1
|
Das K, Rao LVM. Coagulation protease-induced extracellular vesicles: their potential effects on coagulation and inflammation. J Thromb Haemost 2024; 22:2976-2990. [PMID: 39127325 DOI: 10.1016/j.jtha.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Coagulation proteases, in addition to playing an essential role in blood coagulation, often influence diverse cellular functions by inducing specific signaling pathways via the activation of protease-activated receptors (PARs). PAR activation-induced cellular effects are known to be cell-specific as PARs are expressed selectively in specific cell types. However, a growing body of evidence indicates that coagulation protease-induced PAR activation in a specific cell type could affect cellular responses in other cell types via communicating through extracellular vesicles (EVs) as coagulation protease-induced PAR signaling could promote the release of EVs in various cell types. EVs are membrane-enclosed nanosized vesicles that facilitate intercellular communication by transferring bioactive molecules, such as proteins, lipids, messenger RNAs, and microRNAs, etc., from donor cells to recipient cells. Our recent findings established that factor (F)VIIa promotes the release of EVs from vascular endothelium via endothelial cell protein C receptor-dependent activation of PAR1-mediated biased signaling. FVIIa-released EVs exhibit procoagulant activity and cytoprotective responses in both in vitro and in vivo model systems. This review discusses how FVIIa and other coagulation proteases trigger the release of EVs. The review specifically discusses how FVIIa-released EVs are enriched with phosphatidylserine and anti-inflammatory microRNAs and the impact of FVIIa-released EVs on hemostasis in therapeutic settings. The review also briefly highlights the therapeutic potential of FVIIa-released EVs in treating bleeding and inflammatory disorders, such as hemophilic arthropathy.
Collapse
Affiliation(s)
- Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas at Tyler School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, Texas, USA.
| |
Collapse
|
2
|
Yang J, Yang Y, Gao L, Jiang X, Sun J, Wang Z, Xie R. Adverse effects of microparticles on transfusion of stored red blood cell concentrates. Hematol Transfus Cell Ther 2024; 46 Suppl 5:S48-S56. [PMID: 38519412 PMCID: PMC11670589 DOI: 10.1016/j.htct.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Systemic and pulmonary coagulopathy and inflammation are important characteristics of transfusion-related acute lung injury (TRALI). Whether microparticles that accumulate in transfused red blood cell concentrates (RBCs) have proinflammatory and procoagulant potential and contribute to adverse reactions of RBC transfusions is unclear. AIM To investigate the ability of microparticles in stored RBCs to promote thrombin generation and induce human pulmonary microvascular endothelial cell (HMVEC) activation and damage. METHODS The number and size of microparticles were determined by flow cytometric and nanoparticle tracking analyses, respectively. Thrombin generation and the intrinsic coagulation pathway were assayed by a calibrated automated thrombogram and by measuring activated partial thromboplastin time (aPTT), respectively. The expression of ICAM-1 and the release of cytokines by endothelial cells were detected by flow cytometric analyses. HMVEC damage was assessed by incubating lipopolysaccharide-activated endothelial cells with MP-primed polymorphonuclear neutrophils (PMNs). RESULTS The size of the microparticles in the RBC supernatant was approximately 100-300 nm. Microparticles promoted thrombin generation in a dose-dependent manner and the aPTT was shortened. Depleting microparticles from the supernatant of RBCs stored for 35 days by either filtration or centrifugation significantly decreased the promotion of thrombin generation. The expression of ICAM-1 on HMVECs was increased significantly by incubation with isolated microparticles. Furthermore, microparticles induced the release of interleukin-6 (IL-6) and interleukin-8 (IL-8) from HMVECs. Microparticles induced lipopolysaccharide-activated HMVEC damage by priming PMNs, but this effect was prevented by inhibiting the PMNs respiratory burst with apocynin. CONCLUSION Microparticles in stored RBCs promote thrombin generation, HMVEC activation and damage which may be involved in TRALI development.
Collapse
Affiliation(s)
- Jie Yang
- Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Yiming Yang
- Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Li Gao
- Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Xueyu Jiang
- Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Juan Sun
- Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rufeng Xie
- Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China.
| |
Collapse
|
3
|
Shamanaev A, Litvak M, Ivanov I, Srivastava P, Sun MF, Dickeson SK, Kumar S, He TZ, Gailani D. Factor XII Structure-Function Relationships. Semin Thromb Hemost 2024; 50:937-952. [PMID: 37276883 PMCID: PMC10696136 DOI: 10.1055/s-0043-1769509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Factor XII (FXII), the zymogen of the protease FXIIa, contributes to pathologic processes such as bradykinin-dependent angioedema and thrombosis through its capacity to convert the homologs prekallikrein and factor XI to the proteases plasma kallikrein and factor XIa. FXII activation and FXIIa activity are enhanced when the protein binds to a surface. Here, we review recent work on the structure and enzymology of FXII with an emphasis on how they relate to pathology. FXII is a homolog of pro-hepatocyte growth factor activator (pro-HGFA). We prepared a panel of FXII molecules in which individual domains were replaced with corresponding pro-HGFA domains and tested them in FXII activation and activity assays. When in fluid phase (not surface bound), FXII and prekallikrein undergo reciprocal activation. The FXII heavy chain restricts reciprocal activation, setting limits on the rate of this process. Pro-HGFA replacements for the FXII fibronectin type 2 or kringle domains markedly accelerate reciprocal activation, indicating disruption of the normal regulatory function of the heavy chain. Surface binding also enhances FXII activation and activity. This effect is lost if the FXII first epidermal growth factor (EGF1) domain is replaced with pro-HGFA EGF1. These results suggest that FXII circulates in blood in a "closed" form that is resistant to activation. Intramolecular interactions involving the fibronectin type 2 and kringle domains maintain the closed form. FXII binding to a surface through the EGF1 domain disrupts these interactions, resulting in an open conformation that facilitates FXII activation. These observations have implications for understanding FXII contributions to diseases such as hereditary angioedema and surface-triggered thrombosis, and for developing treatments for thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ivan Ivanov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Priyanka Srivastava
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - S. Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sunil Kumar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tracey Z. He
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
4
|
Kearney KJ, Spronk HMH, Emsley J, Key NS, Philippou H. Plasma Kallikrein as a Forgotten Clotting Factor. Semin Thromb Hemost 2024; 50:953-961. [PMID: 37072020 DOI: 10.1055/s-0043-57034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
For decades, it was considered that plasma kallikrein's (PKa) sole function within the coagulation cascade is the activation of factor (F)XII. Until recently, the two key known activators of FIX within the coagulation cascade were activated FXI(a) and the tissue factor-FVII(a) complex. Simultaneously, and using independent experimental approaches, three groups identified a new branch of the coagulation cascade, whereby PKa can directly activate FIX. These key studies identified that (1) FIX or FIXa can bind with high affinity to either prekallikrein (PK) or PKa; (2) in human plasma, PKa can dose dependently trigger thrombin generation and clot formation independent of FXI; (3) in FXI knockout murine models treated with intrinsic pathway agonists, PKa activity results in increased formation of FIXa:AT complexes, indicating direct activation of FIX by PKa in vivo. These findings suggest that there is both a canonical (FXIa-dependent) and non-canonical (PKa-dependent) pathway of FIX activation. These three recent studies are described within this review, alongside historical data that hinted at the existence of this novel role of PKa as a coagulation clotting factor. The implications of direct PKa cleavage of FIX remain to be determined physiologically, pathophysiologically, and in the context of next-generation anticoagulants in development.
Collapse
Affiliation(s)
- Katherine J Kearney
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Henri M H Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Nigel S Key
- Division of Hematology and UNC Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Helen Philippou
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Cottarelli A, Mamoon R, Ji R, Mao E, Boehme A, Kumar A, Song S, Allegra V, Sharma SV, Konofagou E, Spektor V, Guo J, Connolly ES, Sekar P, Woo D, Roh DJ. Low hemoglobin causes hematoma expansion and poor intracerebral hemorrhage outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608155. [PMID: 39229082 PMCID: PMC11370400 DOI: 10.1101/2024.08.15.608155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Objectives Although lower hemoglobin levels associate with worse intracerebral hemorrhage (ICH) outcomes, causal drivers for this relationship remain unclear. We investigated the hypothesis that lower hemoglobin relates to increased hematoma expansion (HE) risk and poor outcomes using human observational data and assessed causal relationships using a translational murine model of anemia and ICH. Methods ICH patients with baseline hemoglobin measurements and serial CT neuroimaging enrolled between 2010-2016 to a multicenter, prospective observational cohort study were studied. Patients with systemic evidence of coagulopathy were excluded. Separate regression models assessed relationships of baseline hemoglobin with HE (≥33% and/or ≥6mL growth) and poor long-term neurological outcomes (modified Rankin Scale 4-6) after adjusting for relevant covariates. Using a murine collagenase ICH model with serial neuroimaging in anemic vs. non-anemic C57/BL6 mice, intergroup differences in ICH lesion volume, ICH volume changes, and early mortality were assessed. Results Among 1190 ICH patients analyzed, lower baseline hemoglobin levels associated with increased odds of HE (adjusted OR per -1g/dL hemoglobin decrement: 1.10 [1.02-1.19]) and poor 3-month clinical outcomes (adjusted OR per -1g/dL hemoglobin decrement: 1.11 [1.03-1.21]). Similar relationships were seen with poor 6 and 12-month outcomes. In our animal model, anemic mice had significantly greater ICH lesion expansion, final lesion volumes, and greater mortality, as compared to non-anemic mice. Conclusions These results, in a human cohort and a mouse model, provide novel evidence suggesting that anemia has causal roles in HE and poor ICH outcomes. Additional studies are required to clarify whether correcting anemia can improve these outcomes.
Collapse
Affiliation(s)
- Azzurra Cottarelli
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Rayan Mamoon
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Robin Ji
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Eric Mao
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Amelia Boehme
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Aditya Kumar
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Sandy Song
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Valentina Allegra
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Sabrina V. Sharma
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Elisa Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Vadim Spektor
- Department of Radiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY
| | - E. Sander Connolly
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Padmini Sekar
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH
| | - Daniel Woo
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH
| | - David J. Roh
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
6
|
Sieh L, Peasley E, Mao E, Mitchell A, Heinonen G, Ghoshal S, Agarwal S, Park S, Connolly ES, Claassen J, Moore EE, Hansen K, Hod EA, Francis RO, Roh DJ. Admission Viscoelastic Hemostatic Assay Parameters Predict Poor Long-Term Intracerebral Hemorrhage Outcomes. Neurocrit Care 2024:10.1007/s12028-024-02051-w. [PMID: 38955933 DOI: 10.1007/s12028-024-02051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Viscoelastic hemostatic assays (VHAs) provide more comprehensive assessments of coagulation compared with conventional coagulation assays. Although VHAs have enabled guided hemorrhage control therapies, improving clinical outcomes in life-threatening hemorrhage, the role of VHAs in intracerebral hemorrhage (ICH) is unclear. If VHAs can identify coagulation abnormalities relevant for ICH outcomes, this would support the need to investigate the role of VHAs in ICH treatment paradigms. Thus, we investigated whether VHA assessments of coagulation relate to long-term ICH outcomes. METHODS Patients with spontaneous ICH enrolled into a single-center cohort study receiving admission Rotational Thromboelastometry (ROTEM) VHA testing between 2013 and 2020 were assessed. Patients with previous anticoagulant use or coagulopathy on conventional coagulation assays were excluded. Primary ROTEM exposure variables were coagulation kinetics and clot strength assessments. Poor long-term outcome was defined as modified Rankin Scale ≥ 4 at 6 months. Logistic regression analyses assessed associations of ROTEM parameters with clinical outcomes after adjusting for ICH severity and hemoglobin concentration. RESULTS Of 44 patients analyzed, the mean age was 64 years, 57% were female, and the median ICH volume was 23 mL. Poor 6-month outcome was seen in 64% of patients. In our multivariable regression models, slower, prolonged coagulation kinetics (adjusted odds ratio for every second increase in clot formation time 1.04, 95% confidence interval 1.00-1.09, p = 0.04) and weaker clot strength (adjusted odds ratio for every millimeter increase of maximum clot firmness 0.84, 95% confidence interval 0.71-0.99, p = 0.03) were separately associated with poor long-term outcomes. CONCLUSIONS Slower, prolonged coagulation kinetics and weaker clot strength on admission VHA ROTEM testing, not attributable to anticoagulant use, were associated with poor long-term outcomes after ICH. Further work is needed to clarify the generalizability and the underlying mechanisms of these VHA findings to assess whether VHA-guided treatments should be incorporated into ICH care.
