1
|
Zhao Q, Wang Q, Li B, Han S, Zhang Y, Wang Y, Lu R, Chen Q, Sun Z, Ding M, Liang Z, Gao Y. The deubiquitinase OTUB1 inhibits gluconeogenesis by stabilizing YWHAB. Cell Signal 2024; 124:111408. [PMID: 39270917 DOI: 10.1016/j.cellsig.2024.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Hepatic gluconeogenesis plays a crucial role in maintaining glucose homeostasis and serves as a potential therapeutic target for type 2 diabetes, while its underlying mechanisms are not fully understood. This study elucidates the role of the deubiquitinase OTU domain-containing ubiquitin aldehyde binding protein 1 (OTUB1) in gluconeogenesis. We found that hepatic OTUB1 expression is reduced in both db/db mice and patients with type 2 diabetes. Deletion of hepatic OTUB1 significantly elevates fasting blood glucose levels and increases the expression of key gluconeogenic genes. Conversely, overexpression of OTUB1 in hepatocytes mitigates diabetic hyperglycemia and enhances insulin sensitivity. It is known that the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein β (YWHAB) functions as an inhibitor of hepatic gluconeogenesis by interacting with forkhead box protein O (FOXO1) and glucagon receptor (GPCR), but its own modification mechanism remains unclear. Our findings indicate that OTUB1 interacts with YWHAB and deubiquitinates it through a catalytic process, which in turn suppresses gluconeogenesis. Therefore, OTUB1 plays a pivotal role in inhibiting hepatic gluconeogenesis, highlighting its potential as a therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Qingwen Zhao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Qianzhuo Wang
- Department of General Practice, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Bei Li
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Shuang Han
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Yingjuan Zhang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Yule Wang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Ruiling Lu
- Department of General Practice, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Qingyan Chen
- Department of General Practice, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Zhe Sun
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Meng Ding
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| |
Collapse
|
2
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Mian H, Kaiser M, Fonseca R. Still high risk? A review of translocation t(14;16) in multiple myeloma. