1
|
Sandnes M, Reikvam H. Hepcidin as a therapeutic target in iron overload. Expert Opin Ther Targets 2024; 28:1039-1046. [PMID: 39679683 DOI: 10.1080/14728222.2024.2443081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Dysregulation of the hepcidin-ferroportin axis is a hallmark in the pathogenesis of iron overload, ultimately leading to end-organ injury. Hereditary hemochromatosis and iron-loading anemias are characterized by a hepcidin deficiency, making hepcidin a novel therapeutic target for preventing and managing iron overload. AREAS COVERED Modulators of hepcidin expression and molecules mimicking hepcidin are emerging as highly promising therapeutic strategies. We present a summary of results from preclinical and clinical trials of such therapies in models of iron overload. EXPERT OPINION Current treatment alternatives in iron overload fail to address the underlying hepcidin deficiency - and may even exacerbate it. Until hepcidin-targeting therapies become available, several challenges remain, including the need to optimize dosing in order to manage the narrow treatment window and improving specificity in targeting iron metabolism pathways exclusively. Long-term studies are crucial to fully assess both the benefits and risks of these therapies and to explore their potential utility in combination with existing treatment guidelines. Furthermore, these therapies are expected to have applications, particularly in addressing other iron-maldistributed disorders, as seen in anemia of chronic disease and inflammation.
Collapse
Affiliation(s)
- Miriam Sandnes
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center of Myeloid Malignancies, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Xu P, Wong RSM, Yan X. Early erythroferrone levels can predict the long-term haemoglobin responses to erythropoiesis-stimulating agents. Br J Pharmacol 2024; 181:2833-2850. [PMID: 38653449 DOI: 10.1111/bph.16396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Our previous study reported that erythroferrone (ERFE), a newly identified hormone produced by erythroblasts, responded to recombinant human erythropoietin (rHuEPO) sensitively but its dynamics was complicated by double peaks and circadian rhythm. This study intends to elucidate the underlying mechanisms for the double peaks of ERFE dynamics and further determine whether early ERFE measurements can predict haemoglobin responses to rHuEPO. EXPERIMENTAL APPROACH By using the purified recombinant rat ERFE protein and investigating its deposition in rats, the production of ERFE was deconvoluted. To explore the role of iron in ERFE production, we monitored short-term changes of iron status after injection of rHuEPO or deferiprone. Pharmacokinetic/pharmacodynamic (PK/PD) modelling was used to confirm the mechanisms and examine the predictive ability of ERFE for long-term haemoglobin responses. KEY RESULTS The rRatERFE protein was successfully purified. The production of ERFE was deconvoluted and showed two independent peaks (2 and 8 h). Transient iron decrease was observed at 4 h after rHuEPO injection and deferiprone induced significant increases of ERFE. Based on this mechanism, the PK/PD model could characterize the complex dynamics of ERFE. In addition, the model predictions further revealed a stronger correlation between ERFE and haemoglobin peak values than that for observed values. CONCLUSIONS AND IMPLICATIONS The complex dynamics of ERFE should be composited by an immediate release and transient iron deficiency-mediated secondary production of ERFE. The early peak values of ERFE, which occur within a few hours, can predict haemoglobin responses several weeks after ESA treatment.
Collapse
Affiliation(s)
- Peng Xu
- School of Pharmacy, The Chinese University of Hong Kong, HKSAR, China
- Phase I Clinical Trial Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Raymond S M Wong
- Division of Hematology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Yan
- School of Pharmacy, The Chinese University of Hong Kong, HKSAR, China
| |
Collapse
|
3
|
Vinchi F. New partners for Luspatercept in β-thalassemia. Am J Hematol 2024; 99:1217-1219. [PMID: 38752378 DOI: 10.1002/ajh.27362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Affiliation(s)
- Francesca Vinchi
- Iron Research Laboratory, New York Blood Center, New York, USA
- Dept. of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| |
Collapse
|
4
|
Nai A, Cordero-Sanchez C, Tanzi E, Pagani A, Silvestri L, Di Modica SM. Cellular and animal models for the investigation of β-thalassemia. Blood Cells Mol Dis 2024; 104:102761. [PMID: 37271682 DOI: 10.1016/j.bcmd.2023.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
β-Thalassemia is a genetic form of anemia due to mutations in the β-globin gene, that leads to ineffective and extramedullary erythropoiesis, abnormal red blood cells and secondary iron-overload. The severity of the disease ranges from mild to lethal anemia based on the residual levels of globins production. Despite being a monogenic disorder, the pathophysiology of β-thalassemia is multifactorial, with different players contributing to the severity of anemia and secondary complications. As a result, the identification of effective therapeutic strategies is complex, and the treatment of patients is still suboptimal. For these reasons, several models have been developed in the last decades to provide experimental tools for the study of the disease, including erythroid cell lines, cultures of primary erythroid cells and transgenic animals. Years of research enabled the optimization of these models and led to decipher the mechanisms responsible for globins deregulation and ineffective erythropoiesis in thalassemia, to unravel the role of iron homeostasis in the disease and to identify and validate novel therapeutic targets and agents. Examples of successful outcomes of these analyses include iron restricting agents, currently tested in the clinics, several gene therapy vectors, one of which was recently approved for the treatment of most severe patients, and a promising gene editing strategy, that has been shown to be effective in a clinical trial. This review provides an overview of the available models, discusses pros and cons, and the key findings obtained from their study.