Collapse
Affiliation(s)
- Laura Sieh
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 177 Fort Washington Ave, New York, NY, 10032, USA
| | - Emma Peasley
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 177 Fort Washington Ave, New York, NY, 10032, USA
| | - Eric Mao
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 177 Fort Washington Ave, New York, NY, 10032, USA
| | - Amanda Mitchell
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 177 Fort Washington Ave, New York, NY, 10032, USA
| | - Gregory Heinonen
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 177 Fort Washington Ave, New York, NY, 10032, USA
| | - Shivani Ghoshal
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 177 Fort Washington Ave, New York, NY, 10032, USA
| | - Sachin Agarwal
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 177 Fort Washington Ave, New York, NY, 10032, USA
| | - Soojin Park
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 177 Fort Washington Ave, New York, NY, 10032, USA
| | - E Sander Connolly
- Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 177 Fort Washington Ave, New York, NY, 10032, USA
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, Denver, CO, USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Richard O Francis
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David J Roh
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 177 Fort Washington Ave, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Wan J, Dhrolia S, Kasthuri RR, Prokopenko Y, Ilich A, Saha P, Roest M, Wolberg AS, Key NS, Pawlinski R, Bendapudi PK, Mackman N, Grover SP. Plasma kallikrein supports FXII-independent thrombin generation in mouse whole blood. Blood Adv 2024; 8:3045-3057. [PMID: 38593231 PMCID: PMC11215197 DOI: 10.1182/bloodadvances.2024012613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT Plasma kallikrein (PKa) is an important activator of factor XII (FXII) of the contact pathway of coagulation. Several studies have shown that PKa also possesses procoagulant activity independent of FXII, likely through its ability to directly activate FIX. We evaluated the procoagulant activity of PKa using a mouse whole blood (WB) thrombin-generation (TG) assay. TG was measured in WB from PKa-deficient mice using contact pathway or extrinsic pathway triggers. PKa-deficient WB had significantly reduced contact pathway-initiated TG compared with that of wild-type controls and was comparable with that observed in FXII-deficient WB. PKa-deficient WB supported equivalent extrinsic pathway-initiated TG compared with wild-type controls. Consistent with the presence of FXII-independent functions of PKa, targeted blockade of PKa with either small molecule or antibody-based inhibitors significantly reduced contact pathway-initiated TG in FXII-deficient WB. Inhibition of activated FXII (FXIIa) using an antibody-based inhibitor significantly reduced TG in PKa-deficient WB, consistent with a PKa-independent function of FXIIa. Experiments using mice expressing low levels of tissue factor demonstrated that persistent TG present in PKa- and FXIIa-inhibited WB was driven primarily by endogenous tissue factor. Our work demonstrates that PKa contributes significantly to contact pathway-initiated TG in the complex milieu of mouse WB, and a component of this contribution occurs in an FXII-independent manner.
Collapse
Affiliation(s)
- Jun Wan
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Sophia Dhrolia
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rohan R. Kasthuri
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Yuriy Prokopenko
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anton Ilich
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Prakash Saha
- School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London, United Kingdom
| | - Mark Roest
- Synapse Research Institute, Maastricht, The Netherlands
| | - Alisa S. Wolberg
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nigel S. Key
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pavan K. Bendapudi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Nigel Mackman
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Steven P. Grover
- UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
8
|
Li J, Wei L, Hu K, He Y, Gong G, Liu Q, Zhang Y, Zhou K, Guo J, Hua Y, Tang J, Li Y. Deciphering m 6A methylation in monocyte-mediated cardiac fibrosis and monocyte-hitchhiked erythrocyte microvesicle biohybrid therapy. Theranostics 2024; 14:3486-3508. [PMID: 38948064 PMCID: PMC11209724 DOI: 10.7150/thno.95664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Device implantation frequently triggers cardiac remodeling and fibrosis, with monocyte-driven inflammatory responses precipitating arrhythmias. This study investigates the role of m6A modification enzymes METTL3 and METTL14 in these responses and explores a novel therapeutic strategy targeting these modifications to mitigate cardiac remodeling and fibrosis. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from patients with ventricular septal defects (VSD) who developed conduction blocks post-occluder implantation. The expression of METTL3 and METTL14 in PBMCs was measured. METTL3 and METTL14 deficiencies were induced to evaluate their effect on angiotensin II (Ang II)-induced myocardial inflammation and fibrosis. m6A modifications were analyzed using methylated RNA immunoprecipitation followed by quantitative PCR. NF-κB pathway activity and levels of monocyte migration and fibrogenesis markers (CXCR2 and TGF-β1) were assessed. An erythrocyte microvesicle-based nanomedicine delivery system was developed to target activated monocytes, utilizing the METTL3 inhibitor STM2457. Cardiac function was evaluated via echocardiography. Results: Significant upregulation of METTL3 and METTL14 was observed in PBMCs from patients with VSD occluder implantation-associated persistent conduction block. Deficiencies in METTL3 and METTL14 significantly reduced Ang II-induced myocardial inflammation and fibrosis by decreasing m6A modification on MyD88 and TGF-β1 mRNAs. This disruption reduced NF-κB pathway activation, lowered CXCR2 and TGF-β1 levels, attenuated monocyte migration and fibrogenesis, and alleviated cardiac remodeling. The erythrocyte microvesicle-based nanomedicine delivery system effectively targeted inflamed cardiac tissue, reducing inflammation and fibrosis and improving cardiac function. Conclusion: Inhibiting METTL3 and METTL14 in monocytes disrupts the NF-κB feedback loop, decreases monocyte migration and fibrogenesis, and improves cardiac function. Targeting m6A modifications of monocytes with STM2457, delivered via erythrocyte microvesicles, reduces inflammation and fibrosis, offering a promising therapeutic strategy for cardiac remodeling associated with device implantation.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Wei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kaifeng Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Laboratory of Genetic Disease and Perinatal Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qisong Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Wang P, Zheng L, Yan S, Xuan X, Yang Y, Qi X, Dong H. Understanding the role of red blood cells in venous thromboembolism: A comprehensive review. Am J Med Sci 2024; 367:296-303. [PMID: 38278361 DOI: 10.1016/j.amjms.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Traditionally, red blood cells (RBCs) have been perceived as passive entities within the fibrin network, without any significant role in the pathophysiology of venous thromboembolism (VTE). This review explores the involvement of RBCs in the VTE process, summarizing previous study findings and providing a comprehensive review of the latest theories. At first, it explores the influence of abnormal RBC counts (as seen in polycythemia vera and with erythropoietin use) and the exposure of RBCs to phosphatidylserine (Ptd-L-Ser) in the pathophysiology of VTE. The mechanisms of endothelial injury induced by RBCs and their adhesion to the endothelium under different disease models are then demonstrated. We explore the role of physical and chemical interactions between RBCs and platelets, as well as the interactions between RBCs and neutrophils - particularly the neutrophil extracellular traps (NETs) released by neutrophils - in the process of VTE. Additionally, we investigate the effect of RBCs on thrombin activation through two pathways, namely, the FXIIa-FXI-FIX pathway and the prekallikrein-dependent pathway. Lastly, we discuss the impact of RBCs on clot volume. In conclusion, we propose several potential methods aimed at unraveling the role of RBCs and their interaction with other components in the vascular system in the pathogenesis of VTE.
Collapse
Affiliation(s)
- Ping Wang
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China; Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Lin Zheng
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Sheng Yan
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yusi Yang
- Department of Cardiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xiaotong Qi
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
10
|
Sieh L, Peasley E, Mao E, Mitchell A, Heinonen G, Ghoshal S, Agarwal S, Park S, Connolly ESS, Claassen J, Moore EE, Hansen K, Hod EA, Francis RO, Roh D. Admission viscoelastic hemostatic assay parameters predict poor long-term intracerebral hemorrhage outcomes. RESEARCH SQUARE 2024:rs.3.rs-4087284. [PMID: 38585893 PMCID: PMC10996822 DOI: 10.21203/rs.3.rs-4087284/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Viscoelastic hemostatic assays (VHA) provide more comprehensive assessments of coagulation compared to conventional coagulation assays. While VHAs have enabled guided hemorrhage control therapies, improving clinical outcomes in life-threatening hemorrhage, the role of VHAs in intracerebral hemorrhage (ICH) is unclear. If VHAs can identify coagulation abnormalities relevant for ICH outcomes, this would support the need to investigate the role of VHAs in ICH treatment paradigms. Thus, we investigated whether VHA assessments of coagulation relate to long-term ICH outcomes. Methods Spontaneous ICH patients enrolled into a single-center cohort study receiving admission Rotational Thromboelastometry (ROTEM) VHA testing between 2013 and 2020 were assessed. Patients with prior anticoagulant use or coagulopathy on conventional coagulation assays were excluded. Primary ROTEM exposure variables were coagulation kinetics and clot strength assessments. Poor long-term outcome was defined as modified Rankin Scale ≥ 4 at 6 months. Logistic regression analyses assessed associations of ROTEM parameters with clinical outcomes after adjusting for ICH severity and hemoglobin concentration. Results Of 44 patients analyzed, mean age was 64, 57% were female, and the median ICH volume was 23 mL. Poor 6-month outcome was seen in 64%. In our multivariable regression models, slower, prolonged coagulation kinetics (adjusted OR for every second increase in clot formation time: 1.04, 95% CI: 1.00-1.09, p = 0.04) and weaker clot strength (adjusted OR for every millimeter increase of maximum clot firmness: 0.84, 95% CI: 0.71-0.99, p = 0.03) were separately associated with poor long-term outcomes. Conclusions Slower, prolonged coagulation kinetics and weaker clot strength on admission VHA ROTEM testing, not attributable to anticoagulant use, were associated with poor long-term outcomes after ICH. Further work is needed to clarify the generalizability and the underlying mechanisms of these VHA findings to assess whether VHA guided treatments should be incorporated into ICH care.
Collapse
Affiliation(s)
- Laura Sieh
- Columbia University Vagelos College of Physicians and Surgeons
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Marongiu F, Barcellona D. Why Does Rivaroxaban Not Work in Severe Mitral Stenosis? Semin Thromb Hemost 2024; 50:303-306. [PMID: 37160162 DOI: 10.1055/s-0043-1768938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Francesco Marongiu
- Haemostasis and Thrombosis Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Fondazione Arianna Anticoagulazione, Bologna, Italy
| | - Doris Barcellona
- Haemostasis and Thrombosis Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Grenier JMP, El Nemer W, De Grandis M. Red Blood Cell Contribution to Thrombosis in Polycythemia Vera and Essential Thrombocythemia. Int J Mol Sci 2024; 25:1417. [PMID: 38338695 PMCID: PMC10855956 DOI: 10.3390/ijms25031417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Polycythemia vera (PV) and essential thrombocythemia (ET) are myeloproliferative neoplasms (MPN) characterized by clonal erythrocytosis and thrombocytosis, respectively. The main goal of therapy in PV and ET is to prevent thrombohemorrhagic complications. Despite a debated notion that red blood cells (RBCs) play a passive and minor role in thrombosis, there has been increasing evidence over the past decades that RBCs may play a biological and clinical role in PV and ET pathophysiology. This review summarizes the main mechanisms that suggest the involvement of PV and ET RBCs in thrombosis, including quantitative and qualitative RBC abnormalities reported in these pathologies. Among these abnormalities, we discuss increased RBC counts and hematocrit, that modulate blood rheology by increasing viscosity, as well as qualitative changes, such as deformability, aggregation, expression of adhesion proteins and phosphatidylserine and release of extracellular microvesicles. While the direct relationship between a high red cell count and thrombosis is well-known, the intrinsic defects of RBCs from PV and ET patients are new contributors that need to be investigated in depth in order to elucidate their role and pave the way for new therapeutical strategies.
Collapse
Affiliation(s)
- Julien M. P. Grenier
- Etablissement Français du Sang PACA-Corse, Aix Marseille University, CNRS, ADES UMR 7268, 13005 Marseille, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Wassim El Nemer
- Etablissement Français du Sang PACA-Corse, Aix Marseille University, CNRS, ADES UMR 7268, 13005 Marseille, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Maria De Grandis
- Etablissement Français du Sang PACA-Corse, Aix Marseille University, CNRS, ADES UMR 7268, 13005 Marseille, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
13
|
Kuang L, Wu Y, Shu J, Yang J, Zhou H, Huang X. Pyroptotic Macrophage-Derived Microvesicles Accelerate Formation of Neutrophil Extracellular Traps via GSDMD-N-expressing Mitochondrial Transfer during Sepsis. Int J Biol Sci 2024; 20:733-750. [PMID: 38169726 PMCID: PMC10758106 DOI: 10.7150/ijbs.87646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Macrophage pyroptosis and neutrophil extracellular traps (NETs) play a critical role in sepsis pathophysiology; however, the role of macrophage pyroptosis in the regulation of NETs formation during sepsis is unknown. Here, we showed that macrophages transfer mitochondria to neutrophils through microvesicles following pyroptosis; this process induces mitochondrial dysfunction and triggers the induction of NETs formation through mitochondrial reactive oxygen species (mtROS)/Gasdermin D (GSDMD) axis. These pyroptotic macrophage-derived microvesicles can induce tissues damage, coagulation, and NETs formation in vivo. Disulfiram partly inhibits these effects in a mouse model of sepsis. Pyroptotic macrophage-derived microvesicles induce NETs formation through mitochondrial transfer, both in vitro and in vivo. Microvesicles-mediated NETs formation depends on the presence of GSDMD-N-expressing mitochondria in the microvesicles. This study elucidates a microvesicles-based pathway for NETs formation during sepsis and proposes a microvesicles-based intervention measure for sepsis management.
Collapse
Affiliation(s)
- Liangjian Kuang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jingxian Shu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jingwen Yang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
| |
Collapse
|
14
|
Sun S, Campello E, Zou J, Konings J, Huskens D, Wan J, Fernández DI, Reutelingsperger CPM, ten Cate H, Toffanin S, Bulato C, de Groot PG, de Laat B, Simioni P, Heemskerk JWM, Roest M. Crucial roles of red blood cells and platelets in whole blood thrombin generation. Blood Adv 2023; 7:6717-6731. [PMID: 37648671 PMCID: PMC10651426 DOI: 10.1182/bloodadvances.2023010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Red blood cells (RBCs) and platelets contribute to the coagulation capacity in bleeding and thrombotic disorders. The thrombin generation (TG) process is considered to reflect the interactions between plasma coagulation and the various blood cells. Using a new high-throughput method capturing the complete TG curve, we were able to compare TG in whole blood and autologous platelet-rich and platelet-poor plasma to redefine the blood cell contributions to the clotting process. We report a faster and initially higher generation of thrombin and shorter coagulation time in whole blood than in platelet-rich plasma upon low concentrations of coagulant triggers, including tissue factor, Russell viper venom factor X, factor Xa, factor XIa, and thrombin. The TG was accelerated with increased hematocrit and delayed after prior treatment of RBC with phosphatidylserine-blocking annexin A5. RBC treatment with ionomycin increased phosphatidylserine exposure, confirmed by flow cytometry, and increased the TG process. In reconstituted blood samples, the prior selective blockage of phosphatidylserine on RBC with annexin A5 enhanced glycoprotein VI-induced platelet procoagulant activity. For patients with anemia or erythrocytosis, cluster analysis revealed high or low whole-blood TG profiles in specific cases of anemia. The TG profiles lowered upon annexin A5 addition in the presence of RBCs and thus were determined by the extent of phosphatidylserine exposure of blood cells. Profiles for patients with polycythemia vera undergoing treatment were similar to that of control subjects. We concluded that RBC and platelets, in a phosphatidylserine-dependent way, contribute to the TG process. Determination of the whole-blood hypo- or hyper-coagulant activity may help to characterize a bleeding or thrombosis risk.
Collapse
Affiliation(s)
- Siyu Sun
- Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Elena Campello
- Department of Medicine, University of Padua, Padova, Italy
| | - Jinmi Zou
- Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Joke Konings
- Synapse Research Institute, Maastricht, The Netherlands
| | - Dana Huskens
- Synapse Research Institute, Maastricht, The Netherlands
| | - Jun Wan
- Synapse Research Institute, Maastricht, The Netherlands
| | - Delia I. Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Chris P. M. Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | | | - Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands
| | - Paolo Simioni
- Department of Medicine, University of Padua, Padova, Italy
| | - Johan W. M. Heemskerk
- Synapse Research Institute, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Mark Roest
- Synapse Research Institute, Maastricht, The Netherlands
| |
Collapse
|
15
|
Ha M, Stewart KE, Butt AL, Vandyck KB, Tran S, Jain A, Edil B, Tanaka KA. Trends and predictions of perioperative transfusion and venous thromboembolism in hepatectomy using a North American Registry. Transfusion 2023; 63:2061-2071. [PMID: 37656947 DOI: 10.1111/trf.17528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Studies indicate a link between allogeneic blood transfusion and venous thromboembolism (VTE) post-major surgery. Analyzing trends and predictors of these outcomes after hepatectomy can inform risk management. METHODS The American College of Surgeons National Surgical Quality Improvement Program database was used for a retrospective analysis. Primary outcomes were perioperative red blood cell (RBC) transfusion and VTE events within 30 days of hepatectomy. Seven-year trends and predictors were evaluated. RESULTS Among 29,131 hepatectomy patients, transfusion rates showed no statistically significant decreasing trends (p = .122) from 2014 to 2020 (18.13%-16.71%), while VTE rates showed a downward trend over the 7 years (p = .021); 17.2% received RBC transfusion, with higher rates in surgeries lasting ≥282 min (median: 220 min). Calculated RBC mass [hematocrit (%) × body weight (kg) × 10-5 × 70/ √ (body mass index/22)] at or below 1.5 L substantially increased transfusion odds. VTE was reported postoperatively in 2.6% of cases more frequently in longer cases involving transfusions. The adjusted odds ratio (aOR) of VTE escalated from the shortest operative time to the longest (3.17; 95% confidence interval [CI], 2.37-4.22). The adjusted odds of VTE doubled for transfused patients compared to non-transfused patients (aOR, 2.19; 95% CI, 1.86-2.57). CONCLUSIONS Rates of RBC transfusion and VTE rates hepatectomy have minimally changed in the recent years. VTE prevention is challenging in extended surgeries at increased risk of bleeding and RBC transfusions. Patient-level data on coagulation and thromboprophylaxis can potentially refine risk assessment for postoperative VTE.
Collapse
Affiliation(s)
- Monica Ha
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kenneth E Stewart
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Amir L Butt
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kofi B Vandyck
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sydany Tran
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Barish Edil
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kenichi A Tanaka
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
16
|
Ko Y, Kim EH, Kim D, Choi S, Gil J, Park HJ, Shin Y, Kim W, Bae ON. Butylparaben promotes phosphatidylserine exposure and procoagulant activity of human red blood cells via increase of intracellular calcium levels. Food Chem Toxicol 2023; 181:114084. [PMID: 37816477 DOI: 10.1016/j.fct.2023.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023]
Abstract
Parabens are widely used as preservatives, added to products commonly used by humans, and to which individuals are exposed orally or dermally. Once absorbed into the body, parabens move into the bloodstream and travel through the systemic circulation. We investigated the potential impact of parabens on the enhanced generation of thrombin by red blood cells (RBCs), which are the principal cellular components of blood. We tested the effects of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), butylparaben (BuP), and p-hydroxybenzoic acid on freshly isolated human RBCs. BuP and simultaneous exposure to BuP and PrP significantly increased phosphatidylserine (PS) externalization to the outer membranes of RBCs. PS externalization by BuP was found to be mediated by increasing intracellular Ca2+ levels in RBCs. The morphological changes in BuP-treated RBCs were observed under an electron microscope. The BuP-exposed RBCs showed increased thrombin generation and adhesion to endothelial cells. Additionally, the externalization of PS exposure and thrombin generation in BuP-treated RBCs were more susceptible to high shear stress, which mimics blood turbulence under pathological conditions. Collectively, we observed that BuP induced morphological and functional changes in RBCs, especially under high shear stress, suggesting that BuP may contribute to the thrombotic risk via procoagulant activity in RBCs.
Collapse
Affiliation(s)
- Yeonju Ko
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eun-Hye Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sungbin Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Junkyung Gil
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Han Jin Park
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Yusun Shin
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Wondong Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
17
|
de Oliveira GP, Welsh JA, Pinckney B, Palu CC, Lu S, Zimmerman A, Barbosa RH, Sahu P, Noshin M, Gummuluru S, Tigges J, Jones JC, Ivanov AR, Ghiran IC. Human red blood cells release microvesicles with distinct sizes and protein composition that alter neutrophil phagocytosis. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e107. [PMID: 37942280 PMCID: PMC10629908 DOI: 10.1002/jex2.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 11/10/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound structures released by cells and tissues into biofluids, involved in cell-cell communication. In humans, circulating red blood cells (RBCs), represent the most common cell-type in the body, generating daily large numbers of microvesicles. In vitro, RBC vesiculation can be mimicked by stimulating RBCs with calcium ionophores, such as ionomycin and A23187. The fate of microvesicles released during in vivo aging of RBCs and their interactions with circulating cells is hitherto unknown. Using SEC plus DEG isolation methods, we have found that human RBCs generate microvesicles with two distinct sizes, densities, and protein composition, identified by flow cytometry, and MRPS, and further validated by immune TEM. Furthermore, proteomic analysis revealed that RBC-derived microvesicles (RBC-MVs) are enriched in proteins with important functions in ion channel regulation, calcium homeostasis, and vesicular transport, such as of sorcin, stomatin, annexin A7, and RAB proteins. Cryo-electron microscopy identified two separate pathways of RBC-MV-neutrophil interaction, direct fusion with the plasma membrane and internalization, respectively. Functionally, RBC-MVs decrease neutrophil ability to phagocytose E. coli but do not affect their survival at 24 hrs. This work brings new insights regarding the complexity of the RBC-MVs biogenesis, as well as their possible role in circulation.
Collapse
Affiliation(s)
- Getulio Pereira de Oliveira
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of Chemistry and Chemical BiologyBarnett Institute of Chemical & Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Brandy Pinckney
- Nano Flow Core FacilityBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Shulin Lu
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Alan Zimmerman
- Department of Chemistry and Chemical BiologyBarnett Institute of Chemical & Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Raquel Hora Barbosa
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Parul Sahu
- Department of AnesthesiaBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Maeesha Noshin
- Translational Nanobiology Section, Laboratory of Pathology Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Suryaram Gummuluru
- Department of MicrobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - John Tigges
- Nano Flow Core FacilityBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer Clare Jones
- Translational Nanobiology Section, Laboratory of Pathology Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical BiologyBarnett Institute of Chemical & Biological AnalysisNortheastern UniversityBostonMassachusettsUSA
| | - Ionita C. Ghiran
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of AnesthesiaBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
18
|
Ma SR, Xia HF, Gong P, Yu ZL. Red Blood Cell-Derived Extracellular Vesicles: An Overview of Current Research Progress, Challenges, and Opportunities. Biomedicines 2023; 11:2798. [PMID: 37893171 PMCID: PMC10604118 DOI: 10.3390/biomedicines11102798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Red blood cell-derived extracellular vesicles (RBC EVs) are small, spherical fragments released from red blood cells. These vesicles, similar to EVs derived from other cell types, are crucial for intercellular communication processes and have been implicated in various physiological and pathological processes. The diagnostic and therapeutic potential of RBC EVs has garnered increasing attention in recent years, revealing their valuable role in the field of medicine. In this review, we aim to provide a comprehensive analysis of the current research status of RBC EVs. We summarize existing studies and highlight the progress made in understanding the characteristics and functions of RBC EVs, with a particular focus on their biological roles in different diseases. We also discuss their potential utility as diagnostic and prognostic biomarkers in diseases and as vectors for drug delivery. Furthermore, we emphasize the need for further research to achieve selective purification of RBC EVs and unravel their heterogeneity, which will allow for a deeper understanding of their diverse functions and exploration of their potential applications in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Si-Rui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ping Gong
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (S.-R.M.); (H.-F.X.)
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
19
|
Margouta A, Anyfanti P, Lazaridis A, Gavriilaki E, Yiannaki E, Nikolaidou B, Goulas K, Lazaridou E, Triantafyllou A, Douma S, Patsatsi A, Gkaliagkousi E. Assessment of microvesicles from different cell origins in patients with psoriasis: evidence of thrombogenic, proinflammatory microenvironment in the absence of established cardiovascular disease. J Hum Hypertens 2023; 37:925-930. [PMID: 36482197 DOI: 10.1038/s41371-022-00787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Psoriasis is associated with increased cardiovascular risk. Endothelial, platelet, and erythrocyte microvesicles (MVs) are novel biomarkers of endothelial dysfunction and thromboinflammation. We explored whether MVs of different cell types are elevated in patients with psoriasis, and investigated potential associations with disease severity and macrovascular function. Endothelial, platelet and erythrocyte MVs were measured using a standardized flow cytometry protocol in psoriasis patients and controls free from established cardiovascular disease. Carotid intima-media thickness (IMT) and pulse wave velocity (PWV) were measured as markers of subclinical atherosclerosis and arterial stiffness. Psoriasis severity was assessed with PASI (Psoriasis Area Severity Index). Both platelet (p < 0.001) and erythrocyte MVs (p = 0.046), yet not endothelial MVs, were significantly increased in patients with psoriasis (n = 41) compared with controls (n = 41). Patients with higher PASI (≥10) presented significantly higher levels of ErMVs compared to those with lower PASI (<10) (p = 0.047). Carotid IMT and PWV were comparable between psoriasis patients and controls and did not significantly correlate with MVs. In the multivariate analysis, psoriasis was identified as an independent predictor of both platelet (p < 0.001) and erythrocyte MVs (p = 0.043), while hypertension was independently associated with endothelial MVs (p < 0.001). Increased formation of platelet and erythrocyte MVs may be evident in psoriasis patients and is indicative of prothrombotic, proinflammatory microenvironment, even in the absence of subclinical macrovascular dysfunction and before the clinical onset of overt cardiovascular complications. Potential mechanistic links and prognostic implications of increased MVs in psoriasis warrant further investigation.
