1
|
Sadigh S, Kim AS. Molecular Pathology of Myeloid Neoplasms: Molecular Pattern Recognition. Clin Lab Med 2024; 44:339-353. [PMID: 38821648 DOI: 10.1016/j.cll.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Despite the apparent complexity of the molecular genetic underpinnings of myeloid neoplasms, most myeloid mutational profiles can be understood within a simple framework. Somatic mutations accumulate in hematopoietic stem cells with aging and toxic insults, termed clonal hematopoiesis. These "old stem cells" mutations, predominantly in the epigenetic and RNA spliceosome pathways, act as "founding" driver mutations leading to a clonal myeloid neoplasm when sufficient in number and clone size. Subsequent mutations can create the genetic flavor of the myeloid neoplasm ("backseat" drivers) due to their enrichment in certain entities or act as progression events ("aggressive" drivers) during clonal evolution.
Collapse
Affiliation(s)
- Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Annette S Kim
- Division of Diagnostic Genetics and Genomics, Department of Pathology, University of Michigan/Michigan Medicine, 2800 Plymouth Road, NCRC 36-1221-79, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Wachter F, Pikman Y. Pathophysiology of Acute Myeloid Leukemia. Acta Haematol 2024; 147:229-246. [PMID: 38228114 DOI: 10.1159/000536152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a biologically heterogenous disease arising in clonally proliferating hematopoietic stem cells. Sequential acquisition of mutations leads to expanded proliferation of clonal myeloid progenitors and failure of differentiation, leading to fulminant AML. SUMMARY Here, we review the pathophysiology of AML with a focus on factors predisposing to AML development, including prior chemo- and radiation therapy, environmental factors, and germline predisposition. KEY MESSAGE Increasing genomic characterization of AML and insight into mechanisms of its development will be critical to improvement in AML prognostication and therapy.
Collapse
Affiliation(s)
- Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Sadigh S, DeAngelo DJ, Garcia JS, Hasserjian RP, Hergott CB, Lane AA, Lovitch SB, Lucas F, Luskin MR, Morgan EA, Pinkus GS, Pozdnyakova O, Rodig SJ, Shanmugam V, Tsai HK, Winer ES, Zemmour D, Kim AS. Cutaneous Manifestations of Myeloid Neoplasms Exhibit Broad and Divergent Morphologic and Immunophenotypic Features but Share Ancestral Clonal Mutations With Bone Marrow. Mod Pathol 2024; 37:100352. [PMID: 37839675 DOI: 10.1016/j.modpat.2023.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
In this study, we performed a comprehensive molecular analysis of paired skin and peripheral blood/bone marrow (BM) samples from 17 patients with cutaneous myeloid or cutaneous histiocytic-dendritic neoplasms. The cutaneous manifestations included 10 patients with cutaneous acute myeloid leukemia (c-AML), 2 patients with full or partial Langerhans cell differentiation, 2 patients with blastic plasmacytoid dendritic cell neoplasms (BPDCN), 1 patient with both Langerhans cell differentiation and BPDCN, and 2 patients with full or partial indeterminate dendritic cell differentiation. Seven of the 10 c-AML patients (70%) exhibited concurrent or subsequent marrow involvement by acute myeloid leukemia, with all 7 cases (100%) demonstrating shared clonal mutations in both the skin and BM. However, clonal relatedness was documented in one additional case that never had any BM involvement. Nevertheless, NPM1 mutations were identified in 7 of the 10 (70%) of these c-AML cases while one had KMT2A rearrangement and one showed inv(16). All 3 patients (100%) with Langerhans cell neoplasms, 2 patients with BPDCN (100%), and one of the 2 patients (50%) with other cutaneous dendritic cell neoplasms also demonstrated shared mutations between the skin and concurrent or subsequent myeloid neoplasms. Both BM and c-AML shared identical founding drivers, with a predominance of NPM1, DNMT3A, and translocations associated with monocytic differentiation, with common cutaneous-only mutations involving genes in the signal transduction and epigenetic pathways. Cutaneous histiocytic-dendritic neoplasms shared founding drivers in ASXL1, TET2, and/or SRSF2. However, in the Langerhans cell histiocytosis or histiocytic sarcoma cases, there exist recurrent secondary RAS pathway hits, whereas cutaneous BPDCN cases exhibit copy number or structural variants. These results enrich and broaden our understanding of clonally related cutaneous manifestations of myeloid neoplasms and further illuminate the highly diverse spectrum of morphologic and immunophenotypic features they exhibit.
