1
|
Kirino Y. Clinical Challenges of Emerging Acquired Autoinflammatory Diseases, Including VEXAS Syndrome. Intern Med 2025; 64:25-30. [PMID: 38296470 DOI: 10.2169/internalmedicine.3219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Vacuoles, E1-ubiquitin-activating enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome, caused by an acquired mutation in the ubiquitin-activating enzyme ubiquitin-like modifier activating enzyme 1 (UBA1), was discovered in 2020. Since then, many cases have been reported worldwide. Recently, we performed UBA1 genetic testing in suspected cases of VEXAS throughout Japan and investigated the clinical features of these cases. Most cases were elderly patients in their 70s with clinical features consistent with VEXAS syndrome, such as myelodysplastic syndrome, high-grade fever, skin rash, chondritis, and pulmonary infiltration. However, approximately half of the analyzed patients were negative for the UBA1 variant. As the concept of "acquired autoinflammatory diseases," including VEXAS syndrome, has gained popularity, the number of suspected cases is expected to increase. Currently, there are no established diagnostic or treatment guidelines for these conditions, and they need to be urgently developed. This review summarizes the clinical problems faced by patients with acquired autoinflammatory diseases, including VEXAS.
Collapse
Affiliation(s)
- Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University, Graduate School of Medicine, Japan
| |
Collapse
|
2
|
Hong M, Guo J, Zhao Y, Song L, Zhao S, Wang R, Shi L, Zhang Z, Wu D, He Q, Chang C. Eltrombopag restores proliferative capacity and adipose-osteogenic balance of mesenchymal stromal cells in low-risk myelodysplastic syndromes. Eur J Pharmacol 2024; 985:177086. [PMID: 39481629 DOI: 10.1016/j.ejphar.2024.177086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
In low-risk myelodysplastic syndromes (MDS), the proinflammatory signaling is excessive, and the proliferation and differentiation potentials of mesenchymal stromal cells (MSCs) are strongly impaired. Eltrombopag (ELT) has been demonstrated recently effective and relatively safe in low-risk MDS with severe thrombocytopenia. However, its impact on the MDS-MSCs has not been investigated in any detail. Here, for the first time, we investigated the changes induced by ELT in MSCs' viability, proliferation, apoptosis, senescence, multilineage differentiation properties, and stem cell support capacity in low-risk MDS patients. We demonstrated that ELT may act on improving the impaired inflammatory profile and reactivating the downregulated canonical WNT signaling pathway in low-risk MDS, and also restoring the self-renewal capacity and the balance in adipose-osteogenic differentiation of MDS-MSCs.
Collapse
Affiliation(s)
- Minghua Hong
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youshan Zhao
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Luxi Song
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Sida Zhao
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Roujia Wang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lei Shi
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qi He
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
3
|
Getz TM, Bewersdorf JP, Kewan T, Stempel JM, Bidikian A, Shallis RM, Stahl M, Zeidan AM. Beyond HMAs: Novel Targets and Therapeutic Approaches. Semin Hematol 2024; 61:358-369. [PMID: 39389839 DOI: 10.1053/j.seminhematol.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
Myelodysplastic syndromes/neoplasms (MDS) constitute a heterogeneous group of clonal hematopoietic disorders with extremely variable clinical features and outcomes. Management of MDS is largely based on risk stratification of patients into either lower-risk or higher-risk categories using the International Prognostic Scoring System-Revised and, more recently, on the Molecular International Prognostic Scoring System. Lower-risk MDS is often managed with the goal of ameliorating cytopenias and improving quality of life, while higher-risk MDS is treated with therapies aimed at extending survival and delaying progression to acute myeloid leukemia (AML). Therapeutic strategies in lower-risk MDS patients may consist of erythropoiesis stimulating agents, luspatercept, and lenalidomide for selected patients. Furthermore, imetelstat has recently been added to the FDA-approved therapeutic armamentarium for lower-risk MDS. In higher-risk MDS, monotherapy with hypomethylating agents continues to be the standard of care. While several novel hypomethylating agent combinations have and are being studied in large randomized phase 3 clinical trials, including the combination of azacitidine and venetoclax, no combination to date have improved overall survival to azacitidine monotherapy. Moreover, biomarker-directed therapies as well as immonotherapeutic approaches are currently being evaluated in early phase trials. Despite recent advancements, the lack of therapeutic agents, particularly after the failure of first line therapy in higher risk MDS, continues to be a major hurdle in the management of MDS. In this review, we discuss the current treatment landscape of MDS and provide an overview of novel agents currently in clinical development that have the potential to alter our current treatment paradigms.
Collapse
Affiliation(s)
- Ted M Getz
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut.
| | - Jan P Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut; Department of Medicine, Memorial Sloan Kettering Cancer Center, Leukemia Service, New York, New York
| | - Tariq Kewan
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut
| | - Jessica M Stempel
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut
| | - Aram Bidikian
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut
| | - Rory M Shallis
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University and Yale Comprehensive Cancer Center, New Haven, Connecticut
| |
Collapse
|
4
|
Ho TC, LaMere MW, Kawano H, Byun DK, LaMere EA, Chiu YC, Chen C, Wang J, Dokholyan NV, Calvi LM, Liesveld JL, Jordan CT, Kapur R, Singh RK, Becker MW. Targeting IL-1/IRAK1/4 signaling in Acute Myeloid Leukemia Stem Cells Following Treatment and Relapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622796. [PMID: 39605740 PMCID: PMC11601227 DOI: 10.1101/2024.11.09.622796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Therapies for acute myeloid leukemia (AML) face formidable challenges due to relapse, often driven by leukemia stem cells (LSCs). Strategies targeting LSCs hold promise for enhancing outcomes, yet paired comparisons of functionally defined LSCs at diagnosis and relapse remain underexplored. We present transcriptome analyses of functionally defined LSC populations at diagnosis and relapse, revealing significant alterations in IL-1 signaling. Interleukin-1 receptor type I (IL1R1) and interleukin-1 receptor accessory protein (IL1RAP) were notably upregulated in leukemia stem and progenitor cells at both diagnosis and relapse. Knockdown of IL1R1 and IL1RAP reduced the clonogenicity and/or engraftment of primary human AML cells. In leukemic MLL-AF9 mice, Il1r1 knockout reduced LSC frequency and extended survival. To target IL-1 signaling at both diagnosis and relapse, we developed UR241-2, a novel interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) inhibitor. UR241-2 robustly suppressed IL-1/IRAK1/4 signaling, including NF-κB activation and phosphorylation of p65 and p38, following IL-1 stimulation. UR241-2 selectively inhibited LSC clonogenicity in primary human AML cells at both diagnosis and relapse, while sparing normal hematopoietic stem and progenitor cells. It also reduced AML engraftment in leukemic mice. Our findings highlight the therapeutic potential of UR241-2 in targeting IL-1/IRAK1/4 signaling to eradicate LSCs and improve AML outcomes.
Collapse
|
5
|
Pontikoglou CG, Filippatos TD, Matheakakis A, Papadaki HA. Steatotic liver disease in the context of hematological malignancies and anti-neoplastic chemotherapy. Metabolism 2024; 160:156000. [PMID: 39142602 DOI: 10.1016/j.metabol.2024.156000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The rising prevalence of obesity-related illnesses, such as metabolic steatotic liver disease (MASLD), represents a significant global public health concern. This disease affects approximately 30 % of the adult population and is the result of metabolic abnormalities rather than alcohol consumption. Additionally, MASLD is associated with an increased risk of cardiovascular disease (CVD), chronic liver disease, and a variety of cancers, particularly gastrointestinal cancers. Clonal hematopoiesis (CH) is a biological state characterized by the expansion of a population of blood cells derived from a single mutated hematopoietic stem cell. The presence of CH in the absence of a diagnosed blood disorder or cytopenia is known as clonal hematopoiesis of indeterminate potential (CHIP), which itself increases the risk of hematological malignancies and CVD. Steatotic liver disease may also complicate the clinical course of cancer patients receiving antineoplastic agents, a condition referred to as chemotherapy induced steatohepatitis (CASH). This review will present an outline of the various aspects of MASLD, including complications. Furthermore, it will summarize the existing knowledge on the emerging association between CHIP and MASLD and present the available data on patient cases with concurrent MASLD and hematological neoplasms. Finally, it will provide a brief overview of the chemotherapeutic drugs associated with CASH, the underlying pathophysiologic mechanisms and their clinical implications.
Collapse
Affiliation(s)
- Charalampos G Pontikoglou
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Theodosios D Filippatos
- Department of Internal Medicine, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Angelos Matheakakis
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece.
| |
Collapse
|
6
|
Bidikian A, Bewersdorf JP, Shallis RM, Getz TM, Stempel JM, Kewan T, Stahl M, Zeidan AM. Targeted therapies for myelodysplastic syndromes/neoplasms (MDS): current landscape and future directions. Expert Rev Anticancer Ther 2024; 24:1131-1146. [PMID: 39367718 DOI: 10.1080/14737140.2024.2414071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
INTRODUCTION Myelodysplastic syndromes/neoplasms (MDS) are a heterogeneous group of hematologic malignancies that are stratified into high-risk (HR-MDS) and low-risk (LR-MDS) categories. Until recently, LR-MDS has been typically managed by supportive measures and erythropoiesis-stimulating agents (ESAs); whereas management of HR-MDS typically included hypomethylating agents and allogeneic hematopoietic stem cell transplant. However, the limited rates and durations of response observed with these interventions prompted the search for targeted therapies to improve the outcomes among patients with MDS. AREAS COVERED Here, we review the current landscape of targeted therapies in MDS. These include pyruvate kinase and hypoxia-inducible factor (HIF) activators; TGF-beta, telomerase, BCL2 and isocitrate dehydrogenase (IDH) inhibitors; as well as novel approaches targeting inflammation, pyroptosis, immune evasion, and RNA splicing machinery. EXPERT OPINION This review highlights the progress and challenges in MDS treatment. Despite some promising results, many therapies remain in early development or have faced setbacks, emphasizing the need for a more comprehensive understanding of the disease's pathobiology. Continued research into targeted therapies, homogenous clinical trial designs, as well as increased incorporation of molecular prognostic tools and artificial intelligence into trial design are essential for developing effective treatments for MDS and improving patient outcomes.
Collapse
Affiliation(s)
- Aram Bidikian
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Jan P Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Rory M Shallis
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Ted M Getz
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Jessica M Stempel
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Tariq Kewan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
7
|
Wang Q, Han J, Wei M, Miao H, Zhang M, Wu B, Chen Y, Zheng Y, Gale RP, Yin B. Multi-Walled Carbon Nanotubes Accelerate Leukaemia Development in a Mouse Model. TOXICS 2024; 12:646. [PMID: 39330574 PMCID: PMC11435454 DOI: 10.3390/toxics12090646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Inflammation is associated with an increased risk of developing various cancers in both animals and humans, primarily solid tumors but also myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). Multi-walled carbon nanotubes (MWCNTs), a type of carbon nanotubes (CNTs) increasingly used in medical research and other fields, are leading to a rising human exposure. Our study demonstrated that exposing mice to MWCNTs accelerated the progression of spontaneous MOL4070LTR virus-induced leukemia. Additionally, similar exposures elevated pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α and induced reactive oxygen species (ROS) in a murine macrophage cell line. These effects were significantly reduced in immunodeficient mice and when mice were treated with methoxypolyethylene glycol amine (PEG)-modified MWCNTs. These findings underscore the necessity of evaluating the safety of MWCNTs, particularly for those with hematologic cancers.