Collapse
Affiliation(s)
- Anastasia Margouta
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Anyfanti
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Gavriilaki
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthalia Yiannaki
- Department of Hematology, Theagenion Cancer Center, Thessaloniki, Greece
| | - Barbara Nikolaidou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriakos Goulas
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elizabeth Lazaridou
- 2nd Department of Dermatology and Venereology, General Hospital "Papageorgiou", Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Areti Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Patsatsi
- 2nd Department of Dermatology and Venereology, General Hospital "Papageorgiou", Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Wang H, Yang L. Applications of injectable hemostatic materials in wound healing: principles, strategies, performance requirements, and future perspectives. Theranostics 2023; 13:4615-4635. [PMID: 37649606 PMCID: PMC10465227 DOI: 10.7150/thno.86930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Uncontrolled traumatic bleeding can lead to death due to excessive blood loss within minutes. Early intervention is crucial to save lives, making timely and effective hemostasis is a major global challenge. Injectable hemostatic materials (IHMs) have been proposed to improve the effectiveness of hemostasis, facilitate wound healing, and enhance survival rates in emergency situations. The superior hemostatic performance of IHMs has garnered significant attention. However, there are relatively few comprehensive reviews on IHMs. This paper aims to provide a comprehensive review of the latest research progress on IHMs in recent years. Firstly, the physiological hemostatic process and the underlying principles of hemostasis are analyzed. Subsequently, the synthesis strategies for different IHMs are discussed. The performance requirements of IHMs are then summarized, including high efficiency, biocompatibility, degradability, manipulability, stability and antibacterial ability. Finally, the development prospects and challenges of IHMs are presented. This review serves as a necessary and systematic summary of IHMs, providing a valuable reference for the development of new high-performance hemostatic materials and their practical clinical applications.
Collapse
Affiliation(s)
| | - Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| |
Collapse
|
21
|
Kristensen SR, Nybo J. A sensitive tissue factor activity assay determined by an optimized thrombin generation method. PLoS One 2023; 18:e0288918. [PMID: 37467256 DOI: 10.1371/journal.pone.0288918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Tissue factor (TF) is the principal activator of the coagulation system, but an increased concentration in the blood in cancer and inflammatory diseases has been suggested to play a role increasing the risk of venous thromboembolism. However, measurement of the TF concentration is difficult, and quantitation of activity is the most valid estimation. The objective of this study was to establish a sensitive method to measure TF activity based on thrombin generation. METHODS The assay is based on thrombin generation (TG) measured on the Calibrated Automated Thrombogram (CAT). Various low concentrations of TF were prepared from reagents containing 1 pM TF and 4 μM phospholipid (PPL), and no TF and 4 μM PPL, and a calibration curve was produced from Lagtime vs TF concentration. TF in blood samples was measured after isolation and resuspension of extracellular vesicles (EVs) in a standard plasma from which EVs had been removed. The same standard plasma was used for the calibrators. RESULTS Contact activation of the coagulation system was avoided using CTI plasma samples in Monovette tubes. EVs contain procoagulant phospholipids but addition of PPL only reduced lagtime slightly at very low concentrations of TF resulting in overestimation to a lesser extent at 10 fM but no interference at 30 fM or higher. Addition of EVs to the TG analysis induced a small unspecific TF-independent activity (i.e., an activity not inhibited by antibodies against TF) which also may result in a smaller error in estimation of TF activity at very low levels but the effect was negligible at higher concentrations. It was possible to measure TF activity in healthy controls which was found to be 1-6 fM (EVs were concentrated, i.e. solubilized in a lower volume than the original volume plasma). Coefficient of variation (CV) was below 20% at the low level, and below 10% at a level around 100 fM TF. However, the step with isolation of EVs have a higher inherent CV. CONCLUSION A sensitive and rather precise one-stage TG-based method to measure TF activity has been established.
Collapse
Affiliation(s)
- Søren Risom Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jette Nybo
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
22
|
Mihalko EP, Srinivasan AJ, Rahn KC, Seheult JN, Spinella PC, Cap AP, Triulzi DJ, Yazer MH, Neal MD, Shea SM. Hemostatic In Vitro Properties of Novel Plasma Supernatants Produced from Late-storage Low-titer Type O Whole Blood. Anesthesiology 2023; 139:77-90. [PMID: 37027803 PMCID: PMC10247395 DOI: 10.1097/aln.0000000000004574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
BACKGROUND The use of low-titer group O whole blood is increasing. To reduce wastage, unused units can be converted to packed red blood cells. Supernatant is currently discarded post-conversion; however, it could be a valuable transfusable product. The aim of this study was to evaluate supernatant prepared from late-storage low-titer group O whole blood being converted to red blood cells, hypothesizing it will have higher hemostatic activity compared to fresh never-frozen liquid plasma. METHODS Low-titer group O whole blood supernatant (n = 12) prepared on storage day 15 was tested on days 15, 21, and 26 and liquid plasma (n = 12) on 3, 15, 21, and 26. Same-day assays included cell counts, rotational thromboelastometry, and thrombin generation. Centrifuged plasma from units was banked for microparticle characterization, conventional coagulation, clot structure, hemoglobin, and additional thrombin generation assays. RESULTS Low-titer group O whole blood supernatant contained more residual platelets and microparticles compared to liquid plasma. At day 15, low-titer group O whole blood supernatant elicited a faster intrinsic clotting time compared to liquid plasma (257 ± 41 vs. 299 ± 36 s, P = 0.044), and increased clot firmness (49 ± 9 vs. 28 ± 5 mm, P < 0.0001). Low-titer group O whole blood supernatant showed more significant thrombin generation compared to liquid plasma (day 15 endogenous thrombin potential 1,071 ± 315 vs. 285 ± 221 nM·min, P < 0.0001). Flow cytometry demonstrated low-titer group O whole blood supernatant contained significantly more phosphatidylserine and CD41+ microparticles. However, thrombin generation in isolated plasma suggested residual platelets in low-titer group O whole blood supernatant were a greater contributor than microparticles. Additionally, low-titer group O whole blood supernatant and liquid plasma showed no difference in clot structure, despite higher CD61+ microparticle presence. CONCLUSIONS Plasma supernatant produced from late-storage low-titer group O whole blood shows comparable, if not enhanced, in vitro hemostatic efficacy to liquid plasma. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Emily P. Mihalko
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Amudan J. Srinivasan
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Katelin C. Rahn
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Jansen N. Seheult
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Philip C. Spinella
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
- Department of Critical Care, University of Pittsburgh, Pittsburgh, PA
| | - Andrew P. Cap
- United States Army Institute of Surgical Research, JBSA-Fort Sam Houston, Texas
| | - Darrell J. Triulzi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Mark H. Yazer
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Matthew D. Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
- Department of Critical Care, University of Pittsburgh, Pittsburgh, PA
| | - Susan M. Shea
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
23
|
Sparkenbaugh EM, Henderson MW, Miller-Awe M, Abrams C, Ilich A, Trebak F, Ramadas N, Vital S, Bohinc D, Bane KL, Chen C, Patel M, Wallisch M, Renné T, Gruber A, Cooley B, Gailani D, Kasztan M, Vercellotti GM, Belcher JD, Gavins FE, Stavrou EX, Key NS, Pawlinski R. Factor XII contributes to thrombotic complications and vaso-occlusion in sickle cell disease. Blood 2023; 141:1871-1883. [PMID: 36706361 PMCID: PMC10122107 DOI: 10.1182/blood.2022017074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
A hypercoagulable state, chronic inflammation, and increased risk of venous thrombosis and stroke are prominent features in patients with sickle cell disease (SCD). Coagulation factor XII (FXII) triggers activation of the contact system that is known to be involved in both thrombosis and inflammation, but not in physiological hemostasis. Therefore, we investigated whether FXII contributes to the prothrombotic and inflammatory complications associated with SCD. We found that when compared with healthy controls, patients with SCD exhibit increased circulating biomarkers of FXII activation that are associated with increased activation of the contact pathway. We also found that FXII, but not tissue factor, contributes to enhanced thrombin generation and systemic inflammation observed in sickle cell mice challenged with tumor necrosis factor α. In addition, FXII inhibition significantly reduced experimental venous thrombosis, congestion, and microvascular stasis in a mouse model of SCD. Moreover, inhibition of FXII attenuated brain damage and reduced neutrophil adhesion to the brain vasculature of sickle cell mice after ischemia/reperfusion induced by transient middle cerebral artery occlusion. Finally, we found higher FXII, urokinase plasminogen activator receptor, and αMβ2 integrin expression in neutrophils of patients with SCD compared with healthy controls. Our data indicate that targeting FXII effectively reduces experimental thromboinflammation and vascular complications in a mouse model of SCD, suggesting that FXII inhibition may provide a safe approach for interference with inflammation, thrombotic complications, and vaso-occlusion in patients with SCD.
Collapse
Affiliation(s)
- Erica M. Sparkenbaugh
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael W. Henderson
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Megan Miller-Awe
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christina Abrams
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anton Ilich
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fatima Trebak
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nirupama Ramadas
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shantel Vital
- Louisiana State University Health Sciences Center, Shreveport, LA
| | - Dillon Bohinc
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Kara L. Bane
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Chunsheng Chen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Margi Patel
- Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | | | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Brian Cooley
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Malgorzata Kasztan
- Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Gregory M. Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - John D. Belcher
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Felicity E. Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London, United Kingdom
| | - Evi X. Stavrou
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Medicine, Section of Hematology-Oncology, Louis Stokes Veterans Administration Medical Center, Cleveland, OH
| | - Nigel S. Key
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
24
|
Gao Y, Li X, Qin Y, Men J, Ren J, Li X, Xu C, Li Q, Li Y, Cui W, Zhang S, Li L, Li Y, Zhang J, Liu L. MPs-ACT, an Assay to Evaluate the Procoagulant Activity of Microparticles. Clin Appl Thromb Hemost 2023; 29:10760296231159374. [PMID: 36843474 PMCID: PMC9972054 DOI: 10.1177/10760296231159374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
The procoagulant effect of microparticles (MPs) contributes to hypercoagulability-induced thrombosis. We provide preliminary findings of the MPs-Activated Clotting Time (MPs-ACT) assay to determine the procoagulant activity of MPs. MPs-rich plasma was obtained and recalcified. Changes in plasma viscoelasticity were evaluated and the time to the peak viscoelastic changes was defined as the MPs-ACT. MPs concentration was measured by flow cytometry. Coagulation products produced during plasma clotting were identified by fibrin and fibrinopeptide A. MPs were prepared in vitro and added to standard plasma to simulate pathological samples. In addition, reproducibility and sensitivity were evaluated. We confirmed the linear relationship between MPs-ACT and MP concentrations. Dynamic changes in fibrin production were depicted. We simulated the correlation between MPs-ACT and standard plasma containing MPs prepared in vitro. The reproducibility of high-value and low-value samples was 6.0% and 10.8%, respectively. MPs-ACT sensitively detected hypercoagulable samples from patients with pre-eclampsia, hip fractures, and lung tumors. MPs-ACT largely reflects the procoagulant effect of MPs. MPs-ACT sensitively and rapidly detects hypercoagulability with MPs-rich plasma. It may be promising for the diagnosis of hypercoagulable states induced by MPs.
Collapse
Affiliation(s)
- Yalong Gao
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Xiaotian Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jianlong Men
- Precision Medicine Center, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jing Ren
- Precision Medicine Center, Tianjin Medical University General
Hospital, Tianjin, China
| | - Xiaochun Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Chunlei Xu
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Qifeng Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Ying Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Weiyun Cui
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Lei Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Yaohua Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Li Liu
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
- Jianning Zhang, Tianjin Neurological
Institute, Tianjin Medical University General Hospital, #154 Anshan Road,
Tianjin, 30052, China. Li Liu,
Tianjin Neurological Institute, Tianjin Medical University General Hospital,
#154 Anshan Road, Tianjin, 30052, China.
| |
Collapse
|
25
|
Buerck JP, Foster KM, Larson PR, O'Rear EA. Shear stimulated red blood cell microparticles: Effect on clot structure, flow and fibrinolysis. Biorheology 2023; 59:43-59. [PMID: 36970891 DOI: 10.3233/bir-220012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microparticles (MPs) have activity in thrombus promotion and generation. Erythrocyte microparticles (ErMPs) have been reported to accelerate fibrinolysis in the absence of permeation. We hypothesized that shear induced ErMPs would affect fibrin structure of clots and change flow with implications for fibrinolysis. OBJECTIVE To determine the effect of ErMPs on clot structure and fibrinolysis. METHODS Plasma with elevated ErMPs was isolated from whole blood or from washed red blood cells (RBCs) resuspended in platelet free plasma (PFP) after high shear. Dynamic light scattering (DLS) provided size distribution of ErMPs from sheared samples and unsheared PFP controls. Clots were formed by recalcification for flow/lysis experiments and examined by confocal microscopy and SEM. Flow rates through clots and time-to-lysis were recorded. A cellular automata model showed the effect of ErMPs on fibrin polymerization and clot structure. RESULTS Coverage of fibrin increased by 41% in clots formed from plasma of sheared RBCs in PFP over controls. Flow rate decreased by 46.7% under a pressure gradient of 10 mmHg/cm with reduction in time to lysis from 5.7 ± 0.7 min to 12.2 ± 1.1 min (p < 0.01). Particle size of ErMPs from sheared samples (200 nm) was comparable to endogenous microparticles. CONCLUSIONS ErMPs alter the fibrin network in a thrombus and affect hydraulic permeability resulting in decelerated delivery of fibrinolytic drugs.