Collapse
Affiliation(s)
- Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jacqueline S Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Christopher B Hergott
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott B Lovitch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fabienne Lucas
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marlise R Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Geraldine S Pinkus
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vignesh Shanmugam
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harrison K Tsai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric S Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David Zemmour
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Now with Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
4
|
Hasserjian RP, Germing U, Malcovati L. Diagnosis and classification of myelodysplastic syndromes. Blood 2023; 142:2247-2257. [PMID: 37774372 DOI: 10.1182/blood.2023020078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
ABSTRACT Myelodysplastic syndromes (MDSs) are neoplastic myeloid proliferations characterized by ineffective hematopoiesis resulting in peripheral blood cytopenias. MDS is distinguished from nonneoplastic clonal myeloid proliferations by the presence of morphologic dysplasia and from acute myeloid leukemia by a blast threshold of 20%. The diagnosis of MDS can be challenging because of the myriad other causes of cytopenias: accurate diagnosis requires the integration of clinical features with bone marrow and peripheral blood morphology, immunophenotyping, and genetic testing. MDS has historically been subdivided into several subtypes by classification schemes, the most recent of which are the International Consensus Classification and World Health Organization Classification (fifth edition), both published in 2022. The aim of MDS classification is to identify entities with shared genetic underpinnings and molecular pathogenesis, and the specific subtype can inform clinical decision-making alongside prognostic risk categorization. The current MDS classification schemes incorporate morphologic features (bone marrow and blood blast percentage, degree of dysplasia, ring sideroblasts, bone marrow fibrosis, and bone marrow hypocellularity) and also recognize 3 entities defined by genetics: isolated del(5q) cytogenetic abnormality, SF3B1 mutation, and TP53 mutation. It is anticipated that with advancing understanding of the genetic basis of MDS pathogenesis, future MDS classification will be based increasingly on genetic classes. Nevertheless, morphologic features in MDS reflect the phenotypic expression of the underlying abnormal genetic pathways and will undoubtedly retain importance to inform prognosis and guide treatment.
Collapse
Affiliation(s)
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine University, Dusseldorf, Germany
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| |
Collapse
|
5
|
Nann D, Rau A, Mahmutovic L, Steinhilber J, Meca V, Federmann B, Vogel W, Bonzheim I, Quintanilla-Martinez L, Fend F. Targeted NGS on sequential bone marrow biopsies aids in the evaluation of cytopenias and monocytosis and documents clonal evolution-a proof of principle study. Virchows Arch 2023; 483:835-845. [PMID: 37610626 PMCID: PMC10700460 DOI: 10.1007/s00428-023-03627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
Differential diagnosis of clonal versus reactive cytopenia and monocytosis, respectively, frequently presents a diagnostic challenge. With the two recent classifications of myeloid disorders, mutational analysis has gained importance as a diagnostic tool. However, reports on its utility on trephine bone marrow biopsies (BMB) are sparse. The aim of our proof of principle study was to determine the suitability of targeted sequencing for the longitudinal evaluation of cytopenia and monocytosis and demonstration of clonal evolution on sequential BMB. Seventy-seven EDTA-decalcified BMB of 33 patients with peripheral cytopenia and/or monocytosis, including at least one follow-up biopsy/patient, were included. Initial morphological diagnoses were idiopathic cytopenia of undetermined significance (ICUS, 8 cases), MDS (without blast increase, 7 cases), MDS with increased blasts/excess blasts (MDS-IB/EB) (11 cases), and CMML (7 cases). Thirty-one genes relevant for myeloid disorders were examined using two custom AmpliSeq NGS panels. Mutations were found in the initial BMB of 5/8 cases of ICUS, thus changing the diagnosis to clonal cytopenia of unknown significance (CCUS), 5/7 MDS, 10/11 MDS-IB/EB, and 7/7 CMML. Clonal evolution was observed in 14/33 (42%) cases, mostly associated with disease progression. None of the wild-type patients acquired mutations during follow-up. NGS-based mutation profiling is a robust diagnostic tool for BMB and provides valuable additional information, especially for cases with no/minimal dysplasia, and for better risk stratification of MDS. Tracking variant allele frequency and appearance of mutations over time allows for observing clonal evolution or relapse.
Collapse
Affiliation(s)
- Dominik Nann
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Achim Rau
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Lejla Mahmutovic
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Julia Steinhilber
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Vanessa Meca
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Birgit Federmann
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
- Department of Peptide-Based Immunotherapy and Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tuebingen, Germany
| | - Wichard Vogel
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", Tuebingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany.
| |
Collapse
|
6
|
Craven KE, Ewalt MD. Premalignant Clonal Hematopoiesis (Clonal Hematopoiesis of Indeterminate Potential and Clonal Cytopenia of Undetermined Significance). Clin Lab Med 2023; 43:565-576. [PMID: 37865503 DOI: 10.1016/j.cll.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Premalignant clonal hematopoiesis is the presence of somatic alterations in the blood of otherwise healthy individuals. Although the condition is not considered as a cancer, it carries an increased risk of developing a hematologic malignancy, particularly in those with large neoplastic clones, multiple pathogenic mutations, and high-risk mutations. In addition to the increased risk of malignancy, clonal hematopoiesis carries a markedly increased risk of cardiovascular events and death. Appropriate identification of this entity is critical to mitigate cardiovascular risk factors and ensure appropriate monitoring for the emergence of blood cancer.
