|
Gómez Atria D, Gaudette BT, Londregan J, Kelly S, Perkey E, Allman A, Srivastava B, Koch U, Radtke F, Ludewig B, Siebel CW, Ryan RJ, Robertson TF, Burkhardt JK, Pear WS, Allman D, Maillard I. Stromal Notch ligands foster lymphopenia-driven functional plasticity and homeostatic proliferation of naïve B cells. J Clin Invest 2022; 132:158885. [PMID: 35579963 PMCID: PMC9246379 DOI: 10.1172/jci158885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
In lymphopenic environments, secondary lymphoid organs regulate the size of B and T-cell compartments by supporting homeostatic proliferation of mature lymphocytes. The molecular mechanisms underlying these responses and their functional consequences remain incompletely understood. To evaluate homeostasis of the mature B-cell pool during lymphopenia, we turned to an adoptive transfer model of purified follicular B-cells into Rag2-/- mouse recipients. Highly purified follicular B-cells transdifferentiated into marginal zone-like B-cells when transferred into Rag2-/- lymphopenic hosts, but not into wild-type hosts. In lymphopenic spleens, transferred B-cells gradually lost their follicular phenotype and acquired characteristics of marginal zone B-cells, as judged by cell surface phenotype, expression of integrins and chemokine receptors, positioning close to the marginal sinus, and an ability to rapidly generate functional plasma cells. Initiation of follicular to marginal zone B-cell transdifferentiation preceded proliferation. Furthermore, the transdifferentiation process was dependent on Notch2 receptors in B-cells and expression of Delta-like1 Notch ligands by splenic Ccl19-Cre+ fibroblastic stromal cells. Gene expression analysis showed rapid induction of Notch-regulated transcripts followed by upregulated Myc expression and acquisition of broad transcriptional features of marginal zone B-cells. Thus, naïve mature B-cells are endowed with plastic transdifferentiation potential in response to increased stromal Notch ligand availability during lymphopenia.
Collapse
Affiliation(s)
- Daniela Gómez Atria
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Jennifer Londregan
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, United States of America
| | - Samantha Kelly
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, United States of America
| | - Anneka Allman
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Bhaskar Srivastava
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Ute Koch
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Freddy Radtke
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, United States of America
| | - Russell Jh Ryan
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Tanner F Robertson
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, United States of America
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Ivan Maillard
- University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
10
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 425] [Impact Index Per Article: 141.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
11
|
Choi HJ, Tang CHA, Tian L, Wu Y, Sofi MH, Ticer T, Schutt SD, Hu CCA, Yu XZ. XBP-1s Promotes B Cell Pathogenicity in Chronic GVHD by Restraining the Activity of Regulated IRE-1α-Dependent Decay. Front Immunol 2021; 12:705484. [PMID: 34659198 PMCID: PMC8517405 DOI: 10.3389/fimmu.2021.705484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective therapeutic procedure to treat hematological malignancies. However, the benefit of allo-HCT is limited by a major complication, chronic graft-versus-host disease (cGVHD). Since transmembrane and secretory proteins are generated and modified in the endoplasmic reticulum (ER), the ER stress response is of great importance to secretory cells including B cells. By using conditional knock-out (KO) of XBP-1, IRE-1α or both specifically on B cells, we demonstrated that the IRE-1α/XBP-1 pathway, one of the major ER stress response mediators, plays a critical role in B cell pathogenicity on the induction of cGVHD in murine models of allo-HCT. Endoribonuclease activity of IRE-1α activates XBP-1 signaling by converting unspliced XBP-1 (XBP-1u) mRNA into spliced XBP-1 (XBP-1s) mRNA but also cleaves other ER-associated mRNAs through regulated IRE-1α-dependent decay (RIDD). Further, ablation of XBP-1s production leads to unleashed activation of RIDD. Therefore, we hypothesized that RIDD plays an important role in B cells during cGVHD development. In this study, we found that the reduced pathogenicity of XBP-1 deficient B cells in cGVHD was reversed by RIDD restriction in IRE-1α kinase domain KO mice. Restraining RIDD activity per se in B cells resulted in an increased severity of cGVHD. Besides, inhibition of RIDD activity compromised B cell differentiation and led to dysregulated expression of MHC II and costimulatory molecules such as CD86, CD40, and ICOSL in B cells. Furthermore, restraining the RIDD activity without affecting XBP-1 splicing increased B cell ability to induce cGVHD after allo-HCT. These results suggest that RIDD is an important mediator for reducing cGVHD pathogenesis through targeting XBP-1s.
