1
|
Huang Y, Qin Y, He Y, Qiu D, Zheng Y, Wei J, Zhang L, Yang DH, Li Y. Advances in molecular targeted drugs in combination with CAR-T cell therapy for hematologic malignancies. Drug Resist Updat 2024; 74:101082. [PMID: 38569225 DOI: 10.1016/j.drup.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Molecular targeted drugs and chimeric antigen receptor (CAR) T cell therapy represent specific biological treatments that have significantly improved the efficacy of treating hematologic malignancies. However, they face challenges such as drug resistance and recurrence after treatment. Combining molecular targeted drugs and CAR-T cells could regulate immunity, improve tumor microenvironment (TME), promote cell apoptosis, and enhance sensitivity to tumor cell killing. This approach might provide a dual coordinated attack on cancer cells, effectively eliminating minimal residual disease and overcoming therapy resistance. Moreover, molecular targeted drugs can directly or indirectly enhance the anti-tumor effect of CAR-T cells by inducing tumor target antigen expression, reversing CAR-T cell exhaustion, and reducing CAR-T cell associated toxic side effects. Therefore, combining molecular targeted drugs with CAR-T cells is a promising and novel tactic for treating hematologic malignancies. In this review article, we focus on analyzing the mechanism of therapy resistance and its reversal of CAR-T cell therapy resistance, as well as the synergistic mechanism, safety, and future challenges in CAR-T cell therapy in combination with molecular targeted drugs. We aim to explore the benefits of this combination therapy for patients with hematologic malignancies and provide a rationale for subsequent clinical studies.
Collapse
Affiliation(s)
- Yuxian Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| | - Yinjie Qin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yingzhi He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Dezhi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yeqin Zheng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Jiayue Wei
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Lenghe Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, USA.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| |
Collapse
|
2
|
Tiong IS, Wall M, Bajel A, Kalro A, Fleming S, Roberts AW, Thiagarajah N, Chua CC, Latimer M, Yeung D, Marlton P, Johnston A, Enjeti A, Fong CY, Cull G, Larsen S, Kennedy G, Schwarer A, Kipp D, Ramanathan S, Verner E, Tiley C, Morris E, Hahn U, Moore J, Taper J, Purtill D, Warburton P, Stevenson W, Murphy N, Tan P, Beligaswatte A, Mutsando H, Hertzberg M, Shortt J, Szabo F, Dunne K, Wei AH. How comparable are patient outcomes in the "real-world" with populations studied in pivotal AML trials? Blood Cancer J 2024; 14:54. [PMID: 38531863 PMCID: PMC10965987 DOI: 10.1038/s41408-024-00996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 03/28/2024] Open
Abstract
Despite an increasing desire to use historical cohorts as "synthetic" controls for new drug evaluation, limited data exist regarding the comparability of real-world outcomes to those in clinical trials. Governmental cancer data often lacks details on treatment, response, and molecular characterization of disease sub-groups. The Australasian Leukaemia and Lymphoma Group National Blood Cancer Registry (ALLG NBCR) includes source information on morphology, cytogenetics, flow cytometry, and molecular features linked to treatment received (including transplantation), response to treatment, relapse, and survival outcome. Using data from 942 AML patients enrolled between 2012-2018, we assessed age and disease-matched control and interventional populations from published randomized trials that led to the registration of midostaurin, gemtuzumab ozogamicin, CPX-351, oral azacitidine, and venetoclax. Our analyses highlight important differences in real-world outcomes compared to clinical trial populations, including variations in anthracycline type, cytarabine intensity and scheduling during consolidation, and the frequency of allogeneic hematopoietic cell transplantation in first remission. Although real-world outcomes were comparable to some published studies, notable differences were apparent in others. If historical datasets were used to assess the impact of novel therapies, this work underscores the need to assess diverse datasets to enable geographic differences in treatment outcomes to be accounted for.
Collapse
Affiliation(s)
- Ing Soo Tiong
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Alfred Hospital, Melbourne, VIC, Australia
- Monash University, Melbourne, VIC, Australia
| | - Meaghan Wall
- Monash University, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Ashish Bajel
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Akash Kalro
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Andrew W Roberts
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | | | - Chong Chyn Chua
- The Alfred Hospital, Melbourne, VIC, Australia
- Monash University, Melbourne, VIC, Australia
- The Northern Hospital, Epping, VIC, Australia
| | - Maya Latimer
- Canberra Hospital, Garran, ACT, Australia
- ACT Pathology, Garran, ACT, Australia
- Australian National University, Canberra, ACT, Australia
| | - David Yeung
- Royal Adelaide Hospital, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Paula Marlton
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | | | - Anoop Enjeti
- Calvary Mater Newcastle, Waratah, NSW, Australia
| | | | - Gavin Cull
- Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
- University of Western Australia, Perth, WA, Australia
| | - Stephen Larsen
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Glen Kennedy
- Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | | | | | | | | | - Campbell Tiley
- Gosford Hospital, Gosford, NSW, Australia
- University of Newcastle, Callaghan, NSW, Australia
| | - Edward Morris
- Townsville University Hospital, Douglas, QLD, Australia
| | - Uwe Hahn
- Royal Adelaide Hospital, Adelaide, SA, Australia
- The Queen Elizabeth Hospital, Woodville South, SA, Australia
- SA Pathology, Adelaide, SA, Australia
| | - John Moore
- St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
| | - John Taper
- Nepean Hospital, Kingswood, NSW, Australia
| | - Duncan Purtill
- PathWest Laboratory Medicine, Nedlands, WA, Australia
- Fiona Stanley Hospital, Murdoch, WA, Australia
| | | | - William Stevenson
- Royal North Shore Hospital, St Leonards, NSW, Australia
- Northern Clinical School, University of Sydney, Sydney, NSW, Australia
| | | | - Peter Tan
- Royal Perth Hospital, Perth, WA, Australia
| | - Ashanka Beligaswatte
- Royal Adelaide Hospital, Adelaide, SA, Australia
- Flinders Medical Centre, Bedford Park, SA, Australia
- Flinders University, Bedford Park, SA, Australia
| | | | | | - Jake Shortt
- Monash University, Melbourne, VIC, Australia
- Monash Medical Centre, Clayton, VIC, Australia
| | | | - Karin Dunne
- Australasian Leukaemia and Lymphoma Group (ALLG), Melbourne, VIC, Australia
| | - Andrew H Wei
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Royal Melbourne Hospital, Parkville, VIC, Australia.
- The University of Melbourne, Melbourne, VIC, Australia.
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Palmieri R, Billio A, Ferrara F, Galimberti S, Lemoli RM, Todisco E, Moretti F, Venditti A. Literature review and expert opinion on the treatment of high-risk acute myeloid leukemia in patients who are eligible for intensive chemotherapy. Front Oncol 2024; 14:1367393. [PMID: 38444680 PMCID: PMC10912626 DOI: 10.3389/fonc.2024.1367393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
In patients with Acute Myeloid Leukemia (AML), the assessment of disease risk plays a central role in the era of personalized medicine. Indeed, integrating baseline clinical and biological features on a case-by-case basis is not only essential to select which treatment would likely result in a higher probability of achieving complete remission, but also to dynamically customize any subsequent therapeutic intervention. For young high-risk patients with low comorbidities burden and in good general conditions (also called "fit" patients), intensive chemotherapy followed by allogeneic stem cell transplantation still represents the backbone of any therapeutic program. However, with the approval of novel promising agents in both the induction/consolidation and the maintenance setting, the algorithms for the management of AML patients considered eligible for intensive chemotherapy are in constant evolution. In this view, we selected burning issues regarding the identification and management of high-risk AML, aiming to provide practical advice to facilitate their daily clinical management in patients considered eligible for intensive chemotherapy.
Collapse
Affiliation(s)
- Raffaele Palmieri
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Atto Billio
- Division of Hematology and Bone Marrow Transplant (BMT), Hospital S. Maurizio, Bolzano, Italy
| | | | - Sara Galimberti
- Hematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto M. Lemoli
- Cattedra di Ematologia, Dipartimento di Medicina Interna (DiMI), Università di Genova, Genova, Italy
- Clinica Ematologica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Martino, Genova, Italy
| | - Elisabetta Todisco
- Struttura Complessa (SC) Ematologia, Ospedale Busto Arsizio, Azienda Socio Sanitaria Territoriale (ASST) Valle Olona, Varese, Italy
| | - Federico Moretti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Li Q, Wang M, Liu L. The role of exosomes in the stemness maintenance and progression of acute myeloid leukemia. Biochem Pharmacol 2023; 212:115539. [PMID: 37024061 DOI: 10.1016/j.bcp.2023.115539] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of myeloid hematopoietic cells, which is characterized by the aberrant clonal proliferation of immature myeloblasts and compromised hematopoiesis. The leukemic cell population is strongly heterogeneous. Leukemic stem cells (LSCs) are an important leukemic cell subset with stemness characteristics and self-renewal ability, which contribute to the development of refractory or relapsed AML. It is now acknowledged that LSCs develop from hematopoietic stem cells (HSCs) or phenotypically directed cell populations with transcriptional stemness characteristics under selective pressure from the bone marrow (BM) niche. Exosomes are extracellular vesicles containing bioactive substances involved in intercellular communication and material exchange under steady state and pathological conditions. Several studies have reported that exosomes mediate molecular crosstalk between LSCs, leukemic blasts, and stromal cells in the BM niche, promoting LSC maintenance and AML progression. This review briefly describes the process of LSC transformation and the biogenesis of exosomes, highlighting the role of leukemic-cell- and BM-niche-derived exosomes in the maintenance of LSCs and AML progression. In addition, we discuss the potential application of exosomes in the clinic as biomarkers, therapeutic targets, and carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Qian Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengyuan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Cheng J, Ge T, Zhu X, Wang J, Zeng Y, Mu W, Cai H, Dai Z, Jin J, Yang Y, Hu G, Mao X, Zhou J, Zhu L, Huang L. Preclinical development and evaluation of nanobody-based CD70-specific CAR T cells for the treatment of acute myeloid leukemia. Cancer Immunol Immunother 2023:10.1007/s00262-023-03422-6. [PMID: 36932256 DOI: 10.1007/s00262-023-03422-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) treatment remains challenging. CD70 was reported as a promising AML-specific antigen. Preclinically, CAR T-cell with single-chain-variable fragment (scFv) or truncated CD27 targeting CD70 has been reported to treat AML. However, various disadvantages including spontaneous exhaustion, proteinase-mediated loss of functional receptors, and high immunogenicity, limited its further application to clinical settings. Alternatively, the single-variable domain on heavy chain (VHH), also known as nanobodies, with comparable binding ability and specificity, provides an optional solution. METHOD We generated CD70 knocked-out novel nanobody-based anti-CD70-CAR T-cells (nb70CAR-T) with two different VHHs for antigen detection. Next, we detected the CD70 expression on primary AML blasts by flow cytometry and associated the efficacy of nb70CAR-T with the target antigen density. Finally, epigenetic modulators were investigated to regulate the CD70 expression on AML cells to promote the functionality of nb70CAR-T. RESULTS Our nb70CAR-T exhibited expected tumoricidal functionality against CD70-expressed cell lines and primary AML blasts. However, CD70 expression in primary AML blasts was not consistently high and nb70CAR-T potently respond to an estimated 40.4% of AML patients when the CD70 expression level was over a threshold of 1.6 (MFI ratio). Epigenetic modulators, Decitabine and Chidamide can up-regulate CD70 expression on AML cells, enhancing the treatment efficacy of nb70CAR-T. CONCLUSION CD70 expression in AML blasts was not fully supportive of its role in AML targeted therapy as reported. The combinational use of Chidamide and Decitabine with nb70CAR-T could provide a new potential for the treatment of AML.