Collapse
Affiliation(s)
- Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy; Vita-Salute San Raffaele University, via Olgettina 58, Milan, Italy.
| | - Celia Cordero-Sanchez
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy; Vita-Salute San Raffaele University, via Olgettina 58, Milan, Italy
| | - Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| |
Collapse
|
5
|
An W, Feola M, Levy M, Aluri S, Ruiz-Martinez M, Sridharan A, Fibach E, Zhu X, Verma A, Ginzburg Y. Iron chelation improves ineffective erythropoiesis and iron overload in myelodysplastic syndrome mice. eLife 2023; 12:e83103. [PMID: 38153418 PMCID: PMC10754500 DOI: 10.7554/elife.83103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of bone marrow stem cell disorders characterized by ineffective hematopoiesis and cytopenias, most commonly anemia. Red cell transfusion therapy for anemia in MDS results in iron overload, correlating with reduced overall survival. Whether the treatment of iron overload benefits MDS patients remains controversial. We evaluate underlying iron-related pathophysiology and the effect of iron chelation using deferiprone on erythropoiesis in NUP98-HOXD13 transgenic mice, a highly penetrant well-established MDS mouse model. Our results characterize an iron overload phenotype with aberrant erythropoiesis in these mice which was reversed by deferiprone-treatment. Serum erythropoietin levels decreased while erythroblast erythropoietin receptor expression increased in deferiprone-treated MDS mice. We demonstrate, for the first time, normalized expression of the iron chaperones Pcbp1 and Ncoa4 and increased ferritin stores in late-stage erythroblasts from deferiprone-treated MDS mice, evidence of aberrant iron trafficking in MDS erythroblasts. Importantly, erythroblast ferritin is increased in response to deferiprone, correlating with decreased erythroblast ROS. Finally, we confirmed increased expression of genes involved in iron uptake, sensing, and trafficking in stem and progenitor cells from MDS patients. Taken together, our findings provide evidence that erythroblast-specific iron metabolism is a novel potential therapeutic target to reverse ineffective erythropoiesis in MDS.
Collapse
Affiliation(s)
- Wenbin An
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Maria Feola
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Maayan Levy
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Srinivas Aluri
- Division of Hematology and Medical Oncology, Albert Einstein College of MedicineBronxUnited States
| | - Marc Ruiz-Martinez
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ashwin Sridharan
- Division of Hematology and Medical Oncology, Albert Einstein College of MedicineBronxUnited States
| | - Eitan Fibach
- Department of Hematology, Hadassah Medical Center, Hebrew UniversityJerusalemIsrael
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Amit Verma
- Division of Hematology and Medical Oncology, Albert Einstein College of MedicineBronxUnited States
| | - Yelena Ginzburg
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
6
|
Guerra A, Parhiz H, Rivella S. Novel potential therapeutics to modify iron metabolism and red cell synthesis in diseases associated with defective erythropoiesis. Haematologica 2023; 108:2582-2593. [PMID: 37345473 PMCID: PMC10542825 DOI: 10.3324/haematol.2023.283057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
Under normal conditions, iron metabolism is carefully regulated to sustain normal cellular functions and the production of hemoglobin in erythroid cells. Perturbation to the erythropoiesis-iron metabolism axis can result in iron imbalances and cause anemia or organ toxicity. Various congenital and acquired diseases associated with abnormal red cell production are characterized by aberrant iron absorption. Several recent studies have shown that improvements in red blood cell production also ameliorate iron metabolism and vice versa. Many therapeutics are now under development with the potential to improve a variety of hematologic diseases, from β-thalassemia and iron-refractory iron deficiency anemia to anemia of inflammation and polycythemia vera. This review summarizes selected mechanisms related to red cell production and iron metabolism and describes potential therapeutics and their current uses. We also consider the potential application of the discussed therapeutics on various diseases, alone or in combination. The vast repertoire of drugs under development offers new opportunities to improve the clinical care of patients suffering from congenital or acquired red blood cell disorders with limited or no treatment options.
Collapse
Affiliation(s)
- Amaliris Guerra
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA
| | - Hamideh Parhiz
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology affinity group (CAMB), University of Pennsylvania, Philadelphia, PA, USA; Raymond G. Perelman Center for Cellular and Molecular Therapeutics-CHOP; Penn Center for Musculoskeletal Disorders, CHOP, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
7
|
Vinchi F, Asperti M, Marques O, Nai A, Silvestri L. Flavor of Iron at EHA2023: Novel Regulatory Mechanisms and Therapeutic Options for the Correction of Anemia. Hemasphere 2023; 7:e955. [PMID: 37799346 PMCID: PMC10550016 DOI: 10.1097/hs9.0000000000000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, Lindsley Kimball Research Institute, New York Blood Center, New York City, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Oriana Marques
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center, University Hospital Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Germany
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
8
|
Olivari V, Di Modica SM, Lidonnici MR, Aghajan M, Cordero-Sanchez C, Tanzi E, Pettinato M, Pagani A, Tiboni F, Silvestri L, Guo S, Ferrari G, Nai A. A single approach to targeting transferrin receptor 2 corrects iron and erythropoietic defects in murine models of anemia of inflammation and chronic kidney disease. Kidney Int 2023; 104:61-73. [PMID: 36990212 DOI: 10.1016/j.kint.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
Anemia is a common complication of systemic inflammation. Proinflammatory cytokines both decrease erythroblast sensitivity to erythropoietin (EPO) and increase the levels of the hepatic hormone hepcidin, sequestering iron in stores and causing functional iron deficiency. Anemia of chronic kidney disease (CKD) is a peculiar form of anemia of inflammation, characterized by impaired EPO production paralleling progressive kidney damage. Traditional therapy based on increased EPO (often in combination with iron) may have off-target effects due to EPO interaction with its non-erythroid receptors. Transferrin Receptor 2 (Tfr2) is a mediator of the iron-erythropoiesis crosstalk. Its deletion in the liver hampers hepcidin production, increasing iron absorption, whereas its deletion in the hematopoietic compartment increases erythroid EPO sensitivity and red blood cell production. Here, we show that selective hematopoietic Tfr2 deletion ameliorates anemia in mice with sterile inflammation in the presence of normal kidney function, promoting EPO responsiveness and erythropoiesis without increasing serum EPO levels. In mice with CKD, characterized by absolute rather than functional iron deficiency, Tfr2 hematopoietic deletion had a similar effect on erythropoiesis but anemia improvement was transient because of limited iron availability. Also, increasing iron levels by downregulating only hepatic Tfr2 had a minor effect on anemia. However, simultaneous deletion of hematopoietic and hepatic Tfr2, stimulating erythropoiesis and increased iron supply, was sufficient to ameliorate anemia for the entire protocol. Thus, our results suggest that combined targeting of hematopoietic and hepatic Tfr2 may be a therapeutic option to balance erythropoiesis stimulation and iron increase, without affecting EPO levels.
