1
|
Macris PC, McMillen K. Nutrition issues in adult hematopoietic cell transplantation: A narrative review of latest advances. Nutr Clin Pract 2025. [PMID: 40200765 DOI: 10.1002/ncp.11288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 04/10/2025] Open
Abstract
Patients undergoing hematopoietic cell transplantation (HCT) are a highly heterogenous population with respect to their unique nutrient requirements and need for nutrition support. Dose-intensive conditioning regimens in addition to the debilitating effects of graft-vs-host disease impact and adversely affect the transplant recipient's nutrition status. Decreased oral intake, increased nutrient requirements, and impaired nutrient absorption and utilization often necessitate specialized nutrition support. The use of parenteral nutrition and enteral nutrition support, as well as dietary intervention strategies for immunocompromised patients, have varied over the past five decades and are highly dependent on the type of transplant used. This review highlights adult nutrition assessment components, nutrition support practices, and management of complex nutrition consequences associated with HCT.
Collapse
Affiliation(s)
- Paula Charuhas Macris
- Medical Nutrition Therapy Services, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kerry McMillen
- Medical Nutrition Therapy Services, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
2
|
Xie J, Smith M. The intestinal microbiota and cellular therapy: implications for impact and mechanisms. Blood 2024; 144:1557-1569. [PMID: 39141827 PMCID: PMC11830981 DOI: 10.1182/blood.2024024219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
ABSTRACT The microbiota, comprising bacteria, fungi, and viruses residing within our bodies, functions as a key modulator in host health and states, including immune responses. Studies have linked microbiota and microbiota-derived metabolites to immune cell functions. In this review, we probe the complex relationship between the human microbiota and clinical outcomes of cellular therapies that leverage immune cells to fight various cancers. With a particular emphasis on hematopoietic cell transplantation and chimeric antigen receptor T-cell therapy, we explore the potential mechanisms underpinning this interaction. We also highlight the interventional applications of the microbiota in cellular therapy while outlining future research directions in the field.
Collapse
Affiliation(s)
- Jiayi Xie
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Melody Smith
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
3
|
Belmont AP, Stone CA, Guyer AC, Edelman EJ, Trubiano JA. A call to address penicillin allergy labels in patients with hematopoietic stem cell transplants: How to avoid rash decisions. Transpl Infect Dis 2024; 26:e14350. [PMID: 39101669 PMCID: PMC11502247 DOI: 10.1111/tid.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Among patients with hematopoietic stem cell transplants, infections, particularly multidrug-resistant infections, pose a grave threat. In this setting, penicillin allergy labels are both common and harmful. Though the majority of patients who report penicillin allergy can actually tolerate penicillin, penicillin allergy labels are associated with use of alternative antibiotics, which are often more broad spectrum, less effective, and more toxic. In turn, they are associated with more severe infections, multidrug-resistant infections, Clostridium difficile, and increased mortality. Evaluating penicillin allergy labels can immediately expand access to preferred therapeutic options, which are critical to care in patients with recent hematopoietic stem cell transplants. Point-of-care assessment and clinical decision tools now exist to aid the nonallergist in assessment of penicillin allergy. This can aid in expanding use of other beta-lactam antibiotics and assist in risk-stratifying patients to determine a testing strategy. In patients with low-risk reaction histories, direct oral challenges can be employed to efficiently delabel patients across clinical care settings. We advocate for multidisciplinary efforts to evaluate patients with penicillin allergy labels prior to transplantation.
Collapse
Affiliation(s)
- Ami P Belmont
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Cosby A Stone
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Autumn C Guyer
- Allergy and Immunology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - E Jennifer Edelman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Social and Behavioral Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Victoria, Australia
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Tamaki M, Akahoshi Y, Inamoto Y, Morita K, Uchida N, Doki N, Tanaka M, Nishida T, Ohigashi H, Nakamae H, Onizuka M, Katayama Y, Matsuoka KI, Sawa M, Ishimaru F, Kanda Y, Fukuda T, Atsuta Y, Terakura S, Kanda J. Associations between acute and chronic graft-versus-host disease. Blood Adv 2024; 8:4250-4261. [PMID: 38985337 PMCID: PMC11372601 DOI: 10.1182/bloodadvances.2024013442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
ABSTRACT Chronic graft-versus-host disease (GVHD) is 1 of the major complications after allogeneic hematopoietic cell transplantation (allo-HCT). Although various risk factors for chronic GVHD have been reported, limited data are available regarding the impact of acute GVHD on chronic GVHD. We examined the association between acute and chronic GVHD using a Japanese registry data set. The landmark point was set at day 100 after allo-HCT, and patients who died or relapsed before the landmark point were excluded. In total, 14 618 and 6135 patients who underwent allo-HCT with bone marrow or peripheral blood (BM/PB) and with umbilical cord blood (UCB), respectively, were analyzed. In the BM/PB cohort, the risk for chronic GVHD that requires systemic steroids increased with each increase in acute GVHD grade from 0 to 2 (grade 0 vs 1 [hazard ratio (HR), 1.32; 95% confidence interval (CI), 1.19-1.46; P < .001]; grade 1 vs 2 [HR, 1.41; 95% CI, 1.28-1.56; P < .001]), but the risk was similar between acute GVHD grade 2 and grade 3 to 4 (HR, 1.02; 95% CI, 0.91-1.15; P = 1.0). These findings were confirmed in the UCB cohort. We further observed that the risk for severe chronic GVHD increased with each increment in the grade of acute GVHD, even between acute GVHD grade 2 and grade 3 to (grade 2 vs 3-4: HR, 1.70; 95% CI, 1.12-2.58; P = .025). In conclusion, the preceding profiles of acute GVHD should help to stratify the risk for chronic GVHD and its severity, which might be useful for the development of risk-adopted preemptive strategies for chronic GVHD.