Collapse
Affiliation(s)
- Kelly E Craven
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 36, New York, NY 10065, USA
| | - Mark D Ewalt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 36, New York, NY 10065, USA.
| |
Collapse
|
7
|
Wijnands C, Noori S, Donk NWCJVD, VanDuijn MM, Jacobs JFM. Advances in minimal residual disease monitoring in multiple myeloma. Crit Rev Clin Lab Sci 2023; 60:518-534. [PMID: 37232394 DOI: 10.1080/10408363.2023.2209652] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells and the excretion of a monoclonal immunoglobulin (M-protein), or fragments thereof. This biomarker plays a key role in the diagnosis and monitoring of MM. Although there is currently no cure for MM, novel treatment modalities such as bispecific antibodies and CAR T-cell therapies have led to substantial improvement in survival. With the introduction of several classes of effective drugs, an increasing percentage of patients achieve a complete response. This poses new challenges to traditional electrophoretic and immunochemical M-protein diagnostics because these methods lack sensitivity to monitor minimal residual disease (MRD). In 2016, the International Myeloma Working Group (IMWG) expanded their disease response criteria with bone marrow-based MRD assessment using flow cytometry or next-generation sequencing in combination with imaging-based disease monitoring of extramedullary disease. MRD status is an important independent prognostic marker and its potential as a surrogate endpoint for progression-free survival is currently being studied. In addition, numerous clinical trials are investigating the added clinical value of MRD-guided therapy decisions in individual patients. Because of these novel clinical applications, repeated MRD evaluation is becoming common practice in clinical trials as well as in the management of patients outside clinical trials. In response to this, novel mass spectrometric methods that have been developed for blood-based MRD monitoring represent attractive minimally invasive alternatives to bone marrow-based MRD evaluation. This paves the way for dynamic MRD monitoring to allow the detection of early disease relapse, which may prove to be a crucial factor in facilitating future clinical implementation of MRD-guided therapy. This review provides an overview of state-of-the-art of MRD monitoring, describes new developments and applications of blood-based MRD monitoring, and suggests future directions for its successful integration into the clinical management of MM patients.
Collapse
Affiliation(s)
- Charissa Wijnands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Somayya Noori
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | | | - Martijn M VanDuijn
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Joannes F M Jacobs
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Pozdnyakova O, Niculescu RS, Kroll T, Golemme L, Raymond N, Briggs D, Kim A. Beyond the routine CBC: machine learning and statistical analyses identify research CBC parameter associations with myelodysplastic syndromes and specific underlying pathogenic variants. J Clin Pathol 2023; 76:624-631. [PMID: 35577566 DOI: 10.1136/jclinpath-2021-207860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
AIMS Given the time, expense and clinical expertise required for a myelodysplastic syndrome (MDS) diagnosis, there is a clear need for a cost-effective screening laboratory test that can rapidly and accurately distinguish patients with cytopenias related to MDS from other causes. METHODS We measured conventional and research use only complete blood cell (CBC) parameters using the Sysmex XN-series haematology analyser in 102 MDS patients (70 patients with active MDS and 32 patients in remission), 43 patients with cytopenia without morphological evidence of MDS and 484 age-adjusted controls. A variety of algorithms, including random forest machine learning, were used to construct parameter-based models to predict the presence of MDS using both CBC and molecular data or CBC data alone and correlated individual pathogenic variants/genetic pathways with CBC parameters changes. RESULTS Using the CBC parameters alone, our predictive model for active MDS showed a 0.86 receiver operating characteristic curve (ROC)/area under the ROC curve (AUC), with 0.87 sensitivity and 0.72 specificity; with the addition of the molecular and demographic status, the ROC/AUC improved to 0.93, sensitivity to 0.89 and specificity to 0.84. The most discriminatory MDS parameters were reflective of dysplastic neutrophil morphology, red cell count fragmentation and degree of platelet immaturity. Specific patterns of parameters were associated with individual gene pathogenic variants or affected pathways. CONCLUSIONS CBC research parameters can be used as an adjunct to the haematological workup of cytopenia(s) to help screen for patients with high likelihood of MDS.