Collapse
Affiliation(s)
- Jiali Cheng
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China
| | - Tong Ge
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China
| | - Yuhao Zeng
- Department of Internal Medicine, Cleveland Clinic, Akron General, Akron, OH, USA
| | - Wei Mu
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China
| | - Haodong Cai
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China
| | - Zhenyu Dai
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China
| | - Jin Jin
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China
| | | | - Guang Hu
- IASO Biotherapeutics, Nanjing, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China.
| | - Liang Huang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095 Jiefang Avenue, Wuhan, China.
| |
Collapse
|
6
|
Peris I, Romero-Murillo S, Martínez-Balsalobre E, Farrington CC, Arriazu E, Marcotegui N, Jiménez-Muñoz M, Alburquerque-Prieto C, Torres-López A, Fresquet V, Martínez-Climent JA, Mateos MC, Cayuela ML, Narla G, Odero MD, Vicente C. Activation of the PP2A-B56α heterocomplex synergizes with venetoclax therapies in AML through BCL2 and MCL1 modulation. Blood 2023; 141:1047-1059. [PMID: 36455198 PMCID: PMC10023731 DOI: 10.1182/blood.2022016466] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Venetoclax combination therapies are becoming the standard of care in acute myeloid leukemia (AML). However, the therapeutic benefit of these drugs in older/unfit patients is limited to only a few months, highlighting the need for more effective therapies. Protein phosphatase 2A (PP2A) is a tumor suppressor phosphatase with pleiotropic functions that becomes inactivated in ∼70% of AML cases. PP2A promotes cancer cell death by modulating the phosphorylation state in a variety of proteins along the mitochondrial apoptotic pathway. We therefore hypothesized that pharmacological PP2A reactivation could increase BCL2 dependency in AML cells and, thus, potentiate venetoclax-induced cell death. Here, by using 3 structurally distinct PP2A-activating drugs, we show that PP2A reactivation synergistically enhances venetoclax activity in AML cell lines, primary cells, and xenograft models. Through the use of gene editing tools and pharmacological approaches, we demonstrate that the observed therapeutic synergy relies on PP2A complexes containing the B56α regulatory subunit, of which expression dictates response to the combination therapy. Mechanistically, PP2A reactivation enhances venetoclax-driven apoptosis through simultaneous inhibition of antiapoptotic BCL2 and extracellular signal-regulated kinase signaling, with the latter decreasing MCL1 protein stability. Finally, PP2A targeting increases the efficacy of the clinically approved venetoclax and azacitidine combination in vitro, in primary cells, and in an AML patient-derived xenograft model. These preclinical results provide a scientific rationale for testing PP2A-activating drugs with venetoclax combinations in AML.
Collapse
Affiliation(s)
- Irene Peris
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Silvia Romero-Murillo
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Elena Martínez-Balsalobre
- Cancer and Aging Group, Hospital Universitario Virgen de la Arrixaca, and Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Caroline C. Farrington
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI
| | - Elena Arriazu
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Nerea Marcotegui
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| | - Marta Jiménez-Muñoz
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| | | | | | - Vicente Fresquet
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose A. Martínez-Climent
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria C. Mateos
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Hematology Service, Hospital Universitario de Navarra, Pamplona, Spain
| | - Maria L. Cayuela
- Cancer and Aging Group, Hospital Universitario Virgen de la Arrixaca, and Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI
| | - Maria D. Odero
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
7
|
Tiong IS, Loo S. Targeting Measurable Residual Disease (MRD) in Acute Myeloid Leukemia (AML): Moving beyond Prognostication. Int J Mol Sci 2023; 24:4790. [PMID: 36902217 PMCID: PMC10003715 DOI: 10.3390/ijms24054790] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Measurable residual disease (MRD) assessment in acute myeloid leukemia (AML) has an established role in disease prognostication, particularly in guiding decisions for hematopoietic cell transplantation in first remission. Serial MRD assessment is now routinely recommended in the evaluation of treatment response and monitoring in AML by the European LeukemiaNet. The key question remains, however, if MRD in AML is clinically actionable or "does MRD merely portend fate"? With a series of new drug approvals since 2017, we now have more targeted and less toxic therapeutic options for the potential application of MRD-directed therapy. Recent approval of NPM1 MRD as a regulatory endpoint is also foreseen to drastically transform the clinical trial landscape such as biomarker-driven adaptive design. In this article, we will review (1) the emerging molecular MRD markers (such as non-DTA mutations, IDH1/2, and FLT3-ITD); (2) the impact of novel therapeutics on MRD endpoints; and (3) how MRD might be used as a predictive biomarker to guide therapy in AML beyond its prognostic role, which is the focus of two large collaborative trials: AMLM26 INTERCEPT (ACTRN12621000439842) and MyeloMATCH (NCT05564390).
Collapse
Affiliation(s)
- Ing S. Tiong
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Alfred Hospital, Melbourne, VIC 3004, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Sun Loo
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- The Northern Hospital, Epping, VIC 3076, Australia
| |
Collapse
|
8
|
MicroRNA 101 Attenuated NSCLC Proliferation through IDH2/HIFα Axis Suppression in the Warburg Effect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4938811. [PMID: 36304962 PMCID: PMC9596240 DOI: 10.1155/2022/4938811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Lung cancer is the most diagnosed and deadly cancer in China. MicroRNAs are small noncoding RNA gene products that exhibit multifunctional regulation in cancer cell progressions. MiR-101 loss was illustrated in about 29% of lung cancer patients, and sophisticated mechanisms of miR-101 regulation in NSCLC are eager to be disclosed. Here, using specimens from NSCLC patients and Dural-luciferase reporter assay, we got a clue that miR-101 correlated with IDH2. MiR-101 overexpression and IDH2 deficiency both suppressed NSCLC tumor growth in mice. Moreover, in NSCLC, miR-101 suppressed IDH2 expression levels, further increased α-KG concentration, and finally inhibited the Warburg effect under hypoxic conditions through downregulating HIF1α expression by promoting HIF1α hydroxylation and degradation. In conclusion, miR-101 attenuated the Warburg effect and NSCLC proliferation through IDH2/HIF1α pathway.
Collapse
|
9
|
Emdal KB, Palacio-Escat N, Wigerup C, Eguchi A, Nilsson H, Bekker-Jensen DB, Rönnstrand L, Kazi JU, Puissant A, Itzykson R, Saez-Rodriguez J, Masson K, Blume-Jensen P, Olsen JV. Phosphoproteomics of primary AML patient samples reveals rationale for AKT combination therapy and p53 context to overcome selinexor resistance. Cell Rep 2022; 40:111177. [PMID: 35947955 PMCID: PMC9380259 DOI: 10.1016/j.celrep.2022.111177] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with variable patient responses to therapy. Selinexor, an inhibitor of nuclear export, has shown promising clinical activity for AML. To identify the molecular context for monotherapy sensitivity as well as rational drug combinations, we profile selinexor signaling responses using phosphoproteomics in primary AML patient samples and cell lines. Functional phosphosite scoring reveals that p53 function is required for selinexor sensitivity consistent with enhanced efficacy of selinexor in combination with the MDM2 inhibitor nutlin-3a. Moreover, combining selinexor with the AKT inhibitor MK-2206 overcomes dysregulated AKT-FOXO3 signaling in resistant cells, resulting in synergistic anti-proliferative effects. Using high-throughput spatial proteomics to profile subcellular compartments, we measure global proteome and phospho-proteome dynamics, providing direct evidence of nuclear translocation of FOXO3 upon combination treatment. Our data demonstrate the potential of phosphoproteomics and functional phosphorylation site scoring to successfully pinpoint key targetable signaling hubs for rational drug combinations. Phosphoproteomics with functional scoring uncovers context for selinexor sensitivity Functional p53 correlates with selinexor sensitivity, which is enhanced by nutlin-3a Dysregulated AKT-FOXO3 drives selinexor resistance, which is overcome with MK-2206 Spatial proteomics reveals selinexor-induced nucleocytoplasmic protein shuttling
Collapse
Affiliation(s)
- Kristina B Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolàs Palacio-Escat
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant-Zentrum, Heidelberg, Germany; Heidelberg University, Faculty of Biosciences, Heidelberg, Germany; RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, Aachen, Germany
| | | | - Akihiro Eguchi
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Dorte B Bekker-Jensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant-Zentrum, Heidelberg, Germany; RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, Aachen, Germany.
| | | | | | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Chen Y, Liu Q, Xing H, Rao Q, Wang M, Mi Y, Wei H, Wang J. Acute myeloid leukemia fusion genes can be found in CD33-negative cells. Int J Lab Hematol 2022; 44:1111-1114. [PMID: 35915999 DOI: 10.1111/ijlh.13942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Targeted therapies and immunotherapies are emerging strategies for the treatment of leukemia. CD33 is a common and important therapeutic target for cellular immunotherapy or antibody immunotherapy. Drugs on targeting CD33 are also emerging. However, acute myeloid leukemia (AML) relapse still occurs after treatment with targeted CD33, for which the mechanism is unknown. METHODS We used fluorescence in situ hybridization and real-time polymerase chain reaction to detect the expression of fusion genes in different populations of cells from AML patients. RESULT Fusion gene can be express in CD33 negative cell proportions in newly diagnosed and relapsed AML patients. CONCLUSION There are fusion genes in CD33-negative cells that are might not be cleared by CD33 targeting therapy. And this might be the source of relapse.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Qian Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| |
Collapse
|
11
|
Devillier R, Forcade E, Garnier A, Guenounou S, Thepot S, Guillerm G, Ceballos P, Hicheri Y, Dumas PY, Peterlin P, Hunault-Berger M, Béné MC, Bouvier A, Chevallier P, Blaise D, Vey N, Pigneux A, Récher C, Huynh A. In-depth time-dependent analysis of the benefit of allo-HSCT for elderly patients with CR1 AML: a FILO study. Blood Adv 2022; 6:1804-1812. [PMID: 34525180 PMCID: PMC8941467 DOI: 10.1182/bloodadvances.2021004435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
The benefit of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for patients with acute myeloid leukemia (AML) aged >60 years remains a matter of debate, notably when performed in first complete remission (CR1). To clarify this issue, the French Innovative Leukemia Organization (FILO) performed a 10-year real-world time-dependent analysis. The study enrolled patients between 60 and 70 years of age with AML in CR1 after intensive chemotherapy with intermediate (IR) or unfavorable (UR) risk according to the European LeukemiaNet (ELN) 2010 classification. The impact of allo-HSCT was analyzed through three models: (1) time-dependent Cox; (2) multistate for dynamic prediction; and (3) super landmark. The study enrolled 369 (73%) IR and 138 (27%) UR patients with AML, 203 of whom received an allo-HSCT. Classical multivariate analysis showed that allo-HSCT significantly improved relapse-free survival (RFS; hazard ratio [HR] [95% confidence interval (CI)], 0.47 [0.35-0.62]; P < .001) and overall survival (OS; HR [95% CI], 0.56 [0.42-0.76]; P < .001), independently of the ELN risk group. With the multistate model, the predicted 5-year probability for IR and UR patients to remain in CR1 without allo-HSCT was 8% and 1%, respectively. Dynamic predictions confirmed that patients without allo-HSCT continue to relapse over time. Finally, the super landmark model showed that allo-HSCT significantly improved RFS (HR [95% CI], 0.47 [0.36-0.62]; P < .001) and OS (HR [95% CI], 0.54 [0.40-0.72]; P < .001). allo-HSCT in CR1 is reported here as significantly improving the outcome of fit older patients with AML. Long-term RFS without allo-HSCT is very low (<10%), supporting allo-HSCT as being the best curative option for these patients.
Collapse
Affiliation(s)
- Raynier Devillier
- Hematology Department, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Inserm, CRCM, Marseille, France
| | - Edouard Forcade
- Hematology and Cell Therapy, Centre Hospitalier Universitaire (CHU) Bordeaux, Bordeaux, France
| | | | - Sarah Guenounou
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Sylvian Thepot
- Maladies du sang, FHU-GOAL Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Gaelle Guillerm
- Service d’Hématologie Clinique, CHRU de Brest, Brest, France
| | - Patrice Ceballos
- Clinical Hematology, Montpellier University Hospital, Montpellier, France
| | - Yosr Hicheri
- Hematology Department, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Inserm, CRCM, Marseille, France
| | - Pierre-Yves Dumas
- Hematology and Cell Therapy, Centre Hospitalier Universitaire (CHU) Bordeaux, Bordeaux, France
| | | | - Mathilde Hunault-Berger
- Maladies du sang, FHU-GOAL Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
| | | | - Anne Bouvier
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) Angers, Inserm, CRCINA, Angers, France
| | | | - Didier Blaise
- Hematology Department, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Inserm, CRCM, Marseille, France
| | - Norbert Vey
- Hematology Department, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Inserm, CRCM, Marseille, France
| | - Arnaud Pigneux
- Hematology and Cell Therapy, Centre Hospitalier Universitaire (CHU) Bordeaux, Bordeaux, France
| | - Christian Récher
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| | - Anne Huynh
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, Toulouse, France
| |
Collapse
|
12
|
Li C, Wang Q, Li D, Liu Y, Hu B, Feng Y, Zhang H, He Z, Luo C, Sun J. Molecular recognition-driven supramolecular nanoassembly of a hydrophobic uracil prodrug and hydrophilic cytarabine for precise combination treatment of solid and non-solid tumors. NANOSCALE HORIZONS 2022; 7:235-245. [PMID: 35048915 DOI: 10.1039/d1nh00590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Combination chemotherapy has shown distinct therapeutic advantages over monotherapy in clinical cancer treatment, especially for two chemotherapeutic drugs with different mechanisms of action. However, how to achieve efficient co-delivery of two or more drugs with different physicochemical and pharmacokinetic properties for synergistic therapy is still a huge challenge. In particular, it is even more difficult to efficiently co-deliver a hydrophilic drug and a hydrophobic drug into one nanosystem. Herein, inspired by the natural Watson-Crick base pair molecular recognition in nucleic acids, a reduction-sensitive uracil prodrug of doxorubicin (U-SS-DOX) is synthesized and performs supramolecular co-assembly with cytarabine (Ara-C). Interestingly, the hydrophilic Ara-C molecules could readily co-assemble with U-SS-DOX, and multiple hydrogen bonds are found in the nanoassembly with an ultra-high drug loading rate. Moreover, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) is used as a fluorescent probe to investigate the pharmacokinetics of U : C NPs. It turns out that the DiR-labeled U : C NPs significantly prolong the systemic circulation and promote the tumor-specific accumulation of DiR when compared with DiR solution. Furthermore, the supramolecular nanoassembly demonstrates potent satisfactory therapeutic effects in treating both solid and non-solid tumors in vivo. This study provides a novel molecular co-assembly nanoplatform for efficient co-delivery of hydrophilic and hydrophobic drugs.
Collapse
Affiliation(s)
- Chang Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Qiu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Dan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Yubo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yao Feng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Haotian Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Cong Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| |
Collapse
|
13
|
Récher C. The beginning of a new therapeutic era in acute myeloid leukemia. EJHAEM 2021; 2:823-833. [PMID: 35845213 PMCID: PMC9175720 DOI: 10.1002/jha2.252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
In the field of AML, the early 2000s were shaped by the advent of novel molecular biology technologies including high-throughput sequencing that improved prognostic classification, response evaluation through the quantification of minimal residual disease, and the launch of research on targeted therapies. Our knowledge of leukemogenesis, AML genetic diversity, gene-gene interactions, clonal evolution, and treatment response assessment has also greatly improved. New classifications based on chromosomal abnormalities and gene mutations are now integrated on a routine basis. These considerable efforts contributed to the discovery and development of promising drugs which specifically target gene mutations, apoptotic pathways and cell surface antigens as well as reformulate classical cytotoxic agents. In less than 2 years, nine novels drugs have been approved for the treatment of AML patients, and many others are being intensively investigated, in particular immune therapies. There are now numerous clinical research opportunities offered to clinicians, thanks to these new treatment options. We are only at the start of a new era which should see major disruptions in the way we understand, treat, and monitor patients with AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'HématologieCentre Hospitalier Universitaire de ToulouseInstitut Universitaire du Cancer de Toulouse OncopoleUniversité Toulouse III Paul SabatierCentre de Recherches en Cancérologie de ToulouseToulouseFrance
| |
Collapse
|
14
|
Hernlund E, Redig J, Paulsson B, Rangert Derolf Å, Höglund M, Vertuani S, Juliusson G. Socioeconomic cost of AML in Sweden-A population-based study using multiple nation-wide registers. EJHAEM 2021; 2:385-393. [PMID: 35844713 PMCID: PMC9176098 DOI: 10.1002/jha2.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
Acute myeloid leukemia (AML) is associated with a high economic and clinical burden. Recently novel therapies have been added to standard treatment regimens. Here, we evaluated the economic impact of AML up until the introduction of these novel therapies. Individual data on 2954 adult patients diagnosed from 2007 to 2015 from five Swedish national population-based registers were used, enabling analyses from diagnosis to either death or 5-year follow-up for survival, inpatient and outpatient costs, costs of prescribed drugs, sick leave, and early retirement. Costs per patient were stratified by age group, treatment options, and FLT3-ITD status. The expected 5-year costs per patient differed substantially between age groups. Patients aged 18-59 years had an expected mean cost per patient of €170,748, while age groups 60-69 years, 70-79 years, and >80 years incurred an expected mean cost of €92,252, €48,344, and €24,118, respectively, over 5 years. Patients <60 years undergoing stem cell transplantation had the highest costs (€228,525 over 5 years). About 60% of costs for these patients were from hospitalizations and 20% from sick leave and early retirement; cost per day was highest from the first admission to complete remission. This study provides a baseline for socioeconomic evaluations of novel therapies in AML in Sweden.