Collapse
Affiliation(s)
- Masaharu Tamaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
- Division of Emerging Medicine for Integrated Therapeutics, Center for Molecular Medicine, Jichi Medical University Shimotsuke, Japan
| | - Yu Akahoshi
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
- Division of Hematology/Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yoshihiro Inamoto
- Department of Bone and Marrow Transplantation & Cellular Therapy, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kaoru Morita
- Division of Hematology, Jichi Medical University, Shimotsuke, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Tetsuya Nishida
- Department of Hematology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Hiroyuki Ohigashi
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Yuta Katayama
- Department of Hematology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Ken-ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Masashi Sawa
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Fumihiko Ishimaru
- Technical Department, Japanese Red Cross Society Blood Service Headquarters, Tokyo, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
- Division of Hematology, Jichi Medical University, Shimotsuke, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Gavriilaki E, Christoforidi M, Ouranos K, Minti F, Mallouri D, Varelas C, Lazaridou A, Baldoumi E, Panteliadou A, Bousiou Z, Batsis I, Sakellari I, Gioula G. Alteration of Gut Microbiota Composition and Diversity in Acute and/or Chronic Graft-versus-Host Disease Following Hematopoietic Stem Cell Transplantation: A Prospective Cohort Study. Int J Mol Sci 2024; 25:5789. [PMID: 38891979 PMCID: PMC11171546 DOI: 10.3390/ijms25115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Changes in gut microbiome composition have been implicated in the pathogenesis of graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our objective was to explore the microbial abundance in patients with GvHD after allo-HSCT. We conducted a single-center, prospective study in patients who underwent allo-HSCT and developed grade II or higher acute GvHD and/or moderate or severe chronic GvHD, to explore the microbial abundance of taxa at the phylum, family, genus, and species level, and we utilized alpha and beta diversity indices to further describe our findings. We collected fecal specimens at -2 to +2 (T1), +11 to +17 (T2), +25 to +30 (T3), +90 (T4), and +180 (T5) days to assess changes in gut microbiota, with day 0 being the day of allo-HSCT. We included 20 allo-HSCT recipients in the study. Compared with timepoint T1, at timepoint T4 we found a significant decrease in the abundance of Proteobacteria phylum (14.22% at T1 vs. 4.07% at T4, p = 0.01) and Enterobacteriaceae family (13.3% at T1 vs. <0.05% at T4, p < 0.05), as well as a significant increase in Enterococcus species (0.1% at T1 vs. 12.8% at T4, p < 0.05) in patients who developed acute GvHD. Regarding patients who developed chronic GvHD after allo-HSCT, there was a significant reduction in the abundance of Eurobactereaceae family (1.32% at T1 vs. 0.53% at T4, p < 0.05) and Roseruria genus (3.97% at T1 vs. 0.09% at T4, p < 0.05) at T4 compared with T1. Alpha and beta diversity analyses did not reveal a difference in the abundance of bacteria at the genus level in GvHD patients at T4 compared with T1. Our study reinforces results from previous studies regarding changes in gut microbiota in patients with acute GvHD and provides new data regarding the gut microbiome changes in chronic GvHD. Future studies will need to incorporate clinical parameters in their analyses to establish their association with specific changes in gut microbiota in patients with GvHD after allo-HSCT.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Maria Christoforidi
- Microbiology Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.C.); (F.M.); (G.G.)
| | - Konstantinos Ouranos
- Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Fani Minti
- Microbiology Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.C.); (F.M.); (G.G.)
| | - Despina Mallouri
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Christos Varelas
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Andriana Lazaridou
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Eirini Baldoumi
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Alkistis Panteliadou
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Zoi Bousiou
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Ioannis Batsis
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Ioanna Sakellari
- Hematology Department—BMT Unit, G Papanikolaou Hospital, 57010 Thessaloniki, Greece; (D.M.); (C.V.); (A.L.); (E.B.); (A.P.); (Z.B.); (I.B.); (I.S.)
| | - Georgia Gioula
- Microbiology Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.C.); (F.M.); (G.G.)
| |
Collapse
|
6
|
Yue X, Zhou H, Wang S, Chen X, Xiao H. Gut microbiota, microbiota-derived metabolites, and graft-versus-host disease. Cancer Med 2024; 13:e6799. [PMID: 38239049 PMCID: PMC10905340 DOI: 10.1002/cam4.6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is one of the most effective treatment strategies for leukemia, lymphoma, and other hematologic malignancies. However, graft-versus-host disease (GVHD) can significantly reduce the survival rate and quality of life of patients after transplantation, and is therefore the greatest obstacle to transplantation. The recent development of new technologies, including high-throughput sequencing, metabolomics, and others, has facilitated great progress in understanding the complex interactions between gut microbiota, microbiota-derived metabolites, and the host. Of these interactions, the relationship between gut microbiota, microbial-associated metabolites, and GVHD has been most intensively researched. Studies have shown that GVHD patients often suffer from gut microbiota dysbiosis, which mainly manifests as decreased microbial diversity and changes in microbial composition and microbiota-derived metabolites, both of which are significant predictors of poor prognosis in GVHD patients. Therefore, the purpose of this review is to summarize what is known regarding changes in gut microbiota and microbiota-derived metabolites in GVHD, their relationship to GVHD prognosis, and corresponding clinical strategies designed to prevent microbial dysregulation and facilitate treatment of GVHD.
Collapse
Affiliation(s)
- XiaoYan Yue
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongyu Zhou
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - ShuFen Wang
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xu Chen
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - HaoWen Xiao
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
7
|
Prado-Acosta M, Jeong S, Utrero-Rico A, Goncharov T, Webster JD, Holler E, Morales G, Dellepiane S, Levine JE, Rothenberg ME, Vucic D, Ferrara JLM. Inhibition of RIP1 improves immune reconstitution and reduces GVHD mortality while preserving graft-versus-leukemia effects. Sci Transl Med 2023; 15:eadf8366. [PMID: 38117900 PMCID: PMC11157567 DOI: 10.1126/scitranslmed.adf8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Graft-versus-host disease (GVHD) remains the major cause of morbidity and nonrelapse mortality (NRM) after hematopoietic cell transplantation (HCT). Inflammatory cytokines mediate damage to key GVHD targets such as intestinal stem cells (ISCs) and also activate receptor interacting protein kinase 1 (RIP1; RIPK1), a critical regulator of apoptosis and necroptosis. We therefore investigated the role of RIP1 in acute GVHD using samples from HCT patients, modeling GVHD damage in vitro with both human and mouse gastrointestinal (GI) organoids, and blocking RIP1 activation in vivo using several well-characterized mouse HCT models. Increased phospho-RIP1 expression in GI biopsies from patients with acute GVHD correlated with tissue damage and predicted NRM. Both the genetic inactivation of RIP1 and the RIP1 inhibitor GNE684 prevented GVHD-induced apoptosis of ISCs in vivo and in vitro. Daily administration of GNE684 for 14 days reduced inflammatory infiltrates in three GVHD target organs (intestine, liver, and spleen) in mice. Unexpectedly, GNE684 administration also reversed the marked loss of regulatory T cells in the intestines and liver during GVHD and reduced splenic T cell exhaustion, thus improving immune reconstitution. Pharmacological and genetic inhibition of RIP1 improved long-term survival without compromising the graft-versus-leukemia (GVL) effect in lymphocytic and myeloid leukemia mouse models. Thus, RIP1inhibition may represent a nonimmunosuppressive treatment for GVHD.