Collapse
Affiliation(s)
- Violante Olivari
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maria Rosa Lidonnici
- Gene Transfer into Stem Cell Unit, SR-Tiget, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | | | - Celia Cordero-Sanchez
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesca Tiboni
- Gene Transfer into Stem Cell Unit, SR-Tiget, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Shuling Guo
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | - Giuliana Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Gene Transfer into Stem Cell Unit, SR-Tiget, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
9
|
Targeting the Second Transferrin Receptor as Emerging Therapeutic Option for β-Thalassemia Major. Hemasphere 2022; 6:e799. [PMID: 36340913 PMCID: PMC9622615 DOI: 10.1097/hs9.0000000000000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Di Modica SM, Tanzi E, Olivari V, Lidonnici MR, Pettinato M, Pagani A, Tiboni F, Furiosi V, Silvestri L, Ferrari G, Rivella S, Nai A. Transferrin receptor 2 (Tfr2) genetic deletion makes transfusion-independent a murine model of transfusion-dependent β-thalassemia. Am J Hematol 2022; 97:1324-1336. [PMID: 36071579 PMCID: PMC9540808 DOI: 10.1002/ajh.26673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/24/2023]
Abstract
β-thalassemia is a genetic disorder caused by mutations in the β-globin gene, and characterized by anemia, ineffective erythropoiesis and iron overload. Patients affected by the most severe transfusion-dependent form of the disease (TDT) require lifelong blood transfusions and iron chelation therapy, a symptomatic treatment associated with several complications. Other therapeutic opportunities are available, but none is fully effective and/or applicable to all patients, calling for the identification of novel strategies. Transferrin receptor 2 (TFR2) balances red blood cells production according to iron availability, being an activator of the iron-regulatory hormone hepcidin in the liver and a modulator of erythropoietin signaling in erythroid cells. Selective Tfr2 deletion in the BM improves anemia and iron-overload in non-TDT mice, both as a monotherapy and, even more strikingly, in combination with iron-restricting approaches. However, whether Tfr2 targeting might represent a therapeutic option for TDT has never been investigated so far. Here, we prove that BM Tfr2 deletion improves anemia, erythrocytes morphology and ineffective erythropoiesis in the Hbbth1/th2 murine model of TDT. This effect is associated with a decrease in the expression of α-globin, which partially corrects the unbalance with β-globin chains and limits the precipitation of misfolded hemoglobin, and with a decrease in the activation of unfolded protein response. Remarkably, BM Tfr2 deletion is also sufficient to avoid long-term blood transfusions required for survival of Hbbth1/th2 animals, preventing mortality due to chronic anemia and reducing transfusion-associated complications, such as progressive iron-loading. Altogether, TFR2 targeting might represent a promising therapeutic option also for TDT.
Collapse
Affiliation(s)
- Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Violante Olivari
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Maria Rosa Lidonnici
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Francesca Tiboni
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Valeria Furiosi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Giuliana Ferrari
- Vita Salute San Raffaele UniversityMilanItaly,San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Stefano Rivella
- Division of Hematology, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| |
Collapse
|
11
|
Longo F, Piga A. Does Hepcidin Tuning Have a Role among Emerging Treatments for Thalassemia? J Clin Med 2022; 11:5119. [PMID: 36079046 PMCID: PMC9457499 DOI: 10.3390/jcm11175119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 01/19/2023] Open
Abstract
The treatments available for thalassemia are rapidly evolving, with major advances made in gene therapy and the modulation of erythropoiesis. The latter includes the therapeutic potential of hepcidin tuning. In thalassemia, hepcidin is significantly depressed, and any rise in hepcidin function has a positive effect on both iron metabolism and erythropoiesis. Synthetic hepcidin and hepcidin mimetics have been developed to the stage of clinical trials. However, they have failed to produce an acceptable efficacy/safety profile. It seems difficult to avoid iron over-restricted erythropoiesis when directly using hepcidin as a drug. Indirect approaches, each one with their advantages and disadvantages, are many and in full development. The ideal approach is to target erythroferrone, the main inhibitor of hepcidin expression, the plasma concentrations of which are greatly increased in iron-loading anemias. Potential means of improving hepcidin function in thalassemia also include acting on TMPRSS6, TfR1, TfR2 or ferroportin, the target of hepcidin. Only having a better understanding of the crosslinks between iron metabolism and erythropoiesis will elucidate the best single option. In the meantime, many potential combinations are currently being explored in preclinical studies. Any long-term clinical study on this approach should include the wide monitoring of functions, as the effects of hepcidin and its modulators are not limited to iron metabolism and erythropoiesis. It is likely that some of the aspects of hepcidin tuning described briefly in this review will play a role in the future treatment of thalassemia.
Collapse
Affiliation(s)
- Filomena Longo
- Thalassemia Reference Centre, 10043 Orbassano, Italy
- Regional HUB Centre for Thalassaemia and Haemoglobinopathies, Department of Medicine, Azienda Ospedaliero Universitaria S. Anna, 44124 Ferrara, Italy
| | - Antonio Piga
- Thalassemia Reference Centre, 10043 Orbassano, Italy
- University of Torino, 10043 Torino, Italy
| |
Collapse
|
12
|
The mutual crosstalk between iron and erythropoiesis. Int J Hematol 2022; 116:182-191. [PMID: 35618957 DOI: 10.1007/s12185-022-03384-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 02/08/2023]
Abstract
Iron homeostasis and erythropoiesis are strongly interconnected. On one side iron is essential to terminal erythropoiesis for hemoglobin production, on the other erythropoiesis may increase iron absorption through the production of erythroferrone, the erythroid hormone that suppresses hepcidin expression Also erythropoietin production is modulated by iron through the iron regulatory proteins-iron responsive elements that control the hypoxia inducible factor 2-α. The second transferrin receptor, an iron sensor both in the liver and in erythroid cells modulates erythropoietin sensitivity and is a further link between hepcidin and erythropoiesis. When erythropoietin is decreased in iron deficiency the erythropoietin sensitivity is increased because the second transferrin receptor is removed from cell surface. A deranged balance between erythropoiesis and iron/hepcidin may lead to anemia, as in the case of iron deficiency, defective iron uptake and erythroid utilization or subnormal recycling. Defective control of hepcidin production may cause iron deficiency, as in the recessive disorder iron refractory iron deficiency anemia or in anemia of inflammation, or in iron loading anemias, which are characterized by excessive but ineffective erythropoiesis. The elucidation of the mechanisms that regulates iron homeostasis and erythropoiesis is leading to the development of drugs for the benefit of both iron and erythropoiesis disorders.
Collapse
|
13
|
|
14
|
Berezovsky B, Báječný M, Frýdlová J, Gurieva I, Rogalsky DW, Přikryl P, Pospíšil V, Nečas E, Vokurka M, Krijt J. Effect of Erythropoietin on the Expression of Murine Transferrin Receptor 2. Int J Mol Sci 2021; 22:ijms22158209. [PMID: 34360974 PMCID: PMC8348427 DOI: 10.3390/ijms22158209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/14/2023] Open
Abstract
Erythropoietin (EPO) downregulates hepcidin expression to increase the availability of iron; the downregulation of hepcidin is mediated by erythroferrone (ERFE) secreted by erythroblasts. Erythroblasts also express transferrin receptor 2 (TFR2); however, the possible role of TFR2 in hepcidin downregulation is unclear. The purpose of the study was to correlate liver expression of hepcidin with the expression of ERFE and TFR2 in murine bone marrow and spleen at 4, 16, 24, 48, 72 and 96 h following administration of a single dose of EPO. Splenic Fam132b expression increased 4 h after EPO injection; liver hepcidin mRNA was decreased at 16 h. In the spleen, expression of TFR2 and transferrin receptor (TFR1) proteins increased by an order of magnitude at 48 and 72 h after EPO treatment. The EPO-induced increase in splenic TFR2 and TFR1 was associated with an increase in the number of Tfr2- and Tfr1-expressing erythroblasts. Plasma exosomes prepared from EPO-treated mice displayed increased amount of TFR1 protein; however, no exosomal TFR2 was detected. Overall, the results confirm the importance of ERFE in stress erythropoiesis, support the role of TFR2 in erythroid cell development, and highlight possible differences in the removal of TFR2 and TFR1 from erythroid cell membranes.
Collapse
|
15
|
Ineffective Erythropoiesis in β-Thalassaemia: Key Steps and Therapeutic Options by Drugs. Int J Mol Sci 2021; 22:ijms22137229. [PMID: 34281283 PMCID: PMC8268821 DOI: 10.3390/ijms22137229] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
β-thalassaemia is a rare genetic condition caused by mutations in the β-globin gene that result in severe iron-loading anaemia, maintained by a detrimental state of ineffective erythropoiesis (IE). The role of multiple mechanisms involved in the pathophysiology of the disease has been recently unravelled. The unbalanced production of α-globin is a major source of oxidative stress and membrane damage in red blood cells (RBC). In addition, IE is tightly linked to iron metabolism dysregulation, and the relevance of new players of this pathway, i.e., hepcidin, erythroferrone, matriptase-2, among others, has emerged. Advances have been made in understanding the balance between proliferation and maturation of erythroid precursors and the role of specific factors in this process, such as members of the TGF-β superfamily, and their downstream effectors, or the transcription factor GATA1. The increasing understanding of IE allowed for the development of a broad set of potential therapeutic options beyond the current standard of care. Many candidates of disease-modifying drugs are currently under clinical investigation, targeting the regulation of iron metabolism, the production of foetal haemoglobin, the maturation process, or the energetic balance and membrane stability of RBC. Overall, they provide tools and evidence for multiple and synergistic approaches that are effectively moving clinical research in β-thalassaemia from bench to bedside.
Collapse
|
16
|
Fouquet G, Thongsa-Ad U, Lefevre C, Rousseau A, Tanhuad N, Khongkla E, Saengsawang W, Anurathapan U, Hongeng S, Maciel TT, Hermine O, Bhukhai K. Iron-loaded transferrin potentiates erythropoietin effects on erythroblast proliferation and survival: a novel role through transferrin receptors. Exp Hematol 2021; 99:12-20.e3. [PMID: 34077792 DOI: 10.1016/j.exphem.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Red blood cell production, or erythropoiesis, is a proliferative process that requires tight regulation. Erythropoietin (Epo) is a glycoprotein cytokine that plays a major role in erythropoiesis by triggering erythroid progenitors/precursors of varying sensitivity. The concentration of Epo in bone marrow is hypothesized to be suboptimal, and the survival of erythroid cells has been suggested to depend on Epo sensitivity. However, the key factors that control Epo sensitivity remain unknown. Two types of transferrin receptors (TfRs), TfR1 and TfR2, are known to play a role in iron uptake in erythroid cells. Here, we hypothesized that TfRs may additionally modulate Epo sensitivity during erythropoiesis by modulating Epo receptor (EpoR) signaling. Using an Epo-sensitive UT-7 (UT7/Epo) erythroid cell and human erythroid progenitor cell models, we report that iron-loaded transferrin, that is, holo-transferrin (holo-Tf), synergizes with suboptimal Epo levels to improve erythroid cell survival, proliferation, and differentiation. This is accomplished via the major signaling pathways of erythropoiesis, which include signal transducer and activator of transcription 5 (STAT5), mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), and phosphoinositide-3-kinase (PI3K)/AKT. Furthermore, we found that this cooperation is improved by, but does not require, the internalization of TfR1. Interestingly, we observed that loss of TfR2 stabilizes EpoR levels and abolishes the beneficial effects of holo-Tf. Overall, these data reveal novel signaling properties of TfRs, which involve the regulation of erythropoiesis through EpoR signaling.
Collapse
Affiliation(s)
- Guillemette Fouquet
- Institut Hospitalo-Universitaire (IHU) Imagine, Université Sorbonne Paris cité, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; INSERM U1163, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France; Laboratory of Excellence GReX, Paris, France
| | | | - Carine Lefevre
- Laboratory of Excellence GReX, Paris, France; INSERM U1016, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Alice Rousseau
- INSERM U1016, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nopmullee Tanhuad
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ekkaphot Khongkla
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Witchuda Saengsawang
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thiago T Maciel
- Institut Hospitalo-Universitaire (IHU) Imagine, Université Sorbonne Paris cité, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; INSERM U1163, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France; Laboratory of Excellence GReX, Paris, France
| | - Olivier Hermine
- Institut Hospitalo-Universitaire (IHU) Imagine, Université Sorbonne Paris cité, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; INSERM U1163, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France; Laboratory of Excellence GReX, Paris, France; Service d'Hématologie clinique adultes, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Kanit Bhukhai
- Institut Hospitalo-Universitaire (IHU) Imagine, Université Sorbonne Paris cité, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; INSERM U1163, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France; Laboratory of Excellence GReX, Paris, France; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
17
|
Correcting β-thalassemia by combined therapies that restrict iron and modulate erythropoietin activity. Blood 2021; 136:1968-1979. [PMID: 32556142 DOI: 10.1182/blood.2019004719] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/21/2020] [Indexed: 11/20/2022] Open
Abstract
β-Thalassemia intermedia is a disorder characterized by ineffective erythropoiesis (IE), anemia, splenomegaly, and systemic iron overload. Novel approaches are being explored based on the modulation of pathways that reduce iron absorption (ie, using hepcidin activators like Tmprss6-antisense oligonucleotides [ASOs]) or increase erythropoiesis (by erythropoietin [EPO] administration or modulating the ability of transferrin receptor 2 [Tfr2] to control red blood cell [RBC] synthesis). Targeting Tmprss6 messenger RNA by Tmprss6-ASO was proven to be effective in improving IE and splenomegaly by inducing iron restriction. However, we postulated that combinatorial strategies might be superior to single therapies. Here, we combined Tmprss6-ASO with EPO administration or removal of a single Tfr2 allele in the bone marrow of animals affected by β-thalassemia intermedia (Hbbth3/+). EPO administration alone or removal of a single Tfr2 allele increased hemoglobin levels and RBCs. However, EPO or Tfr2 single-allele deletion alone, respectively, exacerbated or did not improve splenomegaly in β-thalassemic mice. To overcome this issue, we postulated that some level of iron restriction (by targeting Tmprss6) would improve splenomegaly while preserving the beneficial effects on RBC production mediated by EPO or Tfr2 deletion. While administration of Tmprss6-ASO alone improved the anemia, the combination of Tmprss6-ASO + EPO or Tmprss6-ASO + Tfr2 single-allele deletion produced significantly higher hemoglobin levels and reduced splenomegaly. In conclusion, our results clearly indicate that these combinatorial approaches are superior to single treatments in ameliorating IE and anemia in β-thalassemia and could provide guidance to translate some of these approaches into viable therapies.