Collapse
Affiliation(s)
- Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Lisa Golemme
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nolan Raymond
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Debra Briggs
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Annette Kim
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Lee TD, Aisner DL, David MP, Eno CC, Gagan J, Gocke CD, Guseva NV, Haley L, Jajosky AN, Jones D, Mansukhani MM, Mroz P, Murray SS, Newsom KJ, Paulson V, Roy S, Rushton C, Segal JP, Senaratne TN, Siddon AJ, Starostik P, Van Ziffle JAG, Wu D, Xian RR, Yohe S, Kim AS. Current clinical practices and challenges in molecular testing: a GOAL Consortium Hematopathology Working Group report. Blood Adv 2023; 7:4599-4607. [PMID: 37236162 PMCID: PMC10425685 DOI: 10.1182/bloodadvances.2023010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
While molecular testing of hematologic malignancies is now standard of care, there is variability in practice and testing capabilities between different academic laboratories, with common questions arising on how to best meet clinical expectations. A survey was sent to hematopathology subgroup members of the Genomics Organization for Academic Laboratories consortium to assess current and future practice and potentially establish a reference for peer institutions. Responses were received from 18 academic tertiary-care laboratories regarding next-generation sequencing (NGS) panel design, sequencing protocols and metrics, assay characteristics, laboratory operations, case reimbursement, and development plans. Differences in NGS panel size, use, and gene content were reported. Gene content for myeloid processes was reported to be generally excellent, while genes for lymphoid processes were less well covered. The turnaround time (TAT) for acute cases, including acute myeloid leukemia, was reported to range from 2 to 7 calendar days to 15 to 21 calendar days, with different approaches to achieving rapid TAT described. To help guide NGS panel design and standardize gene content, consensus gene lists based on current and future NGS panels in development were generated. Most survey respondents expected molecular testing at academic laboratories to continue to be viable in the future, with rapid TAT for acute cases likely to remain an important factor. Molecular testing reimbursement was reported to be a major concern. The results of this survey and subsequent discussions improve the shared understanding of differences in testing practices for hematologic malignancies between institutions and will help provide a more consistent level of patient care.
Collapse
Affiliation(s)
- Thomas D. Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Dara L. Aisner
- Department of Pathology, University of Colorado, Aurora, CO
| | - Marjorie P. David
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Celeste C. Eno
- Department of Pathology and Lab Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern, Dallas, TX
| | - Christopher D. Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Lisa Haley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Audrey N. Jajosky
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Daniel Jones
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Mahesh M. Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Pawel Mroz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Sarah S. Murray
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Kimberly J. Newsom
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Vera Paulson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Somak Roy
- Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Chase Rushton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | | | - T. Niroshini Senaratne
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Alexa J. Siddon
- Departments of Laboratory Medicine & Pathology, Yale School of Medicine, New Haven, CT
| | - Petr Starostik
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | | | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Rena R. Xian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sophia Yohe
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Hasserjian RP, Orazi A, Orfao A, Rozman M, Wang SA. The International Consensus Classification of myelodysplastic syndromes and related entities. Virchows Arch 2023; 482:39-51. [PMID: 36287260 DOI: 10.1007/s00428-022-03417-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The International Consensus Classification (ICC) of myeloid neoplasms and acute leukemia has updated the classification of myelodysplastic syndromes (MDSs) and placed MDS in a broader group of clonal cytopenias that includes clonal cytopenia of undetermined significance (CCUS) and related entities. Although subject to some interobserver variability and lack of specificity, morphologic dysplasia remains the main feature that distinguishes MDS from other clonal cytopenias and defines MDS as a hematologic malignancy. The ICC has introduced some changes in the definition of MDS whereby some cases categorized as MDS based on cytogenetic abnormalities are now classified as CCUS, while SF3B1 and multi-hit TP53 mutations are now considered to be MDS-defining in a cytopenic patient. The ICC has also recognized several cytogenetic and molecular abnormalities that reclassify some cases of MDS with excess blasts as acute myeloid leukemia (AML) and has introduced a new MDS/AML entity that encompasses cases with 10-19% blasts that lie on the continuum between MDS and AML. Two new genetically defined categories of MDS have been introduced: MDS with mutated SF3B1 and MDS with mutated TP53, the latter requiring bi-allelic aberrations in the TP53 gene. The entity MDS, unclassifiable has been eliminated. These changes have resulted in an overall simplification of the MDS classification scheme from 8 separate entities (including 1 that was genetically defined) in the revised 4th edition WHO classification to 7 separate entities (including 3 that are genetically defined) in the ICC.
Collapse
Affiliation(s)
- Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Warren 244, Boston, MA, 02114, USA.