Collapse
Affiliation(s)
- Mariano Prado-Acosta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seihwan Jeong
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alberto Utrero-Rico
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Joshua D. Webster
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Ernst Holler
- Department of Hematology and Oncology, University of Regensburg, Regensburg 93042, Germany
| | - George Morales
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio Dellepiane
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John E. Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Domagoj Vucic
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - James L. M. Ferrara
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Jamy O, Zeiser R, Chen YB. Novel developments in the prophylaxis and treatment of acute GVHD. Blood 2023; 142:1037-1046. [PMID: 37471585 DOI: 10.1182/blood.2023020073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a major life-threatening complication after allogeneic hematopoietic cell transplant. Traditional standard prophylaxis for aGVHD has included a calcineurin inhibitor plus an antimetabolite, whereas treatment has relied mainly on corticosteroids, followed by multiple nonstandard second-line options. In the past decade, this basic framework has been reshaped by approval of antithymocyte globulin products, the emergence of posttransplant cyclophosphamide, and recent pivotal trials studying abatacept and vedolizumab for GVHD prophylaxis, whereas ruxolitinib was approved for corticosteroid-refractory aGVHD treatment. Because of this progress, routine acute GVHD prophylaxis and treatment practices are starting to shift, and results of ongoing trials are eagerly awaited. Here, we review recent developments in aGVHD prevention and therapy, along with ongoing and future planned clinical trials in this space, outlining what future goals should be and the limitations of current clinical trial designs and end points.
Collapse
Affiliation(s)
- Omer Jamy
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Buxbaum NP, Socié G, Hill GR, MacDonald KPA, Tkachev V, Teshima T, Lee SJ, Ritz J, Sarantopoulos S, Luznik L, Zeng D, Paczesny S, Martin PJ, Pavletic SZ, Schultz KR, Blazar BR. Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD. Blood Adv 2023; 7:4886-4902. [PMID: 36322878 PMCID: PMC10463203 DOI: 10.1182/bloodadvances.2022007611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.
Collapse
Affiliation(s)
- Nataliya P. Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gerard Socié
- Hematology-Transplantation, Assistance Publique-Hopitaux de Paris & University of Paris – INSERM UMR 676, Hospital Saint Louis, Paris, France
| | - Geoffrey R. Hill
- Division of Medical Oncology, The University of Washington, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kelli P. A. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Stephanie J. Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Duke Cancer Institute, Durham, NC
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, Hematologic Maligancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Cancer Immunology Program, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneappolis, MN
| |
Collapse
|
10
|
Limpert R, Pan P, Wang LS, Chen X. From support to therapy: rethinking the role of nutrition in acute graft-versus-host disease. Front Immunol 2023; 14:1192084. [PMID: 37359550 PMCID: PMC10285162 DOI: 10.3389/fimmu.2023.1192084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Allogeneic Hematopoietic stem cell transplantation (HSCT) offers a potential cure for patients with hematologic malignancies. Unfortunately, graft-versus-host disease (GVHD) remains a major obstacle to the greater success of this treatment. Despite intensive research efforts over the past several decades, GVHD is still a major cause of morbidity and mortality in patients receiving allogeneic HSCT. The genetic disparity between donor and recipient is the primary factor that dictates the extent of alloimmune response and the severity of acute GVHD (aGVHD). However, some nongenetic factors are also actively involved in GVHD pathogenesis. Thus, identifying host factors that can be readily modified to reduce GVHD risk is of important clinical significance. We are particularly interested in the potential role of nutrition, as a nongenetic factor, in the etiology and management of aGVHD. In this article, we summarize recent findings regarding how different routes of nutritional support and various dietary factors affect aGVHD. Since diet is one of the most important factors that shape gut microbiota, we also provide evidence for a potential link between certain nutrients and gut microbiota in recipients of allogeneic HSCT. We propose a shifting role of nutrition from support to therapy in GVHD by targeting gut microbiota.
Collapse
|
11
|
Abstract
Antibiotic therapy remains a cornerstone of treatment of both medical and surgical presentations of necrotizing enterocolitis (NEC). However, guidelines regarding the administration of antibiotics for the treatment of NEC are lacking and practices vary amongst clinicians. Although the pathogenesis of NEC is unknown, there is consensus that the infant gastrointestinal microbiome contributes to the disease. The presumed connection between dysbiosis and NEC has prompted some to study whether early prophylactic enteral antibiotics can prevent NEC. Yet others have taken an opposing approach, studying whether perinatal antibiotic exposure increases the risk of NEC by inducing a state of dysbiosis. This narrative review summarizes what is known about antibiotics and their association with the infant microbiome and NEC, current antibiotic prescribing practices for infants with medical and surgical NEC, as well as potential strategies to further optimize the use of antibiotics in this population of infants.
Collapse
Affiliation(s)
- Elizabeth Pace
- University of Pittsburgh Department of Surgery, United States
| | - Toby D Yanowitz
- University of Pittsburgh Department of Pediatrics, Division of Neonatology, United States
| | - Paul Waltz
- University of Pittsburgh Department of Surgery, Division of Pediatric General and Thoracic Surgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave., Pittsburgh, PA 15224, United States
| | - Michael J Morowitz
- University of Pittsburgh Department of Surgery, Division of Pediatric General and Thoracic Surgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave., Pittsburgh, PA 15224, United States.