Collapse
Affiliation(s)
- Qingqing Wang
- Clinical Medical Research Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China; (Q.W.); (J.H.); (M.W.)
| | - Jingdan Han
- Clinical Medical Research Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China; (Q.W.); (J.H.); (M.W.)
| | - Mujia Wei
- Clinical Medical Research Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China; (Q.W.); (J.H.); (M.W.)
| | - Huikai Miao
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Min Zhang
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Biao Wu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Yao Chen
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Yanwen Zheng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China;
| | - Robert Peter Gale
- Haematology Research Centre, Department of Immunology and Inflammation, Imperial College London, London SW7 2AZ, UK;
| | - Bin Yin
- Clinical Medical Research Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China; (Q.W.); (J.H.); (M.W.)
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China;
| |
Collapse
|
8
|
Sharifi MJ, Xu L, Nasiri N, Ashja‐Arvan M, Soleimanzadeh H, Ganjalikhani‐Hakemi M. Immune-dysregulation harnessing in myeloid neoplasms. Cancer Med 2024; 13:e70152. [PMID: 39254117 PMCID: PMC11386321 DOI: 10.1002/cam4.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Myeloid malignancies arise in bone marrow microenvironments and shape these microenvironments in favor of malignant development. Immune suppression is one of the most important stages in myeloid leukemia progression. Leukemic clone expansion and immune dysregulation occur simultaneously in bone marrow microenvironments. Complex interactions emerge between normal immune system elements and leukemic clones in the bone marrow. In recent years, researchers have identified several of these pathological interactions. For instance, recent works shows that the secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), from bone marrow stromal cells contributes to immune dysregulation and the selective proliferation of JAK2V617F+ clones in myeloproliferative neoplasms. Moreover, inflammasome activation and sterile inflammation result in inflamed microenvironments and the development of myelodysplastic syndromes. Additional immune dysregulations, such as exhaustion of T and NK cells, an increase in regulatory T cells, and impairments in antigen presentation are common findings in myeloid malignancies. In this review, we discuss the role of altered bone marrow microenvironments in the induction of immune dysregulations that accompany myeloid malignancies. We also consider both current and novel therapeutic strategies to restore normal immune system function in the context of myeloid malignancies.
Collapse
Affiliation(s)
- Mohammad Jafar Sharifi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan UniversityGuangzhouChina
| | - Nahid Nasiri
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran
| | - Mehnoosh Ashja‐Arvan
- Regenerative and Restorative Medicine Research Center (REMER)Research Institute of Health sciences and Technology (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| | - Hadis Soleimanzadeh
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran
| | - Mazdak Ganjalikhani‐Hakemi
- Regenerative and Restorative Medicine Research Center (REMER)Research Institute of Health sciences and Technology (SABITA), Istanbul Medipol UniversityIstanbulTurkey
- Department of Immunology, Faculty of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
9
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
10
|
Weidner H, Baschant U, Ledesma-Colunga MG, Basiak K, Tsourdi E, Sockel K, Götze KS, Rivière J, Platzbecker U, Hofbauer LC, Rauner M. Bone marrow transplantation reduces FGF-23 levels and restores bone formation in myelodysplastic neoplasms. Leukemia 2024; 38:1853-1857. [PMID: 38906963 PMCID: PMC11286507 DOI: 10.1038/s41375-024-02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Affiliation(s)
- Heike Weidner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Maria G Ledesma-Colunga
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Karolina Basiak
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Katja Sockel
- Department of Medicine I, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Katharina S Götze
- Department of Medicine III, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Cancer Consortium (DKTK), partner sites Dresden and Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Center for Cancer Research (BZKF), Munich, Germany
| | - Jennifer Rivière
- Department of Medicine III, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Uwe Platzbecker
- German Cancer Consortium (DKTK), partner sites Dresden and Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner sites Dresden and Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
11
|
Caiado F, Manz MG. IL-1 in aging and pathologies of hematopoietic stem cells. Blood 2024; 144:368-377. [PMID: 38781562 DOI: 10.1182/blood.2023023105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT Defense-oriented inflammatory reactivity supports survival at younger age but might contribute to health impairments in modern, aging societies. The interleukin-1 (IL-1) cytokines are highly conserved and regulated, pleiotropic mediators of inflammation, essential to respond adequately to infection and tissue damage but also with potential host damaging effects when left unresolved. In this review, we discuss how continuous low-level IL-1 signaling contributes to aging-associated hematopoietic stem and progenitor cell (HSPC) functional impairments and how this inflammatory selective pressure acts as a driver of more profound hematological alterations, such as clonal hematopoiesis of indeterminate potential, and to overt HSPC diseases, like myeloproliferative and myelodysplastic neoplasia as well as acute myeloid leukemia. Based on this, we outline how IL-1 pathway inhibition might be used to prevent or treat inflammaging-associated HSPC pathologies.
Collapse
Affiliation(s)
- Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Kubota S, Sun Y, Morii M, Bai J, Ideue T, Hirayama M, Sorin S, Eerdunduleng, Yokomizo-Nakano T, Osato M, Hamashima A, Iimori M, Araki K, Umemoto T, Sashida G. Chromatin modifier Hmga2 promotes adult hematopoietic stem cell function and blood regeneration in stress conditions. EMBO J 2024; 43:2661-2684. [PMID: 38811851 PMCID: PMC11217491 DOI: 10.1038/s44318-024-00122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
The molecular mechanisms governing the response of hematopoietic stem cells (HSCs) to stress insults remain poorly defined. Here, we investigated effects of conditional knock-out or overexpression of Hmga2 (High mobility group AT-hook 2), a transcriptional activator of stem cell genes in fetal HSCs. While Hmga2 overexpression did not affect adult hematopoiesis under homeostasis, it accelerated HSC expansion in response to injection with 5-fluorouracil (5-FU) or in vitro treatment with TNF-α. In contrast, HSC and megakaryocyte progenitor cell numbers were decreased in Hmga2 KO animals. Transcription of inflammatory genes was repressed in Hmga2-overexpressing mice injected with 5-FU, and Hmga2 bound to distinct regions and chromatin accessibility was decreased in HSCs upon stress. Mechanistically, we found that casein kinase 2 (CK2) phosphorylates the Hmga2 acidic domain, promoting its access and binding to chromatin, transcription of anti-inflammatory target genes, and the expansion of HSCs under stress conditions. Notably, the identified stress-regulated Hmga2 gene signature is activated in hematopoietic stem progenitor cells of human myelodysplastic syndrome patients. In sum, these results reveal a TNF-α/CK2/phospho-Hmga2 axis controlling adult stress hematopoiesis.
Collapse
Affiliation(s)
- Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuqi Sun
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Mariko Morii
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Ideue
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mayumi Hirayama
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Supannika Sorin
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eerdunduleng
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motomi Osato
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of General Internal Medicine, Kumamoto Kenhoku Hospital, Kumamoto, Japan
| | - Ai Hamashima
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mihoko Iimori
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
13
|
Belmonte M, Cabrera-Cosme L, Øbro NF, Li J, Grinfeld J, Milek J, Bennett E, Irvine M, Shepherd MS, Cull AH, Boyd G, Riedel LM, Chi Che JL, Oedekoven CA, Baxter EJ, Green AR, Barlow JL, Kent DG. Increased CXCL10 (IP-10) is associated with advanced myeloproliferative neoplasms and its loss dampens erythrocytosis in mouse models. Exp Hematol 2024; 135:104246. [PMID: 38763471 DOI: 10.1016/j.exphem.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Key studies in pre-leukemic disorders have linked increases in pro-inflammatory cytokines with accelerated phases of the disease, but the precise role of the cellular microenvironment in disease initiation and evolution remains poorly understood. In myeloproliferative neoplasms (MPNs), higher levels of specific cytokines have been previously correlated with increased disease severity (tumor necrosis factor-alpha [TNF-α], interferon gamma-induced protein-10 [IP-10 or CXCL10]) and decreased survival (interleukin 8 [IL-8]). Whereas TNF-α and IL-8 have been studied by numerous groups, there is a relative paucity of studies on IP-10 (CXCL10). Here we explore the relationship of IP-10 levels with detailed genomic and clinical data and undertake a complementary cytokine screen alongside functional assays in a wide range of MPN mouse models. Similar to patients, levels of IP-10 were increased in mice with more severe disease phenotypes (e.g., JAK2V617F/V617F TET2-/- double-mutant mice) compared with those with less severe phenotypes (e.g., CALRdel52 or JAK2+/V617F mice) and wild-type (WT) littermate controls. Although exposure to IP-10 did not directly alter proliferation or survival in single hematopoietic stem cells (HSCs) in vitro, IP-10-/- mice transplanted with disease-initiating HSCs developed an MPN phenotype more slowly, suggesting that the effect of IP-10 loss was noncell-autonomous. To explore the broader effects of IP-10 loss, we crossed IP-10-/- mice into a series of MPN mouse models and showed that its loss reduces the erythrocytosis observed in mice with the most severe phenotype. Together, these data point to a potential role for blocking IP-10 activity in the management of MPNs.
Collapse
Affiliation(s)
- Miriam Belmonte
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Lilia Cabrera-Cosme
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Nina F Øbro
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Li
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jacob Grinfeld
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| | - Joanna Milek
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Ellie Bennett
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Melissa Irvine
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Mairi S Shepherd
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa H Cull
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Grace Boyd
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Lisa M Riedel
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - James Lok Chi Che
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Caroline A Oedekoven
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - E Joanna Baxter
- Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| | - Anthony R Green
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| | - Jillian L Barlow
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - David G Kent
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom.
| |
Collapse
|
14
|
Vinci L, Strahm B, Speckmann C, Erlacher M. The different faces of GATA2 deficiency: implications for therapy and surveillance. Front Oncol 2024; 14:1423856. [PMID: 38993648 PMCID: PMC11236594 DOI: 10.3389/fonc.2024.1423856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
GATA2 deficiency is one of the most common genetic predispositions to pediatric myelodysplastic syndrome (MDS) in children and adolescents. The wide spectrum of disease comprises, among others, hematological, immunological and pulmonary manifestations, as well as occasionally distinct organ anomalies. Due to the elevated risk of progression, nearly all individuals with GATA2-related MDS eventually undergo a hematopoietic stem cell transplantation (HSCT) at some point in their lives. Nevertheless, the optimal timing, method, and even the indication for HSCT in certain cases are still matter of debate and warrant further research. In this article, we report five patients with different hematological and immunological manifestations of GATA2 deficiency ranging from immunodeficiency and refractory cytopenia of childhood without chromosomal aberrations to relapsed MDS-related acute myeloid leukemia. We discuss the adopted strategies, including intensity of surveillance, indication and timing of HSCT, based on morphological, clinical and molecular markers, as well as individual patient needs. We conclude that a better characterization of the natural disease course, a better understanding of the prognostic significance of somatic aberrations and a thorough evaluation of patients´ perspectives and preferences are required to achieve a personalized approach aimed at improving the care of these patients.