Collapse
Affiliation(s)
- James P Buerck
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
| | - Kylie M Foster
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
| | - Preston R Larson
- Samuel Roberts Noble Electron Microscopy Laboratory, University of Oklahoma, Norman, OK, USA
| | - Edgar A O'Rear
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
- Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
26
|
Zou CY, Li QJ, Hu JJ, Song YT, Zhang QY, Nie R, Li-Ling J, Xie HQ. Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Mater Today Bio 2022; 17:100468. [PMID: 36340592 PMCID: PMC9626749 DOI: 10.1016/j.mtbio.2022.100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Uncontrolled bleeding remains as a leading cause of death in surgical, traumatic, and emergency situations. Management of the hemorrhage and development of hemostatic materials are paramount for patient survival. Owing to their inherent biocompatibility, biodegradability and bioactivity, biopolymers such as polysaccharides and polypeptides have been extensively researched and become a focus for the development of next-generation hemostatic materials. The construction of novel hemostatic materials requires in-depth understanding of the physiological hemostatic process, fundamental hemostatic mechanisms, and the effects of material chemistry/physics. Herein, we have recapitulated the common hemostatic strategies and development status of biopolymer-based hemostatic materials. Furthermore, the hemostatic mechanisms of various molecular structures (components and chemical modifications) are summarized from a microscopic perspective, and the design based on them are introduced. From a macroscopic perspective, the design of various forms of hemostatic materials, e.g., powder, sponge, hydrogel and gauze, is summarized and compared, which may provide an enlightenment for the optimization of hemostat design. It has also highlighted current challenges to the development of biopolymer-based hemostatic materials and proposed future directions in chemistry design, advanced form and clinical application.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Juan-Juan Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
27
|
Konrath S, Mailer RK, Beerens M, Englert H, Frye M, Kuta P, Preston RJS, Maas C, Butler LM, Roest M, de Laat B, Renné T. Intrinsic coagulation pathway-mediated thrombin generation in mouse whole blood. Front Cardiovasc Med 2022; 9:1008410. [PMID: 36518684 PMCID: PMC9742269 DOI: 10.3389/fcvm.2022.1008410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Calibrated Automated Thrombography (CAT) is a versatile and sensitive method for analyzing coagulation reactions culminating in thrombin generation (TG). Here, we present a CAT method for analyzing TG in murine whole blood by adapting the CAT assay used for measuring TG in human plasma. The diagnostically used artificial and physiologic factor XII (FXII) contact activators kaolin, ellagic acid and polyphosphate (polyP) stimulated TG in murine blood in a dose-dependent manner resulting in a gradual increase in endogenous thrombin potential and peak thrombin, with shortened lag times and times to peak. The activated FXII inhibitor rHA-Infestin-4 and direct oral anticoagulants (DOACs) interfered with TG triggered by kaolin, ellagic acid and polyP and TG was completely attenuated in blood of FXII- (F12 -/-) and FXI-deficient (F11 -/-) mice. Moreover, reconstitution of blood from F12 -/- mice with human FXII restored impaired contact-stimulated TG. HEK293 cell-purified polyP also initiated FXII-driven TG in mouse whole blood and addition of the selective inhibitor PPX_Δ12 ablated natural polyP-stimulated TG. In conclusion, the data provide a method for analysis of contact activation-mediated TG in murine whole blood. As the FXII-driven intrinsic pathway of coagulation has emerged as novel target for antithrombotic agents that are validated in mouse thrombosis and bleeding models, our novel assay could expedite therapeutic drug development.
Collapse
Affiliation(s)
- Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manu Beerens
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Englert
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Piotr Kuta
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roger J. S. Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Coen Maas
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lynn M. Butler
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Mark Roest
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, Netherlands
| | - Bas de Laat
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
- Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, Netherlands
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
28
|
Nagy M, van der Meijden PEJ, Glunz J, Schurgers L, Lutgens E, ten Cate H, Heitmeier S, Spronk HMH. Integrating Mechanisms in Thrombotic Peripheral Arterial Disease. Pharmaceuticals (Basel) 2022; 15:1428. [PMID: 36422558 PMCID: PMC9695058 DOI: 10.3390/ph15111428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/10/2023] Open
Abstract
Peripheral arterial disease (PAD), a manifestation of systemic atherosclerosis, is underdiagnosed in the general population. Despite the extensive research performed to unravel its pathophysiology, inadequate knowledge exists, thus preventing the development of new treatments. This review aims to highlight the essential elements of atherosclerosis contributing to the pathophysiology of PAD. Furthermore, emphasis will be placed on the role of thrombo-inflammation, with particular focus on platelet and coagulation activation as well as cell-cell interactions. Additional insight will be then discussed to reveal the contribution of hypercoagulability to the development of vascular diseases such as PAD. Lastly, the current antithrombotic treatments will be discussed, and light will be shed on promising new targets aiming to aid the development of new treatments.
Collapse
Affiliation(s)
- Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Paola E. J. van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Julia Glunz
- Cardiovascular Research, Bayer AG, 42117 Wuppertal, Germany
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Esther Lutgens
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University, 80539 Munich, Germany
- Experimental Cardiovascular Immunology Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Center for Thrombosis and Hemostasis, Gutenberg University Mainz, 55122 Mainz, Germany
| | | | - Henri M. H. Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
29
|
Ye SL, Li WD, Li WX, Xiao L, Ran F, Chen MM, Li XQ, Sun LL. The regulatory role of exosomes in venous thromboembolism. Front Cell Dev Biol 2022; 10:956880. [PMID: 36092737 PMCID: PMC9449368 DOI: 10.3389/fcell.2022.956880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Exosomes are nanoscale endocytic vesicles, 30-150 nm in diameter, secreted by most cells. They mainly originate from multivesicular bodies formed by intracellular invagination of lysosomal microparticles, and released into the extracellular matrix after fusion of multivesicular bodies with cell membrane. Studies have shown that exosomes contain a variety of active molecules, such as proteins, lipids and RNAs (such as mRNA, miRNA, lncRNA, circRNA, etc.), which regulate the behavior of recipient cells and serve as circulating biomarkers of diseases, including thrombosis. Therefore, exosome research is important for the diagnosis, treatment, therapeutic monitoring, and prognosis of thrombosis in that it can reveal the counts, surface marker expression, protein, and miRNA cargo involved. Recent studies have shown that exosomes can be used as therapeutic vectors for tissue regeneration and as alternative vectors for drug delivery. In this review, we summarize the physiological and biochemical characteristics, isolation, and identification of exosomes. Moreover, we focus on the role of exosomes in thrombosis, specifically venous thromboembolism, and their potential clinical applications, including as biomarkers and therapeutic vectors for thrombosis.
Collapse
Affiliation(s)
- Sheng-Lin Ye
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen-Dong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei-Xiao Li
- Department of Vascular Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lun Xiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Feng Ran
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Meng-Meng Chen
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Li-Li Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
30
|
Roshanzamir F, Amini-Kafiabad S, Zarif MN, Arabkhazaeli A, Mohammadipour M. The potential effect of leukocyte filtration methods on erythrocyte-derived microvesicles: One step forward. Eur J Transl Myol 2022; 32. [PMID: 35916762 PMCID: PMC9580532 DOI: 10.4081/ejtm.2022.10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
By harmonizing the pre-preparation conditions and also removing some donors’ variations, the current study took one step forward to investigate whether different leukocyte filtration sets influence the quality of RBCs throughout the storage time. Twelve whole blood units were collected, and each unit was split into three equal parts. Thirty-six divided bags were filtered using three different leukocyte-filtration sets including Red Cell and Whole Blood Filters (12 units per filter). The prepared RBCs were refrigerated for up to 42 days and assessed for microvesicle count and size, clotting- and prothrombin time, hemolysis index, and biochemical parameters. A significant increment in erythrocytes microvesicle count (EMVs/μL) was observed during the time in the three filtration sets. The number of EMVs in WBF-RBCs was higher (~1.6 fold) than in F-RCF on day 42 (p=0.035). Interestingly the median fluorescence intensity of EMVs decreased during the storage. The size of MVs rose during the time without any significant differences among the filters. Coagulation time decreased in RBCs over the storage, with no significant differences among the filters. Hemolysis index and lactate concentration increased while glucose level decreased significantly throughout the time. The changes in WBF-RBCs were more drastic rather than RCF-RBCs. The only significant difference in the count of EMVs was between WBF and F-RCF components on day 42. Though the changes in WBF products were more drastic, all the values fell within the standard limits. Accordingly, all three filtration sets can be considered.
Collapse
Affiliation(s)
- Fateme Roshanzamir
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran.
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran.
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm.
| | - Ali Arabkhazaeli
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran.
| | - Mahshid Mohammadipour
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran.
| |
Collapse
|
31
|
Henderson MW, Lima F, Moraes CRP, Ilich A, Huber SC, Barbosa MS, Santos I, Palma AC, Nunes TA, Ulaf RG, Ribeiro LC, Bernardes AF, Bombassaro B, Dertkigil SSJ, Moretti ML, Strickland S, Annichino-Bizzacchi JM, Orsi FA, Mansour E, Velloso LA, Key NS, De Paula EV. Contact and intrinsic coagulation pathways are activated and associated with adverse clinical outcomes in COVID-19. Blood Adv 2022; 6:3367-3377. [PMID: 35235941 PMCID: PMC8893951 DOI: 10.1182/bloodadvances.2021006620] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/19/2022] [Indexed: 12/27/2022] Open
Abstract
Coagulation activation is a prominent feature of severe acute respiratory syndrome coronavirus 2 (COVID-19) infection. Activation of the contact system and intrinsic pathway has increasingly been implicated in the prothrombotic state observed in both sterile and infectious inflammatory conditions. We therefore sought to assess activation of the contact system and intrinsic pathway in individuals with COVID-19 infection. Baseline plasma levels of protease:serpin complexes indicative of activation of the contact and intrinsic pathways were measured in samples from inpatients with COVID-19 and healthy individuals. Cleaved kininogen, a surrogate for bradykinin release, was measured by enzyme-linked immunosorbent assay, and extrinsic pathway activation was assessed by microvesicle tissue factor-mediated factor Xa (FXa; MVTF) generation. Samples were collected within 24 hours of COVID-19 diagnosis. Thirty patients with COVID-19 and 30 age- and sex-matched controls were enrolled. Contact system and intrinsic pathway activation in COVID-19 was demonstrated by increased plasma levels of FXIIa:C1 esterase inhibitor (C1), kallikrein:C1, FXIa:C1, FXIa:α1-antitrypsin, and FIXa:antithrombin (AT). MVTF levels were also increased in patients with COVID-19. Because FIXa:AT levels were associated with both contact/intrinsic pathway complexes and MVTF, activation of FIX likely occurs through both contact/intrinsic and extrinsic pathways. Among the protease:serpin complexes measured, FIXa:AT complexes were uniquely associated with clinical indices of disease severity, specifically total length of hospitalization, length of intensive care unit stay, and extent of lung computed tomography changes. We conclude that the contact/intrinsic pathway may contribute to the pathogenesis of the prothrombotic state in COVID-19. Larger prospective studies are required to confirm whether FIXa:AT complexes are a clinically useful biomarker of adverse clinical outcomes.