Collapse
Affiliation(s)
- Hee-Jin Choi
- Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Chih-Hang Anthony Tang
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Linlu Tian
- Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Yongxia Wu
- Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - M Hanief Sofi
- Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Taylor Ticer
- Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Steven D Schutt
- Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Chih-Chi Andrew Hu
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Xue-Zhong Yu
- Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
12
|
Lipocalin 10 as a New Prognostic Biomarker in Sepsis-Induced Myocardial Dysfunction and Mortality: A Pilot Study. Mediators Inflamm 2021; 2021:6616270. [PMID: 34121925 PMCID: PMC8166480 DOI: 10.1155/2021/6616270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Sepsis-induced myocardial dysfunction (SIMD) is the most common complications of sepsis and septic shock with extremely high incidence and mortality. Lipocalin 10 (Lcn10) has recently been identified as a potential biomarker for heart failure, yet its relation to sepsis has not been investigated. The purpose of this study was to explore whether circulating Lcn10 could be used as a prognostic tool in patients with SIMD. Methods In this single-center observational pilot study, seventy-five sepsis patients were enrolled after sepsis diagnosis or ICU admission (45.3% female, median age 60 years), and 35 patients (46.7%) developed myocardial dysfunction. Serum Lcn10 levels of septic patients were measured using the enzyme-linked immunosorbent assay (ELISA) at the time of admission. Other biomarkers of cardiac function and Lcn10 concentration were compared between SIMD and non-SIMD groups. Results We observed that the median Lcn10 levels were 2.780 ng/mL in patients with SIMD and 2.075 ng/mL in patients without SIMD (P < 0.05). The area under the receiver operating characteristic (ROC) curve for the diagnosis of SIMD was 0.797 (P < 0.05). In addition, elevated serum Lcn10 levels at the time of admission were positively associated with 28-day mortality in septic patients. Conclusions Our study indicates that circulating Lcn10 levels may serve as a novel biomarker for the diagnosis and prognosis of myocardial dysfunction induced by sepsis. An additional large multicenter study may be warranted to confirm the findings of this study.
Collapse
|
13
|
BAFF promotes heightened BCR responsiveness and manifestations of chronic GVHD after allogeneic stem cell transplantation. Blood 2021; 137:2544-2557. [PMID: 33534893 PMCID: PMC8109011 DOI: 10.1182/blood.2020008040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
Patients with chronic graft-versus-host disease (cGVHD) have increased B cell-activating factor (BAFF) levels, but whether BAFF promotes disease after allogeneic bone marrow transplantation (allo-BMT) remains unknown. In a major histocompatibility complex-mismatched model with cGVHD-like manifestations, we first examined B-lymphopenic μMT allo-BMT recipients and found that increased BAFF levels in cGVHD mice were not merely a reflection of B-cell number. Mice that later developed cGVHD had significantly increased numbers of recipient fibroblastic reticular cells with higher BAFF transcript levels. Increased BAFF production by donor cells also likely contributed to cGVHD, because BAFF transcript in CD4+ T cells from diseased mice and patients was increased. cGVHD manifestations in mice were associated with high BAFF/B-cell ratios and persistence of B-cell receptor (BCR)-activated B cells in peripheral blood and lesional tissue. By employing BAFF transgenic (Tg) mice donor cells, we addressed whether high BAFF contributed to BCR activation in cGVHD. BAFF increased NOTCH2 expression on B cells, augmenting BCR responsiveness to surrogate antigen and NOTCH ligand. BAFF Tg B cells had significantly increased protein levels of the proximal BCR signaling molecule SYK, and high SYK protein was maintained by BAFF after in vitro BCR activation or when alloantigen was present in vivo. Using T cell-depleted (BM only) BAFF Tg donors, we found that BAFF promoted cGVHD manifestations, circulating GL7+ B cells, and alloantibody production. We demonstrate that pathologic production of BAFF promotes an altered B-cell compartment and augments BCR responsiveness. Our findings compel studies of therapeutic targeting of BAFF and BCR pathways in patients with cGVHD.