Collapse
Affiliation(s)
- Luca Vinci
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
15
|
Barreyro L, Sampson AM, Hueneman K, Choi K, Christie S, Ramesh V, Wyder M, Wang D, Pujato M, Greis KD, Huang G, Starczynowski DT. Dysregulated innate immune signaling cooperates with RUNX1 mutations to transform an MDS-like disease to AML. iScience 2024; 27:109809. [PMID: 38784013 PMCID: PMC11112336 DOI: 10.1016/j.isci.2024.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Dysregulated innate immune signaling is linked to preleukemic conditions and myeloid malignancies. However, it is unknown whether sustained innate immune signaling contributes to malignant transformation. Here we show that cell-intrinsic innate immune signaling driven by miR-146a deletion (miR-146aKO), a commonly deleted gene in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), cooperates with mutant RUNX1 (RUNX1mut) to initially induce marrow failure and features of MDS. However, miR-146aKO hematopoietic stem and/or progenitor cells (HSPCs) expressing RUNX1mut eventually progress to a fatal AML. miR-146aKO HSPCs exhaust during serial transplantation, while expression of RUNX1mut restored their hematopoietic cell function. Thus, HSPCs exhibiting dysregulated innate immune signaling require a second hit to develop AML. Inhibiting the dysregulated innate immune pathways with a TRAF6-UBE2N inhibitor suppressed leukemic miR-146aKO/RUNX1mut HSPCs, highlighting the necessity of TRAF6-dependent cell-intrinsic innate immune signaling in initiating and maintaining AML. These findings underscore the critical role of dysregulated cell-intrinsic innate immune signaling in driving preleukemic cells toward AML progression.
Collapse
Affiliation(s)
- Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Avery M. Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Susanne Christie
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Vighnesh Ramesh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Michael Wyder
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Dehua Wang
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Pathology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Mario Pujato
- Life Sciences Computational Services, LLC, Huntingdon Valley, PA, USA
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Gang Huang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
- Department of Pathology & Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| |
Collapse
|
16
|
Sun L, Zhao Z, Guo J, Qin Y, Yu Q, Shi X, Guo F, Zhang H, Sun X, Gao C, Yang Q. Mitochondrial transplantation confers protection against the effects of ischemic stroke by repressing microglial pyroptosis and promoting neurogenesis. Neural Regen Res 2024; 19:1325-1335. [PMID: 37905882 PMCID: PMC11467935 DOI: 10.4103/1673-5374.385313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/04/2023] [Accepted: 07/28/2023] [Indexed: 11/02/2023] Open
Abstract
Transferring healthy and functional mitochondria to the lateral ventricles confers neuroprotection in a rat model of ischemia-reperfusion injury. Autologous mitochondrial transplantation is also beneficial in pediatric patients with cardiac ischemia-reperfusion injury. Thus, transplantation of functional exogenous mitochondria may be a promising therapeutic approach for ischemic disease. To explore the neuroprotective effect of mitochondria transplantation and determine the underlying mechanism in ischemic stroke, in this study we established a photo-thrombosis-induced mouse model of focal ischemia and administered freshly isolated mitochondria via the tail vein or to the injury site (in situ ). Animal behavior tests, immunofluorescence staining, 2,3,5-triphenyltetrazolium chloride (TTC) staining, mRNA-seq, and western blotting were used to assess mouse anxiety and memory, cortical infarct area, pyroptosis, and neurogenesis, respectively. Using bioinformatics analysis, western blotting, co-immunoprecipitation, and mass spectroscopy, we identified S100 calcium binding protein A9 (S100A9) as a potential regulator of mitochondrial function and determined its possible interacting proteins. Interactions between exogenous and endogenous mitochondria, as well as the effect of exogenous mitochondria on recipient microglia, were assessed in vitro . Our data showed that: (1) mitochondrial transplantation markedly reduced mortality and improved emotional and cognitive function, as well as reducing infarct area, inhibiting pyroptosis, and promoting cortical neurogenesis; (2) microglial expression of S100A9 was markedly increased by ischemic injury and regulated mitochondrial function; (3) in vitro , exogenous mitochondria enhanced mitochondrial function, reduced redox stress, and regulated microglial polarization and pyroptosis by fusing with endogenous mitochondria; and (4) S100A9 promoted internalization of exogenous mitochondria by the microglia, thereby amplifying their pro-proliferation and anti-inflammatory effects. Taken together, our findings show that mitochondrial transplantation protects against the deleterious effects of ischemic stroke by suppressing pyroptosis and promoting neurogenesis, and that S100A9 plays a vital role in promoting internalization of exogenous mitochondria.
Collapse
Affiliation(s)
- Li Sun
- Department of Experimental Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Zhaoyan Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Jing Guo
- Department of Experimental Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yuan Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qian Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Xiaolong Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Fei Guo
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Haiqin Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qian Yang
- Department of Experimental Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
17
|
Feng Z, Liao M, Guo X, Li L, Zhang L. Effects of immune cells in mediating the relationship between gut microbiota and myelodysplastic syndrome: a bidirectional two-sample, two-step Mendelian randomization study. Discov Oncol 2024; 15:199. [PMID: 38819469 PMCID: PMC11143100 DOI: 10.1007/s12672-024-01061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The definitive establishment of a causal relationship between gut microbiota and myelodysplastic syndrome (MDS) has not been achieved. Furthermore, the involvement of immune cells in mediating the connection between gut microbiota and MDS is presently unclear. METHODS To elucidate the bidirectional correlation between gut microbiota and MDS, as well as to investigate the mediating role of immune cells, a bidirectional two-sample, two-step Mendelian randomization (MR) study was conducted. Summary statistics were obtained from genome-wide association studies (GWAS), including MDS (456,348 individuals), gut microbiota (18,340 individuals), and 731 immune cells signatures (3757 individuals). RESULTS Genetically predicted eight gut microbiota traits were significantly associated with MDS risk, but not vice versa. Through biological annotation of host-microbiome shared genes, we found that immune regulation may mediate the impact of gut microbiota on MDS. Subsequently, twenty-three immunophenotypes that exhibited significant associations with MDS risk and five of these immunophenotypes were under the causal influence of gut microbiota. Importantly, the causal effects of gut microbiota on MDS were significantly mediated by five immunophenotypes, including CD4 +T cell %leukocyte, CD127 on CD45RA - CD4 not regulatory T cell, CD45 on CD33 + HLA DR + WHR, CD33 on basophil, and Monocyte AC. CONCLUSIONS Gut microbiota was causally associated with MDS risk, and five specific immunophenotypes served as potential causal mediators of the effect of gut microbiota on MDS. Understanding the causality among gut microbiota, immune cells and MDS is critical in identifying potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Zuxi Feng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Minjing Liao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xuege Guo
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
18
|
Park HS, Lee BC, Chae DH, Yu A, Park JH, Heo J, Han MH, Cho K, Lee JW, Jung JW, Dunbar CE, Oh MK, Yu KR. Cigarette smoke impairs the hematopoietic supportive property of mesenchymal stem cells via the production of reactive oxygen species and NLRP3 activation. Stem Cell Res Ther 2024; 15:145. [PMID: 38764093 PMCID: PMC11103961 DOI: 10.1186/s13287-024-03731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) play important roles in tissue homeostasis by providing a supportive microenvironmental niche for the hematopoietic system. Cigarette smoking induces systemic abnormalities, including an impeded recovery process after hematopoietic stem cell transplantation. However, the role of cigarette smoking-mediated alterations in MSC niche function have not been investigated. METHODS In the present study, we investigated whether exposure to cigarette smoking extract (CSE) disrupts the hematopoietic niche function of MSCs, and pathways impacted. To investigate the effects on bone marrow (BM)-derived MSCs and support of hematopoietic stem and progenitor cells (HSPCs), mice were repeatedly infused with the CSE named 3R4F, and hematopoietic stem and progenitor cells (HSPCs) supporting function was determined. The impact of 3R4F on MSCs at cellular level were screened by bulk-RNA sequencing and subsequently validated through qRT-PCR. Specific inhibitors were treated to verify the ROS or NLRP3-specific effects, and the cells were then transplanted into the animal model or subjected to coculture with HSPCs. RESULTS Both direct ex vivo and systemic in vivo MSC exposure to 3R4F resulted in impaired engraftment in a humanized mouse model. Furthermore, transcriptomic profile analysis showed significantly upregulated signaling pathways related to reactive oxygen species (ROS), inflammation, and aging in 3R4F-treated MSCs. Notably, ingenuity pathway analysis revealed the activation of NLRP3 inflammasome signaling pathway in 3R4F-treated MSCs, and pretreatment with the NLRP3 inhibitor MCC950 rescued the HSPC-supporting ability of 3R4F-treated MSCs. CONCLUSION In conclusion, these findings indicate that exposure to CSE reduces HSPCs supportive function of MSCs by inducing robust ROS production and subsequent NLRP3 activation.
Collapse
Affiliation(s)
- Hyun Sung Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Byung-Chul Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Dong-Hoon Chae
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Aaron Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jae Han Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jiyoung Heo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Myoung Hee Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Keonwoo Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Ji-Won Jung
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mi-Kyung Oh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Kyung-Rok Yu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
19
|
Matsui S, Ri C, Bolanos LC, Choi K, Shibamiya A, Ishii A, Takaishi K, Oshima-Hasegawa N, Tsukamoto S, Takeda Y, Mimura N, Yoshimi A, Yokote K, Starczynowski DT, Sakaida E, Muto T. Metabolic reprogramming regulated by TRAF6 contributes to the leukemia progression. Leukemia 2024; 38:1032-1045. [PMID: 38609495 PMCID: PMC11073974 DOI: 10.1038/s41375-024-02245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
TNF receptor associated factor 6 (TRAF6) is an E3 ubiquitin ligase that has been implicated in myeloid malignancies. Although altered TRAF6 expression is observed in human acute myeloid leukemia (AML), its role in the AML pathogenesis remains elusive. In this study, we showed that the loss of TRAF6 in AML cells significantly impairs leukemic function in vitro and in vivo, indicating its functional importance in AML subsets. Loss of TRAF6 induces metabolic alterations, such as changes in glycolysis, TCA cycle, and nucleic acid metabolism as well as impaired mitochondrial membrane potential and respiratory capacity. In leukemic cells, TRAF6 expression shows a positive correlation with the expression of O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT), which catalyzes the addition of O-GlcNAc to target proteins involved in metabolic regulation. The restoration of growth capacity and metabolic activity in leukemic cells with TRAF6 loss, achieved through either forced expression of OGT or pharmacological inhibition of O-GlcNAcase (OGA) that removes O-GlcNAc, indicates the significant role of O-GlcNAc modification in the TRAF6-related cellular and metabolic dynamics. Our findings highlight the oncogenic function of TRAF6 in leukemia and illuminate the novel TRAF6/OGT/O-GlcNAc axis as a potential regulator of metabolic reprogramming in leukemogenesis.
Collapse
Affiliation(s)
- Shinichiro Matsui
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Chihiro Ri
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Asuka Shibamiya
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Arata Ishii
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Koji Takaishi
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Nagisa Oshima-Hasegawa
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | | | - Yusuke Takeda
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Naoya Mimura
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Tomoya Muto
- Department of Hematology, Chiba University Hospital, Chiba, Japan.