Collapse
Affiliation(s)
- Michael W. Henderson
- University of North Carolina (UNC) Blood Research Center, UNC at Chapel Hill, Chapel Hill, NC
| | - Franciele Lima
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Anton Ilich
- University of North Carolina (UNC) Blood Research Center, UNC at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, UNC at Chapel Hill, Chapel Hill, NC
| | | | - Mayck Silva Barbosa
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Andre C. Palma
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Thyago Alves Nunes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Raisa Gusso Ulaf
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Luciana Costa Ribeiro
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Ana Flavia Bernardes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Sergio San Juan Dertkigil
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Maria Luiza Moretti
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY; and
| | - Joyce M. Annichino-Bizzacchi
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, and
| | - Fernanda Andrade Orsi
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Eli Mansour
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Licio A. Velloso
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Nigel S. Key
- University of North Carolina (UNC) Blood Research Center, UNC at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, UNC at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, UNC at Chapel Hill, Chapel Hill, NC
| | - Erich Vinicius De Paula
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, and
| |
Collapse
|
32
|
Georgatzakou HT, Fortis SP, Papageorgiou EG, Antonelou MH, Kriebardis AG. Blood Cell-Derived Microvesicles in Hematological Diseases and beyond. Biomolecules 2022; 12:803. [PMID: 35740926 PMCID: PMC9220817 DOI: 10.3390/biom12060803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Microvesicles or ectosomes represent a major type of extracellular vesicles that are formed by outward budding of the plasma membrane. Typically, they are bigger than exosomes but smaller than apoptotic vesicles, although they may overlap with both in size and content. Their release by cells is a means to dispose redundant, damaged, or dangerous material; to repair membrane lesions; and, primarily, to mediate intercellular communication. By participating in these vital activities, microvesicles may impact a wide array of cell processes and, consequently, changes in their concentration or components have been associated with several pathologies. Of note, microvesicles released by leukocytes, red blood cells, and platelets, which constitute the vast majority of plasma microvesicles, change under a plethora of diseases affecting not only the hematological, but also the nervous, cardiovascular, and urinary systems, among others. In fact, there is evidence that microvesicles released by blood cells are significant contributors towards pathophysiological states, having inflammatory and/or coagulation and/or immunomodulatory arms, by either promoting or inhibiting the relative disease phenotypes. Consequently, even though microvesicles are typically considered to have adverse links with disease prognosis, progression, or outcomes, not infrequently, they exert protective roles in the affected cells. Based on these functional relations, microvesicles might represent promising disease biomarkers with diagnostic, monitoring, and therapeutic applications, equally to the more thoroughly studied exosomes. In the current review, we provide a summary of the features of microvesicles released by blood cells and their potential implication in hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hara T. Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Marianna H. Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, National & Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| |
Collapse
|
33
|
Qiu H, Lan G, Ding W, Wang X, Wang W, Shou D, Lu F, Hu E, Yu K, Shang S, Xie R. Dual-Driven Hemostats Featured with Puncturing Erythrocytes for Severe Bleeding in Complex Wounds. RESEARCH 2022; 2022:9762746. [PMID: 35707050 PMCID: PMC9178490 DOI: 10.34133/2022/9762746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Achieving rapid hemostasis in complex and deep wounds with secluded hemorrhagic sites is still a challenge because of the difficulty in delivering hemostats to these sites. In this study, a Janus particle, SEC-Fe@CaT with dual-driven forces, bubble-driving, and magnetic field– (MF–) mediated driving, was prepared via in situ loading of Fe3O4 on a sunflower sporopollenin exine capsule (SEC), and followed by growth of flower-shaped CaCO3 clusters. The bubble-driving forces enabled SEC-Fe@CaT to self-diffuse in the blood to eliminate agglomeration, and the MF-mediated driving force facilitated the SEC-Fe@CaT countercurrent against blood to access deep bleeding sites in the wounds. During the movement in blood flow, the meteor hammer-like SEC from SEC-Fe@CaT can puncture red blood cells (RBCs) to release procoagulants, thus promoting activation of platelet and rapid hemostasis. Animal tests suggested that SEC-Fe@CaT stopped bleeding in as short as 30 and 45 s in femoral artery and liver hemorrhage models, respectively. In contrast, the similar commercial product Celox™ required approximately 70 s to stop the bleeding in both bleeding modes. This study demonstrates a new hemostat platform for rapid hemostasis in deep and complex wounds. It was the first attempt integrating geometric structure of sunflower pollen with dual-driven movement in hemostasis.
Collapse
Affiliation(s)
- Haoyu Qiu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu Province, China
| | - Xinyu Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu Province, China
| | - Wenyi Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Dahua Shou
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Songmin Shang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
34
|
Heal SL, Hardy LJ, Wilson CL, Ali M, Ariëns RAS, Foster R, Philippou H. Novel interaction of properdin and coagulation factor XI: Crosstalk between complement and coagulation. Res Pract Thromb Haemost 2022; 6:e12715. [PMID: 35647477 PMCID: PMC9130567 DOI: 10.1002/rth2.12715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Background Evidence of crosstalk between the complement and coagulation cascades exists, and dysregulation of either pathway can lead to serious thromboinflammatory events. Both the intrinsic pathway of coagulation and the alternative pathway of complement interact with anionic surfaces, such as glycosaminoglycans. Hitherto, there is no evidence for a direct interaction of properdin (factor P [FP]), the only known positive regulator of complement, with coagulation factor XI (FXI) or activated FXI (FXIa). Objectives The aim was to investigate crosstalk between FP and the intrinsic pathway and the potential downstream consequences. Methods Chromogenic assays were established to characterize autoactivation of FXI in the presence of dextran sulfate (DXS), enzyme kinetics of FXIa, and the downstream effects of FP on intrinsic pathway activity. Substrate specificity changes were investigated using SDS-PAGE and liquid chromatography-mass spectrometry (LC-MS). Surface plasmon resonance (SPR) was used to determine direct binding between FP and FXIa. Results/Conclusions We identified a novel interaction of FP with FXIa resulting in functional consequences. FP reduces activity of autoactivated FXIa toward S-2288. FXIa can cleave FP in the presence of DXS, demonstrated using SDS-PAGE, and confirmed by LC-MS. FXIa can cleave factor IX (FIX) and FP in the presence of DXS, determined by SDS-PAGE. DXS alone modulates FXIa activity, and this effect is further modulated by FP. We demonstrate that FXI and FXIa bind to FP with high affinity. Furthermore, FX activation downstream of FXIa cleavage of FIX is modulated by FP. These findings suggest a novel intercommunication between complement and coagulation pathways.
Collapse
Affiliation(s)
- Samantha L. Heal
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Lewis J. Hardy
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Clare L. Wilson
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Majid Ali
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Robert A. S. Ariëns
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | - Helen Philippou
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
35
|
Nguyen DB, Tran HT, Kaestner L, Bernhardt I. The Relation Between Extracellular Vesicles Released From Red Blood Cells, Their Cargo, and the Clearance by Macrophages. Front Physiol 2022; 13:783260. [PMID: 35432007 PMCID: PMC9008836 DOI: 10.3389/fphys.2022.783260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane particles that include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies, and other EV subsets. EVs are involved in intercellular communication and the transport of macromolecules between cells. Here, we propose and test the ability of red blood cell (RBC)-derived EVs (RBC-EVs) as putative drug carriers. EVs were produced by treating RBCs with Phorbol-12-myristate-13-acetate (PMA) and separating from the cells by differential centrifugation steps. RBC-EVs were characterized by size determination, flow cytometry, and scanning electron microscopy (SEM). EVs were loaded with DNA plasmids coding for the green fluorescent protein (GFP) by electroporation. The DNA-loaded EVs (DNA-EVs) were used to transfect THP-1-derived macrophages and analyzed by fluorescence microscopy and flow cytometry. The results showed that RBC-EVs had an almost spherical shape and a polydispersity in their size with an average of 197 ± 44 nm and with a zeta potential of −36 ± 8 mV. RBC-EVs were successfully loaded with DNA but associated with an increase of the polydispersity index (PdI) and showed a positive signal with Picogreen. DNA-EVs were almost completely taken up by macrophages within 24 h, however, resulting in the expression of the GFP in a subpopulation of macrophages. As the way, we designed that RBC-EVs could be potential nucleic acid carriers when the immune system was addressed. This study may contribute to the understanding of the role of EVs in the development of microvesicle-based vehicles.
Collapse
Affiliation(s)
- Duc Bach Nguyen
- Department of Molecular Biology, Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
- *Correspondence: Duc Bach Nguyen,
| | - Hanh Triet Tran
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Ingolf Bernhardt
- Laboratory of Biophysics, Faculty of Natural and Technical Sciences, Saarland University, Saarbruecken, Germany
- Ingolf Bernhardt,
| |
Collapse
|
36
|
Reed CR, Bonadonna D, Otto JC, McDaniel CG, Chabata CV, Kuchibhatla M, Frederiksen J, Layzer JM, Arepally GM, Sullenger BA, Tracy ET. Aptamer-based factor IXa inhibition preserves hemostasis and prevents thrombosis in a piglet model of ECMO. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:524-534. [PMID: 35036063 PMCID: PMC8728519 DOI: 10.1016/j.omtn.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) requires anticoagulation to prevent clotting when the patient’s blood contacts the circuit. Unfractionated heparin (UFH) usually prevents clotting but can cause life-threatening bleeding. An anticoagulant that selectively inhibits the contact activation (intrinsic) pathway while sparing the tissue factor (extrinsic) pathway of coagulation might prevent clotting triggered by the circuit while permitting physiologic coagulation at surgical sites. DTRI-178 is an RNA anticoagulant aptamer conjugated to polyethylene glycol that increases its half-life in circulation. This aptamer is based on a previously described molecule (9.3t) that inhibits intrinsic tenase activity by binding to factor IXa on an exosite. Using a piglet model of pediatric venoarterial (VA) ECMO, we compared thromboprevention and blood loss using a single dose of DTRI-178 versus UFH. In each of five experiments, we subjected two litter-matched piglets, one anticoagulated with DTRI-178 and the other with UFH, to simultaneous 12-h periods of VA ECMO. Both anticoagulants achieved satisfactory and comparable thromboprotection. However, UFH piglets had increased surgical site bleeding and required significantly greater blood transfusion volumes than piglets anticoagulated with DTRI-178. Our results indicate that DTRI-178, an aptamer against factor IXa, may be feasible, safer, and result in fewer transfusions and clinical bleeding events in ECMO.
Collapse
Affiliation(s)
- Christopher R. Reed
- Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
- Corresponding author Christopher R. Reed, MD, Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
| | - Desiree Bonadonna
- Extracorporeal Life Support, Duke University Medical Center, Durham, NC 27710, USA
| | - James C. Otto
- Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
| | | | - Charlene Vongai Chabata
- Departments of Surgery; and Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Maragatha Kuchibhatla
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - James Frederiksen
- Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
| | - Juliana M. Layzer
- Duke University Clinical and Translational Science Institute, Durham, NC 27710, USA
| | - Gowthami M. Arepally
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Bruce A. Sullenger
- Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
| | - Elisabeth T. Tracy
- Department of Surgery, Duke University Medical Center and Health System, 2301 Erwin Road, Box 3443, Durham, NC 27710, USA
- Division of Pediatric Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
37
|
Abstract
Blood coagulation is essential to maintain the integrity of a closed circulatory system (hemostasis), but also contributes to thromboembolic occlusion of vessels (thrombosis). Thrombosis may cause deep vein thrombosis, pulmonary embolism, myocardial infarction, peripheral artery disease, and ischemic stroke, collectively the most common causes of death and disability in the developed world. Treatment for the prevention of thromboembolic diseases using anticoagulants such as heparin, coumarins, thrombin inhibitors, or antiplatelet drugs increase the risk of bleeding and are associated with an increase in potentially life-threatening hemorrhage, partially offsetting the benefits of reduced coagulation. Thus, drug development aiming at novel targets is needed to provide efficient and safe anticoagulation. Within the last decade, experimental and preclinical data have shown that some coagulation mechanisms principally differ in thrombosis and hemostasis. The plasma contact system protein factors XII and XI, high-molecular-weight kininogen, and plasma kallikrein specifically contribute to thrombosis, however, have minor, if any, role in hemostatic coagulation mechanisms. Inherited deficiency in contact system proteins is not associated with increased bleeding in humans and animal models. Therefore, targeting contact system proteins provides the exciting opportunity to interfere specifically with thromboembolic diseases without increasing the bleeding risk. Recent studies that investigated pharmacologic inhibition of contact system proteins have shown that this approach provides efficient and safe thrombo-protection that in contrast to classical anticoagulants is not associated with increased bleeding risk. This review summarizes therapeutic and conceptual developments for selective interference with pathological thrombus formation, while sparing physiologic hemostasis, that enables safe anticoagulation treatment.
Collapse
Affiliation(s)
- Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Piotr Kuta
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
38
|
Wan J, Vadaq N, Konings J, Jaeger M, Kumar V, de Laat B, Joosten L, Netea MG, van der Ven AJ, de Groot PG, de Mast Q, Roest M. Kallikrein augments the anticoagulant function of the protein C system in thrombin generation. J Thromb Haemost 2022; 20:48-57. [PMID: 34532976 PMCID: PMC9293419 DOI: 10.1111/jth.15530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Genetics play a significant role in coagulation phenotype and venous thromboembolism risk. Resistance to the anticoagulant activated protein C (APC) is an established risk for thrombosis. Herein, we explored the genetic determinants of thrombin generation (TG) and thrombomodulin (TM)-modulated TG using plasma from the Human Functional Genomics Project. METHODS Calibrated TG was measured both in absence and presence of TM using tissue factor as trigger. Genetic determinants of TG parameters and protein C pathway function were assessed using genome-wide single-nucleotide polymorphism (SNP) genotyping. Plasma samples were supplemented with purified apolipoprotein A-IV, prekallikrein, or kallikrein to test their influence on the anticoagulant function of TM and APC in TG. RESULTS Thrombin generation data from 392 individuals were analyzed. Genotyping showed that the KLKB1 gene (top SNP: rs4241819) on chromosome 4 was associated with the normalized sensitivity ratio of endogenous thrombin potential to TM at genome-wide level (nETP-TMsr, P = 4.27 × 10-8 ). In vitro supplementation of kallikrein, but not prekallikrein or apolipoprotein A-IV, into plasma dose-dependently augmented the anticoagulant effect of TM and APC in TG. Variations of rs4241819 was not associated with the plasma concentration of prekallikrein. Association between rs4241819 and nETP-TMsr was absent when TG was measured in presence of a contact pathway inhibitor corn trypsin inhibitor. CONCLUSIONS Our results suggest that kallikrein plays a role in the regulation of the anticoagulant protein C pathway in TG, which may provide a novel mechanism for the previously observed association between the KLKB1 gene and venous thrombosis.