| |
Collapse
|
12
|
Sharland AF, Hill AE, Son ET, Scull KE, Mifsud NA, Purcell AW. Are Induced/altered Self-peptide Antigens Responsible for De Novo Autoreactivity in Transplantation? Transplantation 2023; 107:1232-1236. [PMID: 36706066 PMCID: PMC10205114 DOI: 10.1097/tp.0000000000004499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Alexandra F. Sharland
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra E. Hill
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Eric T. Son
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Katherine E. Scull
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nicole A. Mifsud
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Anthony W. Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
Mohty M, Malard F. IL-22, a new beacon in gastrointestinal aGVHD. Blood 2023; 141:1369-1370. [PMID: 36951884 DOI: 10.1182/blood.2022018934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
|
14
|
van Halteren AGS, Suwandi JS, Tuit S, Borst J, Laban S, Tsonaka R, Struijk A, Wiekmeijer AS, van Pel M, Roep BO, Zwaginga JJ, Lankester AC, Schepers K, van Tol MJD, Fibbe WE. A unique immune signature in blood separates therapy-refractory from therapy-responsive acute graft-versus-host disease. Blood 2023; 141:1277-1292. [PMID: 36044666 PMCID: PMC10651784 DOI: 10.1182/blood.2022015734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is an immune cell‒driven, potentially lethal complication of allogeneic hematopoietic stem cell transplantation affecting diverse organs, including the skin, liver, and gastrointestinal (GI) tract. We applied mass cytometry (CyTOF) to dissect circulating myeloid and lymphoid cells in children with severe (grade III-IV) aGVHD treated with immune suppressive drugs alone (first-line therapy) or in combination with mesenchymal stromal cells (MSCs; second-line therapy). These results were compared with CyTOF data generated in children who underwent transplantation with no aGVHD or age-matched healthy control participants. Onset of aGVHD was associated with the appearance of CD11b+CD163+ myeloid cells in the blood and accumulation in the skin and GI tract. Distinct T-cell populations, including TCRγδ+ cells, expressing activation markers and chemokine receptors guiding homing to the skin and GI tract were found in the same blood samples. CXCR3+ T cells released inflammation-promoting factors after overnight stimulation. These results indicate that lymphoid and myeloid compartments are triggered at aGVHD onset. Immunoglobulin M (IgM) presumably class switched, plasmablasts, and 2 distinct CD11b- dendritic cell subsets were other prominent immune populations found early during the course of aGVHD in patients refractory to both first- and second-line (MSC-based) therapy. In these nonresponding patients, effector and regulatory T cells with skin- or gut-homing receptors also remained proportionally high over time, whereas their frequencies declined in therapy responders. Our results underscore the additive value of high-dimensional immune cell profiling for clinical response evaluation, which may assist timely decision-making in the management of severe aGVHD.
Collapse
Affiliation(s)
- Astrid G. S. van Halteren
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica S. Suwandi
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Tuit
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jelske Borst
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra Laban
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roula Tsonaka
- Department of Biomedical Data Sciences, Medical Statistics Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Ada Struijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Melissa van Pel
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart O. Roep
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jaap Jan Zwaginga
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan C. Lankester
- Pediatric Stem Cell Transplantation Unit, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen Schepers
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten J. D. van Tol
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem E. Fibbe
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Andrew EC, Khaw SL, Hanna D, Conyers R, Fleming J, Hughes D, Toro C, Wang SS, Weerdenburg H, Anderson S, Cole T, Haeusler GM. Density of antibiotic use and infectious complications in pediatric allogeneic hematopoietic cell transplantation. Transpl Infect Dis 2023; 25:e14018. [PMID: 36748726 DOI: 10.1111/tid.14018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/16/2022] [Accepted: 12/11/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Antibiotics, while an essential component of supportive care in allogeneic hematopoietic cell transplantation (allo-HCT), can have adverse effects and select for antibiotic resistance. Understanding of patterns of use will inform antimicrobial stewardship (AMS) interventions. METHODS Retrospective, single-center cohort of children undergoing first allo-HCT (n = 125). Antibiotic prescription and infection data were included from the date conditioning was commenced until 30 days post allo-HCT. Antibiotic use was reported as length of therapy (LOT) (number of days a patient received an antibiotic) and days of therapy DOT (aggregating all antibiotics prescribed per day). Infections were classified as microbiologically documented infection (MDI) or clinically documented infections. RESULTS At least one course of antibiotics was administered to 124 (99%) patients. The LOT was 636 per 1000 patient days and DOT was 959 per 1000 patient days. The median duration of cumulative antibiotic exposure per patient was 24 days (interquartile range [IQR] 20-30 days). There were 131 days of fever per 1000 patient days with patients febrile for a median of 4 days (IQR 1-7 days). Piperacillin-tazobactam was used for 116 (94%) of patients with an LOT of 532 per 1000 patient days. A total of 119 MDI episodes occurred in 74 (59%) patients, including blood stream infection in 30 (24%) and a proven/probable invasive fungal infection in 4 (3%). CONCLUSION Pediatric HCT patients receive prolonged courses of broad-spectrum antibiotics relative to the frequency of fever and bacterial infections. This study has identified opportunities for AMS intervention to improve outcomes for our HCT patients.
Collapse
Affiliation(s)
- Eden C Andrew
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia
| | - Seong Lin Khaw
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Diane Hanna
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Rachel Conyers
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia.,Cardiac Regeneration Laboratory, Murdoch Children's Research Institute, Parkville, Australia
| | - Jacqueline Fleming
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia
| | - David Hughes
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia
| | - Claudia Toro
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia.,Cardiac Regeneration Laboratory, Murdoch Children's Research Institute, Parkville, Australia
| | - Stacie Shiqi Wang
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Heather Weerdenburg
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Sally Anderson
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia
| | - Theresa Cole
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia.,Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Gabrielle M Haeusler
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia.,Department of Infectious Diseases, Royal Children's Hospital, Parkville, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia.,NHMRC National Centre for Infections in Cancer, Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.,Paediatric Integrated Cancer Service, Victoria, Australia
| |
Collapse
|
16
|
Shorter antibiotic courses in the immunocompromised: the impossible dream? Clin Microbiol Infect 2023; 29:143-149. [PMID: 35988852 DOI: 10.1016/j.cmi.2022.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND A growing number of studies have demonstrated similar outcomes with shorter courses of antibiotics for bacterial infections. Immunocompromised patients are frequently excluded from these studies despite anticipated benefits associated with shortening antibiotic courses (including lower risks of antibiotic toxicity, Clostridioides difficile infection, drug-resistant pathogens, and microbiome alterations). OBJECTIVES To critically review the literature that assesses shorter antibiotic courses in immunocompromised patients, specifically among solid organ transplant recipients and neutropenic fever (NF) syndromes among patients on antineoplastic chemotherapy and undergoing haematopoietic cell transplant. SOURCES References were identified through searches of PubMed, Embase, MEDLINE, and clinical guidelines documents. CONTENT Among organ transplant recipients, the majority of studies assessing outcomes associated with shorter antibiotic courses have been retrospective but have demonstrated similar rates of clinically relevant endpoints. Patients with high- and low-risk NF have been well-studied, including enrolment in randomized studies, albeit with heterogeneous patient populations and outcomes assessed. Clinical improvement-guided adoption of shorter courses has been associated with fewer antibiotic days and similar rates of fever recurrence and mortality. IMPLICATIONS Similar to studies demonstrating efficacy in immunocompetent patients, shorter antibiotic courses should be considered for immunocompromised hosts with presumed bacterial infections. Organ recipients and patients with NF syndromes should be prioritized for study in randomized controlled clinical trials assessing shorter course therapy.