Collapse
Affiliation(s)
| | | | | | - Åsa Rangert Derolf
- Swedish Acute Myeloid Leukemia Registry Group
- Division of HematologyDepartment of MedicineKarolinska University Hospital, Solna, Karolinska InstitutetStockholmSweden
| | - Martin Höglund
- Swedish Acute Myeloid Leukemia Registry Group
- Department of Medical SciencesUppsala UniversityUppsalaSweden
| | | | - Gunnar Juliusson
- Swedish Acute Myeloid Leukemia Registry Group
- Departments of Hematology and Stem Cell TransplantationSkåne University HospitalLundSweden
| |
Collapse
|
15
|
Sweet K, Bhatnagar B, Döhner H, Donnellan W, Frankfurt O, Heuser M, Kota V, Liu H, Raffoux E, Roboz GJ, Röllig C, Showel MM, Strickland SA, Vives S, Tang S, Unger TJ, Joshi A, Shen Y, Alvarez MJ, Califano A, Crochiere M, Landesman Y, Kauffman M, Shah J, Shacham S, Savona MR, Montesinos P. A 2:1 randomized, open-label, phase II study of selinexor vs. physician's choice in older patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma 2021; 62:3192-3203. [PMID: 34323164 DOI: 10.1080/10428194.2021.1950706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selinexor, a selective inhibitor of nuclear export, has demonstrated promising activity in patients with acute myeloid leukemia (AML). This randomized, phase II study evaluated selinexor 60 mg twice weekly (n = 118) vs. physician's choice (PC) treatment (n = 57) in patients aged ≥60 years with relapsed/refractory (R/R) AML. The primary outcome was overall survival (OS). Median OS did not differ significantly for selinexor vs. PC (3.2 vs. 5.6 months; HR = 1.18 [95% CI: 0.79-1.75]; p = 0.422). Complete remission (CR) plus CR with incomplete hematologic recovery trending in favor of selinexor occurred in a minority of patients. Selinexor treated patients had an increased incidence of adverse events. The most common grade ≥3 adverse events were thrombocytopenia, febrile neutropenia, anemia, hyponatremia. Despite well-balanced baseline characteristics, there were numerically higher rates of TP53 mutations, prior myelodysplastic syndrome, and lower absolute neutrophil counts in the selinexor group; warranting further investigation of selinexor in more carefully stratified R/R AML patients.Registered trial: NCT02088541.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Susana Vives
- ICO Badalona-Hospital Germans Trias i Pujol, Badalona, Spain
| | | | | | | | - Yao Shen
- DarwinHealth Inc, New York, NY, USA
| | - Mariano J Alvarez
- DarwinHealth Inc, New York, NY, USA.,Columbia University, New York, NY, USA
| | | | | | | | | | - Jatin Shah
- Karyopharm Therapeutics, Newton, MA, USA
| | | | | | - Pau Montesinos
- Departamento de Hematologia, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Handschuh L, Wojciechowski P, Kazmierczak M, Lewandowski K. Transcript-Level Dysregulation of BCL2 Family Genes in Acute Myeloblastic Leukemia. Cancers (Basel) 2021; 13:cancers13133175. [PMID: 34202143 PMCID: PMC8267690 DOI: 10.3390/cancers13133175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022] Open
Abstract
The expression of apoptosis-related BCL2 family genes, fine-tuned in normal cells, is dysregulated in many neoplasms. In acute myeloid leukemia (AML), this problem has not been studied comprehensively. To address this issue, RNA-seq data were used to analyze the expression of 26 BCL2 family members in 27 AML FAB M1 and M2 patients, divided into subgroups differently responding to chemotherapy. A correlation analysis, analysis of variance, and Kaplan-Meier analysis were applied to associate the expression of particular genes with other gene expression, clinical features, and the presence of mutations detected by exome sequencing. The expression of BCL2 family genes was dysregulated in AML, as compared to healthy controls. An upregulation of anti-apoptotic and downregulation of pro-apoptotic genes was observed, though only a decrease in BMF, BNIP1, and HRK was statistically significant. In a group of patients resistant to chemotherapy, overexpression of BCL2L1 was manifested. In agreement with the literature data, our results reveal that BCL2L1 is one of the key players in apoptosis regulation in different types of tumors. An exome sequencing data analysis indicates that BCL2 family genes are not mutated in AML, but their expression is correlated with the mutational status of other genes, including those recurrently mutated in AML and splicing-related. High levels of some BCL2 family members, in particular BIK and BCL2L13, were associated with poor outcome.
Collapse
Affiliation(s)
- Luiza Handschuh
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: ; Tel.: +48-618-528-503
| | - Pawel Wojciechowski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| |
Collapse
|
17
|
Ferraris D, Lapidus R, Truong P, Bollino D, Carter-Cooper B, Lee M, Chang E, LaRossa-Garcia M, Dash S, Gartenhaus R, Choi EY, Kipe O, Lam V, Mason K, Palmer R, Williams E, Ambulos N, Kamangar F, Zhang Y, Kapadia B, Jing Y, Emadi A. Pre-Clinical Activity of Amino-Alcohol Dimeric Naphthoquinones as Potential Therapeutics for Acute Myeloid Leukemia. Anticancer Agents Med Chem 2021; 22:239-253. [PMID: 34080968 DOI: 10.2174/1871520621666210602131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The clinical outcomes of patients with acute myeloid leukemia (AML) remain unsatisfactory, therefore the development of more efficacious and better-tolerated therapy for AML is critical. We have previously reported the anti-leukemic activity of synthetic halohydroxyl dimeric naphthoquinones (BiQ) and aziridinyl BiQ. OBJECTIVE This study aimed to improve the potency and bioavailability of BiQ compounds and investigate the anti-leukemic activity of the lead compound in vitro and in a human AML xenograft mouse model. METHODS We designed, synthesized, and performed structure-activity relationship of several rationally designed BiQ analogues that possess amino alcohol functional groups on the naphthoquinone core rings. The compounds were screened for anti-leukemic activity and the mechanism as well as in vivo tolerability and efficacy of our lead compound was investigated. RESULTS We report that a dimeric naphthoquinone (designated BaltBiQ) demonstrated potent nanomolar anti-leukemic activity in AML cell lines. BaltBiQ treatment resulted in the generation of reactive oxygen species, induction of DNA damage, and inhibition of indoleamine dioxygenase 1. Although BaltBiQ was tolerated well in vivo, it did not significantly improve survival as a single agent, but in combination with the specific Bcl-2 inhibitor, Venetoclax, tumor growth was significantly inhibited compared to untreated mice. CONCLUSION We synthesized a novel amino alcohol dimeric naphthoquinone, investigated its main mechanisms of action, reported its in vitro anti-AML cytotoxic activity, and showed its in vivo promising activity combined with a clinically available Bcl-2 inhibitor in a patient-derived xenograft model of AML.
Collapse
Affiliation(s)
- Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Rena Lapidus
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Phuc Truong
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Dominique Bollino
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Brandon Carter-Cooper
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Michelle Lee
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Elizabeth Chang
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Maria LaRossa-Garcia
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Smaraki Dash
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Ronald Gartenhaus
- Hunter Holmes McGuire Veterans Affairs Medical Center and Virginia Commonwealth University School of Medicine Department of Internal Medicine, Richmond, VA, United States
| | - Eun Yong Choi
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Olivia Kipe
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Vi Lam
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Kristopher Mason
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Riley Palmer
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Elijah Williams
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Nicholas Ambulos
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Farin Kamangar
- Hunter Holmes McGuire Veterans Affairs Medical Center and Virginia Commonwealth University School of Medicine Department of Internal Medicine, Richmond, VA, United States
| | - Yuji Zhang
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Bandish Kapadia
- Hunter Holmes McGuire Veterans Affairs Medical Center and Virginia Commonwealth University School of Medicine Department of Internal Medicine, Richmond, VA, United States
| | - Yin Jing
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Ashkan Emadi
- University of Maryland School of Medicine, Morgan State University, Baltimore, MDun, United States
| |
Collapse
|
18
|
Inhibitory effects of Tomivosertib in acute myeloid leukemia. Oncotarget 2021; 12:955-966. [PMID: 34012509 PMCID: PMC8121614 DOI: 10.18632/oncotarget.27952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
The MAPK-interacting kinases 1 and 2 (MNK1/2) have generated increasing interest as therapeutic targets for acute myeloid leukemia (AML). We evaluated the therapeutic potential of the highly-selective MNK1/2 inhibitor Tomivosertib on AML cells. Tomivosertib was highly effective at blocking eIF4E phosphorylation on serine 209 in AML cells. Such inhibitory effects correlated with dose-dependent suppression of cellular viability and leukemic progenitor colony formation. Moreover, combination of Tomivosertib and Venetoclax resulted in synergistic anti-leukemic responses in AML cell lines. Mass spectrometry studies identified novel putative MNK1/2 interactors, while in parallel studies we demonstrated that MNK2 - RAPTOR - mTOR complexes are not disrupted by Tomivosertib. Overall, these findings demonstrate that Tomivosertib exhibits potent anti-leukemic properties on AML cells and support the development of clinical translational efforts involving the use of this drug, alone or in combination with other therapies for the treatment of AML.
Collapse
|
19
|
Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol 2021; 14:75. [PMID: 33941237 PMCID: PMC8091790 DOI: 10.1186/s13045-021-01084-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Harnessing the power of immune cells, especially T cells, to enhance anti-tumor activities has become a promising strategy in clinical management of hematologic malignancies. The emerging bispecific antibodies (BsAbs), which recruit T cells to tumor cells, exemplified by bispecific T cell engagers (BiTEs), have facilitated the development of tumor immunotherapy. Here we discussed the advances and challenges in BiTE therapy developed for the treatment of hematologic malignancies. Blinatumomab, the first BiTE approved for the treatment of acute lymphocytic leukemia (ALL), is appreciated for its high efficacy and safety. Recent studies have focused on improving the efficacy of BiTEs by optimizing treatment regimens and refining the molecular structures of BiTEs. A considerable number of bispecific T cell-recruiting antibodies which are potentially effective in hematologic malignancies have been derived from BiTEs. The elucidation of mechanisms of BiTE action and neonatal techniques used for the construction of BsAbs can improve the treatment of hematological malignancies. This review summarized the features of bispecific T cell-recruiting antibodies for the treatment of hematologic malignancies with special focus on preclinical experiments and clinical studies.
Collapse
Affiliation(s)
- Zheng Tian
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ming Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
20
|
Song S, Xia H, Guo M, Wang S, Zhang S, Ma P, Jin Y. Role of macrophage in nanomedicine-based disease treatment. Drug Deliv 2021; 28:752-766. [PMID: 33860719 PMCID: PMC8079019 DOI: 10.1080/10717544.2021.1909175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macrophages are a major component of the immunoresponse. Diversity and plasticity are two of the hallmarks of macrophages, which allow them to act as proinflammatory, anti-inflammatory, and homeostatic agents. Research has found that cancer and many inflammatory or autoimmune disorders are correlated with activation and tissue infiltration of macrophages. Recent developments in macrophage nanomedicine-based disease treatment are proving to be timely owing to the increasing inadequacy of traditional treatment. Here, we review the role of macrophages in nanomedicine-based disease treatment. First, we present a brief background on macrophages and nanomedicine. Then, we delve into applications of macrophages as a target for disease treatment and delivery systems and summarize the applications of macrophage-derived extracellular vesicles. Finally, we provide an outlook on the clinical utility of macrophages in nanomedicine-based disease treatment.