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
20
|
Liu S, Joshi K, Zhang L, Li W, Mack R, Runde A, Hagen PA, Barton K, Breslin P, Ji HL, Kini AR, Wang Z, Zhang J. Caspase 8 deletion causes infection/inflammation-induced bone marrow failure and MDS-like disease in mice. Cell Death Dis 2024; 15:278. [PMID: 38637559 PMCID: PMC11026525 DOI: 10.1038/s41419-024-06660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of pre-leukemic hematopoietic disorders characterized by cytopenia in peripheral blood due to ineffective hematopoiesis and normo- or hypercellularity and morphologic dysplasia in bone marrow (BM). An inflammatory BM microenvironment and programmed cell death of hematopoietic stem/progenitor cells (HSPCs) are thought to be the major causes of ineffective hematopoiesis in MDS. Pyroptosis, apoptosis and necroptosis (collectively, PANoptosis) are observed in BM tissues of MDS patients, suggesting an important role of PANoptosis in MDS pathogenesis. Caspase 8 (Casp8) is a master regulator of PANoptosis, which is downregulated in HSPCs from most MDS patients and abnormally spliced in HSPCs from MDS patients with SRSF2 mutation. To study the role of PANoptosis in hematopoiesis, we generated inducible Casp8 knockout mice (Casp8-/-). Mx1-Cre-Casp8-/- mice died of BM failure within 10 days of polyI:C injections due to depletion of HSPCs. Rosa-ERT2Cre-Casp8-/- mice are healthy without significant changes in BM hematopoiesis within the first 1.5 months after Casp8 deletion. Such mice developed BM failure upon infection or low dose polyI:C/LPS injections due to the hypersensitivity of Casp8-/- HSPCs to infection or inflammation-induced necroptosis which can be prevented by Ripk3 deletion. However, impaired self-renewal capacity of Casp8-/- HSPCs cannot be rescued by Ripk3 deletion due to activation of Ripk1-Tbk1 signaling. Most importantly, mice transplanted with Casp8-/- BM cells developed MDS-like disease within 4 months of transplantation as demonstrated by anemia, thrombocytopenia and myelodysplasia. Our study suggests an essential role for a balance in Casp8, Ripk3-Mlkl and Ripk1-Tbk1 activities in the regulation of survival and self-renewal of HSPCs, the disruption of which induces inflammation and BM failure, resulting in MDS-like disease.
Collapse
Affiliation(s)
- Shanhui Liu
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Kanak Joshi
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, 215123, China
| | - Wenyan Li
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Ryan Mack
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Austin Runde
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Patrick A Hagen
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Medicine, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Kevin Barton
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Medicine, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Departments of Biology and Molecular/Cellular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Hong-Long Ji
- Department of Surgery, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Ameet R Kini
- Departments of Pathology and Radiation Oncology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Zhiping Wang
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China.
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
- Departments of Pathology and Radiation Oncology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
21
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
22
|
Rodriguez-Sevilla JJ, Colla S. T-cell dysfunctions in myelodysplastic syndromes. Blood 2024; 143:1329-1343. [PMID: 38237139 DOI: 10.1182/blood.2023023166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 03/25/2024] Open
Abstract
ABSTRACT Escape from immune surveillance is a hallmark of cancer. Immune deregulation caused by intrinsic and extrinsic cellular factors, such as altered T-cell functions, leads to immune exhaustion, loss of immune surveillance, and clonal proliferation of tumoral cells. The T-cell immune system contributes to the pathogenesis, maintenance, and progression of myelodysplastic syndrome (MDS). Here, we comprehensively reviewed our current biological knowledge of the T-cell compartment in MDS and recent advances in the development of immunotherapeutic strategies, such as immune checkpoint inhibitors and T-cell- and antibody-based adoptive therapies that hold promise to improve the outcome of patients with MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
23
|
Soltani M, Sharifi MJ, Khalilian P, Sharifi M, Nematollahi P, Shapourian H, Ganjalikhani Hakemi M. Potential Diagnostic Value of Abnormal Pyroptosis Genes Expression in Myelodysplastic Syndromes (MDS): A Primary Observational Cohort Study. Int J Hematol Oncol Stem Cell Res 2024; 18:156-164. [PMID: 38868810 PMCID: PMC11166493 DOI: 10.18502/ijhoscr.v18i2.15371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/06/2023] [Indexed: 06/14/2024] Open
Abstract
Background: Myelodysplastic syndromes (MDS) are determined by ineffective hematopoiesis and bone marrow cytological dysplasia with somatic gene mutations and chromosomal abnormalities. Accumulating evidence has revealed the pivotal role of NLRP3 inflammasome activation and pyroptotic cell death in the pathogenesis of MDS. Although MDS can be diagnosed with a variety of morphologic and cytogenetic tests, most of these tests have limitations or problems in practice. Materials and Methods: In the present study, we evaluated the expression of genes that form the inflammasome (NLRP3, ASC, and CASP1) in bone marrow specimens of MDS patients and compared the results with those of other leukemias to evaluate their diagnostic value for MDS. Primary samples of this observational cohort study were collected from aspiration samples of patients with myelodysplastic syndromes (27 cases) and patients with non-myelodysplastic syndrome hematological cancers (45 cases). After RNA extraction and c.DNA synthesis, candidate transcripts and housekeeping transcripts were measured by real-time PCR method (SYBER Green assay). Using Kruskal-Wallis the relative gene expressions were compared and differences with p value less than 0.05 were considered as significant. Discrimination capability, cut-off, and area under curve (AUC) of all markers were analyzed with recessive operation curve (ROC) analysis. Results: We found that Caspase-1 and ASC genes expressed at more levels in MDS specimens compared to non-MDS hematological malignancies. A relative average expression of 10.22 with a p-value of 0.001 and 1.86 with p=0.019 was detected for Caspase-1 and ASC, respectively. ROC curve analysis shows an AUC of 0.739 with p=0.0001 for Caspase-1 and an AUC of 0.665 with p=0.0139 for ASC to MDS discrimination. Conclusion: Our results show that Caspase-1 and ASC gene expression levels can be used as potential biomarkers for MDS diagnosis. Prospective studies with large sample numbers are suggested.
Collapse
Affiliation(s)
- Mohammad Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Jafar Sharifi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Khalilian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pardis Nematollahi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mazdak Ganjalikhani Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute of Health sciences and Technology (SABITA), Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
24
|
Zhu Y, He J, Wei R, Liu J. Construction and experimental validation of a novel ferroptosis-related gene signature for myelodysplastic syndromes. Immun Inflamm Dis 2024; 12:e1221. [PMID: 38578040 PMCID: PMC10996383 DOI: 10.1002/iid3.1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders characterized by morphological abnormalities and peripheral blood cytopenias, carrying a risk of progression to acute myeloid leukemia. Although ferroptosis is a promising target for MDS treatment, the specific roles of ferroptosis-related genes (FRGs) in MDS diagnosis have not been elucidated. METHODS MDS-related microarray data were obtained from the Gene Expression Omnibus database. A comprehensive analysis of FRG expression levels in patients with MDS and controls was conducted, followed by the use of multiple machine learning methods to establish prediction models. The predictive ability of the optimal model was evaluated using nomogram analysis and an external data set. Functional analysis was applied to explore the underlying mechanisms. The mRNA levels of the model genes were verified in MDS clinical samples by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The extreme gradient boosting model demonstrated the best performance, leading to the identification of a panel of six signature genes: SREBF1, PTPN6, PARP9, MAP3K11, MDM4, and EZH2. Receiver operating characteristic curves indicated that the model exhibited high accuracy in predicting MDS diagnosis, with area under the curve values of 0.989 and 0.962 for the training and validation cohorts, respectively. Functional analysis revealed significant associations between these genes and the infiltrating immune cells. The expression levels of these genes were successfully verified in MDS clinical samples. CONCLUSION Our study is the first to identify a novel model using FRGs to predict the risk of developing MDS. FRGs may be implicated in MDS pathogenesis through immune-related pathways. These findings highlight the intricate correlation between ferroptosis and MDS, offering insights that may aid in identifying potential therapeutic targets for this debilitating disorder.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun He
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Rong Wei
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
25
|
Khalilian P, Eskandari N, Sharifi MJ, Soltani M, Nematollahi P. Toll-Like Receptor 4, 2, and Interleukin 1 Receptor Associated Kinase4: Possible Diagnostic Biomarkers in Myelodysplastic Syndrome Patients. Adv Biomed Res 2024; 13:17. [PMID: 38525404 PMCID: PMC10958736 DOI: 10.4103/abr.abr_67_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 03/26/2024] Open
Abstract
Background Myelodysplastic syndrome (MDS) is a clonal hematologic disorder that requires the integration of morphologic, cytogenetic, hematologic, and clinical findings for a successful diagnosis. Trying to find ancillary tests such as biomarkers improve the diagnosis process. Several studies showed that a disordered immune system is associated with MDS. The chronic activated innate immune system, particularly the Toll-like receptors (TLRs) pathway could be involved in the induction of the inflammation. Materials and Methods In the present study, we investigated the expression of TLR2, TLR4, and IRAK4 in bone marrow (BM) of MDS patients, the leukemia group, and the healthy group. For this purpose, we assessed the expression of TLR2, TLR4, and IRAK4 by real time-PCR. Results In line with new findings, we demonstrated that the expression of TLR2, TLR4, and IRAK4 significantly increased in MDS BM compared with the healthy group. Moreover, IRAK4 expression raised significantly in MDS patients compared with other studied hematologic neoplasms. Also, the expression levels of TLR2 and TLR4 significantly increased in MDS in comparison to some studied non-MDS malignancies (P ˂ 0.05). Receiver operating characteristics (ROC) analysis and area under the curve (AUC) suggested that the expression of TLR2, TLR4, and IRAK4 (AUC = 0.702, AUC = 0.75, and AUC = 0.682, respectively) had acceptable diagnostic values to identify MDS from the other understudied leukemias. Conclusion Overall, the expression of TLR2, TLR4, and IRAK4 could be potential biomarkers for discriminating MDS from some hematologic disorders.
Collapse
Affiliation(s)
- Parvin Khalilian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Jafar Sharifi
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pardis Nematollahi
- Department of Pathology, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Vukotić M, Kapor S, Simon F, Cokic V, Santibanez JF. Mesenchymal stromal cells in myeloid malignancies: Immunotherapeutic opportunities. Heliyon 2024; 10:e25081. [PMID: 38314300 PMCID: PMC10837636 DOI: 10.1016/j.heliyon.2024.e25081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Myeloid malignancies are clonal disorders of the progenitor cells or hematopoietic stem cells, including acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic cells affect the proliferation and differentiation of other hematopoietic lineages in the bone marrow and peripheral blood, leading to severe and life-threatening complications. Mesenchymal stromal cells (MSCs) residing in the bone marrow exert immunosuppressive functions by suppressing innate and adaptive immune systems, thus creating a supportive and tolerant microenvironment for myeloid malignancy progression. This review summarizes the significant features of MSCs in myeloid malignancies, including their role in regulating cell growth, cell death, and antineoplastic resistance, in addition to their immunosuppressive contributions. Understanding the implications of MSCs in myeloid malignancies could pave the path for potential use in immunotherapy.