Collapse
|
17
|
Socie G, Michonneau D. Milestones in acute GVHD pathophysiology. Front Immunol 2022; 13:1079708. [PMID: 36544776 PMCID: PMC9760667 DOI: 10.3389/fimmu.2022.1079708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
In the past 65 years, over 25 000 referenced articles have been published on graft-versus-host disease (GVHD). Although this included clinically orientated papers or publications on chronic GVHD, the conservative estimate of scientific publications still contains several thousands of documents on the pathophysiology of acute GVHD. Thus, summarizing what we believe are prominent publications that can be considered milestones in our knowledge of this disease is a challenging and inherently biased task. Here we review from a historical perspective what can be regarded as publications that have made the field move forward. We also included several references of reviews on aspects we could not cover in detail.
Collapse
Affiliation(s)
- Gerard Socie
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| | - David Michonneau
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| |
Collapse
|
18
|
GVHD prediction based on the microbiome. Blood 2022; 140:2313-2314. [PMID: 36454594 DOI: 10.1182/blood.2022017462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
19
|
Abnormal body composition related to the early clinical adverse outcome after HSCT. Bone Marrow Transplant 2022; 57:1191-1193. [PMID: 35461359 DOI: 10.1038/s41409-022-01687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
|
20
|
Brevi A, Cogrossi LL, Lorenzoni M, Mattorre B, Bellone M. The Insider: Impact of the Gut Microbiota on Cancer Immunity and Response to Therapies in Multiple Myeloma. Front Immunol 2022; 13:845422. [PMID: 35371048 PMCID: PMC8968065 DOI: 10.3389/fimmu.2022.845422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
The human microbiota is a unique set of microorganisms colonizing the human body and evolving within it from the very beginning. Acting as an insider, the microbiota provides nutrients, and mutualistically interacts with the host’s immune system, thus contributing to the generation of barriers against pathogens. While a strong link has been documented between intestinal dysbiosis (i.e., disruption to the microbiota homeostasis) and diseases, the mechanisms by which commensal bacteria impact a wide spectrum of mucosal and extramucosal human disorders have only partially been deciphered. This is particularly puzzling for multiple myeloma (MM), a treatable but incurable neoplasia of plasma cells that accumulate in the bone marrow and lead to end-organ damage. Here we revise the most recent literature on data from both the bench and the bedside that show how the gut microbiota modulates cancer immunity, potentially impacting the progression of asymptomatic monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM) to full blown MM. We also explore the effect of the gut microbiome on hematopoietic stem cell transplantation, chemotherapy, immunomodulating therapy and cancer immunotherapy in MM patients. Additionally, we identify the most cogent area of investigation that have the highest chance to delineate microbiota-related and pathobiology-based parameters for patient risk stratification. Lastly, we highlight microbiota-modulating strategies (i.e., diet, prebiotics, probiotics, fecal microbiota transplantation and postbiotics) that may reduce treatment-related toxicity in patients affected by MM as well as the rates of undertreatment of SMM patients.
Collapse
Affiliation(s)
- Arianna Brevi
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Laura Lucia Cogrossi
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Marco Lorenzoni
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Benedetta Mattorre
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- *Correspondence: Matteo Bellone,
| |
Collapse
|
21
|
Song Q, Nasri U, Zeng D. Steroid-Refractory Gut Graft-Versus-Host Disease: What We Have Learned From Basic Immunology and Experimental Mouse Model. Front Immunol 2022; 13:844271. [PMID: 35251043 PMCID: PMC8894323 DOI: 10.3389/fimmu.2022.844271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal graft-versus-host disease (Gut-GVHD) is one of the major causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). While systemic glucocorticoids (GCs) comprise the first-line treatment option, the response rate for GCs varies from 30% to 50%. The prognosis for patients with steroid-refractory acute Gut-GVHD (SR-Gut-aGVHD) remains dismal. The mechanisms underlying steroid resistance are unclear, and apart from ruxolitinib, there are no approved treatments for SR-Gut-aGVHD. In this review, we provide an overview of the current biological understanding of experimental SR-Gut-aGVHD pathogenesis, the advanced technology that can be applied to the human SR-Gut-aGVHD studies, and the potential novel therapeutic options for patients with SR-Gut-aGVHD.
Collapse
Affiliation(s)
- Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Qingxiao Song,
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
22
|
Eshel A, Sharon I, Nagler A, Bomze D, Danylesko I, Fein JA, Geva M, Henig I, Shimoni A, Zuckerman T, Youngster I, Koren O, Shouval R. Origins of bloodstream infections following fecal microbiota transplantation: a strain-level analysis. Blood Adv 2022; 6:568-573. [PMID: 34644375 PMCID: PMC8791595 DOI: 10.1182/bloodadvances.2021005110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
We observed high rates of bloodstream infections (BSIs) following fecal microbiota transplantation (FMT) for graft-versus-host-disease (33 events in 22 patients). To trace the BSIs' origin, we applied a metagenomic bioinformatic pipeline screening donor and recipient stool samples for bacteremia-causing strains in 13 cases. Offending strains were not detected in FMT donations. Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii could be detected in stool samples before emerging in the blood. In this largest report of BSIs post-FMT, we present an approach that may be applicable for evaluating BSI origin following microbiota-based interventions. Our findings support FMT safety in immunocompromised patients but do not rule out FMT as an inducer of bacterial translocation.
Collapse
Affiliation(s)
- Adi Eshel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Itai Sharon
- Department of Computer Science, Tel-Hai Academic College, Qiryat Shemona, Israel
- Migal Galilee Research Institute, Qiryat Shemona, Israel
| | - Arnon Nagler
- Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Bomze
- Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ivetta Danylesko
- Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joshua A. Fein
- Department of Internal Medicine, University of Connecticut, Farmington, CT
| | - Mika Geva
- Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Israel Henig
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Avichai Shimoni
- Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tsila Zuckerman
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ilan Youngster
- Shamir Medical Center, Tel Aviv, Israel
- Department of Pediatrics, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Roni Shouval
- Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Adult BMT Service, Memorial Sloan Kettering Cancer Center, New York, NY; and
- Weill Cornell Medical College, New York, NY
| |
Collapse
|
23
|
Spindelboeck W, Halwachs B, Bayer N, Huber-Krassnitzer B, Schulz E, Uhl B, Gaksch L, Hatzl S, Bachmayr V, Kleissl L, Kump P, Deutsch A, Stary G, Greinix H, Gorkiewicz G, Högenauer C, Neumeister P. Antibiotic use and ileocolonic immune cells in patients receiving fecal microbiota transplantation for refractory intestinal GvHD: a prospective cohort study. Ther Adv Hematol 2022; 12:20406207211058333. [PMID: 34987741 PMCID: PMC8721365 DOI: 10.1177/20406207211058333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023] Open
Abstract
Introduction Treatment-refractory, acute graft-versus-host disease (GvHD) of the lower gastrointestinal tract (GI) after allogeneic hematopoietic stem cell transplantation is life threatening and lacks effective treatment options. While fecal microbiota transplantation (FMT) was shown to ameliorate GI-GvHD, its mechanisms of action and the factors influencing the treatment response in humans remain unclear.The objective of this study is to assess response to FMT treatment, factors influencing response, and to study the mucosal immune cell composition in treatment-refractory GI-GvHD. Methods Consecutive patients with treatment-refractory GI-GvHD were treated with up to six endoscopically applied FMTs. Results We observed the response to FMT in four out of nine patients with severe, treatment refractory GI-GvHD, associated with a significant survival benefit (p = 0.017). The concomitant use of broad-spectrum antibiotics was the main factor associated with FMT failure (p = 0.048). In addition, antibiotic administration hindered the establishment of donor microbiota after FMT. Unlike in non-responders, the microbiota characteristics (e.g. α- and β-diversity, abundance of anaerobe butyrate-producers) in responders were more significantly similar to those of FMT donors. During active refractory GI-GvHD, an increased infiltrate of T cells, mainly Th17 and CD8+ T cells, was observed in the ileocolonic mucosa of patients, while the number of immunomodulatory cells such as regulatory T-cells and type 3 innate lymphoid cells decreased. After FMT, a change in immune cell patterns was induced, depending on the clinical response. Conclusion This study increases the knowledge about the crucial effects of antibiotics in patients given FMT for treatment refractory GI-GvHD and defines the characteristic alterations of ileocolonic mucosal immune cells in this setting.