Collapse
Affiliation(s)
- Siwei Song
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujing Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Saikia TK. How I Treat Adult Acute Myeloid Leukemia. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1732825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Tapan K. Saikia
- Department of Medical Oncology, Prince Aly Khan Hospital, Mumbai, Maharashtra, India Medical ,Oncology Prince Aly Khan Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
22
|
Chen KTJ, Militao GGC, Anantha M, Witzigmann D, Leung AWY, Bally MB. Development and characterization of a novel flavopiridol formulation for treatment of acute myeloid leukemia. J Control Release 2021; 333:246-257. [PMID: 33798663 DOI: 10.1016/j.jconrel.2021.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022]
Abstract
For more than 30 years, treatment of acute myeloid leukemia (AML) has remained largely unchanged and reliant on chemotherapeutic drug combinations, specifically cytarabine and daunorubicin (the 7 + 3 regimen). One broad spectrum drug, flavopiridol (also known as Alvocidib) has shown significant activity against AML through the inhibition of cyclin-dependent kinases. Flavopiridol is a semisynthetic flavonoid and our research team recently described methods to formulate another flavonoid, quercetin, through the ability of flavonoids to bind divalent metals. This method relies on use of copper-containing liposomes to enhance the apparent solubility of flavopiridol and to create formulations suitable for intravenous (i.v.) use. Similar to quercetin, flavopiridol is defined as an aqueous-insoluble compound (< 1 mg/mL in water) and this research sought to evaluate whether the copper-binding capabilities of flavopiridol could be used to prepare an injectable formulation that would exhibit enhanced exposure and improved efficacy. Flavopiridol powder was added directly to preformed copper-containing liposomes (DSPC:Chol or DSPC:DSPE-PEG2000) and the resulting formulations were characterized. Pharmacokinetic and efficacy studies were then conducted. The liposomal flavopiridol formulations were well-tolerated in mice following i.v. administration at a dose of 5 mg/kg with no apparent acute or chronic toxicities. In vivo pharmacokinetics of the optimized DSPC/DSPE-PEG2000 liposomal flavopiridol formulation demonstrated a 30-fold increase in AUC (0.804 μg-hr/mL versus 26.92 μg-hr/mL) compared to the free flavopiridol formulation. The resultant liposomal formulation also demonstrated significant therapeutic activity in MV4-11 and MOLM-13 subcutaneous AML models. Additional studies will be required to define whether formulation changes can be made to enhance flavopiridol retention in the selected composition. The results suggest that further increases in flavopiridol retention will result in improved therapeutic activity.
Collapse
Affiliation(s)
- Kent T J Chen
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; Department of Interdisciplinary Oncology, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Gardenia G C Militao
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; Federal University of Pernambuco, PE CEP:50.670-901, Brazil
| | - Malathi Anantha
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 2B5, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ada W Y Leung
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; Cuprous Pharmaceuticals, Vancouver, BC V6T 1Z3, Canada
| | - Marcel B Bally
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Cuprous Pharmaceuticals, Vancouver, BC V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| |
Collapse
|
23
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
24
|
Bouligny IM, Mehta V, Isom S, Ellis LR, Bhave RR, Howard DS, Lyerly S, Manuel M, Dralle S, Powell BL, Pardee TS. Efficacy of 10-day decitabine in acute myeloid leukemia. Leuk Res 2021; 103:106524. [PMID: 33640708 DOI: 10.1016/j.leukres.2021.106524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The azanucleotide decitabine is used in the treatment of acute myeloid leukemia (AML). Studies have shown conflicting results with 10-day regimens used in previously untreated AML patients. Additionally, there is little data on 10-day decitabine regimens in the relapsed setting. This study investigated outcomes of 108 adult patients with AML in the upfront and relapsed setting treated with a 10-day decitabine regimen. In the upfront group, the overall response rate (ORR, CR + CRi) was 36.1% and the median overall survival (OS) was 6.6 months, while the relapsed/refractory group had an ORR of 25% with an OS of 4.8 months. When analyzed with respect to cytogenetics, the upfront group featured an ORR of 28.1% with an OS of 9.4 months in the intermediate cytogenetic cohort compared to a 40.5% ORR and an OS of 5.4 months in the unfavorable cytogenetic cohort. An analysis of the relapsed/refractory group demonstrated an ORR of 26.3% with an OS of 7.9 months for intermediate cytogenetics versus 25.0% with an OS of 1.8 months in the unfavorable cohort. While these response rates are similar to previously published data, the median OS appears shorter.
Collapse
Affiliation(s)
- Ian M Bouligny
- Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Vivek Mehta
- Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Scott Isom
- Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Leslie R Ellis
- Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Rupali R Bhave
- Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Dianna S Howard
- Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Susan Lyerly
- Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Megan Manuel
- Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Sarah Dralle
- Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Bayard L Powell
- Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Timothy S Pardee
- Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA.
| |
Collapse
|
25
|
Wei H, Liu X, Wang Y, Lin D, Zhou C, Liu B, Qiu S, Gu R, Li Y, Wei S, Gong B, Liu K, Gong X, Liu Y, Zhang G, Fang Q, Zhang J, Jin J, Ma Y, Mi Y, Wang J. Optimized clinical application of minimal residual disease in acute myeloid leukemia with RUNX1-RUNX1T1. Exp Hematol 2021; 96:63-72.e3. [PMID: 33524443 DOI: 10.1016/j.exphem.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/26/2022]
Abstract
Minimal residual disease (MRD) levels monitored by polymerase chain reaction are associated with outcomes in acute myeloid leukemia with RUNX1-RUNX1T1. The objectives of our study were to quantitatively compare the predictive value of MRD reduction and absolute copies and assess the influence of other prognostic factors on MRD. A total of 224 consecutive patients with RUNX1-RUNX1T1 aged ≤55 years were included in the MRD study. Patients received different induction regimens including conventional- or intermediate-dose cytarabine plus low-dose daunorubicin and omacetaxine mepesuccinate or daunorubicin at 60 mg/m2/day on days 1-3. As continuous variables, both MRD reduction and absolute MRD level were significantly associated with cumulative incidence of relapse (CIR; hazard ratio [HR] = 1.610, 95% confidence interval [CI]: 1.370-1.890, p < 0.001, and HR = 1.170, 95% CI: 1.120-1.230, p < 0.001, respectively). For the CIR, the area under the curves (AUCs) of MRD reduction and absolute MRD level after the first consolidation chemotherapy were 0.629 and 0.629, respectively. Intermediate-dose cytarabine induction (HR = 0.494; p = 0.039 for CIR, HR, 0.451; p = 0.014 for RFS, and HR, 0.262; p = 0.006 for OS) remained significantly associated with outcomes after adjusting for MRD reduction after the first consolidation therapy (HR = 1.456, p < 0.001, for CIR; HR = 1.467, p = 0.001, for relapse-free survival; and HR = 1.468, p = 0.014, for overall survival) in multivariate analyses. In conclusion, the prognostic significance of MRD after the first consolidation therapy was influenced by the induction regimen in acute myeloid leukemia with RUNX1-RUNX1T1.
Collapse
Affiliation(s)
- Hui Wei
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; National Clinical Research Center for Blood Disease, Tianjin, China; Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xueou Liu
- National Clinical Research Center for Blood Disease, Tianjin, China
| | - Ying Wang
- National Clinical Research Center for Blood Disease, Tianjin, China; Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dong Lin
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chunlin Zhou
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Bingcheng Liu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shaowei Qiu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Runxia Gu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Li
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuning Wei
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Benfa Gong
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kaiqi Liu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoyuan Gong
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuntao Liu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guangji Zhang
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiuyun Fang
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junping Zhang
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jingjing Jin
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yueshen Ma
- National Clinical Research Center for Blood Disease, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; National Clinical Research Center for Blood Disease, Tianjin, China; Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; National Clinical Research Center for Blood Disease, Tianjin, China; Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
26
|
Roussel X, Daguindau E, Berceanu A, Desbrosses Y, Warda W, Neto da Rocha M, Trad R, Deconinck E, Deschamps M, Ferrand C. Acute Myeloid Leukemia: From Biology to Clinical Practices Through Development and Pre-Clinical Therapeutics. Front Oncol 2020; 10:599933. [PMID: 33363031 PMCID: PMC7757414 DOI: 10.3389/fonc.2020.599933] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have provided several insights into acute myeloid leukemia. Studies based on molecular biology have identified eight functional mutations involved in leukemogenesis, including driver and passenger mutations. Insight into Leukemia stem cells (LSCs) and assessment of cell surface markers have enabled characterization of LSCs from hematopoietic stem and progenitor cells. Clonal evolution has been described as having an effect similar to that of microenvironment alterations. Such biological findings have enabled the development of new targeted drugs, including drug inhibitors and monoclonal antibodies with blockage functions. Some recently approved targeted drugs have resulted in new therapeutic strategies that enhance standard intensive chemotherapy regimens as well as supportive care regimens. Besides the progress made in adoptive immunotherapy, since allogenic hematopoietic stem cell transplantation enabled the development of new T-cell transfer therapies, such as chimeric antigen receptor T-cell and transgenic TCR T-cell engineering, new promising strategies that are investigated.
Collapse
Affiliation(s)
- Xavier Roussel
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Etienne Daguindau
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Ana Berceanu
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Yohan Desbrosses
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Walid Warda
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | | | - Rim Trad
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Eric Deconinck
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Marina Deschamps
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ferrand
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
27
|
Wei Y, Cao Y, Sun R, Cheng L, Xiong X, Jin X, He X, Lu W, Zhao M. Targeting Bcl-2 Proteins in Acute Myeloid Leukemia. Front Oncol 2020; 10:584974. [PMID: 33251145 PMCID: PMC7674767 DOI: 10.3389/fonc.2020.584974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
B cell lymphoma 2 (BCL-2) family proteins play an important role in intrinsic apoptosis. Overexpression of BCL-2 proteins in acute myeloid leukemia can circumvent resistance to apoptosis and chemotherapy. Considering this effect, the exploration of anti-apoptotic BCL-2 inhibitors is considered to have tremendous potential for the discovery of novel pharmacological modulators in cancer. This review outlines the impact of BCL-2 family proteins on intrinsic apoptosis and the development of acute myeloid leukemia (AML). Furthermore, we will also review the new combination therapy with venetoclax that overcomes resistance to venetoclax and discuss biomarkers of treatment response identified in early-phase clinical trials.
Collapse
Affiliation(s)
- Yunxiong Wei
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yaqing Cao
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Rui Sun
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Lin Cheng
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xia Xiong
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xin Jin
- Nankai University School of Medicine, Tianjin, China
| | - Xiaoyuan He
- Nankai University School of Medicine, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
28
|
Shi W, Jin W, Xia L, Hu Y. Novel agents targeting leukemia cells and immune microenvironment for prevention and treatment of relapse of acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Acta Pharm Sin B 2020; 10:2125-2139. [PMID: 32837873 PMCID: PMC7326461 DOI: 10.1016/j.apsb.2020.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Relapse remains the worst life-threatening complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML), whose prognosis has been historically dismal. Given the rapid development of genomics and immunotherapies, the interference strategies for AML recurrence have been changing these years. More and more novel targeting agents that have received the U.S. Food and Drug Administration (FDA) approval for de novo AML treatment have been administrated in the salvage or maintenance therapy of post-HSCT relapse. Targeted strategies that regulate the immune microenvironment of and optimize the graft versus leukemia (GVL) effect of immune cells are gradually improved. Such agents not only have been proven to achieve clinical benefits from a single drug, but if combined with classic therapies, can significantly improve the poor prognosis of AML patients who relapse after allo-HSCT. This review will focus on currently available and promising upcoming agents and also discuss the challenges and limitations of targeted therapies in the allogeneic hematopoietic stem cell transplantation community.