Collapse
Affiliation(s)
- Milica Vukotić
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Suncica Kapor
- Department of Hematology, Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje,” University of Belgrade, Serbia
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile
| | - Vladan Cokic
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
27
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
28
|
Zhou W, Feng M, Qi F, Qiao J, Fan L, Zhang L, Hu X, Huang C. A pyroptosis-related gene expression signature predicts immune microenvironment and prognosis in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2024; 281:953-963. [PMID: 38063904 DOI: 10.1007/s00405-023-08316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous and aggressive malignancy with a poor prognosis. Pyroptosis triggered by gasdermins family proteins is reported vital for tumor microenvironment and cancer progression. However, pyroptosis-related gene expression and its relationship with immune infiltration and prognosis of HNSCC have not been fully defined. MATERIAL AND METHODS RNA-sequencing data of HNSCC patients were acquired from The Cancer Genome Atlas (TCGA) database. A pyroptosis-related gene expression signature and infiltrated immune cells were analyzed. Univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression and nomogram analyses were used to construct a clinical-molecular risk model for survival prognosis. RESULTS HNSCC was classified into three different molecular subtypes based on the expression information of pyroptosis-related genes. Immune cell infiltration was demonstrated to be distinct between the three subtypes. The segregation of patients into the high-risk group and low-risk group, were carried out using the signature of differential expression genes (DEGs) signature among the three molecular subtypes. The precision of this signature was corroborated by Receiver operating characteristic curve (ROC) analysis with the 3-year area under time-dependent ROC curve (AUC) reaching 0.711. The risk model was validated in another dataset from the Gene Expression Omnibus (GEO) database. Subsequently we established a clinical-molecular nomogram which combined the risk score with age and stage. The calibration plots for predicting the overall survival rate of 1-, 3-, and 5-years indicated that the nomogram performs well. CONCLUSION The expression signature that encompasses pyroptosis-related genes could be used as molecular classification for HNSCC and pyroptosis might be a promising therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Mei Feng
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Fei Qi
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Fan
- Department of Stomatology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Long Zhang
- Department of Stomatology, Shenzhen Guangming District People's Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China
| | - Xuegang Hu
- Department of Stomatology, Shenzhen Guangming District People's Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China.
| | - Chunyu Huang
- Medical Affairs Department, Shenzhen Guangming District People's Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
29
|
Kanagal-Shamanna R, Beck DB, Calvo KR. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. ANNUAL REVIEW OF PATHOLOGY 2024; 19:479-506. [PMID: 37832948 DOI: 10.1146/annurev-pathmechdis-051222-122724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA;
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Casalin I, De Stefano A, Ceneri E, Cappellini A, Finelli C, Curti A, Paolini S, Parisi S, Zannoni L, Boultwood J, McCubrey JA, Suh PG, Ramazzotti G, Fiume R, Ratti S, Manzoli L, Cocco L, Follo MY. Deciphering signaling pathways in hematopoietic stem cells: the molecular complexity of Myelodysplastic Syndromes (MDS) and leukemic progression. Adv Biol Regul 2024; 91:101014. [PMID: 38242820 DOI: 10.1016/j.jbior.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Myelodysplastic Syndromes, a heterogeneous group of hematological disorders, are characterized by abnormalities in phosphoinositide-dependent signaling, epigenetic regulators, apoptosis, and cytokine interactions within the bone marrow microenvironment, contributing to disease pathogenesis and neoplastic growth. Comprehensive knowledge of these pathways is crucial for the development of innovative therapies that aim to restore normal apoptosis and improve patient outcomes.
Collapse
Affiliation(s)
- Irene Casalin
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy.
| | - Alessia De Stefano
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Eleonora Ceneri
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Letizia Zannoni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Giulia Ramazzotti
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Science, Cellular Signaling Laboratory, University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Hurtado-Navarro L, Cuenca-Zamora EJ, Zamora L, Bellosillo B, Such E, Soler-Espejo E, Martínez-Banaclocha H, Hernández-Rivas JM, Marco-Ayala J, Martínez-Alarcón L, Linares-Latorre L, García-Ávila S, Amat-Martínez P, González T, Arnan M, Pomares-Marín H, Carreño-Tarragona G, Chen-Liang TH, Herranz MT, García-Palenciano C, Morales ML, Jerez A, Lozano ML, Teruel-Montoya R, Pelegrín P, Ferrer-Marín F. NLRP3 inflammasome activation and symptom burden in KRAS-mutated CMML patients is reverted by IL-1 blocking therapy. Cell Rep Med 2023; 4:101329. [PMID: 38118408 PMCID: PMC10772462 DOI: 10.1016/j.xcrm.2023.101329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Chronic myelomonocytic leukemia (CMML) is frequently associated with mutations in the rat sarcoma gene (RAS), leading to worse prognosis. RAS mutations result in active RAS-GTP proteins, favoring myeloid cell proliferation and survival and inducing the NLRP3 inflammasome together with the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which promote caspase-1 activation and interleukin (IL)-1β release. Here, we report, in a cohort of CMML patients with mutations in KRAS, a constitutive activation of the NLRP3 inflammasome in monocytes, evidenced by ASC oligomerization and IL-1β release, as well as a specific inflammatory cytokine signature. Treatment of a CMML patient with a KRASG12D mutation using the IL-1 receptor blocker anakinra inhibits NLRP3 inflammasome activation, reduces monocyte count, and improves the patient's clinical status, enabling a stem cell transplant. This reveals a basal inflammasome activation in RAS-mutated CMML patients and suggests potential therapeutic applications of NLRP3 and IL-1 blockers.
Collapse
Affiliation(s)
| | - Ernesto José Cuenca-Zamora
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain
| | - Lurdes Zamora
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Beatriz Bellosillo
- Molecular Biology Laboratory, Pathology Department, Hospital Del Mar, Hospital Del Mar Medical Research Institute, IMIM, Barcelona, Spain
| | - Esperanza Such
- Hematology Department, La Fe University Hospital, Valencia, Spain
| | - Eva Soler-Espejo
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | - Helios Martínez-Banaclocha
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Immunology Service, Hospital Universitario Virgen de La Arrixaca, Murcia, Spain
| | - Jesús M Hernández-Rivas
- Department of Medicine, Universidad de Salamanca, Servicio de Hematología, Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain
| | - Javier Marco-Ayala
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | | | - Lola Linares-Latorre
- Service of Clinical Analysis and Microbiology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Sara García-Ávila
- Department of Hematology, Hospital Del Mar, Barcelona, Spain; IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Paula Amat-Martínez
- Hematology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Teresa González
- Department of Medicine, Universidad de Salamanca, Servicio de Hematología, Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain
| | - Montserrat Arnan
- Hematology Department, Institut Català D'Oncologia (ICO)-Hospital Duran I Reynals, IDIBELL, Barcelona, Spain
| | - Helena Pomares-Marín
- Hematology Department, Institut Català D'Oncologia (ICO)-Hospital Duran I Reynals, IDIBELL, Barcelona, Spain
| | | | - Tzu Hua Chen-Liang
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | - María T Herranz
- Internal Medicine Service, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Carlos García-Palenciano
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario Virgen de La Arrixaca, Murcia, Spain
| | - María Luz Morales
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | - Andrés Jerez
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain
| | - María L Lozano
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain
| | - Raúl Teruel-Montoya
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain.
| | - Francisca Ferrer-Marín
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain.
| |
Collapse
|
32
|
Chen X, Li C, Wang Y, Geng S, Xiao M, Zeng L, Deng C, Li M, Huang X, Weng J, Du X, Lai P. Diagnostic and prognostic value of ferroptosis-related genes in patients with Myelodysplastic neoplasms. Hematology 2023; 28:2288475. [PMID: 38038045 DOI: 10.1080/16078454.2023.2288475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
This study delves into the emerging role of ferroptosis in Myelodysplastic Neoplasms (MDS) and aims to identify a prognostic ferroptosis-related gene signature for MDS. Utilizing RNA-seq data and clinical information from the Gene Expression Omnibus database, the researchers extracted ferroptosis-related genes from the FerrDb website and conducted differential expression analysis using the 'limma' package in R. Hub ferroptosis-related genes in MDS were screened using the "RandomForest" and "carat" R packages. Kaplan -Meier and Cox regression analyses were employed to assess the prognostic role of three identified hub genes (BNIP3, MDM2, and RRM2). Receiver operator characteristic curve analysis confirmed the diagnostic efficacy of these genes. The study delved further into immune infiltration correlations, ncRNA-transcription factor coregulatory network analysis, and the identification of potential therapeutic drugs targeting hub ferroptosis-related genes in MDS. The researchers constructed a 3-gene signature-based risk score using datasets GSE58831 and GSE19429, demonstrating high accuracy (AUC > 0.75) in both datasets for survival prediction in MDS. A nomogram analysis reinforced the prognostic value of the risk-scoring model. Immunological analysis revealed an association between the risk score and immune infiltration. Quantitative reverse transcription polymerase chain reaction (qPCR) data indicated significant expression differences in MDM2, RRM2, and BNIP3 between MDS and healthy bone marrow samples. Notably, MDM2 and RRM2 showed decreased expression, while BNIP3 exhibited increased expression in MDS samples. This comprehensive study concludes that BNIP3, MDM2, and RRM2 hold diagnostic and prognostic significance in MDS and provide valuable insights into immune cell landscapes and potential therapeutic avenues for this condition.
Collapse
Affiliation(s)
- Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chao Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Maozhi Xiao
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lingji Zeng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chengxin Deng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Minming Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
33
|
Putnam CM, Kondeti L, Kesler MBA, Varney ME. Modulating the immune system as a therapeutic target for myelodysplastic syndromes and acute myeloid leukemia. Biochem Cell Biol 2023; 101:481-495. [PMID: 37566901 DOI: 10.1139/bcb-2022-0374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Modulating the immune system to treat diseases, including myeloid malignancies, has resulted in the development of a multitude of novel therapeutics in recent years. Myelodysplastic syndromes or neoplasms (MDS) and acute myeloid leukemia (AML) are hematologic malignancies that arise from defects in hematopoietic stem and progenitor cells (HSPCs). Dysregulated immune responses, especially in innate immune and inflammatory pathways, are highly associated with the acquisition of HSPC defects in MDS and AML pathogenesis. In addition to utilizing the immune system in immunotherapeutic interventions such as chimeric antigen receptor T cell therapy, vaccines, and immune checkpoint inhibitors, mitigating dysregulation of innate immune and inflammatory responses in MDS and AML remains a priority in slowing the initiation and progression of these myeloid malignancies. This review provides a comprehensive summary of the current progress of diverse strategies to utilize or modulate the immune system in the treatment of MDS and AML.
Collapse
Affiliation(s)
- Caroline M Putnam
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Lahari Kondeti
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Meredith B A Kesler
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Melinda E Varney
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| |
Collapse
|
34
|
Nathan DI, Dougherty M, Bhatta M, Mascarenhas J, Marcellino BK. Clonal hematopoiesis and inflammation: A review of mechanisms and clinical implications. Crit Rev Oncol Hematol 2023; 192:104187. [PMID: 37879493 DOI: 10.1016/j.critrevonc.2023.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Clonal hematopoiesis (CH) is defined by the presence of somatic mutations in hematopoietic stem and progenitor cells (HSPC). CH is associated primarily with advancing age and confers an elevated risk of progression to overt hematologic malignancy and cardiovascular disease. Increasingly, CH is associated with a wide range of diseases driven by, and sequelae of, inflammation. Accordingly, there is great interest in better understanding the pathophysiologic and clinical relationship between CH, aging, and disease. Both observational and experimental findings support the concept that CH is a potential common denominator in the inflammatory outcomes of aging. However, there is also evidence that local and systemic inflammatory states promote the growth and select for CH clones. In this review, we aim to provide an up-to-date summary of the nature of the relationship between inflammation and CH, which is central to unlocking potential therapeutic opportunities to prevent progression to myeloid malignancy.