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alberto Orfao
- Department of Medicine, Cytometry Service, Cancer Research Center (IBMCC-CSIC/USAL), Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, University of Salamanca, Salamanca, Spain
| | - Maria Rozman
- Hematopathology Section, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Sa A Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, Jaiswal S, Malcovati L, Vannucchi AM, Patel KP, Arber DA, Arcila ME, Bejar R, Berliner N, Borowitz MJ, Branford S, Brown AL, Cargo CA, Döhner H, Falini B, Garcia-Manero G, Haferlach T, Hellström-Lindberg E, Kim AS, Klco JM, Komrokji R, Lee-Cheun Loh M, Loghavi S, Mullighan CG, Ogawa S, Orazi A, Papaemmanuil E, Reiter A, Ross DM, Savona M, Shimamura A, Skoda RC, Solé F, Stone RM, Tefferi A, Walter MJ, Wu D, Ebert BL, Cazzola M. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood 2022; 140:2228-2247. [PMID: 36130297 PMCID: PMC10488320 DOI: 10.1182/blood.2022015853] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.
Collapse
Affiliation(s)
- Eric J. Duncavage
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Courtney D. DiNardo
- Division of Cancer Medicine, Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Lucy A. Godley
- Section of Hematology and Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia & Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Alessandro M. Vannucchi
- Department of Hematology, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence and Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Keyur P. Patel
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Maria E. Arcila
- Department of Pathology, Memorial Sloan Lettering Cancer Center, New York, NY
| | - Rafael Bejar
- Division of Hematology and Oncology, University of California San Diego, La Jolla, CA
| | - Nancy Berliner
- Division of Hematology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Michael J. Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Center for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Anna L. Brown
- Department of Pathology, South Australia Heath Alliance, Adelaide, Australia
| | - Catherine A. Cargo
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Brunangelo Falini
- Department of Hematology, CREO, University of Perugia, Perugia, Italy
| | | | | | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rami Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Mignon Lee-Cheun Loh
- Department of Pediatrics, Ben Towne Center for Childhood Cancer Research, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Sanam Loghavi
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Seishi Ogawa
- University of Kyoto School of Medicine, Kyoto, Japan
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX
| | | | - Andreas Reiter
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - David M. Ross
- Haematology Directorate, SA Pathology, Adelaide, Australia
| | - Michael Savona
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Akiko Shimamura
- Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Radek C. Skoda
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Francesc Solé
- MDS Group, Institut de Recerca contra la Leucèmia Josep Carreras, Barcelona, Spain
| | - Richard M. Stone
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mario Cazzola
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Concordance of Peripheral Blood and Bone Marrow Next-Generation Sequencing in Hematologic Neoplasms. Adv Hematol 2022; 2022:8091746. [PMID: 35378848 PMCID: PMC8976630 DOI: 10.1155/2022/8091746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. Mutational analysis by next-generation sequencing (NGS) obtained by peripheral blood NGS has been of clinical interest to use as a minimally invasive screening tool. Our study evaluates the correlation between NGS results on peripheral blood and bone marrow in hematolymphoid disease. Method. We evaluated patients who had NGS for presumed hematologic malignancy performed on peripheral blood and bone marrow within a 1-year interval of each other. We excluded cases in which chemotherapy or bone marrow transplant occurred in the interval between the two tests. The concordance across peripheral blood and bone marrow NGS results was assessed by kappa coefficient analysis. Results. A total of 163 patients were studied. Concordance of peripheral blood and bone marrow NGS found in 150 patients (92.0%) with a kappa coefficient of 0.794 (kappa standard error 0.054) and
value for testing kappa <0.0001. Myeloid neoplasms showed concordant results in 77/78 cases (98.7%) with a kappa coefficient of 0.916. Lymphoid neoplasms showed concordant results in 26/31 cases (83.9%) with a kappa coefficient of 0.599. Nonneoplastic cases showed concordant results in 47/54 cases (87.0%) with a kappa coefficient of 0.743. Conclusion. Peripheral blood NGS is a reliable tool for mutational analysis and provides a less invasive method for screening and monitoring of the molecular profile.