Collapse
Affiliation(s)
- Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Weiwei Jin
- Department of Cardiovascular, Optical Valley School District, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
29
|
Yang W, Liu S, Li Y, Wang Y, Deng Y, Sun W, Huang H, Xie J, He A, Chen H, Tao A, Yan J. Pyridoxine induces monocyte-macrophages death as specific treatment of acute myeloid leukemia. Cancer Lett 2020; 492:96-105. [PMID: 32860849 DOI: 10.1016/j.canlet.2020.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/15/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy that gradually develops resistance to current chemotherapy treatments. The available chemotherapy drugs show serious non-specific cytotoxicity to healthy normal cells, resulting in relapse and low survival rates. Natural small molecules with less toxicity and high selectivity for AML are urgently needed. In this study, we confirmed that pyridoxine (vitamin B6) selectively induces monocyte macrophages to undergo programmed cell death in two different modes: caspase-3-dependent apoptosis in U937 cells or GSDME-mediated pyroptosis in THP-1 cells. Further molecular analysis indicated that blocking the caspase pathway could switch the death to MLKL-dependent necroptosis and subsequent extensive inflammatory response. Pyridoxine also delayed the disease progression in a THP-1 leukemia mouse model. In addition, it induced the death of primary AML cells from AML patients by activating caspase-8/3. Overall, our results identify pyridoxine, a low-toxicity natural small molecule, as a potential therapeutic drug for AML treatment.
Collapse
Affiliation(s)
- Wei Yang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Shuai Liu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yunlei Li
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yujie Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yao Deng
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Weimin Sun
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Hualan Huang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Junmou Xie
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Andong He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Honglv Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Jie Yan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China.
| |
Collapse
|
30
|
Zhang N, Zhang Y, Zhang P, Lou S, Chen Y, Li H, Zeng H, Shen Y, Deng J. Overexpression of annexin A5 might guide the gemtuzumab ozogamicin treatment choice in patients with pediatric acute myeloid leukemia. Ther Adv Med Oncol 2020; 12:1758835920927635. [PMID: 32636939 PMCID: PMC7310896 DOI: 10.1177/1758835920927635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) is a common hematological malignancy. Gemtuzumab
ozogamicin (GO), a humanized anti-CD33 antibody conjugated with the potent
anti-tumor antibiotic calicheamicin, represents a promising targeted therapy
for AML. Annexin A5 (ANXA5) is a proposed marker for the clinical prognosis
of AML to guide treatment choice. Methods: In total, 253 patients with pediatric AML were enrolled and divided into two
treatment groups: conventional chemotherapy alone and conventional
chemotherapy in combination with GO. Univariate, multivariate, and
Kaplan–Meier survival analyses were conducted to assess risk factors and
clinical outcomes, and to estimate hazard ratios (HRs) and their 95%
confidence interval. The level of statistical significance was set at
p < 0.05. Results: In the GO treatment group, high ANXA5 expression was
considered a favorable prognostic factor for overall survival (OS) and
event-free survival (EFS). Multivariate analysis showed that high
ANXA5 expression was an independent favorable factor
for OS (HR = 0.629, p = 0.084) and EFS (HR = 0.544,
p = 0.024) distinct from the curative effect of GO
treatment. When all patients were again divided into two groups, this time
based on the median expression of ANXA5, patients
undergoing chemotherapy combined with GO had significantly better OS
(p = 0.0012) and EFS (p = 0.0003) in
the ANXA5 high-expression group. Gene set enrichment
analysis identified a relevant series of pathways associated with
glutathione metabolism, leukocyte transendothelial migration, and
hematopoietic cell lineage. Conclusion: The expression level of ANXA5 can help optimize the
treatment regimen for individual patients, and patients with overexpression
of ANXA5 may circumvent poor outcomes from chemotherapy
combined with GO.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Ying Zhang
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Ping Zhang
- Hematology Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing, P.R. China
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Ying Chen
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Huan Li
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Hanqing Zeng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Yan Shen
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, P.R. China
| |
Collapse
|
31
|
Vaughn JE, Shankaran V, Walter RB. Trends in Clinical Benefits and Costs of Novel Therapeutics in AML: at What Price Does Progress Come? Curr Hematol Malig Rep 2020; 14:171-178. [PMID: 31079354 DOI: 10.1007/s11899-019-00510-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Since 2017, eight novel agents have been approved for the treatment of acute myeloid leukemia (AML) in the USA. Here, we review the clinical benefits and costs associated with these drugs. RECENT FINDINGS For some of the newly-approved drugs, clinical benefit has been documented in randomized trials. Others received accelerated approval based on surrogate endpoints in early phase trials. All, however, carry significant costs and toxicities. Cost-effectiveness analyses are so far only available for midostaurin, CPX-351, and gemtuzumab ozogamicin. Recently approved drugs for AML have varying levels of evidence for clinical effectiveness and because of associated high costs may further increase the overall economic burden of AML care. This issue is complex and whether novel AML drugs will cost-effective will depend on multiple factors, including their ability to improve survival and quality of life while simultaneously reducing the costs of healthcare resource utilization.
Collapse
Affiliation(s)
- Jennifer E Vaughn
- Department of Medicine, Virginia Tech Carilion School of Medicine, 2 Riverside Dr., Roanoke, VA, 24016, USA.
| | - Veena Shankaran
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Department of Pharmacy, University of Washington School of Medicine, Seattle, WA, USA.,Department of Pharmacy, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
32
|
Montesinos P, Gil A, Sierra J. Current status of acute myeloid leukaemia in Spain: Results from a Delphi study on its epidemiology, disease management and unmet clinical needs. Med Clin (Barc) 2020; 156:573-574. [PMID: 32616317 DOI: 10.1016/j.medcli.2020.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Pau Montesinos
- Hospital Universitario y Politécnico de La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain.
| | - Alicia Gil
- Omakase Consulting, S. L., Barcelona, Spain
| | - Jorge Sierra
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
33
|
Abstract
The FLAMSA reduced intensity (RIC) concept, also known as "sequential therapy", is a conceptual platform for the treatment of leukemia separated in several parts: induction therapy, a sequence of antileukemic and immunosuppressive conditioning for allogeneic stem cell transplantation, and immune restitution supported by donor lymphocyte transfusions. The antileukemic part consists of fludarabine, cytosine arabinoside, and amsacrine (FLAMSA); non-cross reactive agents like fludarabine and amsacrine have been successfully used in cases of refractoriness and relapse. Immunosuppressive conditioning and transplantation follow after only 3 days of rest. This way, the toxicity of allogeneic transplantation could be reduced and the anti-leukemia effects by using allogeneic immune cells could be optimized. This review summarizes available data on efficacy and toxicity of this approach. Further, possible strategies for improvements are discussed in order to provide better chances for elderly and frail patients and patients with advanced and high-risk disease. Among others, several new agents are available that target molecular changes of leukemia for induction of remission and allow for bridging the time after transplantation until adoptive immunotherapy becomes safe and effective.
Collapse
|
34
|
Zhou B, Jin X, Jin W, Huang X, Wu Y, Li H, Zhu W, Qin X, Ye H, Gao S. WT1 facilitates the self-renewal of leukemia-initiating cells through the upregulation of BCL2L2: WT1-BCL2L2 axis as a new acute myeloid leukemia therapy target. J Transl Med 2020; 18:254. [PMID: 32580769 PMCID: PMC7313134 DOI: 10.1186/s12967-020-02384-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Overexpression of Wilms’ tumor-1 (WT1) transcription factor facilitates proliferation in acute myeloid leukemia (AML). However, whether WT1 is enriched in the leukemia-initiating cells (LICs) and leukemia stem cells (LSCs) and facilitates the self-renewal of LSCs remains poorly understood. Methods MLL-AF9-induced murine leukemia model was used to evaluate the effect of knockdown of wt1 on the self-renewal ability of LSC. RNA sequencing was performed on WT1-overexpressing cells to select WT1 targets. Apoptosis and colony formation assays were used to assess the anti-leukemic potential of a deubiquitinase inhibitor WP1130. Furthermore, NOD/SCID-IL2Rγ (NSG) AML xenotransplantation and MLL-AF9-induced murine leukemia models were used to evaluate the anti-leukemogenic potential of WP1130 in vivo. Results We found that wt1 is highly expressed in LICs and LSCs and facilitates the maintenance of leukemia in a murine MLL-AF9-induced model of AML. WT1 enhanced the self-renewal of LSC by increasing the expression of BCL2L2, a member of B cell lymphoma 2 (BCL2) family, by direct binding to its promoter region. Loss of WT1 impaired self-renewal ability in LSC and delayed the progression of leukemia. WP1130 was found to modify the WT1-BCL2L2 axis, and WP1130-induced anti-leukemic activity was mediated by ubiquitin proteasome-mediated destruction of WT1 protein. WP1130 induced apoptosis and decreased colony formation abilities of leukemia cells and prolonged the overall survival in the THP1-based xenograft NSG mouse model. WP1130 also decreased the frequency of LSC and prolonged the overall survival in MLL-AF9-induced murine leukemia model. Mechanistically, WP1130 induced the degradation of WT1 by positively affecting the ubiquitination of WT1 protein. Conclusions Our results indicate that WT1 is required for the development of AML. WP1130 exhibits anti-leukemic activity by inhibiting the WT1-BCL2L2 axis, which may represent a new acute myeloid leukemia therapy target.