Collapse
|
18
|
Schmidt PJ, Fitzgerald K, Butler JS, Fleming MD. Global loss of Tfr2 with concomitant induced iron deficiency greatly ameliorates the phenotype of a murine thalassemia intermedia model. Am J Hematol 2021; 96:251-257. [PMID: 33180328 DOI: 10.1002/ajh.26048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
β-thalassemias result from mutations in β-globin, causing ineffective erythropoiesis and secondary iron overload due to inappropriately low levels of the iron regulatory hormone hepcidin. Mutations in transferrin receptor 2 (TFR2) lead to hereditary hemochromatosis (HH) as a result of inappropriately increased iron uptake from the diet, also due to improperly regulated hepcidin. TFR2 is also thought to be required for efficient erythropoiesis through its interaction with the erythropoietin receptor in erythroid progenitors. Transmembrane serine protease 6 (TMPRSS6), a membrane serine protease expressed selectively in the liver, participates in regulating hepcidin production in response to iron stores by cleaving hemojuvelin (HJV). We have previously demonstrated that inhibiting TMPRSS6 expression with a hepatocyte-specific siRNA formulation, induces hepcidin, mitigates anemia, and reduces iron overload in murine models of β-thalassemia intermedia and HH. Here, we demonstrate that Tmprss6 siRNA treatment of double mutant Tfr2Y245X/Y245X HH Hbbth3/+ thalassemic mice induces hepcidin and diminishes tissue and serum iron levels. Importantly, treated double mutant animals produce more mature red blood cells and have a nearly 50% increase in hemoglobin compared to untreated β-thalassemic mice. Furthermore, we also show that treatment of Tfr2Y245X/Y245X HH mice leads to increased hepcidin expression and reduced total body iron burden. These data indicate that siRNA suppression of Tmprss6, in conjunction with the targeting of TFR2, may be superior to inhibiting Tmprss6 alone in the treatment of the anemia and secondary iron loading in β-thalassemia intermedia and may be useful as a method of suppressing the primary iron overload in TFR2-related (type 3) hereditary hemochromatosis.
Collapse
Affiliation(s)
- Paul J. Schmidt
- Department of Pathology Boston Children's Hospital and Harvard Medical School Boston Massachusetts USA
| | | | - James S. Butler
- Alnylam Pharmaceuticals, Inc. Cambridge Massachusetts USA
- Current: Intellia Therapeutics, Inc. Cambridge Massachusetts USA
| | - Mark D. Fleming
- Department of Pathology Boston Children's Hospital and Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
19
|
Richard C, Verdier F. Transferrin Receptors in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21249713. [PMID: 33352721 PMCID: PMC7766611 DOI: 10.3390/ijms21249713] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Erythropoiesis is a highly dynamic process giving rise to red blood cells from hematopoietic stem cells present in the bone marrow. Red blood cells transport oxygen to tissues thanks to the hemoglobin comprised of α- and β-globin chains and of iron-containing hemes. Erythropoiesis is the most iron-consuming process to support hemoglobin production. Iron delivery is mediated via transferrin internalization by the endocytosis of transferrin receptor type 1 (TFR1), one of the most abundant membrane proteins of erythroblasts. A second transferrin receptor—TFR2—associates with the erythropoietin receptor and has been implicated in the regulation of erythropoiesis. In erythroblasts, both transferrin receptors adopt peculiarities such as an erythroid-specific regulation of TFR1 and a trafficking pathway reliant on TFR2 for iron. This review reports both trafficking and signaling functions of these receptors and reassesses the debated role of TFR2 in erythropoiesis in the light of recent findings. Potential therapeutic uses targeting the transferrin-TFR1 axis or TFR2 in hematological disorders are also discussed.
Collapse
Affiliation(s)
- Cyrielle Richard
- Inserm U1016, CNRS UMR8104, Institut Cochin, Université de Paris, 75014 Paris, France;
- Laboratoire d’excellence GR-Ex, Université de Paris, 75014 Paris, France
| | - Frédérique Verdier
- Inserm U1016, CNRS UMR8104, Institut Cochin, Université de Paris, 75014 Paris, France;
- Laboratoire d’excellence GR-Ex, Université de Paris, 75014 Paris, France
- Correspondence:
| |
Collapse
|
20
|
The VP1u of Human Parvovirus B19: A Multifunctional Capsid Protein with Biotechnological Applications. Viruses 2020; 12:v12121463. [PMID: 33352888 PMCID: PMC7765992 DOI: 10.3390/v12121463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The viral protein 1 unique region (VP1u) of human parvovirus B19 (B19V) is a multifunctional capsid protein with essential roles in virus tropism, uptake, and subcellular trafficking. These functions reside on hidden protein domains, which become accessible upon interaction with cell membrane receptors. A receptor-binding domain (RBD) in VP1u is responsible for the specific targeting and uptake of the virus exclusively into cells of the erythroid lineage in the bone marrow. A phospholipase A2 domain promotes the endosomal escape of the incoming virus. The VP1u is also the immunodominant region of the capsid as it is the target of neutralizing antibodies. For all these reasons, the VP1u has raised great interest in antiviral research and vaccinology. Besides the essential functions in B19V infection, the remarkable erythroid specificity of the VP1u makes it a unique erythroid cell surface biomarker. Moreover, the demonstrated capacity of the VP1u to deliver diverse cargo specifically to cells around the proerythroblast differentiation stage, including erythroleukemic cells, offers novel therapeutic opportunities for erythroid-specific drug delivery. In this review, we focus on the multifunctional role of the VP1u in B19V infection and explore its potential in diagnostics and erythroid-specific therapeutics.
Collapse
|
21
|
Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020; 105:260-272. [PMID: 31949017 PMCID: PMC7012465 DOI: 10.3324/haematol.2019.232124] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is biologically essential, but also potentially toxic; as such it is tightly controlled at cell and systemic levels to prevent both deficiency and overload. Iron regulatory proteins post-transcriptionally control genes encoding proteins that modulate iron uptake, recycling and storage and are themselves regulated by iron. The master regulator of systemic iron homeostasis is the liver peptide hepcidin, which controls serum iron through degradation of ferroportin in iron-absorptive enterocytes and iron-recycling macrophages. This review emphasizes the most recent findings in iron biology, deregulation of the hepcidin-ferroportin axis in iron disorders and how research results have an impact on clinical disorders. Insufficient hepcidin production is central to iron overload while hepcidin excess leads to iron restriction. Mutations of hemochro-matosis genes result in iron excess by downregulating the liver BMP-SMAD signaling pathway or by causing hepcidin-resistance. In iron-loading anemias, such as β-thalassemia, enhanced albeit ineffective ery-thropoiesis releases erythroferrone, which sequesters BMP receptor ligands, thereby inhibiting hepcidin. In iron-refractory, iron-deficiency ane-mia mutations of the hepcidin inhibitor TMPRSS6 upregulate the BMP-SMAD pathway. Interleukin-6 in acute and chronic inflammation increases hepcidin levels, causing iron-restricted erythropoiesis and ane-mia of inflammation in the presence of iron-replete macrophages. Our improved understanding of iron homeostasis and its regulation is having an impact on the established schedules of oral iron treatment and the choice of oral versus intravenous iron in the management of iron deficiency. Moreover it is leading to the development of targeted therapies for iron overload and inflammation, mainly centered on the manipulation of the hepcidin-ferroportin axis.