Collapse
|
14
|
BAD(FF) to the bone: misbehaving B cells in cGVHD. Blood 2021; 137:2426-2427. [PMID: 33956070 DOI: 10.1182/blood.2021011008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Hong C, Jin R, Dai X, Gao X. Functional Contributions of Antigen Presenting Cells in Chronic Graft-Versus-Host Disease. Front Immunol 2021; 12:614183. [PMID: 33717098 PMCID: PMC7943746 DOI: 10.3389/fimmu.2021.614183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is one of the most common reasons of late non-relapse morbidity and mortality of patients with allogeneic hematopoietic stem cell transplantation (allo-HSCT). While acute GVHD is considered driven by a pathogenic T cell dominant mechanism, the pathogenesis of cGVHD is much complicated and involves participation of a variety of immune cells other than pathogenic T cells. Existing studies have revealed that antigen presenting cells (APCs) play crucial roles in the pathophysiology of cGVHD. APCs could not only present auto- and alloantigens to prime and activate pathogenic T cells, but also directly mediate the pathogenesis of cGVHD via multiple mechanisms including infiltration into tissues/organs, production of inflammatory cytokines as well as auto- and alloantibodies. The studies of this field have led to several therapies targeting different APCs with promising results. This review will focus on the important roles of APCs and their contributions in the pathophysiology of cGVHD after allo-HSCT.
Collapse
Affiliation(s)
- Chao Hong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Rong Jin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoqiu Dai
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiaoming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Saiki W, Ma C, Okajima T, Takeuchi H. Current Views on the Roles of O-Glycosylation in Controlling Notch-Ligand Interactions. Biomolecules 2021; 11:biom11020309. [PMID: 33670724 PMCID: PMC7922208 DOI: 10.3390/biom11020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The 100th anniversary of Notch discovery in Drosophila has recently passed. The Notch is evolutionarily conserved from Drosophila to humans. The discovery of human-specific Notch genes has led to a better understanding of Notch signaling in development and diseases and will continue to stimulate further research in the future. Notch receptors are responsible for cell-to-cell signaling. They are activated by cell-surface ligands located on adjacent cells. Notch activation plays an important role in determining the fate of cells, and dysregulation of Notch signaling results in numerous human diseases. Notch receptors are primarily activated by ligand binding. Many studies in various fields including genetics, developmental biology, biochemistry, and structural biology conducted over the past two decades have revealed that the activation of the Notch receptor is regulated by unique glycan modifications. Such modifications include O-fucose, O-glucose, and O-N-acetylglucosamine (GlcNAc) on epidermal growth factor-like (EGF) repeats located consecutively in the extracellular domain of Notch receptors. Being fine-tuned by glycans is an important property of Notch receptors. In this review article, we summarize the latest findings on the regulation of Notch activation by glycosylation and discuss future challenges.