Collapse
Affiliation(s)
- Walter Spindelboeck
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Bettina Halwachs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nadine Bayer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bianca Huber-Krassnitzer
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Eduard Schulz
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Uhl
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Lukas Gaksch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Stefan Hatzl
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Victoria Bachmayr
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrizia Kump
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Hildegard Greinix
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Peter Neumeister
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
24
|
Michniacki TF, Choi SW, Peltier DC. Immune Suppression in Allogeneic Hematopoietic Stem Cell Transplantation. Handb Exp Pharmacol 2022; 272:209-243. [PMID: 34628553 PMCID: PMC9055779 DOI: 10.1007/164_2021_544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for high-risk hematologic disorders. There are multiple immune-mediated complications following allo-HSCT that are prevented and/or treated by immunosuppressive agents. Principal among these immune-mediated complications is acute graft-versus-host disease (aGVHD), which occurs when the new donor immune system targets host tissue antigens. The immunobiology of aGVHD is complex and involves all aspects of the immune system. Due to the risk of aGVHD, immunosuppressive aGVHD prophylaxis is required for nearly all allogeneic HSCT recipients. Despite prophylaxis, aGVHD remains a major cause of nonrelapse mortality. Here, we discuss the clinical features of aGVHD, the immunobiology of aGVHD, the immunosuppressive therapies used to prevent and treat aGVHD, how to mitigate the side effects of these immunosuppressive therapies, and what additional immune-mediated post-allo-HSCT complications are also treated with immunosuppression.
Collapse
Affiliation(s)
- Thomas F Michniacki
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA
| | - Sung Won Choi
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel C Peltier
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Pan P, Atkinson SN, Taylor B, Zhu H, Zhou D, Flejsierowicz P, Wang LS, Morse M, Liu C, Gunsolus IL, Chen X. Retinoic Acid Signaling Modulates Recipient Gut Barrier Integrity and Microbiota After Allogeneic Hematopoietic Stem Cell Transplantation in Mice. Front Immunol 2021; 12:749002. [PMID: 34759928 PMCID: PMC8573259 DOI: 10.3389/fimmu.2021.749002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains a major complication after allogeneic hematopoietic stem cell transplantation (HSCT). An impaired intestinal epithelial barrier is an important component of GVHD pathogenesis. However, contributing host factors that modulate mucosal barrier integrity during GVHD are poorly defined. We hypothesized that vitamin A and retinoic acid (RA) exert positive impacts on maintaining intestinal barrier function after HSCT, thus preventing or dampening GVHD severity. Unexpectedly, we found that exogenous RA increased intestinal permeability of recipient mice after allogeneic HSCT. Serum bacterial endotoxin levels were significantly higher in GVHD mice fed a vitamin A-high (VAH) diet compared to those fed a vitamin A-normal (VAN) diet, indicating a more compromised intestinal barrier function. Furthermore, VAH mice showed more severe lung GVHD with increased donor T cell infiltration in this tissue and died significantly faster than VAN recipients. 16S rRNA sequencing of fecal samples revealed significant differences in the diversity and composition of gut microbiota between VAN and VAH transplant recipients. Collectively, we show that retinoic acid signaling may negatively impact intestinal barrier function during GVHD. Mild vitamin A supplementation is associated with increased lung GVHD and more profound gut dysbiosis. Micronutrients such as vitamin A could modulate complications of allogeneic HSCT, which may be mediated by shaping gut microbiota.
Collapse
Affiliation(s)
- Pan Pan
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Samantha N. Atkinson
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian Taylor
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Haojie Zhu
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dian Zhou
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Philip Flejsierowicz
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Li-Shu Wang
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew Morse
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chen Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Ian L. Gunsolus
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xiao Chen
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
26
|
Acute GVHD: do we trust our gut? Blood 2021; 137:1447-1448. [PMID: 33734331 DOI: 10.1182/blood.2020009596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Graft-versus-host disease: a disorder of tissue regeneration and repair. Blood 2021; 138:1657-1665. [PMID: 34370823 DOI: 10.1182/blood.2021011867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Regenerative failure at barrier surfaces and maladaptive repair leading to fibrosis are hallmarks of graft-versus-host disease (GVHD). Although immunosuppressive treatment can control inflammation, impaired tissue homeostasis leads to prolonged organ damage and impaired quality of life. In this Spotlight article, we review recent research that addresses the critical failures in tissue regeneration and repair that underpin treatment-resistant GVHD. We highlight current interventions designed to overcome these defects and provide our assessment of the future therapeutic landscape.