Collapse
|
13
|
Molecular markers demonstrate diagnostic and prognostic value in the evaluation of myelodysplastic syndromes in cytopenia patients. Blood Cancer J 2022; 12:12. [PMID: 35078969 PMCID: PMC8789920 DOI: 10.1038/s41408-022-00612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
|
14
|
Wang SA, Ok CY, Kim AS, Lucas F, Morgan EA, Thakral B, Patel S, Nardi V, Patel KM, Weinberg OK, Hasserjian RP. Myelodysplastic syndromes with no somatic mutations detected by next-generation sequencing display similar features to myelodysplastic syndromes with detectable mutations. Am J Hematol 2021; 96:E420-E423. [PMID: 34416041 DOI: 10.1002/ajh.26325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Sa A. Wang
- Department of Hematopathology MD Anderson Cancer Center Houston Texas USA
| | - Chi Young Ok
- Department of Hematopathology MD Anderson Cancer Center Houston Texas USA
| | - Annette S. Kim
- Department of Pathology Brigham & Women's Hospital Boston Massachusetts USA
| | - Fabienne Lucas
- Department of Pathology Brigham & Women's Hospital Boston Massachusetts USA
| | | | - Beenu Thakral
- Department of Hematopathology MD Anderson Cancer Center Houston Texas USA
| | - Sanjay Patel
- Department of Pathology Weill‐Cornell Medical Center New York New York USA
| | - Valentina Nardi
- Department of Pathology Massachusetts General Hospital Boston Massachusetts USA
| | - Keyur M. Patel
- Department of Hematopathology MD Anderson Cancer Center Houston Texas USA
| | - Olga K. Weinberg
- Department of Pathology University of Texas Southwestern Medical Center Dallas Texas USA
| | | |
Collapse
|
15
|
Kawata E, Hedley BD, Chin-Yee B, Xenocostas A, Lazo-Langner A, Hsia CC, Howson-Jan K, Yang P, Levy MA, Santos S, Bhai P, Howlett C, Lin H, Kadour M, Sadikovic B, Chin-Yee I. Reducing cytogenetic testing in the era of next generation sequencing: Are we choosing wisely? Int J Lab Hematol 2021; 44:333-341. [PMID: 34713980 DOI: 10.1111/ijlh.13747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION In most laboratories, next generation sequencing (NGS) has been added without consideration for redundancy compared to conventional cytogenetics (CG). We tested a streamlined approach to genomic testing in patients with suspected myeloid and plasma cell neoplasms using next generation sequencing ("NGS first") as the primary testing modality and limiting cytogenetics (CG) to samples with morphologic abnormalities in the marrow aspirate. METHODS Based on morphologic interpretation of bone marrow aspirate and flow cytometry, samples were triaged into four groups: (a) Samples with dysplasia or excess blasts had both NGS and karyotyping; (b) Samples without excess blasts or dysplasia had NGS only; (c) Repeat samples with previous NGS and/or CG studies were not retested; (d) Samples for suspected myeloma with less than 5% plasma cell had CG testing cancelled. RESULTS Seven hundred eleven adult bone marrow (BM) samples met the study criteria. The NGS first algorithm eliminated CG testing in 229/303 (75.6%) of patients, primarily by reducing repeat testing. Potential cost avoided was approximately $124 000 per annum. Hematologists overruled the triage comment in only 11/303 (3.6%) cases requesting CG testing for a specific indication. CONCLUSIONS Utilizing NGS as the primary genomic testing modality NGS was feasible and well accepted, reducing over three quarters of all CG requests and improving the financial case for adoption of NGS. Key factors for the success of this study were collaboration of clinical and genomic diagnostic teams in developing the algorithm, rapid turnaround time for BM interpretation for triage, and communication between laboratories.
Collapse
Affiliation(s)
- Eri Kawata
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Department of Hematology, Panasonic Health Insurance Organization Matsushita Memorial Hospital, Moriguchi, Japan.,Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Benjamin D Hedley
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Benjamin Chin-Yee
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Alejandro Lazo-Langner
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Cyrus C Hsia
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| | - Kang Howson-Jan
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ping Yang
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada.,Cytogenetics Laboratory, London Health Sciences Centre, London, Ontario, Canada
| | - Michael A Levy
- Molecular Diagnostic Division, London Health Sciences Centre, London, Ontario, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Stephanie Santos
- Molecular Diagnostic Division, London Health Sciences Centre, London, Ontario, Canada
| | - Pratibha Bhai
- Molecular Diagnostic Division, London Health Sciences Centre, London, Ontario, Canada
| | - Christopher Howlett
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada.,Molecular Diagnostic Division, London Health Sciences Centre, London, Ontario, Canada
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada.,Molecular Diagnostic Division, London Health Sciences Centre, London, Ontario, Canada
| | - Mike Kadour
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada.,Molecular Diagnostic Division, London Health Sciences Centre, London, Ontario, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Ian Chin-Yee
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Hanbazazh M, Harada S, Reddy V, Mackinnon AC, Harbi D, Morlote D. The Interpretation of Sequence Variants in Myeloid Neoplasms. Am J Clin Pathol 2021; 156:728-748. [PMID: 34155503 DOI: 10.1093/ajcp/aqab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To provide an overview of the challenges encountered during the interpretation of sequence variants detected by next-generation sequencing (NGS) in myeloid neoplasms, as well as the limitations of the technology with the goal of preventing the over- or undercalling of alterations that may have a significant effect on patient management. METHODS Review of the peer-reviewed literature on the interpretation, reporting, and technical challenges of NGS assays for myeloid neoplasms. RESULTS NGS has been integrated widely and rapidly into the standard evaluating of myeloid neoplasms. Review of the literature reveals that myeloid sequence variants are challenging to detect and interpret. Large insertions and guanine-cytosine-heavy areas prove technically challenging while frameshift and truncating alterations may be classified as variants of uncertain significance by tertiary analysis informatics pipelines due to their absence in the literature and databases. CONCLUSIONS The analysis and interpretation of NGS results in myeloid neoplasia are challenging due to the varied number of detectable gene alterations. Familiarity with the genomic landscape of myeloid malignancies and knowledge of the tools available for the interpretation of sequence variants are essential to facilitate translation into clinical and therapy decisions.