Collapse
Affiliation(s)
- Wataru Saiki
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
| | - Chenyu Ma
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Correspondence: ; Tel.: +81-52-744-2068
| |
Collapse
|
17
|
Saidu NEB, Bonini C, Dickinson A, Grce M, Inngjerdingen M, Koehl U, Toubert A, Zeiser R, Galimberti S. New Approaches for the Treatment of Chronic Graft-Versus-Host Disease: Current Status and Future Directions. Front Immunol 2020; 11:578314. [PMID: 33162993 PMCID: PMC7583636 DOI: 10.3389/fimmu.2020.578314] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a severe complication of allogeneic hematopoietic stem cell transplantation that affects various organs leading to a reduced quality of life. The condition often requires enduring immunosuppressive therapy, which can also lead to the development of severe side effects. Several approaches including small molecule inhibitors, antibodies, cytokines, and cellular therapies are now being developed for the treatment of cGvHD, and some of these therapies have been or are currently tested in clinical trials. In this review, we discuss these emerging therapies with particular emphasis on tyrosine kinase inhibitors (TKIs). TKIs are a class of compounds that inhibits tyrosine kinases, thereby preventing the dissemination of growth signals and activation of key cellular proteins that are involved in cell growth and division. Because they have been shown to inhibit key kinases in both B cells and T cells that are involved in the pathophysiology of cGvHD, TKIs present new promising therapeutic approaches. Ibrutinib, a Bruton tyrosine kinase (Btk) inhibitor, has recently been approved by the Food and Drug Administration (FDA) in the United States for the treatment of adult patients with cGvHD after failure of first-line of systemic therapy. Also, Janus Associated Kinases (JAK1 and JAK2) inhibitors, such as itacitinib (JAK1) and ruxolitinib (JAK1 and 2), are promising in the treatment of cGvHD. Herein, we present the current status and future directions of the use of these new drugs with particular spotlight on their targeting of specific intracellular signal transduction cascades important for cGvHD, in order to shed some light on their possible mode of actions.
Collapse
Affiliation(s)
- Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Anne Dickinson
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ulrike Koehl
- Faculty of Medicine, Institute of Clinical Immunology, University Leipzig and Fraunhofer IZI, Leipzig, Germany
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
- Laboratoire d'Immunologie et d`Histocompatibilité, AP-HP, Hopital Saint-Louis, Paris, France
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Wang F, Luo L, Gu Z, Yang N, Wang L, Gao C. Integrative Analysis of Long Noncoding RNAs in Patients with Graft-versus-Host Disease. Acta Haematol 2020; 143:533-551. [PMID: 32289782 DOI: 10.1159/000505255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/04/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) remains a major cause of late non-recurrence mortality despite remarkable improvements in the field of allogeneic hematopoietic stem cell transplantation. Although recent studies have found that B-cell receptor (BCR)-activated B cells contribute to pathogenesis in cGVHD, the specific molecular mechanisms of B cells in this process remain unclear. METHODS In our study, human long noncoding RNA (lncRNA) microarrays and bioinformatic analysis were performed to identify different expressions of lncRNAs in peripheral blood B cells from cGVHD patients compared with healthy ones. The differential expression of lncRNA was confirmed in additional samples by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The microarray analysis revealed that 106 of 198 differentially expressed lncRNAs were upregulated and 92 were downregulated in cGVHD patients compared with healthy controls. Intergenic lncRNAs accounted for the majority of differentially expressed lncRNAs. A KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the differentially expressed mRNAs, which were coexpressed with lncRNA, between the cGVHD group and the healthy group were significantly enriched in the BCR signaling pathway. Further analysis of the BCR signaling pathway and its coexpression network identified three lncRNAs with the strongest correlation with BCR signaling and cGVHD, as well as a series of protein-coding genes and transcription factors associated with them. The three candidate lncRNAs were further validated in another group of cGVHD patients by qRT-PCR. CONCLUSIONS This is the first study on the correlation between lncRNA and cGVHD using lncRNA microarray analysis. Our study provides novel enlightenment in exploring the molecular pathogenesis of cGVHD.