Collapse
|
28
|
Microbiome analysis, the immune response and transplantation in the era of next generation sequencing. Hum Immunol 2021; 82:883-901. [PMID: 34364710 DOI: 10.1016/j.humimm.2021.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
The human gastrointestinal tract, skin and mucosal surfaces are inhabited by a complex system of bacteria, viruses, fungi, archaea, protists, and eukaryotic parasites with predominance of bacteria and bacterial viruses (bacteriophages). Collectively these microbes form the microbiota of the microecosystem of humans. Recent advancement in technologies for nucleic acid isolation from various environmental samples, feces and body secretions and advancements in shotgun throughput massive parallel DNA and RNA sequencing along with 16S ribosomal gene sequencing have unraveled the identity of otherwise unknown microbial entities constituting the human microecosystem. The improved transcriptome analysis, technological developments in biochemical analytical methods and availability of complex bioinformatics tools have allowed us to begin to understand the metabolome of the microbiome and the biochemical pathways and potential signal transduction pathways in human cells in response to microbial infections and their products. Also, developments in human whole genome sequencing, targeted gene sequencing of histocompatibility genes and other immune response associated genes by Next Generation Sequencing (NGS) have allowed us to have a better conceptualization of immune responses, and alloimmune responses. These modern technologies have enabled us to dive into the intricate relationship between commensal symbiotic and pathogenic microbiome and immune system. For the most part, the commensal symbiotic microbiota helps to maintain normal immune homeostasis besides providing healthy nutrients, facilitating digestion, and protecting the skin, mucosal and intestinal barriers. However, changes in diets, administration of therapeutic agents like antibiotics, chemotherapeutic agents, immunosuppressants etc. along with certain host factors including human histocompatibility antigens may alter the microbial ecosystem balance by causing changes in microbial constituents, hierarchy of microbial species and even dysbiosis. Such alterations may cause immune dysregulation, breach of barrier protection and lead to immunopathogenesis rather than immune homeostasis. The effects of human microbiome on immunity, health and disease are currently under intense research with cutting edge technologies in molecular biology, biochemistry, and bioinformatics along with tremendous ability to characterize immune response at single cell level. This review will discuss the contemporary status on human microbiome immune system interactions and their potential effects on health, immune homeostasis and allograft transplantation.
Collapse
|
29
|
Sun X, He Q, Yang J, Wang A, Zhang F, Qiu H, Zhou K, Wang P, Ding X, Yuan X, Li H, Zhang Y, Song X. Preventive and Therapeutic Effects of a Novel JAK Inhibitor SHR0302 in Acute Graft-Versus-Host Disease. Cell Transplant 2021; 30:9636897211033778. [PMID: 34269100 PMCID: PMC8287347 DOI: 10.1177/09636897211033778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is one of the most common complications
of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Janus kinase
(JAK) inhibitors are considered as reliable and promising agents for patients
with aGVHD. The prophylactic and therapeutic effects of SHR0302, a novel JAK
inhibitor, were evaluated in aGVHD mouse models. The overall survival (OS),
progression-free survival (PFS), bodyweight of mice, GVHD scores were observed
and recorded. The bone marrow and spleen samples of diseased model mice or
peripheral blood of patients were analyzed. SHR0302 could prevent and reverse
aGVHD in mouse models with preserving graft-versus-tumor effect. Functionally,
SHR0302 improved the OS and PFS, restored bodyweight, reduced GVHD scores, and
reduced immune cells infiltrated in target tissues. SHR0302 treatment also
enhanced the hematopoietic reconstruction compared to the control group.
Mechanistically, our results suggested that SHR0302 could inhibit the activation
of T cells and modulate the differentiation of helper T (Th) cells by reducing
Th1 and increasing regulatory T (Treg) cells. In addition, SHR0302 decreased the
expression of chemokine receptor CXCR3 on donor T cells and the secretion of
cytokines or chemokines including interleukin (IL)-6, interferon γ (IFN-γ),
tumor necrosis factor α (TNF-α), CXCL10, etc. thereby destroying the
IFN-γ/CXCR3/CXCL10 axis which promotes the progression of GVHD. Besides, SHR0302
decreased the phosphorylation of JAK and its downstream STATs, AKT and ERK1/2,
which ultimately regulated the activation, proliferation, and differentiation of
lymphocytes. Experiments on primary cells from aGVHD patients also confirmed the
results. In summary, our results indicated that JAK inhibitor SHR0302 might be
used as a novel agent for patients with aGVHD.
Collapse
Affiliation(s)
- Xi Sun
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiaomei He
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Andi Wang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiying Qiu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Kun Zhou
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Pengran Wang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodan Ding
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiujie Yuan
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huajun Li
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yan Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| |
Collapse
|
30
|
Socié G, Kean LS, Zeiser R, Blazar BR. Insights from integrating clinical and preclinical studies advance understanding of graft-versus-host disease. J Clin Invest 2021; 131:149296. [PMID: 34101618 PMCID: PMC8203454 DOI: 10.1172/jci149296] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a result of impressive increases in our knowledge of rodent and human immunology, the understanding of the pathophysiologic mechanisms underlying graft-versus-host disease (GVHD) has dramatically improved in the past 15 years. Despite improved knowledge, translation to clinical care has not proceeded rapidly, and results from experimental models have been inconsistent in their ability to predict the clinical utility of new therapeutic agents. In parallel, new tools in immunology have allowed in-depth analyses of the human system and have recently been applied in the field of clinical GVHD. Notwithstanding these advances, there is a relative paucity of mechanistic insights into human translational research, and this remains an area of high unmet need. Here we review selected recent advances in both preclinical experimental transplantation and translational human studies, including new insights into human immunology, the microbiome, and regenerative medicine. We focus on the fact that both approaches can interactively improve our understanding of both acute and chronic GVHD biology and open the door to improved therapeutics and successes.
Collapse
Affiliation(s)
- Gérard Socié
- Hematology-Transplantation, Assistance Publique–Hôpitaux de Paris (APHP), Hospital Saint Louis, Paris, France
- INSERM UMR 976 (Team Insights) and University of Paris, Paris, France
| | - Leslie S. Kean
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Robert Zeiser
- Department of Medicine I, Faculty of Medicine, Medical Center–University of Freiburg, Freiburg, Germany
| | - Bruce R. Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
31
|
Mortality and microbial diversity after allogeneic hematopoietic stem cell transplantation: secondary analysis of a randomized nutritional intervention trial. Sci Rep 2021; 11:11593. [PMID: 34078971 PMCID: PMC8172574 DOI: 10.1038/s41598-021-90976-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Gut mucosal barrier injury is common following allogeneic hematopoietic stem cell transplantation (allo-HSCT) and associated with poor clinical outcomes. Diet is critical for microbial diversity, but whether nutritional support affects microbiota and outcome after allo-HSCT is unknown. We present a secondary analysis of a randomized controlled nutritional intervention trial during allo-HSCT. We investigated if the intervention influenced gut microbiota, short-chain fatty acids (SCFAs), and markers of gut barrier functions, and if these parameters were associated with clinical outcomes. Fecal specimens were available from 47 recipients, and subjected to 16S rRNA gene sequencing. We found no significant differences between the intervention group and controls in investigated parameters. We observed a major depletion of microbiota, SCFAs, and altered markers of gut barrier function from baseline to 3 weeks post-transplant. One-year mortality was significantly higher in patients with lower diversity at 3 weeks post-HSCT, but not related to diversity at baseline. The relative abundance of Blautia genus at 3 weeks was higher in survivors. Fecal propionic acid was associated with survival. Markers of gut barrier functions were less strongly associated with clinical outcomes. Possibly, other strategies than dietary intervention are needed to prevent negative effects of gut microbiota and clinical outcomes after allo-HSCT. ClinicalTrials.gov (NCT01181076).