Collapse
Affiliation(s)
- Mehenaz Hanbazazh
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shuko Harada
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishnu Reddy
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander Craig Mackinnon
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Djamel Harbi
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diana Morlote
- Department of Pathology, Division of Genomic Diagnostics and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Sadigh S, Kim AS. Molecular Pathology of Myeloid Neoplasms: Molecular Pattern Recognition. Surg Pathol Clin 2021; 14:517-528. [PMID: 34373100 DOI: 10.1016/j.path.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Despite the apparent complexity of the molecular genetic underpinnings of myeloid neoplasms, most myeloid mutational profiles can be understood within a simple framework. Somatic mutations accumulate in hematopoietic stem cells with aging and toxic insults, termed clonal hematopoiesis. These "old stem cells" mutations, predominantly in the epigenetic and RNA spliceosome pathways, act as "founding" driver mutations leading to a clonal myeloid neoplasm when sufficient in number and clone size. Subsequent mutations can create the genetic flavor of the myeloid neoplasm ("backseat" drivers) due to their enrichment in certain entities or act as progression events ("aggressive" drivers) during clonal evolution.
Collapse
Affiliation(s)
- Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Ibrar W, Zhang W, Cox JL, Cushman-Vokoun A, Fu K, Greiner TC, Yuan J. The utility of a myeloid mutation panel for the diagnosis of myelodysplastic syndrome and myelodysplastic/myeloproliferative neoplasm. Int J Lab Hematol 2021; 43:1501-1509. [PMID: 34270867 DOI: 10.1111/ijlh.13659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The diagnosis of myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) is based on morphology and cytogenetics/FISH findings per 2017 WHO classification. With rare exceptions, somatic mutations have not been incorporated as the diagnostic criteria. METHODS We analyzed the utility of mutational analysis with a targeted 54-gene or 40-gene next-generation sequencing (NGS) panel in the diagnosis of MDS and MDS/MPN. RESULTS We retrospectively collected 92 patients who presented with unexplained cytopenia with or without cytosis, including 32 low-grade MDS (MDS-L), 18 high-grade MDS (MDS-H), 5 therapy-related MDS (MDS-TR), 19 MDS/MPN, and 18 negative cases. Of 92 patients, 197 somatic mutations involving 38 genes were detected and had variant allele frequency (VAF) ranging from 3% to 99%. The most common mutated genes were TET2, ASXL1, RUNX1, TP53, SRSF2, and SF3B1. MDS-L, MDS-H, MDS-TR, and MDS/MPN showed an average number of somatic mutations with a mean VAF of 1.9/33%, 2.6/30%, 2/36%, and 4/41%, respectively. SF3B1 mutations were exclusively observed in MDS-L and MDS/MPN. TP53 gene mutations were more frequently seen in MDS-H and MDS-TR. Among 34 patients with a diagnosis of MDS or MDS/MPN with normal cytogenetics, 31 patients (91%) had at least 1 mutation and 24 patients (71%) had ≥2 mutations with ≥10% VAF. CONCLUSION A myeloid mutational panel provides additional evidence of clonality besides cytogenetics/FISH studies in the diagnosis of cytopenia with or without cytosis. Two or more mutations with ≥10% VAF highly predicts MDS and MDS/MPN with a positive predictive value of 100%.
Collapse
Affiliation(s)
- Warda Ibrar
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Weiwei Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse Lee Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Allison Cushman-Vokoun
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ji Yuan
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
19
|
Mutational analysis of hematologic neoplasms in 164 paired peripheral blood and bone marrow samples by next-generation sequencing. Blood Adv 2021; 4:4362-4365. [PMID: 32926123 DOI: 10.1182/bloodadvances.2020002306] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 01/30/2023] Open
Abstract
Key Points
Findings support use of PB samples for chronic myeloid neoplasms and for acute leukemias with sufficient circulating disease. In acute leukemias, BM appears to be superior to PB for monitoring measurable residual disease, even in the absence of BM excess blasts.