Collapse
Affiliation(s)
- Feiyan Wang
- Medical School, Nankai University, Tianjin, China
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lan Luo
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenyang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nan Yang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Li Wang
- Department of Hematology and Oncology, Laoshan Branch, Chinese PLA 401 Hospital, Qingdao, China
| | - Chunji Gao
- Medical School, Nankai University, Tianjin, China,
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China,
| |
Collapse
|
20
|
Yehudai-Ofir D, Henig I, Zuckerman T. Aberrant B cells, autoimmunity and the benefit of targeting B cells in chronic graft-versus-host disease. Autoimmun Rev 2020; 19:102493. [DOI: 10.1016/j.autrev.2020.102493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023]
|
21
|
How ibrutinib, a B-cell malignancy drug, became an FDA-approved second-line therapy for steroid-resistant chronic GVHD. Blood Adv 2019; 2:2012-2019. [PMID: 30108109 DOI: 10.1182/bloodadvances.2018013060] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-SCT) is potentially curative for a number of hematologic conditions, both malignant and nonmalignant. However, its success can be limited by the development of acute and chronic graft-versus-host disease (GVHD). Chronic GVHD (cGVHD) is the most common long-term complication following allo-SCT, and patients who develop this condition have significantly higher morbidity and mortality and significantly lower quality of life than patients who do not. Until recently, there were no US Food and Drug Administration (FDA)-approved therapies for cGVHD treatment. In this review article, we describe how ibrutinib was identified as potential cGVHD therapy based on preclinical cGVHD models and clinical studies in B-cell malignancies and elucidation of its mechanisms of action in cGVHD. Results from a phase 2 clinical trial that was designed based on National Institutes of Health Criteria for the grading and staging of cGVHD culminated in the FDA-approval of ibrutinib as second line therapy of steroid-refractory or steroid-resistant cGVHD. Results of ibrutinib studies in phase 3 randomized studies, for cGVHD prophylaxis and as first -line testing along with steroids will be especially important in selecting the preferred indications for ibrutinib in patients at risk for or who have developed cGVHD.
Collapse
|
22
|
McManigle W, Youssef A, Sarantopoulos S. B cells in chronic graft-versus-host disease. Hum Immunol 2019; 80:393-399. [PMID: 30849450 DOI: 10.1016/j.humimm.2019.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHCT) is the definitive therapy for numerous otherwise incurable hematologic malignancies and non-malignant diseases. The genetic disparity between donor and recipient both underpins therapeutic effects and confers donor immune system-mediated damage in the recipient, called graft-versus-host disease (GVHD). Chronic GVHD (cGVHD) is a major cause of late post-transplant morbidity and mortality. B cells have a substantiated role in cGVHD pathogenesis, as first demonstrated by clinical response to the anti-CD20 monoclonal antibody, rituximab. Initiation of CD20 blockade is met at times with limited therapeutic success that has been associated with altered peripheral B cell homeostasis and excess B Cell Activating Factor of the TNF family (BAFF). Increased BAFF to B cell ratios are associated with the presence of circulating, constitutively activated B cells in patients with cGVHD. These cGVHD patient B cells have increased survival capacity and signal through both BAFF-associated and B Cell Receptor (BCR) signaling pathways. Proximal BCR signaling molecules, Syk and BTK, appear to be hyper-activated in cGVHD B cells and can be targeted with small molecule inhibitors. Murine studies have confirmed roles for Syk and BTK in development of cGVHD. Emerging evidence has prompted investigation of several small molecule inhibitors in an attempt to restore B cell homeostasis and potentially target rare, pathologic B cell populations.