Collapse
Affiliation(s)
- Jun Wan
- Synapse Research InstituteCardiovascular Research Institute MaastrichtMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Nadira Vadaq
- Department of Internal MedicineRadboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenthe Netherlands
- Dr. Kariadi Hospital; Center for Tropical and Infectious Diseases (CENTRID)Faculty of MedicineDiponegoro UniversitySemarangIndonesia
| | - Joke Konings
- Synapse Research InstituteCardiovascular Research Institute MaastrichtMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Martin Jaeger
- Department of Internal MedicineRadboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenthe Netherlands
| | - Vinod Kumar
- Department of Internal MedicineRadboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenthe Netherlands
- Department of GeneticsUniversity Medical Centre GroningenGroningenthe Netherlands
- Nitte (Deemed to be University)Nitte University Centre for Science Education and Research (NUCSER)Medical Sciences ComplexDeralakatte, MangaloreIndia
| | - Bas de Laat
- Synapse Research InstituteCardiovascular Research Institute MaastrichtMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Leo Joosten
- Department of Internal MedicineRadboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenthe Netherlands
| | - Mihai G. Netea
- Department of Internal MedicineRadboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenthe Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Andre J. van der Ven
- Department of Internal MedicineRadboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenthe Netherlands
| | - Philip G. de Groot
- Synapse Research InstituteCardiovascular Research Institute MaastrichtMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Quirijn de Mast
- Department of Internal MedicineRadboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenthe Netherlands
| | - Mark Roest
- Synapse Research InstituteCardiovascular Research Institute MaastrichtMaastricht University Medical CenterMaastrichtthe Netherlands
| |
Collapse
|
39
|
Ma X, Liu Y, Han Q, Han Y, Wang J, Zhang H. Transfusion‑related immunomodulation in patients with cancer: Focus on the impact of extracellular vesicles from stored red blood cells (Review). Int J Oncol 2021; 59:108. [PMID: 34841441 DOI: 10.3892/ijo.2021.5288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusions may have a negative impact on the prognosis of patients with cancer, where transfusion‑related immunomodulation (TRIM) may be a significant contributing factor. A number of components have been indicated to be associated with TRIM. Among these, the impact of extracellular vesicles (EVs) has been garnering increasing attention from researchers. EVs are defined as nano‑scale, cell‑derived vesicles that carry a variety of bioactive molecules, including proteins, nucleic acids and lipids, to mediate cell‑to‑cell communication and exert immunoregulatory functions. RBCs in storage constitutively secrete EVs, which serve an important role in TRIM in patients with cancer receiving a blood transfusion. Therefore, the present review aimed to first summarize the available information on the biogenesis and characterization of EVs. Subsequently, the possible mechanisms of TRIM in patients with cancer and the impact of EVs on TRIM were discussed, aiming to provide an outlook for future studies, specifically for formulating recommendations for managing patients with cancer receiving RBC transfusions.
Collapse
Affiliation(s)
- Xingyu Ma
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yanxi Liu
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qianlan Han
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hongwei Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
40
|
Siegel PM, Bender I, Chalupsky J, Heger LA, Rieder M, Trummer G, Wengenmayer T, Duerschmied D, Bode C, Diehl P. Extracellular Vesicles Are Associated With Outcome in Veno-Arterial Extracorporeal Membrane Oxygenation and Myocardial Infarction. Front Cardiovasc Med 2021; 8:747453. [PMID: 34805303 PMCID: PMC8600355 DOI: 10.3389/fcvm.2021.747453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is being increasingly applied in patients with circulatory failure, but mortality remains high. An inflammatory response syndrome initiated by activation of blood components in the extracorporeal circuit may be an important contributing factor. Patients with ST-elevation myocardial infarction (STEMI) may also experience a systemic inflammatory response syndrome and are at risk of developing cardiogenic shock and cardiac arrest, both indications for VA-ECMO. Extracellular vesicles (EV) are released by activated cells as mediators of intercellular communication and may serve as prognostic biomarkers. Cardiomyocyte EV, released upon myocardial ischemia, hold strong potential for this purpose. The aim of this study was to assess the EV-profile in VA-ECMO and STEMI patients and the association with outcome. Methods: In this prospective observational study, blood was sampled on day 1 after VA-ECMO initiation or myocardial reperfusion (STEMI patients). EV were isolated by differential centrifugation. Leukocyte, platelet, endothelial, erythrocyte and cardiomyocyte (caveolin-3+) Annexin V+ EV were identified by flow cytometry. EV were assessed in survivors vs. non-survivors of VA-ECMO and in STEMI patients with normal-lightly vs. moderately-severely reduced left ventricular function. Logistic regression was conducted to determine the predictive accuracy of EV. Pearson correlation analysis of EV with clinical parameters was performed. Results: Eighteen VA-ECMO and 19 STEMI patients were recruited. Total Annexin V+, cardiomyocyte and erythrocyte EV concentrations were lower (p ≤ 0.005) while the percentage of platelet EV was increased in VA-ECMO compared to STEMI patients (p = 0.002). Total Annexin V+ EV were increased in non-survivors of VA-ECMO (p = 0.01), and higher levels were predictive of mortality (AUC = 0.79, p = 0.05). Cardiomyocyte EV were increased in STEMI patients with moderately-severely reduced left ventricular function (p = 0.03), correlated with CK-MBmax (r = 0.57, p = 0.02) and time from reperfusion to blood sampling (r = 0.58, p = 0.01). Leukocyte EV correlated with the number of coronary stents placed (r = 0.60, p = 0.02). Conclusions: Elevated total Annexin V+ EV on day 1 of VA-ECMO are predictive of mortality. Increased cardiomyocyte EV on day 1 after STEMI correlate with infarct size and are associated with poor outcome. These EV may aid in the early identification of patients at risk of poor outcome, helping to guide clinical management.
Collapse
Affiliation(s)
- Patrick M Siegel
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ileana Bender
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Chalupsky
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas A Heger
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marina Rieder
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Wengenmayer
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
Bentley R, Hardy LJ, Scott LJ, Sharma P, Philippou H, Lip GYH. Drugs in phase I and II clinical development for the prevention of stroke in patients with atrial fibrillation. Expert Opin Investig Drugs 2021; 30:1057-1069. [PMID: 33682570 DOI: 10.1080/13543784.2021.1897786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Atrial fibrillation is the most frequently diagnosed cardiac arrhythmia globally and is associated with ischemic stroke and heart failure. Patients with atrial fibrillation are typically prescribed long-term anticoagulants in the form of either vitamin K antagonists or non-vitamin K antagonist oral anticoagulants; however, both carry a potential risk of adverse bleeding. AREAS COVERED This paper sheds light on emerging anticoagulant agents which target clotting factors XI and XII, or their activated forms - XIa and XIIa, respectively, within the intrinsic coagulation pathway. The authors examined data available on PubMed, Scopus, and the clinical trials registry of the United States National Library of Medicine (www.clinicaltrials.gov). EXPERT OPINION Therapies targeting factors XI or XII can yield anticoagulant efficacy with the potential to reduce adverse bleeding. Advantages for targeting factor XI or XII include a wider therapeutic window and reduced bleeding. Long-term follow-up studies and a greater understanding of the safety and efficacy are required. Atrial fibrillation is a chronic disease and therefore the development of oral formulations is key.
Collapse
Affiliation(s)
- Robert Bentley
- Liverpool Centre for Cardiovascular Sciences, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Lewis J Hardy
- Discovery and Translational Science Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Laura J Scott
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Parveen Sharma
- Liverpool Centre for Cardiovascular Sciences, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Helen Philippou
- Discovery and Translational Science Department, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Sciences, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
42
|
Konrath S, Mailer RK, Renné T. Mechanism, Functions, and Diagnostic Relevance of FXII Activation by Foreign Surfaces. Hamostaseologie 2021; 41:489-501. [PMID: 34592776 DOI: 10.1055/a-1528-0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Factor XII (FXII) is a serine protease zymogen produced by hepatocytes and secreted into plasma. The highly glycosylated coagulation protein consists of six domains and a proline-rich region that regulate activation and function. Activation of FXII results from a conformational change induced by binding ("contact") with negatively charged surfaces. The activated serine protease FXIIa drives both the proinflammatory kallikrein-kinin pathway and the procoagulant intrinsic coagulation cascade, respectively. Deficiency in FXII is associated with a prolonged activated partial thromboplastin time (aPTT) but not with an increased bleeding tendency. However, genetic or pharmacological deficiency impairs both arterial and venous thrombosis in experimental models. This review summarizes current knowledge of FXII structure, mechanisms of FXII contact activation, and the importance of FXII for diagnostic coagulation testing and thrombosis.
Collapse
Affiliation(s)
- Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Marks DC, Webb RG, Linnane C, Aung HH, Dennington PM, Tan JCG. X- and gamma-irradiation have similar effects on the in vitro quality of stored red cell components. Transfusion 2021; 61:3214-3223. [PMID: 34510450 DOI: 10.1111/trf.16656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Blood components are irradiated to inactivate lymphocytes to prevent transfusion-associated graft versus host disease. As there are little data regarding the effects of X-irradiation on red blood cell components (RBCs), the in vitro quality of stored red cells (standard, pediatric, washed, and intra-uterine transfusion [IUT]) following X- or gamma-irradiation was compared. STUDY DESIGN AND METHODS RBCs were pooled, split, and processed to produce standard (<14 days and < 5 days post-collection), pediatric (<5 days post-collection), washed (<14 days post-collection), or IUT RBCs (<5 days post-collection). Standard RBCs were either X- or gamma-irradiated (n = 10 pairs). A further 10 replicates were prepared by pooling and splitting three matched RBCs (X-, gamma-, and non-irradiated). All other RBCs were either X- or gamma-irradiated (n = 20 pairs). Red cell indices, hemolysis, potassium release, metabolism, microparticles, ATP, and 2,3-DPG were measured pre-irradiation and 6 h, 1, 2, 3, 7, 10, and 14 days post-irradiation, depending on the component type. Data were analyzed using two-way repeated measures ANOVA. RESULTS There were no significant differences in any in vitro quality measurements, with the exception of marginally higher potassium release in washed, IUT, and RBCs <5 days old (p < .0001) following X-irradiation. Both irradiation types increased generation of microvesicles, particularly in components that were older at the time of irradiation or stored for longer post-irradiation. CONCLUSION X- and gamma-irradiation have similar effects on the in vitro quality of RBCs, indicating that either technology is suitable for blood component irradiation.
Collapse
Affiliation(s)
- Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rachel G Webb
- Research and Development, Australian Red Cross Lifeblood, Sydney, New South Wales, Australia
| | - Claire Linnane
- Research and Development, Australian Red Cross Lifeblood, Sydney, New South Wales, Australia
| | - Htet Htet Aung
- Research and Development, Australian Red Cross Lifeblood, Sydney, New South Wales, Australia
| | - Peta M Dennington
- Clinical Services and Research, Australian Red Cross Lifeblood, Sydney, New South Wales, Australia
| | - Joanne C G Tan
- Research and Development, Australian Red Cross Lifeblood, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
44
|
Nader E, Garnier Y, Connes P, Romana M. Extracellular Vesicles in Sickle Cell Disease: Plasma Concentration, Blood Cell Types Origin Distribution and Biological Properties. Front Med (Lausanne) 2021; 8:728693. [PMID: 34490315 PMCID: PMC8417591 DOI: 10.3389/fmed.2021.728693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Prototype of monogenic disorder, sickle cell disease (SCD) is caused by a unique single mutation in the β-globin gene, leading to the production of the abnormal hemoglobin S (HbS). HbS polymerization in deoxygenated condition induces the sickling of red blood cells (RBCs), which become less deformable and more fragile, and thus prone to lysis. In addition to anemia, SCD patients may exhibit a plethora of clinical manifestations ranging from acute complications such as the frequent and debilitating painful vaso-occlusive crisis to chronic end organ damages. Several interrelated pathophysiological processes have been described, including impaired blood rheology, increased blood cell adhesion, coagulation, inflammation and enhanced oxidative stress among others. During the last two decades, it has been shown that extracellular vesicles (EVs), defined as cell-derived anucleated particles delimited by a lipid bilayer, and comprising small EVs (sEVs) and medium/large EVs (m/lEVs); are not only biomarkers but also subcellular actors in SCD pathophysiology. Plasma concentration of m/lEVs, originated mainly from RBCs and platelets (PLTs) but also from the other blood cell types, is higher in SCD patients than in healthy controls. The concentration and the density of externalized phosphatidylserine of those released from RBCs may vary according to clinical status (crisis vs. steady state) and treatment (hydroxyurea). Besides their procoagulant properties initially described, RBC-m/lEVs may promote inflammation through their effects on monocytes/macrophages and endothelial cells. Although less intensely studied, sEVs plasma concentration is increased in SCD and these EVs may cause endothelial damages. In addition, sEVs released from activated PLTs trigger PLT-neutrophil aggregation involved in lung vaso-occlusion in sickle mice. Altogether, these data clearly indicate that EVs are both biomarkers and bio-effectors in SCD, which deserve further studies.