Collapse
|
32
|
Update in clinical and mouse microbiota research in allogeneic haematopoietic cell transplantation. Curr Opin Hematol 2021; 27:360-367. [PMID: 33003084 DOI: 10.1097/moh.0000000000000616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The intestinal microbiota plays a critical role in intestinal homeostasis and immune regulation and has been recognized as a predictor of clinical outcome in patients undergoing allogeneic haematopoietic cell transplantation (allo-HCT) and specifically a determinant of the severity of graft-versus-host disease (GVHD) in mouse models. As GVHD is the most important cause of nonrelapse mortality (NRM) after allo-HCT, understanding the mechanisms by which modifying the microbiota may prevent or decrease the severity of GVHD would represent an important advance. RECENT FINDINGS Microbiota injury was observed globally and higher diversity at peri-engraftment was associated with lower mortality. Lactose is a dietary factor that promotes post-allo-HCT Enterococcus expansion, which is itself associated with mortality from GVHD in patients and exacerbates GVHD in mice. Bacterial and fungal bloodstream infections are preceded by intestinal colonization with a corresponding organism, supporting the gut as a source for many bloodstream infections. Metabolomic profiling studies showed that GVHD is associated with changes in faecal and plasma microbiota-derived molecules. SUMMARY In this review, we highlight some of the most recent and important findings in clinical and mouse microbiota research, as it relates to allo-HCT. Many of these are already being translated into clinical trials that have the potential to change future practice in the care of patients.
Collapse
|
33
|
Cheson BD, Nowakowski G, Salles G. Diffuse large B-cell lymphoma: new targets and novel therapies. Blood Cancer J 2021; 11:68. [PMID: 33820908 PMCID: PMC8021545 DOI: 10.1038/s41408-021-00456-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Newer, more effective and non-cytotoxic therapies are an unmet need for patients with diffuse large B-cell lymphoma (DLBCL) and other B-cell malignancies. Recently approved agents include polatuzumab with bendamustine and rituximab, selinexor, and tafasitamab plus lenalidomide. Three CAR-T cell products are currently approved by the FDA, with others in clinical trials. Additional agents in development include bispecific antibodies and antibody drug conjugates. Combinations of targeted therapies should lead to further improvement in the outcome of patients with B-cell malignancies.
Collapse
Affiliation(s)
| | | | - Gilles Salles
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
34
|
Qayed M, Michonneau D, Socié G, Waller EK. Indole derivatives, microbiome and graft versus host disease. Curr Opin Immunol 2021; 70:40-47. [PMID: 33647539 PMCID: PMC8466652 DOI: 10.1016/j.coi.2021.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Graft versus host disease is a life-threatening complication following allogeneic hematopoietic stem cell transplantation driven by donor T cells reacting against disparate host antigens. Immune homeostasis within the gut plays a major role in the graft versus host response. Gut microbiota and its metabolites impact gut integrity, inflammation and immune activation within the gut. This review will focus on the role of indoles, a product of microbiota metabolism, on gut homeostasis and our current understanding on how that modulates graft versus host disease.
Collapse
Affiliation(s)
- Muna Qayed
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Corresponding author: Edmund K. Waller MD, PhD, FACP, Professor of Medicine and Oncology, Winship Cancer Institute Emory University, Atlanta, Georgia 30322; Phone 404-727-4995; Fax 404-778-5530
| | - David Michonneau
- Hematology Transplantation, Saint Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France
- Université de Paris, INSERM U976, F-75010 Paris, France
| | - Gerard Socié
- Hematology Transplantation, Saint Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France
- Université de Paris, INSERM U976, F-75010 Paris, France
| | - Edmund K. Waller
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Zhou Z, Shang T, Li X, Zhu H, Qi YB, Zhao X, Chen X, Shi ZX, Pan G, Wang YF, Fan G, Gao X, Zhu Y, Feng Y. Protecting Intestinal Microenvironment Alleviates Acute Graft-Versus-Host Disease. Front Physiol 2021; 11:608279. [PMID: 33643058 PMCID: PMC7907526 DOI: 10.3389/fphys.2020.608279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Acute gut graft-versus-host disease (aGVHD) is a leading threat to the survival of allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Abnormal gut microbiota is correlated with poor prognosis in allo-HSCT recipients. A disrupted intestinal microenvironment exacerbates dysbiosis in GVHD patients. We hypothesized that maintaining the integrity of the intestinal barrier may protect gut microbiota and attenuate aGVHD. This hypothesis was tested in a murine aGVHD model and an in vitro intestinal epithelial culture. Millipore cytokine array was utilized to determine the expression of proinflammatory cytokines in the serum. The 16S rRNA sequencing was used to determine the abundance and diversity of gut microbiota. Combining Xuebijing injection (XBJ) with a reduced dose of cyclosporine A (CsA) is superior to CsA alone in improving the survival of aGVHD mice and delayed aGVHD progression. This regimen also reduced interleukin 6 (IL-6) and IL-12 levels in the peripheral blood. 16S rRNA analysis revealed the combination treatment protected gut microbiota in aGVHD mice by reversing the dysbiosis at the phylum, genus, and species level. It inhibited enterococcal expansion, a hallmark of GVHD progression. It inhibited enterococcal expansion, a hallmark of GVHD progression. Furthermore, Escherichia coli expansion was inhibited by this regimen. Pathology analysis revealed that the combination treatment improved the integrity of the intestinal tissue of aGVHD mice. It also reduced the intestinal permeability in aGVHD mice. Besides, XBJ ameliorated doxorubicin-induced intestinal epithelial death in CCK-8 assay. Overall, combining XBJ with CsA protected the intestinal microenvironment to prevent aGVHD. Our findings suggested that protecting the intestinal microenvironment could be a novel strategy to manage aGVHD. Combining XBJ with CsA may reduce the side effects of current aGVHD prevention regimens and improve the quality of life of allo-HSCT recipients.
Collapse
Affiliation(s)
- Zhengcan Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Ting Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Xiurong Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongyan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yu-Bo Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhe-Xin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixiang Pan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yue-Fei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yuxin Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|