Collapse
Affiliation(s)
- Clara Camaschella
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan.,Vita Salute San Raffaele University, Milan, Italy
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan.,Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
22
|
Parrow NL, Li Y, Feola M, Guerra A, Casu C, Prasad P, Mammen L, Ali F, Vaicikauskas E, Rivella S, Ginzburg YZ, Fleming RE. Lobe specificity of iron binding to transferrin modulates murine erythropoiesis and iron homeostasis. Blood 2019; 134:1373-1384. [PMID: 31434707 PMCID: PMC6839954 DOI: 10.1182/blood.2018893099] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Transferrin, the major plasma iron-binding molecule, interacts with cell-surface receptors to deliver iron, modulates hepcidin expression, and regulates erythropoiesis. Transferrin binds and releases iron via either or both of 2 homologous lobes (N and C). To test the hypothesis that the specificity of iron occupancy in the N vs C lobe influences transferrin function, we generated mice with mutations to abrogate iron binding in either lobe (TfN-bl or TfC-bl). Mice homozygous for either mutation had hepatocellular iron loading and decreased liver hepcidin expression (relative to iron concentration), although to different magnitudes. Both mouse models demonstrated some aspects of iron-restricted erythropoiesis, including increased zinc protoporphyrin levels, decreased hemoglobin levels, and microcytosis. Moreover, the TfN-bl/N-bl mice demonstrated the anticipated effect of iron restriction on red cell production (ie, no increase in red blood cell [RBC] count despite elevated erythropoietin levels), along with a poor response to exogenous erythropoietin. In contrast, the TfC-bl/C-bl mice had elevated RBC counts and an exaggerated response to exogenous erythropoietin sufficient to ameliorate the anemia. Observations in heterozygous mice further support a role for relative N vs C lobe iron occupancy in transferrin-mediated regulation of iron homeostasis and erythropoiesis.
Collapse
Affiliation(s)
- Nermi L Parrow
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Yihang Li
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Maria Feola
- Division of Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Amaliris Guerra
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Carla Casu
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Princy Prasad
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Luke Mammen
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Faris Ali
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Edvinas Vaicikauskas
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Yelena Z Ginzburg
- Division of Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert E Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
23
|
Teles CM, Lammoglia LC, Juliano MA, Ruiz ALTG, Candido TZ, de Carvalho JE, Lima CSP, Abbehausen C. Novel anticancer Pd II complexes: The effect of the conjugation of transferrin binding peptide and the nature of halogen coordinated on antitumor activity. J Inorg Biochem 2019; 199:110754. [PMID: 31401348 DOI: 10.1016/j.jinorgbio.2019.110754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 01/06/2023]
Abstract
A series of PdII complexes with bis-(2-pyridylmethyl)glycine as a ligand of formula [PdX(bis-(2-pyridylmethyl)glycine)] where X = Cl, Br, I were prepared and the effect of the halogen nature in the antitumor activity of eight tumorigenic and one non-tumorigenic cell line was evaluated. The chloride derivative was further functionalized with a transferrin receptor binding peptide, generating the first PdII based metallopeptide. Its antitumor activity was also evaluated. However, among all the complexes, the chloride and iodine parent compounds showed the lowest GI50 values in the panel evaluated, and lowest GI50 than cisplatin in several cell lines. In contrast, the bromine derivative showed higher values of GI50 than chloride and iodine (around 30 - 50 μM). The same trend was observed for the bovine serum albumin binding constant with higher values for iodine, chlorine, and bromine in this order. In aqueous solution, the chloride is exchanged by water while the bromine and iodine are not. DNA was evaluated as a target and showed no significative interaction for all the compounds. The results suggest sulfur-rich proteins and not DNA as a target. This report represents the first PdII metallopeptide reported, its evaluation in solution and antitumor activity. This work opens the possibilities for further functionalization of PdII complexes and the importance of the halogen coordination in the design of novel metallodrugs.