Collapse
Affiliation(s)
- William McManigle
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - Ayman Youssef
- Adult Hematology and Bone Marrow Transplantation, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Stefanie Sarantopoulos
- Department of Medicine, Duke University, Durham, NC, USA; Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC, USA; Duke Cancer Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
23
|
Xiao B, Li J, Zhou M, Li X, Huang X, Hang J, Sun Z, Li L. [Structure and function of B-cell linker and its role in the development of B cell-related diseases]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:253-256. [PMID: 30890517 DOI: 10.12122/j.issn.1673-4254.2019.02.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
B cell linker (BLNK) is a key linker protein of B cell receptor (BCR) signaling pathway. BLNK participates in the regulation of PLC-γactivity and the activation of Ras pathway through its typical structure and interaction network with other proteins, and is thus widely involved in the regulation of B cell proliferation, differentiation, apoptosis and signal transduction. Furthermore, it is closely related to anaphylactic diseases, multiple sclerosis, chromosomal aneuploidy, aneuglobulinemia, B lymphocytic leukemia and lymphoma. Herein we review the structure and biological function of BLNK and its role in B cell-related diseases. BLNK can cooperate with a series of effective proteins to activate BCR signaling pathway, thereby regulating the development, maturation and function of B cells. The functional mutation of BLNK can destroy the homeostasis of B cells and affect the development and maturation of B cells, which leads to the occurrence of B cell related diseases. A comprehensive understanding of the biological functions of BLNK not only provides insights into the pathogenesis of B cell-related diseases, but also inspires new ideas and helps to find breakthroughs for the treatment of these diseases with BLNK as the therapeutic target.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Jiaying Li
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengsi Zhou
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Li
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Xiaoyan Huang
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Jianfeng Hang
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Zhaohui Sun
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Linhai Li
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| |
Collapse
|
24
|
Li X, Gao Q, Feng Y, Zhang X. Developing role of B cells in the pathogenesis and treatment of chronic GVHD. Br J Haematol 2018; 184:323-336. [PMID: 30585319 PMCID: PMC6590173 DOI: 10.1111/bjh.15719] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is a major complication affecting the long-term survival of patients after allogeneic haematopoietic stem cell transplantation. The mechanism of cGVHD is unclear, and while previous studies have primarily focused on T cells, the role of B cells in the pathogenesis of cGVHD has been less reported. However, current studies on cGVHD are increasingly focused on the important role of B cells. In this review, we will introduce the newest studies and examine the role of B cells in cGVHD in detail with respect to the following aspects: altered B cell subpopulations, aberrant B cell signalling pathways, autoantibodies and T-B cell interactions. Treatment strategies for the targeting of B cells during cGVHD will also be discussed.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Haematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology College of Basic Medicine, Third Military Medicine University, Chongqing, China
| | - Yimei Feng
- Department of Haematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xi Zhang
- Department of Haematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Radojcic V, Paz K, Chung J, Du J, Perkey ET, Flynn R, Ivcevic S, Zaiken M, Friedman A, Yan M, Pletneva MA, Sarantopoulos S, Siebel CW, Blazar BR, Maillard I. Notch signaling mediated by Delta-like ligands 1 and 4 controls the pathogenesis of chronic GVHD in mice. Blood 2018; 132:2188-2200. [PMID: 30181175 PMCID: PMC6238189 DOI: 10.1182/blood-2018-03-841155] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a major complication of allogeneic hematopoietic cell transplantation (allo-HCT) and remains an area of unmet clinical need with few treatment options available. Notch blockade prevents acute GVHD in multiple mouse models, but the impact of Notch signaling on cGVHD remains unknown. Using genetic and antibody-mediated strategies of Notch inhibition, we investigated the role of Notch signaling in complementary mouse cGVHD models that mimic several aspects of human cGVHD in search of candidate therapeutics. In the B10.D2→BALB/c model of sclerodermatous cGVHD, Delta-like ligand 4 (Dll4)-driven Notch signaling was essential for disease development. Antibody-mediated Dll4 inhibition conferred maximum benefits when pursued early in a preventative fashion, with anti-Dll1 enhancing early protection. Notch-deficient alloantigen-specific T cells showed no early defects in proliferation or helper polarization in vivo but subsequently exhibited markedly decreased cytokine secretion and enhanced accumulation of FoxP3+ regulatory T cells. In the B6→B10.BR major histocompatibility complex-mismatched model with multi-organ system cGVHD and prominent bronchiolitis obliterans (BO), but not skin manifestations, absence of Notch signaling in T cells provided long-lasting disease protection that was replicated by systemic targeting of Dll1, Dll4, or both Notch ligands, even during established disease. Notch inhibition decreased target organ damage and germinal center formation. Moreover, decreased BO-cGVHD was observed upon inactivation of Notch1 and/or Notch2 in T cells. Systemic targeting of Notch2 alone was safe and conferred therapeutic benefits. Altogether, Notch ligands and receptors regulate key pathogenic steps in cGVHD and emerge as novel druggable targets to prevent or treat different forms of cGVHD.