Collapse
Affiliation(s)
- Daniel I Nathan
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Max Dougherty
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manasa Bhatta
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget K Marcellino
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
35
|
Adrianzen-Herrera D, Sparks AD, Singh R, Alejos-Castillo D, Batra A, Glushakow-Smith S, Pradhan K, Shastri A, Zakai NA. Impact of preexisting autoimmune disease on myelodysplastic syndromes outcomes: a population analysis. Blood Adv 2023; 7:6913-6922. [PMID: 37729616 PMCID: PMC10685168 DOI: 10.1182/bloodadvances.2023011050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Preexisting autoimmune disease affects between 10% and 30% of patients with myelodysplastic syndromes (MDS). Studies comparing outcomes in patients with MDS with and without autoimmune disease show discordant results. Using the Surveillance, Epidemiology, and End Results Medicare database, we conducted a population analysis to define the impact of autoimmunity on MDS outcomes. Cases were ascertained between 2007 and 2017 and claim algorithms used to identify autoimmune disease, demographic characteristics, comorbidity scores, MDS histology, transfusion burden, treatment with hypomethylating agents, and hematopoietic stem cell transplantation. Cox regression models estimated the impact on survival, and competing-risk regression models defined the effect on leukemic transformation. We analyzed 15 277 patients with MDS, including 2442 (16%) with preexisting autoimmune disease. The epidemiologic profile was distinctive in cases with preexisting autoimmunity, who were younger, were predominantly female, and had higher transfusion burden without difference in MDS histologic distribution. Autoimmune disease was associated with 11% decreased risk of death (hazard ratio [HR], 0.89; 95% confidence interval [CI], 0.85-0.94; P < .001). The effect on risk of leukemic transformation differed based on MDS histology. In low-risk MDS histologies, autoimmunity was associated with a 1.9-fold increased risk of leukemia (HR, 1.87; 95% CI, 1.17-2.99; P = .008), whereas no significant effect was seen in other groups. These results suggest that autoimmune disease affects survival in MDS and is associated with decreased mortality. The survival effect was evident in low-risk histologies despite higher risk of progression to leukemia. This could represent inflammation-driven hematopoiesis, simultaneously favoring less aggressive phenotypes and clonal expansion, which warrants further investigation.
Collapse
Affiliation(s)
- Diego Adrianzen-Herrera
- Division of Hematology and Oncology, Larner College of Medicine at the University of Vermont, Burlington, VT
| | - Andrew D. Sparks
- Biomedical Statistics Research Core, University of Vermont, Burlington, VT
| | - Rohit Singh
- Division of Hematology and Oncology, Larner College of Medicine at the University of Vermont, Burlington, VT
| | - David Alejos-Castillo
- Division of Hematology and Oncology, Larner College of Medicine at the University of Vermont, Burlington, VT
| | - Akshee Batra
- Division of Hematology and Oncology, Larner College of Medicine at the University of Vermont, Burlington, VT
| | | | - Kith Pradhan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Aditi Shastri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY
| | - Neil A. Zakai
- Division of Hematology and Oncology, Larner College of Medicine at the University of Vermont, Burlington, VT
- Department of Pathology & Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT
| |
Collapse
|
36
|
Yang Y, Abbas S, Sayem MA, Dutta A, Mohi G. SRSF2 mutation reduces polycythemia and impairs hematopoietic progenitor functions in JAK2V617F-driven myeloproliferative neoplasm. Blood Cancer J 2023; 13:171. [PMID: 38012156 PMCID: PMC10682023 DOI: 10.1038/s41408-023-00947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
SRSF2 mutations are found in association with JAK2V617F in myeloproliferative neoplasms (MPN), most frequently in myelofibrosis (MF). However, the contribution of SRSF2 mutation in JAK2V617F-driven MPN remains elusive. To investigate the consequences of SRSF2P95H and JAK2V617F mutations in MPN, we generated Cre-inducible Srsf2P95H/+Jak2V617F/+ knock-in mice. We show that co-expression of Srsf2P95H mutant reduced red blood cell, neutrophil, and platelet counts, attenuated splenomegaly but did not induce bone marrow fibrosis in Jak2V617F/+ mice. Furthermore, co-expression of Srsf2P95H diminished the competitiveness of Jak2V617F mutant hematopoietic stem/progenitor cells. We found that Srsf2P95H mutant reduced the TGF-β levels but increased the expression of S100A8 and S100A9 in Jak2V617F/+ mice. Furthermore, enforced expression of S100A9 in Jak2V617F/+ mice bone marrow significantly reduced the red blood cell, hemoglobin, and hematocrit levels. Overall, these data suggest that concurrent expression of Srsf2P95H and Jak2V617F mutants reduces erythropoiesis but does not promote the development of bone marrow fibrosis in mice.
Collapse
Affiliation(s)
- Yue Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Salar Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mohammad A Sayem
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Avik Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Golam Mohi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- University of Virginia Cancer Center, Charlottesville, VA, 22908, USA.
| |
Collapse
|
37
|
Iriani A, Rachman A, Setiabudy RD, Kresno SB, Sudoyo AW, Arief M, Harahap AR, Fatina MK. TNFα induces Caspase-3 activity in hematopoietic progenitor cells CD34+, CD33+, and CD41 + of myelodysplastic syndromes. BMC Mol Cell Biol 2023; 24:33. [PMID: 37990142 PMCID: PMC10662645 DOI: 10.1186/s12860-023-00495-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Cytopenia is the primary feature of Myelodysplastic Syndrome, even in the presence of hypercellular bone marrow. TNFα is recognized as both a proinflammatory, and proapoptotic cytokine with a well established role in promoting apoptosis in MDS. Therefore, TNFα has the potential to be a valuable biomarker for predicting the progression of cytopenia in MDS. This study aims to establish the role of TNFα exposure in triggering apoptosis through caspase-3 activity in CD34+, CD33+, and CD41 + cells in MDS. METHODS This study is an in vitro comparative experimental research. Bone marrow mononuclear cells were isolated as the source of hematopoietic progenitor cells. Subsequently, CD34+, CD33+, and CD41 + cells were exposed to rhTNFα, and the caspase-3 activity was measured using flowcytometry. RESULTS In MDS CD33 + and CD41 + caspase-3 activity of rhTNFα exposed cells was significantly higher than without exposed cells. The opposite result was found in CD34 + cells, where the caspase-3 activity without rhTNFα exposed cells was significantly higher than rhTNFα exposed cells. CONCLUSION rhTNFα exposure led to an elevation in caspase-3 activity in MDS progenitor cells, especially in those that had differentiated into myeloid cell CD33 + and megakaryocyte cell CD41+, as opposed to the early progenitor cells CD34+.
Collapse
Affiliation(s)
- Anggraini Iriani
- Department of Clinical Pathology, Faculty of Medicine, Yarsi University - Yarsi Hospital, Jl. Letjen Suprapto Kav 13, Cempaka Putih, Jakarta, 10510, Indonesia.
| | - Andhika Rachman
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | | | - Siti B Kresno
- Department of Clinical Pathology, University of Indonesia, Jakarta, Indonesia
| | - Aru W Sudoyo
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Mansyur Arief
- Department of Clinical Pathology, Hasanuddin University, Makasar, Indonesia
| | - Alida R Harahap
- Department of Clinical Pathology, University of Indonesia, Jakarta, Indonesia
| | | |
Collapse
|
38
|
Parrondo RD, Iqbal M, Von Roemeling R, Von Roemeling C, Tun HW. IRAK-4 inhibition: emavusertib for the treatment of lymphoid and myeloid malignancies. Front Immunol 2023; 14:1239082. [PMID: 37954584 PMCID: PMC10637517 DOI: 10.3389/fimmu.2023.1239082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Several studies have identified mutations in the MYD88L265P gene as a key driver mutation in several B-cell lymphomas. B-cell lymphomas that harbor the MYD88L265P mutation form a complex with phosphorylated Bruton's tyrosine kinase (BTK) and are responsive to BTK inhibition. However, BTK inhibition in B-cell lymphomas rarely results in a complete response and most patients experience eventual disease relapse. Persistent survival signaling though downstream molecules such as interleukin 1 receptor-associated kinase 4 (IRAK-4), an integral part of the "myddosome" complex, has been shown to be constitutively active in B-cell lymphoma patients treated with BTK inhibitors. Emerging evidence is demonstrating the therapeutic benefit of IRAK-4 inhibition in B-cell lymphomas, along with possibly reversing BTK inhibitor resistance. While MYD88 gene mutations are not present in myeloid malignancies, downstream overexpression of the oncogenic long form of IRAK-4 has been found in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), particularly in AML and MDS that harbor mutations in splicing factors U2AF1 and SF3B1. These data suggest that the anti-leukemic activity of IRAK-4 inhibition can be exploited in relapsed/refractory (R/R) AML/MDS. In this review article, we discuss the currently available pre-clinical and clinical data of emavusertib, a selective, orally bioavailable IRAK-4 inhibitor in the treatment of R/R B-cell lymphomas and myeloid malignancies.
Collapse
Affiliation(s)
- Ricardo D. Parrondo
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | - Madiha Iqbal
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | | | | | - Han W. Tun
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| |
Collapse
|
39
|
Jiao P, Li Z, Li B, Jiao X. The Role of Caspase-11 and Pyroptosis in the Regulation of Inflammation in Peri-Implantitis. J Inflamm Res 2023; 16:4471-4479. [PMID: 37842190 PMCID: PMC10576458 DOI: 10.2147/jir.s427523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Peri-implantitis is an important cause of oral implant failure. In the past, TLR4 and TLR2 in the Toll-like family were generally considered as the key immune recognition receptors regulating peri-implantitis. However, under the guidance of this theory, there are still some unexplainable peri-implantitis symptoms. With the discovery of novel intracellular LPS receptor Caspase-11, a new understanding of inflammatory signaling and immune regulation in the development of peri-implantitis has been gained. However, the regulatory role of Caspase-11 in peri-implantitis and its crosstalk with the TLR4 pathway remain unclear. The therapeutic effect of drugs targeting Caspase-11 on peri-implantitis is still in its early stages. In view of this situation, this paper reviews the possible role of Caspase-11 in peri-implant inflammation, elaborated the entry process of LPS and the activation mechanism of Caspase-11, and analyzes the differences in Caspase-11 between commonly studied animals, mice and humans. The current research hotspots and challenges are also analyzed to provide new insights and ideas for researchers.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zuntai Li
- Hospital of Stomatology, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Birong Li
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, People’s Republic of China
| | - Xingyuan Jiao
- Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
40
|
Vallelonga V, Gandolfi F, Ficara F, Della Porta MG, Ghisletti S. Emerging Insights into Molecular Mechanisms of Inflammation in Myelodysplastic Syndromes. Biomedicines 2023; 11:2613. [PMID: 37892987 PMCID: PMC10603842 DOI: 10.3390/biomedicines11102613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammation impacts human hematopoiesis across physiologic and pathologic conditions, as signals derived from the bone marrow microenvironment, such as pro-inflammatory cytokines and chemokines, have been shown to alter hematopoietic stem cell (HSCs) homeostasis. Dysregulated inflammation can skew HSC fate-related decisions, leading to aberrant hematopoiesis and potentially contributing to the pathogenesis of hematological disorders such as myelodysplastic syndromes (MDS). Recently, emerging studies have used single-cell sequencing and muti-omic approaches to investigate HSC cellular heterogeneity and gene expression in normal hematopoiesis as well as in myeloid malignancies. This review summarizes recent reports mechanistically dissecting the role of inflammatory signaling and innate immune response activation due to MDS progression. Furthermore, we highlight the growing importance of using multi-omic techniques, such as single-cell profiling and deconvolution methods, to unravel MDSs' heterogeneity. These approaches have provided valuable insights into the patterns of clonal evolution that drive MDS progression and have elucidated the impact of inflammation on the composition of the bone marrow immune microenvironment in MDS.