Collapse
Affiliation(s)
- Bin Zhou
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Xianghong Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Weiwei Jin
- Department of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, Zhejiang, China
| | - Xingzhou Huang
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Yanfei Wu
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Haiying Li
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Weijian Zhu
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Xiaoyi Qin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.
| | - Shenmeng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
35
|
Shifting therapeutic paradigms in induction and consolidation for older adults with acute myeloid leukemia. Curr Opin Hematol 2020; 26:51-57. [PMID: 30585895 DOI: 10.1097/moh.0000000000000480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW As the age and life expectancy of the general population rise, the number of acute myeloid leukemia (AML) patients suitable for therapy is expected to dramatically increase. The population of older adults with AML, while already comprising the vast majority of AML patients, has not been specifically addressed in terms of unique age-related features, such as existence of comorbidities, frailty, and disease biology. RECENT FINDINGS Over the past decade, major improvements in the approach to the management of older adults with AML included: incorporation of new comorbidity scores specifically oriented to this patient population that can predict individual fitness to treatment, refined knowledge of the unique mutational landscape, and incorporating new combinations and novel agents designed to target the AML biology. Particularly, the recent exciting description of age-related clonal hematopoiesis and its evolution to AML may open new avenues for intervention prior to development of full-blown leukemia. SUMMARY The rising awareness of the unique biology and special needs of older adults with AML has resulted in the design of new studies aiming to target the aberrant mutations and clinical characteristics in this patient population.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Patients with acute myeloid leukemia (AML) are almost invariably kept in the hospital until resolution of cytopenias following intensive induction chemotherapy. This care approach is costly and may further contribute to the reduced qualify of life of these patients. This has raised interest in moving at least part of this care to the outpatient setting. Reimbursement challenges for inpatient administration of some of the new drugs approved for AML in the last 2 years adds to this interest. RECENT FINDINGS Retrospective and smaller prospective studies have shown that outpatient management following intensive induction chemotherapy ('Early Hospital Discharge') is feasible and may be well tolerated and cost-effective. Reported experience is more limited regarding administration of intensive chemotherapy in the outpatient setting. SUMMARY Although of interest, barriers to the successful implementation of outpatient care models, such as limited outpatient infrastructure or geographical limitations, will have to be overcome in many cancer centers. Importantly, before wide-spread introduction, the safety and 'efficacy' (e.g. reduction in medical resources and/or cost and improvement in quality of life) of outpatient care strategies will need to be further evaluated in a prospective - and ideally randomized - manner across more heterogeneous types of oncology and geographical settings.
Collapse
|
37
|
Li X, Jiang Y, Peterson YK, Xu T, Himes RA, Luo X, Yin G, Inks ES, Dolloff N, Halene S, Chan SSL, Chou CJ. Design of Hydrazide-Bearing HDACIs Based on Panobinostat and Their p53 and FLT3-ITD Dependency in Antileukemia Activity. J Med Chem 2020; 63:5501-5525. [PMID: 32321249 DOI: 10.1021/acs.jmedchem.0c00442] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we present a new series of hydrazide-bearing class I selective HDAC inhibitors designed based on panobinostat. The cap, linker, and zinc-binding group were derivatized to improve HDAC affinity and antileukemia efficacy. Lead inhibitor 13a shows picomolar or low nanomolar IC50 values against HDAC1 and HDAC3 and exhibits differential toxicity profiles toward multiple cancer cells with different FLT3 and p53 statuses. 13a indirectly inhibits the FLT3 signaling pathway and down-regulates master antiapoptotic proteins, resulting in the activation of pro-caspase3 in wt-p53 FLT3-ITD MV4-11 cells. While in the wt-FLT3 and p53-null cells, 13a is incapable of causing apoptosis at a therapeutic concentration. The MDM2 antagonist and the proteasome inhibitor promote 13a-triggered apoptosis by preventing p53 degradation. Furthermore, we demonstrate that apoptosis rather than autophagy is the key contributing factor for 13a-triggered cell death. When compared to panobinostat, 13a is not mutagenic and displays superior in vivo bioavailability and a higher AUC0-inf value.
Collapse
Affiliation(s)
- Xiaoyang Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China.,Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yuqi Jiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Tongqiang Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Richard A Himes
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street, Charleston, South Carolina 29424, United States
| | - Xin Luo
- Technology Center of Qingdao Customs, Qingdao, Shandong 266002, China
| | - Guilin Yin
- Technology Center of Qingdao Customs, Qingdao, Shandong 266002, China
| | - Elizabeth S Inks
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Nathan Dolloff
- Department of Cellular and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston SC29425, United States
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06511, United States
| | - Sherine S L Chan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - C James Chou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
38
|
Saleh K, Khalifeh-Saleh N, Kourie HR. Acute myeloid leukemia transformed to a targetable disease. Future Oncol 2020; 16:961-972. [PMID: 32297538 DOI: 10.2217/fon-2019-0670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the monoclonal proliferation of immature progenitors. It is the most common acute leukemia in adults and its incidence increases with age. The standard traditional treatment in fit patients was the '3 + 7' regimen and cytarabine consolidation followed or not with allogeneic stem cell transplantation. Recently, several targeted therapies such as gemtuzumab ozogamicin targeting the CD33+ AML, midostaurin, gilteritinib and crenolanib inhibiting FLT3-positive AML and ivosidenib and enasidenib blocking IDH-mutated AML have been approved. These new drugs led to the change of the landscape of the treatment of AML and transforming this disease to a targetable one. We aimed in this paper to review the implications of each new target, the mechanisms of action of these new drugs and we discuss all the studies leading to the approval of these new drugs in their indications according to each target.
Collapse
Affiliation(s)
- Khalil Saleh
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Nadine Khalifeh-Saleh
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Hampig Raphael Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
39
|
Vey N. Low-intensity regimens versus standard-intensity induction strategies in acute myeloid leukemia. Ther Adv Hematol 2020; 11:2040620720913010. [PMID: 32215195 PMCID: PMC7081460 DOI: 10.1177/2040620720913010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment options for elderly patients with acute myeloid leukemia (AML) remain limited. In this age group, AML is frequently associated with poor-risk features, while patients’ present comorbidities and reduced functional reserves. As such, intensive chemotherapy (ICT) is frequently too toxic or ineffective in elderly patients and is restricted to a select minority, though it is standard therapy for the youngest and fittest patients or for those belonging to either the favorable or intermediate-risk groups. The use of hypomethylating agents represent an effective alternative for patients who are unfit for ICT, yet the results remain unsatisfactory. In recent years, prognostic scores were developed that include geriatric assessment tools and improved risk-stratification. In addition, several effective new drugs have emerged. The combination of these drugs with hypomethylating agents or low-dose cytarabine has produced encouraging preliminary results that may change standard practices and offer an alternative to the dilemma of ICT versus low-intensity therapies.
Collapse
Affiliation(s)
- Norbert Vey
- Institut Paoli-Calmettes, 232 Boulevard de Sainte Marguerite, Marseille, 13009, France
| |
Collapse
|
40
|
Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer 2020; 20:158-173. [PMID: 31907378 DOI: 10.1038/s41568-019-0230-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 01/21/2023]
Abstract
For two decades, leukaemia stem cells (LSCs) in chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) have been advanced paradigms for the cancer stem cell field. In CML, the acquisition of the fusion tyrosine kinase BCR-ABL1 in a haematopoietic stem cell drives its transformation to become a LSC. In AML, LSCs can arise from multiple cell types through the activity of a number of oncogenic drivers and pre-leukaemic events, adding further layers of context and genetic and cellular heterogeneity to AML LSCs not observed in most cases of CML. Furthermore, LSCs from both AML and CML can be refractory to standard-of-care therapies and persist in patients, diversify clonally and serve as reservoirs to drive relapse, recurrence or progression to more aggressive forms. Despite these complexities, LSCs in both diseases share biological features, making them distinct from other CML or AML progenitor cells and from normal haematopoietic stem cells. These features may represent Achilles' heels against which novel therapies can be developed. Here, we review many of the similarities and differences that exist between LSCs in CML and AML and examine the therapeutic strategies that could be used to eradicate them.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Disease Management
- Disease Susceptibility
- Drug Development
- History, 20th Century
- History, 21st Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Research/history
- Research/trends
Collapse
Affiliation(s)
- David Vetrie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
41
|
Improved survival of men 50 to 75 years old with acute myeloid leukemia over a 20-year period. Blood 2020; 134:1558-1561. [PMID: 31515252 DOI: 10.1182/blood.2019001728] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
42
|
Bair SM, Brandstadter JD, Ayers EC, Stadtmauer EA. Hematopoietic stem cell transplantation for blood cancers in the era of precision medicine and immunotherapy. Cancer 2020; 126:1837-1855. [PMID: 32073653 DOI: 10.1002/cncr.32659] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 01/12/2023]
Abstract
Hematopoietic stem cell transplantation (HCT) has been an integral component in the treatment of many hematologic malignancies. Since the development of HCT nearly 50 years ago, the role of this modality has evolved as newer treatment approaches have been developed and integrated into the standard of care. In the last decade, novel and highly active targeted therapies and immunotherapies have been approved for many hematologic malignancies, raising the question of whether HCT continues to retain its prominent role in the treatment paradigms of various hematologic malignancies. In this review, the authors have described the current role of autologous and allogeneic HCT in the treatment of patients with acute leukemias, aggressive B-cell lymphomas, and multiple myeloma and discussed how novel targeted therapies and immunotherapies have changed the potential need, timing, and goal of HCT in patients with these diseases.
Collapse
Affiliation(s)
- Steven M Bair
- Division of Hematology-Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua D Brandstadter
- Division of Hematology-Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily C Ayers
- Division of Hematology-Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward A Stadtmauer
- Division of Hematology-Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Lazarevic VL, Johansson B. Why classical cytogenetics still matters in acute myeloid leukemia. Expert Rev Hematol 2020; 13:95-97. [PMID: 31903786 DOI: 10.1080/17474086.2020.1711733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Vladimir Lj Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Stem Cell Center, Lund University, Lund, Sweden
| | - Bertil Johansson
- Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Skåne University Hospital, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
44
|
A new regulatory mechanism of protein phosphatase 2A activity via SET in acute myeloid leukemia. Blood Cancer J 2020; 10:3. [PMID: 31913266 PMCID: PMC6949222 DOI: 10.1038/s41408-019-0270-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy. Although novel emerging drugs are available, the overall prognosis remains poor and new therapeutic approaches are required. PP2A phosphatase is a key regulator of cell homeostasis and is recurrently inactivated in AML. The anticancer activity of several PP2A-activating drugs (e.g., FTY720) depends on their interaction with the SET oncoprotein, an endogenous PP2A inhibitor that is overexpressed in 30% of AML cases. Elucidation of SET regulatory mechanisms may therefore provide novel targeted therapies for SET-overexpressing AMLs. Here, we show that upregulation of protein kinase p38β is a common event in AML. We provide evidence that p38β potentiates SET-mediated PP2A inactivation by two mechanisms: facilitating SET cytoplasmic translocation through CK2 phosphorylation, and directly binding to and stabilizing the SET protein. We demonstrate the importance of this new regulatory mechanism in primary AML cells from patients and in zebrafish xenograft models. Accordingly, combination of the CK2 inhibitor CX-4945, which retains SET in the nucleus, and FTY720, which disrupts the SET-PP2A binding in the cytoplasm, significantly reduces the viability and migration of AML cells. In conclusion, we show that the p38β/CK2/SET axis represents a new potential therapeutic pathway in AML patients with SET-dependent PP2A inactivation.