Collapse
|
20
|
Beck RC, Kim AS, Goswami RS, Weinberg OK, Yeung CCS, Ewalt MD. Molecular/Cytogenetic Education for Hematopathology Fellows. Am J Clin Pathol 2020; 154:149-177. [PMID: 32444878 DOI: 10.1093/ajcp/aqaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES At a discussion on molecular/cytogenetic education for hematopathology fellows at the 2018 Society for Hematopathology Program Directors Meeting, consensus was that fellows should understand basic principles and indications for and limitations of molecular/cytogenetic testing used in routine practice. Fellows should also be adept at integrating results of such testing for rendering a final diagnosis. To aid these consensus goals, representatives from the Society for Hematopathology and the Association for Molecular Pathology formed a working group to devise a molecular/cytogenetic curriculum for hematopathology fellow education. CURRICULUM SUMMARY The curriculum includes a primer on cytogenetics and molecular techniques. The bulk of the curriculum reviews the molecular pathology of individual malignant hematologic disorders, with applicable molecular/cytogenetic testing for each and following the 2017 World Health Organization classification of hematologic neoplasms. Benign hematologic disorders and bone marrow failure syndromes are also discussed briefly. Extensive tables are used to summarize genetics of individual disorders and appropriate methodologies. CONCLUSIONS This curriculum provides an overview of the current understanding of the molecular biology of hematologic disorders and appropriate ancillary testing for their evaluation. The curriculum may be used by program directors for training hematopathology fellows or by practicing hematopathologists.
Collapse
Affiliation(s)
- Rose C Beck
- Department of Pathology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH (Society for Hematopathology Representative)
| | - Annette S Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (Association for Molecular Pathology Representative)
| | - Rashmi S Goswami
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Olga K Weinberg
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - Cecilia C S Yeung
- Department of Pathology, University of Washington, and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mark D Ewalt
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
21
|
Kawata E, Lazo-Langner A, Xenocostas A, Hsia CC, Howson-Jan K, Deotare U, Saini L, Yang P, Broadbent R, Levy M, Howlett C, Stuart A, Kerkhof J, Santos S, Lin H, Sadikovic B, Chin-Yee I. Clinical value of next-generation sequencing compared to cytogenetics in patients with suspected myelodysplastic syndrome. Br J Haematol 2020; 192:729-736. [PMID: 32588428 DOI: 10.1111/bjh.16891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
Next-generation sequencing (NGS) increasingly influences diagnosis, prognosis and management of myelodysplastic syndrome (MDS). In addition to marrow morphology and flow cytometry, our institution performs cytogenetics (CG) and NGS-based testing routinely in patients with suspected MDS. We evaluated the relative value of NGS in the assessment of patients with suspected MDS. We initially compared the diagnostic and prognostic information derived from CG and NGS in 134 patients. NGS enhanced the diagnostic yield compared to CG for clonal myeloid disorders (sensitivity 77% vs. 42·2%; specificity 90·2% vs. 78%; positive predictive value 92·8% vs. 76%; and negative predictive value 70·8% vs. 45·5%). The identification of poor prognosis mutations by NGS altered risk category in 27/39 (69·2%) patients with MDS with good/intermediate risk CG. Subsequently, we prospectively evaluated 70 patients with suspected MDS using an 'NGS-first approach' with CG restricted to samples with morphological abnormalities. We rarely identified mutations or CG abnormalities in patients without dysplastic features. NGS has a superior diagnostic performance compared to CG in patients with suspected MDS. We estimate that by using an 'NGS-first approach' we could reduce karyotyping by approximately 30%.
Collapse
Affiliation(s)
- Eri Kawata
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Department of Hematology, Matsushita Memorial Hospital, Moriguchi, Osaka, Japan.,Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Alejandro Lazo-Langner
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulish School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulish School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Cyrus C Hsia
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulish School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Pathology & Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Kang Howson-Jan
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulish School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Uday Deotare
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulish School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lalit Saini
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulish School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ping Yang
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Cytogenetics Laboratory, London Health Sciences Centre, London, Ontario, Canada
| | - Robert Broadbent
- Cytogenetics Laboratory, London Health Sciences Centre, London, Ontario, Canada
| | - Michael Levy
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, London Health Sciences Centre, London, Ontario, Canada
| | - Christopher Howlett
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, London Health Sciences Centre, London, Ontario, Canada
| | - Alan Stuart
- Molecular Genetics Laboratory, London Health Sciences Centre, London, Ontario, Canada
| | - Jennifer Kerkhof
- Molecular Genetics Laboratory, London Health Sciences Centre, London, Ontario, Canada
| | - Stephanie Santos
- Molecular Genetics Laboratory, London Health Sciences Centre, London, Ontario, Canada
| | - Hanxin Lin
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, London Health Sciences Centre, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Molecular Genetics Laboratory, London Health Sciences Centre, London, Ontario, Canada
| | - Ian Chin-Yee
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada.,Division of Hematology, Department of Medicine, Schulish School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Pathology & Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|