Collapse
Affiliation(s)
- Elie Nader
- Laboratoire Inter-Universitaire de Biologie de la Motricité EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge, PRES Sorbonne, Paris, France
| | - Yohann Garnier
- Laboratoire d'Excellence du Globule Rouge, PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| | - Philippe Connes
- Laboratoire Inter-Universitaire de Biologie de la Motricité EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge, PRES Sorbonne, Paris, France
| | - Marc Romana
- Laboratoire d'Excellence du Globule Rouge, PRES Sorbonne, Paris, France.,Université des Antilles, UMR_S1134, BIGR, Pointe-à-Pitre, France.,Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France
| |
Collapse
|
45
|
Zifkos K, Dubois C, Schäfer K. Extracellular Vesicles and Thrombosis: Update on the Clinical and Experimental Evidence. Int J Mol Sci 2021; 22:ijms22179317. [PMID: 34502228 PMCID: PMC8431093 DOI: 10.3390/ijms22179317] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) compose a heterogenous group of membrane-derived particles, including exosomes, microvesicles and apoptotic bodies, which are released into the extracellular environment in response to proinflammatory or proapoptotic stimuli. From earlier studies suggesting that EV shedding constitutes a cellular clearance mechanism, it has become evident that EV formation, secretion and uptake represent important mechanisms of intercellular communication and exchange of a wide variety of molecules, with relevance in both physiological and pathological situations. The putative role of EVs in hemostasis and thrombosis is supported by clinical and experimental studies unraveling how these cell-derived structures affect clot formation (and resolution). From those studies, it has become clear that the prothrombotic effects of EVs are not restricted to the exposure of tissue factor (TF) and phosphatidylserines (PS), but also involve multiplication of procoagulant surfaces, cross-linking of different cellular players at the site of injury and transfer of activation signals to other cell types. Here, we summarize the existing and novel clinical and experimental evidence on the role and function of EVs during arterial and venous thrombus formation and how they may be used as biomarkers as well as therapeutic vectors.
Collapse
Affiliation(s)
- Konstantinos Zifkos
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, D-55131 Mainz, Germany;
| | - Christophe Dubois
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l’Agriculture, l’alimentation et l’Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), F-13380 Marseille, France;
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, D-55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
46
|
Delvasto-Núñez L, Roem D, Bakhtiari K, van Mierlo G, Meijers JCM, Jongerius I, Zeerleder SS. Iron-Driven Alterations on Red Blood Cell-Derived Microvesicles Amplify Coagulation during Hemolysis via the Intrinsic Tenase Complex. Thromb Haemost 2021. [PMID: 34171935 DOI: 10.1055/s-0041-1731051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hemolytic disorders characterized by complement-mediated intravascular hemolysis, such as autoimmune hemolytic anemia and paroxysmal nocturnal hemoglobinuria, are often complicated by life-threatening thromboembolic complications. Severe hemolytic episodes result in the release of red blood cell (RBC)-derived proinflammatory and oxidatively reactive mediators (e.g., extracellular hemoglobin, heme, and iron) into plasma. Here, we studied the role of these hemolytic mediators in coagulation activation by measuring factor Xa (FXa) and thrombin generation in the presence of RBC lysates. Our results show that hemolytic microvesicles (HMVs) formed during hemolysis stimulate thrombin generation through a mechanism involving FVIII and FIX, the so-called intrinsic tenase complex. Iron scavenging during hemolysis using deferoxamine decreased the ability of the HMVs to enhance thrombin generation. Furthermore, the addition of ferric chloride (FeCl3) to plasma propagated thrombin generation in a FVIII- and FIX-dependent manner suggesting that iron positively affects blood coagulation. Phosphatidylserine (PS) blockade using lactadherin and iron chelation using deferoxamine reduced intrinsic tenase activity in a purified system containing HMVs as source of phospholipids confirming that both PS and iron ions contribute to the procoagulant effect of the HMVs. Finally, the effects of FeCl3 and HMVs decreased in the presence of ascorbate and glutathione indicating that oxidative stress plays a role in hypercoagulability. Overall, our results provide evidence for the contribution of iron ions derived from hemolytic RBCs to thrombin generation. These findings add to our understanding of the pathogenesis of thrombosis in hemolytic diseases.
Collapse
Affiliation(s)
- Laura Delvasto-Núñez
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dorina Roem
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kamran Bakhtiari
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Gerard van Mierlo
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joost C M Meijers
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse Jongerius
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sacha S Zeerleder
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Hematology and Central Hematology Laboratory, Inselspital - Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Smith RA, Mankelow TJ, Drizou D, Bullock T, Latham T, Trompeter S, Blair A, Anstee DJ. Large red cell-derived membrane particles are major contributors to hypercoagulability in sickle cell disease. Sci Rep 2021; 11:11035. [PMID: 34040079 PMCID: PMC8155063 DOI: 10.1038/s41598-021-90477-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/11/2021] [Indexed: 02/02/2023] Open
Abstract
Sickle cell disease (SCD) is one of the most common inherited single gene disorders. Polymerisation of sickle hemoglobin results in erythrocytes that are inflexible and adherent, leading to coagulation, vascular and cellular activation and resultant blood vessel blockage. Previous studies have observed elevated numbers of red cell-derived particles (RCDP), also denoted extracellular vesicles, in SCD plasma. Here, imaging flow cytometry was used to quantify all RCDP in SCD plasma. A more heterogenous population of RCDP was observed than previously reported. Significantly, large right side-out red cell macrovesicles (MaV), 7 µm in diameter, were identified. Most RCDP were right side-out but a minor population of inside-out vesicles was also present. Electron micrographs confirmed the heterogenous nature of the RCDP detected. All MaV are decorated with prothrombotic phosphatidylserine (PS) and their removal from plasma lengthened clotting times by more than three-fold. Removal of all right side-out RCDP from SCD patient plasma samples resulted in a seven-fold increase in clotting time. These results indicate that MaV comprise a large area of prothrombotic membrane and are thus major contributors to hypercoagulation in SCD. Consequently, controlled removal of MaV and PS exposed RCDP from plasma could provide a novel therapy for managing this disease.
Collapse
Affiliation(s)
- Rachel A Smith
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Tosti J Mankelow
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK.
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK.
| | - Despoina Drizou
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Thomas Bullock
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
| | - Tom Latham
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
| | - Sara Trompeter
- Joint Red Cell Unit, Haematology Department, University College London National Health Service Foundation Trust, London, UK
| | - Allison Blair
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - David J Anstee
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant, Northway, Filton, Bristol, BS34 7QH, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
| |
Collapse
|
48
|
Kallikrein directly interacts with and activates Factor IX, resulting in thrombin generation and fibrin formation independent of Factor XI. Proc Natl Acad Sci U S A 2021; 118:2014810118. [PMID: 33397811 PMCID: PMC7826336 DOI: 10.1073/pnas.2014810118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Prekallikrein (PK) is a zymogen that is converted to kallikrein (PKa) by factor (F)XIIa. PK and FXII reciprocally activate each other; the resulting FXIIa initiates activation of the coagulation system via the cleavage of FXI to FXIa, which then activates FIX. This manuscript describes a novel high-affinity binding interaction between FIX(a) and PK(a) and reports that PKa can dose- and time-dependently activate FIX to generate FIXa, resulting in thrombin generation and clot formation independent of FXIa. Characterization of the kinetics of FIX activation reveal that PKa is a more significant activator of FIX than previously considered. This work highlights a new amendment to the coagulation cascade where PKa can directly activate FIX. Kallikrein (PKa), generated by activation of its precursor prekallikrein (PK), plays a role in the contact activation phase of coagulation and functions in the kallikrein-kinin system to generate bradykinin. The general dogma has been that the contribution of PKa to the coagulation cascade is dependent on its action on FXII. Recently this dogma has been challenged by studies in human plasma showing thrombin generation due to PKa activity on FIX and also by murine studies showing formation of FIXa-antithrombin complexes in FXI deficient mice. In this study, we demonstrate high-affinity binding interactions between PK(a) and FIX(a) using surface plasmon resonance and show that these interactions are likely to occur under physiological conditions. Furthermore, we directly demonstrate dose- and time-dependent cleavage of FIX by PKa in a purified system by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and chromogenic assays. By using normal pooled plasma and a range of coagulation factor-deficient plasmas, we show that this action of PKa on FIX not only results in thrombin generation, but also promotes fibrin formation in the absence of FXII or FXI. Comparison of the kinetics of either FXIa- or PKa-induced activation of FIX suggest that PKa could be a significant physiological activator of FIX. Our data indicate that the coagulation cascade needs to be redefined to indicate that PKa can directly activate FIX. The circumstances that drive PKa substrate specificity remain to be determined.
Collapse
|
49
|
Blood Clotting and the Pathogenesis of Types I and II Hereditary Angioedema. Clin Rev Allergy Immunol 2021; 60:348-356. [PMID: 33956309 PMCID: PMC8272707 DOI: 10.1007/s12016-021-08837-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/28/2022]
Abstract
The plasma contact system is the initiator of the intrinsic pathway of coagulation and the main producer of the inflammatory peptide bradykinin. When plasma is exposed to a negatively charged surface the two enzymes factor XII (FXII) and plasma prekallikrein (PK) bind to the surface alongside the co-factor high molecular weight kininogen (HK), where PK is non-covalently bound to. Here, FXII and PK undergo a reciprocal activation feedback loop that leads to full contact system activity in a matter of seconds. Although naturally occurring negatively charged surfaces have shown to be involved in the role of the contact system in thrombosis, such surfaces are elusive in the pathogenesis of bradykinin-driven hereditary angioedema (HAE). In this review, we will explore the molecular mechanisms behind contact system activation, their assembly on the endothelial surface, and their role in the HAE pathophysiology.
Collapse
|
50
|
Delvasto L, Roem D, Bakhtiari K, van Mierlo GJ, Meijers J, Jongerius I, Zeerleder SS. Iron-driven alterations on red blood cell-derived microvesicles amplify coagulation during hemolysis via the intrinsic tenase complex. Thromb Haemost 2021; 122:80-91. [PMID: 33940654 DOI: 10.1055/a-1497-9573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hemolytic disorders characterized by complement-mediated intravascular hemolysis, such as autoimmune hemolytic anemia and paroxysmal nocturnal hemoglobinuria, are often complicated by life-threatening thromboembolic complications. Severe hemolytic episodes result in the release of red blood cell (RBC)-derived pro-inflammatory and oxidatively reactive mediators (e.g. extracellular hemoglobin, heme and iron) into plasma. Here, we studied the role of these hemolytic mediators in coagulation activation by measuring FXa and thrombin generation in the presence of RBC lysates. Our results show that hemolytic microvesicles (HMVs) formed during hemolysis stimulate thrombin generation through a mechanism involving FVIII and FIX, the so-called intrinsic tenase complex. Iron scavenging during hemolysis using deferoxamine decreased the ability of the HMVs to enhance thrombin generation. Furthermore, the addition of ferric chloride (FeCl3) to plasma propagated thrombin generation in a FVIII and FIX-dependent manner suggesting that iron positively affects blood coagulation. Phosphatidylserine (PS) blockade using lactadherin and iron chelation using deferoxamine reduced intrinsic tenase activity in a purified system containing HMVs as source of phospholipids confirming that both PS and iron ions contribute to the procoagulant effect of the HMVs. Finally, the effects of FeCl3 and HMVs decreased in the presence of ascorbate and glutathione indicating that oxidative stress plays a role in hypercoagulability. Overall, our results provide evidence for the contribution of iron ions derived from hemolytic RBCs to thrombin generation. These findings add to our understanding of the pathogenesis of thrombosis in hemolytic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ilse Jongerius
- Sanquin Research, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam UMC Locatie AMC, Amsterdam, Netherlands
| | - Sacha S Zeerleder
- Department of Immunopathology, Sanquin-AMC Landsteiner Laboratory, Amsterdam, Netherlands.,Department of Hematology, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|