Collapse
Affiliation(s)
- C M Teles
- Institute of Chemistry, University of Campinas - UNICAMP, PO Box 6154, 13083-970 Campinas, SP, Brazil
| | - L C Lammoglia
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, 13083-871 Campinas, SP, Brazil
| | - M A Juliano
- Universidade Federal de São Paulo, Escola Paulista de Medicina, UNIFESP, 04063-062 São Paulo, SP, Brazil
| | - A L T G Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, 13083-871 Campinas, SP, Brazil
| | - T Z Candido
- Faculty of Medical Sciences, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil
| | - J E de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, 13083-871 Campinas, SP, Brazil
| | - C S P Lima
- Faculty of Medical Sciences, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil
| | - C Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, PO Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
24
|
Nandakumar SK, McFarland SK, Mateyka LM, Lareau CA, Ulirsch JC, Ludwig LS, Agarwal G, Engreitz JM, Przychodzen B, McConkey M, Cowley GS, Doench JG, Maciejewski JP, Ebert BL, Root DE, Sankaran VG. Gene-centric functional dissection of human genetic variation uncovers regulators of hematopoiesis. eLife 2019; 8:44080. [PMID: 31070582 PMCID: PMC6534380 DOI: 10.7554/elife.44080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified thousands of variants associated with human diseases and traits. However, the majority of GWAS-implicated variants are in non-coding regions of the genome and require in depth follow-up to identify target genes and decipher biological mechanisms. Here, rather than focusing on causal variants, we have undertaken a pooled loss-of-function screen in primary hematopoietic cells to interrogate 389 candidate genes contained in 75 loci associated with red blood cell traits. Using this approach, we identify 77 genes at 38 GWAS loci, with most loci harboring 1-2 candidate genes. Importantly, the hit set was strongly enriched for genes validated through orthogonal genetic approaches. Genes identified by this approach are enriched in specific and relevant biological pathways, allowing regulators of human erythropoiesis and modifiers of blood diseases to be defined. More generally, this functional screen provides a paradigm for gene-centric follow up of GWAS for a variety of human diseases and traits.
Collapse
Affiliation(s)
- Satish K Nandakumar
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Sean K McFarland
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Laura M Mateyka
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Biochemistry Center (BZH), Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Caleb A Lareau
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Program in Biological and Medical Sciences, Harvard Medical School, Boston, United States
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Program in Biological and Medical Sciences, Harvard Medical School, Boston, United States
| | - Leif S Ludwig
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Gaurav Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,University of Oxford, Oxford, United Kingdom.,Harvard Stem Cell Institute, Cambridge, United States
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, United States.,Harvard Society of Fellows, Harvard University, Cambridge, United States
| | - Bartlomiej Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, United States
| | - Marie McConkey
- Division of Hematology, Brigham and Women's Hospital, Boston, United States
| | - Glenn S Cowley
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, United States
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, United States.,Division of Hematology, Brigham and Women's Hospital, Boston, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
25
|
Frýdlová J, Rogalsky DW, Truksa J, Nečas E, Vokurka M, Krijt J. Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice. PLoS One 2019; 14:e0215028. [PMID: 30958854 PMCID: PMC6453526 DOI: 10.1371/journal.pone.0215028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/25/2019] [Indexed: 12/21/2022] Open
Abstract
Expression of hepcidin, the hormone regulating iron homeostasis, is increased by iron overload and decreased by accelerated erythropoiesis or iron deficiency. The purpose of the study was to examine the effect of these stimuli, either alone or in combination, on the main signaling pathway controlling hepcidin biosynthesis in the liver, and on the expression of splenic modulators of hepcidin biosynthesis. Liver phosphorylated SMAD 1 and 5 proteins were determined by immunoblotting in male mice treated with iron dextran, kept on an iron deficient diet, or administered recombinant erythropoietin for four consecutive days. Administration of iron increased liver phosphorylated SMAD protein content and hepcidin mRNA content; subsequent administration of erythropoietin significantly decreased both the iron-induced phosphorylated SMAD proteins and hepcidin mRNA. These results are in agreement with the recent observation that erythroferrone binds and inactivates the BMP6 protein. Administration of erythropoietin substantially increased the amount of erythroferrone and transferrin receptor 2 proteins in the spleen; pretreatment with iron did not influence the erythropoietin-induced content of these proteins. Erythropoietin-treated iron-deficient mice displayed smaller spleen size in comparison with erythropoietin-treated mice kept on a control diet. While the erythropoietin-induced increase in splenic erythroferrone protein content was not significantly affected by iron deficiency, the content of transferrin receptor 2 protein was lower in the spleens of erythropoietin-treated mice kept on iron-deficient diet, suggesting posttranscriptional regulation of transferrin receptor 2. Interestingly, iron deficiency and erythropoietin administration had additive effect on hepcidin gene downregulation in the liver. In mice subjected both to iron deficiency and erythropoietin administration, the decrease of hepcidin expression was much more pronounced than the decrease in phosphorylated SMAD protein content or the decrease in the expression of the SMAD target genes Id1 and Smad7. These results suggest the existence of another, SMAD-independent pathway of hepcidin gene downregulation.
Collapse
Affiliation(s)
- Jana Frýdlová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniel W. Rogalsky
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Truksa
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
| | - Emanuel Nečas
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Krijt
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
26
|
|
27
|
The Functional Versatility of Transferrin Receptor 2 and Its Therapeutic Value. Pharmaceuticals (Basel) 2018; 11:ph11040115. [PMID: 30360575 PMCID: PMC6316356 DOI: 10.3390/ph11040115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022] Open
Abstract
Iron homeostasis is a tightly regulated process in all living organisms because this metal is essential for cellular metabolism, but could be extremely toxic when present in excess. In mammals, there is a complex pathway devoted to iron regulation, whose key protein is hepcidin (Hepc), which is a powerful iron absorption inhibitor mainly produced by the liver. Transferrin receptor 2 (Tfr2) is one of the hepcidin regulators, and mutations in TFR2 gene are responsible for type 3 hereditary hemochromatosis (HFE3), a genetically heterogeneous disease characterized by systemic iron overload. It has been recently pointed out that Hepc production and iron regulation could be exerted also in tissues other than liver, and that Tfr2 has an extrahepatic role in iron metabolism as well. This review summarizes all the most recent data on Tfr2 extrahepatic role, taking into account the putative distinct roles of the two main Tfr2 isoforms, Tfr2α and Tfr2β. Representing Hepc modulation an effective approach to correct iron balance impairment in common human diseases, and with Tfr2 being one of its regulators, it would be worthwhile to envisage Tfr2 as a therapeutic target.
Collapse
|