Collapse
Affiliation(s)
- Vedran Radojcic
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Katelyn Paz
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Jooho Chung
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jing Du
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Eric T Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Ryan Flynn
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Sanja Ivcevic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Michael Zaiken
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Ann Friedman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Minhong Yan
- Department of Discovery Oncology, Genentech, South San Francisco, CA
| | | | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke Cancer Institute, Duke University Medical Center, Durham, NC; and
| | | | - Bruce R Blazar
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
26
|
Int"Dll"igent control of T-cell pathology in GVHD. Blood 2018; 132:2112-2114. [PMID: 30442748 DOI: 10.1182/blood-2018-09-875120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Poe JC, Jia W, Di Paolo JA, Reyes NJ, Kim JY, Su H, Sundy JS, Cardones AR, Perez VL, Chen BJ, Chao NJ, Cardona DM, Saban DR, Sarantopoulos S. SYK inhibitor entospletinib prevents ocular and skin GVHD in mice. JCI Insight 2018; 3:122430. [PMID: 30282825 PMCID: PMC6237454 DOI: 10.1172/jci.insight.122430] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of hematopoietic stem cell transplantation (HCT). The tyrosine kinase SYK contributes to both acute and chronic GVHD development, making it an attractive target for GVHD prevention. Entospletinib (ENTO) is a second-generation highly selective SYK inhibitor with a high safety profile. Potential utility of ENTO as GVHD prophylaxis in patients was examined using a preclinical mouse model of eye and skin GVHD and ENTO-compounded chow. We found that early SYK inhibition improved blood immune cell reconstitution in GVHD mice and prolonged survival, with 60% of mice surviving to day +120 compared with 10% of mice treated with placebo. Compared with mice receiving placebo, mice receiving ENTO had dramatic improvements in clinical eye scores, alopecia scores, and skin scores. Infiltrating SYK+ cells expressing B220 or F4/80, resembling SYK+ cells found in lichenoid skin lesions of chronic GVHD patients, were abundant in the skin of placebo mice but were rare in ENTO-treated mice. Thus, ENTO given early after HCT safely prevented GVHD.
Collapse
Affiliation(s)
- Jonathan C Poe
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Wei Jia
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Julie A Di Paolo
- Department of Biology, Gilead Sciences, Foster City, California, USA
| | - Nancy J Reyes
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ji Yun Kim
- Department of Biology, Gilead Sciences, Foster City, California, USA
| | - Hsuan Su
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - John S Sundy
- Inflammation/Respiratory Section, Gilead Sciences, Foster City, California, USA
| | | | - Victor L Perez
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Benny J Chen
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Nelson J Chao
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Diana M Cardona
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Daniel R Saban
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
28
|
Di Ianni M, Del Papa B, Baldoni S, Di Tommaso A, Fabi B, Rosati E, Natale A, Santarone S, Olioso P, Papalinetti G, Giancola R, Accorsi P, Di Bartolomeo P, Sportoletti P, Falzetti F. NOTCH and Graft-Versus-Host Disease. Front Immunol 2018; 9:1825. [PMID: 30147692 PMCID: PMC6096230 DOI: 10.3389/fimmu.2018.01825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
In allogeneic hematopoietic stem cell transplantation, which is the major curative therapy for hematological malignancies, T cells play a key role in the development of graft-versus-host disease (GvHD). NOTCH pathway is a conserved signal transduction system that regulates T cell development and differentiation. The present review analyses the role of the NOTCH signaling as a new regulator of acute GvHD. NOTCH signaling could also represent a new therapeutic target for GvHD.