Collapse
|
45
|
Winer ES. Secondary Acute Myeloid Leukemia: A Primary Challenge of Diagnosis and Treatment. Hematol Oncol Clin North Am 2020; 34:449-463. [PMID: 32089222 DOI: 10.1016/j.hoc.2019.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secondary acute myeloid leukemia (sAML) is a complex diagnosis that includes AML caused by either an antecedent hematologic disease (AML-AHD) or from previous treatment with chemotherapy or radiation. This disease carries a poor prognosis and is historically chemorefractory; additionally, often patients are ineligible for standard chemotherapy because of advanced age and other comorbidities. The advances of molecular diagnostics and reclassification of World Health Organization criteria have aided in the categorization of this disease. This article describes the etiology and pathophysiology of sAML, and delves into past successful treatments as well as promising new treatments.
Collapse
Affiliation(s)
- Eric S Winer
- Adult Leukemia Program, Department of Medical Oncology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
46
|
Mitchell K, Steidl U. Targeting Immunophenotypic Markers on Leukemic Stem Cells: How Lessons from Current Approaches and Advances in the Leukemia Stem Cell (LSC) Model Can Inform Better Strategies for Treating Acute Myeloid Leukemia (AML). Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036251. [PMID: 31451539 DOI: 10.1101/cshperspect.a036251] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapies targeting cell-surface antigens in acute myeloid leukemia (AML) have been tested over the past 20 years with limited improvement in overall survival. Recent advances in the understanding of AML pathogenesis support therapeutic targeting of leukemia stem cells as the most promising avenue toward a cure. In this review, we provide an overview of the evolving leukemia stem cell (LSC) model, including evidence of the cell of origin, cellular and molecular disease architecture, and source of relapse in AML. In addition, we explore limitations of current targeted strategies utilized in AML and describe the various immunophenotypic antigens that have been proposed as LSC-directed therapeutic targets. We draw lessons from current approaches as well as from the (pre)-LSC model to suggest criteria that immunophenotypic targets should meet for more specific and effective elimination of disease-initiating clones, highlighting in detail a few targets that we suggest fit these criteria most completely.
Collapse
Affiliation(s)
- Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Medicine (Oncology), Division of Hemato-Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, New York 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
47
|
Bernasconi P, Borsani O. Immune Escape after Hematopoietic Stem Cell Transplantation (HSCT): From Mechanisms to Novel Therapies. Cancers (Basel) 2019; 12:cancers12010069. [PMID: 31881776 PMCID: PMC7016529 DOI: 10.3390/cancers12010069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Recent advances in understanding its molecular basis have opened the way to new therapeutic strategies, including targeted therapies. However, despite an improvement in prognosis it has been documented in recent years (especially in younger patients) that allogenic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative treatment in AML and the first therapeutic option for high-risk patients. After allo-HSCT, relapse is still a major complication, and is observed in about 50% of patients. Current evidence suggests that relapse is not due to clonal evolution, but instead to the ability of the AML cell population to escape immune control by a variety of mechanisms including the altered expression of HLA-molecules, production of anti-inflammatory cytokines, relevant metabolic changes and expression of immune checkpoint (ICP) inhibitors capable of “switching-off” the immune response against leukemic cells. Here, we review the main mechanisms of immune escape and identify potential strategies to overcome these mechanisms.
Collapse
Affiliation(s)
- Paolo Bernasconi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Oscar Borsani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-340-656-3988
| |
Collapse
|
48
|
Sachs K, Sarver AL, Noble-Orcutt KE, LaRue RS, Antony ML, Chang D, Lee Y, Navis CM, Hillesheim AL, Nykaza IR, Ha NA, Hansen CJ, Karadag FK, Bergerson RJ, Verneris MR, Meredith MM, Schomaker ML, Linden MA, Myers CL, Largaespada DA, Sachs Z. Single-Cell Gene Expression Analyses Reveal Distinct Self-Renewing and Proliferating Subsets in the Leukemia Stem Cell Compartment in Acute Myeloid Leukemia. Cancer Res 2019; 80:458-470. [PMID: 31784425 DOI: 10.1158/0008-5472.can-18-2932] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/30/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Standard chemotherapy for acute myeloid leukemia (AML) targets proliferative cells and efficiently induces complete remission; however, many patients relapse and die of their disease. Relapse is caused by leukemia stem cells (LSC), the cells with self-renewal capacity. Self-renewal and proliferation are separate functions in normal hematopoietic stem cells (HSC) in steady-state conditions. If these functions are also separate functions in LSCs, then antiproliferative therapies may fail to target self-renewal, allowing for relapse. We investigated whether proliferation and self-renewal are separate functions in LSCs as they often are in HSCs. Distinct transcriptional profiles within LSCs of Mll-AF9/NRASG12V murine AML were identified using single-cell RNA sequencing. Single-cell qPCR revealed that these genes were also differentially expressed in primary human LSCs and normal human HSPCs. A smaller subset of these genes was upregulated in LSCs relative to HSPCs; this subset of genes constitutes "LSC-specific" genes in human AML. To assess the differences between these profiles, we identified cell surface markers, CD69 and CD36, whose genes were differentially expressed between these profiles. In vivo mouse reconstitution assays resealed that only CD69High LSCs were capable of self-renewal and were poorly proliferative. In contrast, CD36High LSCs were unable to transplant leukemia but were highly proliferative. These data demonstrate that the transcriptional foundations of self-renewal and proliferation are distinct in LSCs as they often are in normal stem cells and suggest that therapeutic strategies that target self-renewal, in addition to proliferation, are critical to prevent relapse and improve survival in AML. SIGNIFICANCE: These findings define and functionally validate a self-renewal gene profile of leukemia stem cells at the single-cell level and demonstrate that self-renewal and proliferation are distinct in AML. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/3/458/F1.large.jpg.
Collapse
Affiliation(s)
- Karen Sachs
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Next Generation Analytics, Palo Alto, California
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Klara E Noble-Orcutt
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Rebecca S LaRue
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Marie Lue Antony
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Daniel Chang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Yoonkyu Lee
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Connor M Navis
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alexandria L Hillesheim
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ian R Nykaza
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ngoc A Ha
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Conner J Hansen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Fatma K Karadag
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Rachel J Bergerson
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Michael R Verneris
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Matthew M Meredith
- Molecular Lab, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Matthew L Schomaker
- Molecular Lab, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Michael A Linden
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Zohar Sachs
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota. .,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
49
|
Jamy O, Bodine C, Sampat D, Sarmad R, Chadha A, Vachhani P, Papadantonakis N, Di Stasi A. Observation Versus Immediate Reinduction for Acute Myeloid Leukemia Patients With Indeterminate Day 14 Bone Marrow Results. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 20:31-38. [PMID: 31757719 DOI: 10.1016/j.clml.2019.09.613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The benefit of immediate reinduction chemotherapy for patients with indeterminate day 14 bone marrow results (≤ 20% cellularity and 5%-20% blasts) remains unclear. We report our experience with patients with acute myeloid leukemia (AML) with indeterminate day 14 bone marrow biopsy results treated with reinduction chemotherapy versus observation alone. MATERIALS AND METHODS We performed a retrospective study to assess the outcomes of adult patients with newly diagnosed AML treated with or without reinduction chemotherapy for indeterminate day 14 bone marrow results. RESULTS We identified 50 patients with indeterminate day 14 bone marrow results. Of the 50 patients, 25 (50%) had received reinduction therapy and 25 (50%) had not. Of the 50 patients, 24 (48%) had poor risk disease, 12 in the reinduction arm (10 with an abnormal karyotype and 2 with a normal karyotype with molecular abnormalities) and 12 in the observation arm (6 with an abnormal karyotype and 6 with a normal karyotype with molecular abnormalities). The overall response rate (complete remission plus complete remission with incomplete count recovery) was similar in both treatment arms (80% vs. 80%). No statistically significant difference was found in the median overall survival (13 months vs. 21 months; P = .88) or relapse-free survival (13 months vs. 33 months; P = .53) between the 2 treatment arms. CONCLUSION Our study did not find a statistically significant difference in the overall response rates or survival outcome measures for patients with AML and indeterminate day 14 bone marrow in the 2 treatment groups. Our findings question the utility of immediate reinduction chemotherapy and raise concern regarding overtreatment in this patient population. Larger studies investigating similar outcomes are warranted to validate our clinical findings.
Collapse
Affiliation(s)
- Omer Jamy
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| | - Charles Bodine
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Devi Sampat
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Rehan Sarmad
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Awal Chadha
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Pankit Vachhani
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Nikolaos Papadantonakis
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Antonio Di Stasi
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
50
|
Liu X, Gong Y. Isocitrate dehydrogenase inhibitors in acute myeloid leukemia. Biomark Res 2019; 7:22. [PMID: 31660152 PMCID: PMC6806510 DOI: 10.1186/s40364-019-0173-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/30/2019] [Indexed: 02/05/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) is a key enzyme involved in the conversion of isocitrate to α-ketoglutarate (α-KG) in the tricarboxylic acid (TCA) cycle. IDH mutation produces a neomorphic enzyme, which can lead to the abnormal accumulation of R-2-HG and promotes leukemogenesis. IDH mutation occurs in 20% of acute myeloid leukemia (AML) patients, mainly including IDH1 R132, IDH2 R140, and IDH2 R172. Different mutant isoforms have different prognostic values. In recent years, IDH inhibitors have shown good clinical response in AML patients. Hence, enasidenib and ivosidenib, the IDH2 and IDH1 inhibitors developed by Agios Pharmaceuticals, have been approved by the Food and Drug Administration on 1 August 2017 and 20 July 2018 for the treatment of adult relapsed or refractory (R/R) AML with IDH2 and IDH1 mutations, respectively. IDH inhibitor monotherapy for R/R AML is efficacious and safe; however, there are problems, such as primary or acquired resistance. Clinical trials of IDH inhibitors combined with hypomethylating agents or standard chemotherapy for the treatment of R/R AML or newly diagnosed AML, as well as in post hematopoietic stem cell transplantation as maintenance therapy, are ongoing. This article summarizes the use of IDH inhibitors in AML with IDH mutations.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Hematology, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 Sichuan Province China
| | - Yuping Gong
- Department of Hematology, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 Sichuan Province China
| |
Collapse
|