Collapse
Affiliation(s)
- Veronica Vallelonga
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20139 Milan, Italy
| | - Francesco Gandolfi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20139 Milan, Italy
| | - Francesca Ficara
- Milan Unit, CNR-IRGB, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Matteo Giovanni Della Porta
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20139 Milan, Italy
| |
Collapse
|
41
|
Bennett J, Ishikawa C, Agarwal P, Yeung J, Sampson A, Uible E, Vick E, Bolanos LC, Hueneman K, Wunderlich M, Kolt A, Choi K, Volk A, Greis KD, Rosenbaum J, Hoyt SB, Thomas CJ, Starczynowski DT. Paralog-specific signaling by IRAK1/4 maintains MyD88-independent functions in MDS/AML. Blood 2023; 142:989-1007. [PMID: 37172199 PMCID: PMC10517216 DOI: 10.1182/blood.2022018718] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/14/2023] Open
Abstract
Dysregulation of innate immune signaling is a hallmark of hematologic malignancies. Recent therapeutic efforts to subvert aberrant innate immune signaling in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) have focused on the kinase IRAK4. IRAK4 inhibitors have achieved promising, though moderate, responses in preclinical studies and clinical trials for MDS and AML. The reasons underlying the limited responses to IRAK4 inhibitors remain unknown. In this study, we reveal that inhibiting IRAK4 in leukemic cells elicits functional complementation and compensation by its paralog, IRAK1. Using genetic approaches, we demonstrate that cotargeting IRAK1 and IRAK4 is required to suppress leukemic stem/progenitor cell (LSPC) function and induce differentiation in cell lines and patient-derived cells. Although IRAK1 and IRAK4 are presumed to function primarily downstream of the proximal adapter MyD88, we found that complementary and compensatory IRAK1 and IRAK4 dependencies in MDS/AML occur via noncanonical MyD88-independent pathways. Genomic and proteomic analyses revealed that IRAK1 and IRAK4 preserve the undifferentiated state of MDS/AML LSPCs by coordinating a network of pathways, including ones that converge on the polycomb repressive complex 2 complex and JAK-STAT signaling. To translate these findings, we implemented a structure-based design of a potent and selective dual IRAK1 and IRAK4 inhibitor KME-2780. MDS/AML cell lines and patient-derived samples showed significant suppression of LSPCs in xenograft and in vitro studies when treated with KME-2780 as compared with selective IRAK4 inhibitors. Our results provide a mechanistic basis and rationale for cotargeting IRAK1 and IRAK4 for the treatment of cancers, including MDS/AML.
Collapse
Affiliation(s)
- Joshua Bennett
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Jennifer Yeung
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Emma Uible
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Eric Vick
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Lyndsey C. Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | | | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Andrew Volk
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | | | - Scott B. Hoyt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
- University of Cincinnati Cancer Center, Cincinnati, OH
| |
Collapse
|
42
|
Schneider M, Rolfs C, Trumpp M, Winter S, Fischer L, Richter M, Menger V, Nenoff K, Grieb N, Metzeler KH, Kubasch AS, Sockel K, Thiede C, Wu J, Woo J, Brüderle A, Hofbauer LC, Lützner J, Roth A, Cross M, Platzbecker U. Activation of distinct inflammatory pathways in subgroups of LR-MDS. Leukemia 2023; 37:1709-1718. [PMID: 37420006 PMCID: PMC10400420 DOI: 10.1038/s41375-023-01949-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023]
Abstract
Aberrant innate immune signaling has been identified as a potential key driver of the complex pathophysiology of myelodysplastic neoplasms (MDS). This study of a large, clinically and genetically well-characterized cohort of treatment-naïve MDS patients confirms intrinsic activation of inflammatory pathways in general mediated by caspase-1, interleukin (IL)-1β and IL-18 in low-risk (LR)-MDS bone marrow and reveals a previously unrecognized heterogeneity of inflammation between genetically defined LR-MDS subgroups. Principal component analysis resolved two LR-MDS phenotypes with low (cluster 1) and high (cluster 2) levels of IL1B gene expression, respectively. Cluster 1 contained 14/17 SF3B1-mutated cases, while cluster 2 contained 8/8 del(5q) cases. Targeted gene expression analysis of sorted cell populations showed that the majority of the inflammasome-related genes, including IL1B, were primarily expressed in the monocyte compartment, consistent with a dominant role in determining the inflammatory bone marrow environment. However, the highest levels of IL18 expression were found in hematopoietic stem and progenitor cells (HSPCs). The colony forming activity of healthy donor HSPCs exposed to monocytes from LR-MDS was increased by the IL-1β-neutralizing antibody canakinumab. This work reveals distinct inflammatory profiles in LR-MDS that are of likely relevance to the personalization of emerging anti-inflammatory therapies.
Collapse
Affiliation(s)
- Marie Schneider
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Medical Center Leipzig, Leipzig, Germany
| | - Clara Rolfs
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Medical Center Leipzig, Leipzig, Germany
| | - Matthias Trumpp
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Medical Center Leipzig, Leipzig, Germany
| | - Susann Winter
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Luise Fischer
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Mandy Richter
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Medical Center Leipzig, Leipzig, Germany
| | - Victoria Menger
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Medical Center Leipzig, Leipzig, Germany
| | - Kolja Nenoff
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Medical Center Leipzig, Leipzig, Germany
| | - Nora Grieb
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Medical Center Leipzig, Leipzig, Germany
| | - Klaus H Metzeler
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Medical Center Leipzig, Leipzig, Germany
| | - Anne Sophie Kubasch
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Medical Center Leipzig, Leipzig, Germany
| | - Katja Sockel
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jincheng Wu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Janghee Woo
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Lorenz C Hofbauer
- UniversityCenter for Healthy Aging & Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jörg Lützner
- Department of Orthopedic Surgery, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Andreas Roth
- Department of Orthopedic Surgery, University Medical Center Leipzig, Leipzig, Germany
| | - Michael Cross
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Medical Center Leipzig, Leipzig, Germany
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Medical Center Leipzig, Leipzig, Germany.
| |
Collapse
|
43
|
Trova S, Lin F, Lomada S, Fenton M, Chauhan B, Adams A, Puri A, Di Maio A, Wieland T, Sewell D, Dick K, Wiseman D, Wilks DP, Goodall M, Drayson MT, Khanim FL, Bunce CM. Pathogen and human NDPK-proteins promote AML cell survival via monocyte NLRP3-inflammasome activation. PLoS One 2023; 18:e0288162. [PMID: 37418424 PMCID: PMC10328239 DOI: 10.1371/journal.pone.0288162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023] Open
Abstract
A history of infection has been linked with increased risk of acute myeloid leukaemia (AML) and related myelodysplastic syndromes (MDS). Furthermore, AML and MDS patients suffer frequent infections because of disease-related impaired immunity. However, the role of infections in the development and progression of AML and MDS remains poorly understood. We and others previously demonstrated that the human nucleoside diphosphate kinase (NDPK) NM23-H1 protein promotes AML blast cell survival by inducing secretion of IL-1β from accessory cells. NDPKs are an evolutionary highly conserved protein family and pathogenic bacteria secrete NDPKs that regulate virulence and host-pathogen interactions. Here, we demonstrate the presence of IgM antibodies against a broad range of pathogen NDPKs and more selective IgG antibody activity against pathogen NDPKs in the blood of AML patients and normal donors, demonstrating that in vivo exposure to NDPKs likely occurs. We also show that pathogen derived NDPK-proteins faithfully mimic the catalytically independent pro-survival activity of NM23-H1 against primary AML cells. Flow cytometry identified that pathogen and human NDPKs selectively bind to monocytes in peripheral blood. We therefore used vitamin D3 differentiated monocytes from wild type and genetically modified THP1 cells as a model to demonstrate that NDPK-mediated IL-1β secretion by monocytes is NLRP3-inflammasome and caspase 1 dependent, but independent of TLR4 signaling. Monocyte stimulation by NDPKs also resulted in activation of NF-κB and IRF pathways but did not include the formation of pyroptosomes or result in pyroptotic cell death which are pivotal features of canonical NLRP3 inflammasome activation. In the context of the growing importance of the NLRP3 inflammasome and IL-1β in AML and MDS, our findings now implicate pathogen NDPKs in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Sandro Trova
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Fei Lin
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Santosh Lomada
- Institute of Experimental and Clinical Pharmacology and Toxicology, Heidelberg University, Mannheim, Germany
| | - Matthew Fenton
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Bhavini Chauhan
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexandra Adams
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Avani Puri
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alessandro Di Maio
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Heidelberg University, Mannheim, Germany
| | - Daniel Sewell
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Kirstin Dick
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Wiseman
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Deepti P. Wilks
- Cancer Research UK Manchester Institute, Manchester Cancer Research Centre Biobank, The University of Manchester, Manchester, United Kingdom
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Mark T. Drayson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Farhat L. Khanim
- Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
44
|
Yokomizo-Nakano T, Hamashima A, Kubota S, Bai J, Sorin S, Sun Y, Kikuchi K, Iimori M, Morii M, Kanai A, Iwama A, Huang G, Kurotaki D, Takizawa H, Matsui H, Sashida G. Exposure to microbial products followed by loss of Tet2 promotes myelodysplastic syndrome via remodeling HSCs. J Exp Med 2023; 220:e20220962. [PMID: 37071125 PMCID: PMC10120406 DOI: 10.1084/jem.20220962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/11/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
Aberrant innate immune signaling in myelodysplastic syndrome (MDS) hematopoietic stem/progenitor cells (HSPCs) has been implicated as a driver of the development of MDS. We herein demonstrated that a prior stimulation with bacterial and viral products followed by loss of the Tet2 gene facilitated the development of MDS via up-regulating the target genes of the Elf1 transcription factor and remodeling the epigenome in hematopoietic stem cells (HSCs) in a manner that was dependent on Polo-like kinases (Plk) downstream of Tlr3/4-Trif signaling but did not increase genomic mutations. The pharmacological inhibition of Plk function or the knockdown of Elf1 expression was sufficient to prevent the epigenetic remodeling in HSCs and diminish the enhanced clonogenicity and the impaired erythropoiesis. Moreover, this Elf1-target signature was significantly enriched in MDS HSPCs in humans. Therefore, prior infection stress and the acquisition of a driver mutation remodeled the transcriptional and epigenetic landscapes and cellular functions in HSCs via the Trif-Plk-Elf1 axis, which promoted the development of MDS.