Collapse
Affiliation(s)
- Mauro Di Ianni
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy.,Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Beatrice Del Papa
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - Ambra Di Tommaso
- Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - Bianca Fabi
- Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - Emanuela Rosati
- Department of Experimental Medicine, Biosciences and Medical Embriology Section, University of Perugia, Perugia, Italy
| | - Annalisa Natale
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Stella Santarone
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Paola Olioso
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Gabriele Papalinetti
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Raffaella Giancola
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Patrizia Accorsi
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Paolo Di Bartolomeo
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Franca Falzetti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Kean LS. Defining success with cellular therapeutics: the current landscape for clinical end point and toxicity analysis. Blood 2018; 131:2630-2639. [PMID: 29728399 PMCID: PMC6032897 DOI: 10.1182/blood-2018-02-785881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Cellular therapies play a major and expanding role in the treatment of hematologic diseases. For each of these therapies, a narrow therapeutic window exists, where efficacy is maximized and toxicities minimized. This review focuses on one of the most established cellular therapies, hematopoietic stem cell transplant, and one of the newest cellular therapies, chimeric antigen receptor-T cells. In this review, I will discuss the current state of the field for clinical end point analysis with each of these therapeutics, including their critical toxicities, and focus on the major elements of success for each of these complex treatments for hematologic disease.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA; Clinical Research Division, The Fred Hutchinson Cancer Research Center, Seattle, WA; and Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
30
|
B-cell targeting in chronic graft-versus-host disease. Blood 2018; 131:1399-1405. [PMID: 29437591 DOI: 10.1182/blood-2017-11-784017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/25/2018] [Indexed: 01/08/2023] Open
Abstract
Over the last decade, our understanding of the pathophysiology of chronic graft-versus-host disease (cGVHD) has improved considerably. In this spotlight, we discuss emerging insights into the pathophysiology of cGVHD with a focus on B cells. First, we summarize supporting evidence derived from mouse and human studies. Next, novel cGVHD therapy approaches that target B cells will be covered to provide treating physicians with an overview of the rationale behind the emerging armamentarium against cGVHD.
Collapse
|
31
|
Notching up B-cell pathology in chronic GVHD. Blood 2017; 130:2053-2054. [PMID: 29122773 DOI: 10.1182/blood-2017-09-805366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Perkey E, Maillard I. New Insights into Graft-Versus-Host Disease and Graft Rejection. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:219-245. [PMID: 29099650 DOI: 10.1146/annurev-pathol-020117-043720] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allogeneic transplantation of foreign organs or tissues has lifesaving potential, but can lead to serious complications. After solid organ transplantation, immune-mediated rejection mandates the use of prolonged global immunosuppression and limits the life span of transplanted allografts. After bone marrow transplantation, donor-derived immune cells can trigger life-threatening graft-versus-host disease. T cells are central mediators of alloimmune complications and the target of most existing therapeutic interventions. We review recent progress in identifying multiple cell types in addition to T cells and new molecular pathways that regulate pathogenic alloreactivity. Key discoveries include the cellular subsets that function as potential sources of alloantigens, the cross talk of innate lymphoid cells with damaged epithelia and with the recipient microbiome, the impact of the alarmin interleukin-33 on alloreactivity, and the role of Notch ligands expressed by fibroblastic stromal cells in alloimmunity. While refining our understanding of transplantation immunobiology, these findings identify new therapeutic targets and new areas of investigation.
Collapse
Affiliation(s)
- Eric Perkey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Department of Internal Medicine, Division of Hematology-Oncology, and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Medicine, Division of Hematology-Oncology, and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|