Collapse
Affiliation(s)
- Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ai Hamashima
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Supannika Sorin
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yuqi Sun
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mihoko Iimori
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mariko Morii
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Gang Huang
- Department of Cell Systems & Anatomy, Department of Pathology and Laboratory Medicine, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, Mays Cancer Center at UT Health San Antonio, San Antonio, TX, USA
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
45
|
Oster HS, Sklyar E, Golsdshmidt N, Mittelman M. Routine Inflammatory Markers Are Elevated in Myelodysplastic Syndromes at Presentation. Mediterr J Hematol Infect Dis 2023; 15:e2023044. [PMID: 37435032 PMCID: PMC10332346 DOI: 10.4084/mjhid.2023.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 07/13/2023] Open
Affiliation(s)
- Howard S. Oster
- Department of Internal Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ekaterina Sklyar
- Department of Internal Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noa Golsdshmidt
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Moshe Mittelman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
46
|
Bewersdorf JP, Xie Z, Bejar R, Borate U, Boultwood J, Brunner AM, Buckstein R, Carraway HE, Churpek JE, Daver NG, Porta MGD, DeZern AE, Fenaux P, Figueroa ME, Gore SD, Griffiths EA, Halene S, Hasserjian RP, Hourigan CS, Kim TK, Komrokji R, Kuchroo VK, List AF, Loghavi S, Majeti R, Odenike O, Patnaik MM, Platzbecker U, Roboz GJ, Sallman DA, Santini V, Sanz G, Sekeres MA, Stahl M, Starczynowski DT, Steensma DP, Taylor J, Abdel-Wahab O, Xu ML, Savona MR, Wei AH, Zeidan AM. Current landscape of translational and clinical research in myelodysplastic syndromes/neoplasms (MDS): Proceedings from the 1 st International Workshop on MDS (iwMDS) Of the International Consortium for MDS (icMDS). Blood Rev 2023; 60:101072. [PMID: 36934059 DOI: 10.1016/j.blre.2023.101072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Biological events that contribute to the pathogenesis of myelodysplastic syndromes/neoplasms (MDS) are becoming increasingly characterized and are being translated into rationally designed therapeutic strategies. Herein, we provide updates from the first International Workshop on MDS (iwMDS) of the International Consortium for MDS (icMDS) detailing recent advances in understanding the genetic landscape of MDS, including germline predisposition, epigenetic and immune dysregulation, the complexities of clonal hematopoiesis progression to MDS, as well as novel animal models of the disease. Connected to this progress is the development of novel therapies targeting specific molecular alterations, the innate immune system, and immune checkpoint inhibitors. While some of these agents have entered clinical trials (e.g., splicing modulators, IRAK1/4 inhibitors, anti-CD47 and anti-TIM3 antibodies, and cellular therapies), none have been approved for MDS. Additional preclinical and clinical work is needed to develop a truly individualized approach to the care of MDS patients.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Uma Borate
- Ohio State University Comprehensive Cancer/ James Cancer Hospital, Ohio State University, Columbus, OH, USA
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew M Brunner
- Leukemia Program, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Rena Buckstein
- Department of Medical Oncology/Hematology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hetty E Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jane E Churpek
- Department of Hematology, Oncology, and Palliative Care, Carbone Cancer Center, The University of Wisconsin-Madison, Madison, WI, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Giovanni Della Porta
- IRCCS Humanitas Clinical and Research Center & Humanitas University, Department of Biomedical Sciences, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Amy E DeZern
- Division of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Pierre Fenaux
- Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris and Paris Cité University, Paris, France
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven D Gore
- National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD, USA
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | | | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, and Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Alan F List
- Precision BioSciences, Inc., Durham, NC, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Olatoyosi Odenike
- Leukemia Program, University of Chicago Medicine and University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gail J Roboz
- Weill Cornell Medical College, New York, NY, USA
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain; CIBERONC, IS Carlos III, Madrid, Spain
| | - Mikkael A Sekeres
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mina L Xu
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Michael R Savona
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew H Wei
- Department of Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research and University of Melbourne, Victoria, Australia
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
47
|
Frumm SM, Shimony S, Stone RM, DeAngelo DJ, Bewersdorf JP, Zeidan AM, Stahl M. Why do we not have more drugs approved for MDS? A critical viewpoint on novel drug development in MDS. Blood Rev 2023; 60:101056. [PMID: 36805300 DOI: 10.1016/j.blre.2023.101056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Approval of new agents to treat higher risk (HR) myelodysplastic syndrome (MDS) has stalled since the approval of DNA methyltransferase inhibitors (DNMTi). In addition, the options for patients with lower risk (LR) MDS who have high transfusion needs and do not harbor ring sideroblasts or 5q- syndrome are limited. Here, we review the current treatment landscape in MDS and identify areas of unmet need, such as treatment after failure of erythropoiesis-stimulating agents or DNMTis, TP53-mutated disease, and MDS with potentially targetable mutations. We discuss how our understanding of MDS pathogenesis can inform therapy development, including treating HR-MDS similarly to AML and pursuing therapies to address splicing factor mutations and dysregulated inflammation. We then bring a critical lens to current methodology of MDS studies and propose solutions to improve the efficiency and yield of these clinical trials, including using the most meaningful response metrics and expanding enrollment.
Collapse
Affiliation(s)
- Stacey M Frumm
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Rabin Medical Center and Faculty of Medicine, Tel Aviv University, Israel
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jan Phillipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, and Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
48
|
Lucero J, Al-Harbi S, Yee KWL. Management of Patients with Lower-Risk Myelodysplastic Neoplasms (MDS). Curr Oncol 2023; 30:6177-6196. [PMID: 37504319 PMCID: PMC10377892 DOI: 10.3390/curroncol30070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Myelodysplastic neoplasms (MDS) are a heterogenous group of clonal hematologic disorders characterized by morphologic dysplasia, ineffective hematopoiesis, and cytopenia. In the past year, the classification of MDS has been updated in the 5th edition of the World Health Organization (WHO) Classification of Haematolymphoid Tumours and the International Consensus Classification (ICC) of Myeloid Neoplasms and Acute Leukemia with incorporation of morphologic, clinical, and genomic data. Furthermore, the more comprehensive International Prognostic Scoring System-Molecular (IPSS-M) allows for improved risk stratification and prognostication. These three developments allow for more tailored therapeutic decision-making in view of the expanding treatment options in MDS. For patients with lower risk MDS, treatment is aimed at improving cytopenias, usually anemia. The recent approval of luspatercept and decitabine/cedazuridine have added on to the current armamentarium of erythropoietic stimulating agents and lenalidomide (for MDS with isolated deletion 5q). Several newer agents are being evaluated in phase 3 clinical trials for this group of patients, such as imetelstat and oral azacitidine. This review provides a summary of the classification systems, the prognostic scores and clinical management of patients with lower risk MDS.
Collapse
Affiliation(s)
- Josephine Lucero
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 700 University Avenue, 6th Floor, Toronto, ON M5G 1Z5, Canada; (J.L.); (S.A.-H.)
| | - Salman Al-Harbi
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 700 University Avenue, 6th Floor, Toronto, ON M5G 1Z5, Canada; (J.L.); (S.A.-H.)
| | - Karen W. L. Yee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 700 University Avenue, 6th Floor, Toronto, ON M5G 1Z5, Canada; (J.L.); (S.A.-H.)
- Division of Hematology, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
49
|
Oppezzo A, Monney L, Kilian H, Slimani L, Maczkowiak-Chartois F, Rosselli F. Fanca deficiency is associated with alterations in osteoclastogenesis that are rescued by TNFα. Cell Biosci 2023; 13:115. [PMID: 37355617 DOI: 10.1186/s13578-023-01067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) niche, which includes bone-forming and bone-resorbing cells, i.e., osteoblasts (OBs) and osteoclasts (OCs). OBs originate from mesenchymal progenitors, while OCs are derived from HSCs. Self-renewal, proliferation and differentiation of HSCs are under the control of regulatory signals generated by OBs and OCs within the BM niche. Consequently, OBs and OCs control both bone physiology and hematopoiesis. Since the human developmental and bone marrow failure genetic syndrome fanconi anemia (FA) presents with skeletal abnormalities, osteoporosis and HSC impairment, we wanted to test the hypothesis that the main pathological abnormalities of FA could be related to a defect in OC physiology and/or in bone homeostasis. RESULTS We revealed here that the intrinsic differentiation of OCs from a Fanca-/- mouse is impaired in vitro due to overactivation of the p53-p21 axis and defects in NF-kB signaling. The OC differentiation abnormalities observed in vitro were rescued by treating Fanca-/- cells with the p53 inhibitor pifithrin-α, by treatment with the proinflammatory cytokine TNFα or by coculturing them with Fanca-proficient or Fanca-deficient osteoblastic cells. CONCLUSIONS Overall, our results highlight an unappreciated role of Fanca in OC differentiation that is potentially circumvented in vivo by the presence of OBs and TNFα in the BM niche.
Collapse
Affiliation(s)
- Alessia Oppezzo
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- Université Paris Saclay, Orsay, France
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Lovely Monney
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- Université Paris Saclay, Orsay, France
| | - Henri Kilian
- URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU-DDS-net, Dental School, Université de Paris, Montrouge, France
| | - Lofti Slimani
- URP2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV), FHU-DDS-net, Dental School, Université de Paris, Montrouge, France
| | - Frédérique Maczkowiak-Chartois
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- Université Paris Saclay, Orsay, France
| | - Filippo Rosselli
- CNRS UMR9019, Équipe labellisée La Ligue contre le Cancer, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805, Villejuif, France.
- Gustave Roussy Cancer Center, Villejuif, France.
- Université Paris Saclay, Orsay, France.
| |
Collapse
|
50
|
Wang D, Wan X. Progress in the study of molecular mechanisms of cell pyroptosis in tumor therapy. Int Immunopharmacol 2023; 118:110143. [PMID: 37030114 DOI: 10.1016/j.intimp.2023.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Pyroptosis, also known as cellular inflammatory necrosis, is a programmed cell death mediated by the Gasdermin family of proteins. The mechanisms by which pyroptosis occurs are divided into the GSDMD-mediated Caspase-1 and Caspase-4/-5/-11-dependent classical inflammatory vesicle pathway and the GSDME-mediated Caspase-3 and granzyme-dependent non-classical inflammatory vesicle pathways, among others. Recent studies have shown that pyroptosis has both inhibitory and promotive effects on tumor development. Pyroptosis induction also plays a dual role in antitumor immunotherapy: on the one hand, it suppresses antitumor immunity by promoting the release of inflammatory factors, and on the other hand, it inhibits tumor cell proliferation by triggering antitumor inflammatory responses. In addition, cell scorching plays an essential role in chemotherapy. It has been found that natural drugs modulating the induction of cell scorch are necessary to treat tumors. Therefore, studying the specific mechanisms of cell pyroptosis in different tumors can provide more ideas for developing oncology drugs. In this paper, we review the molecular mechanisms of pyroptosis and the role of pyroptosis in tumor development and treatment to provide new targets for clinical tumor treatment, prognosis, and antitumor drug development.
Collapse
|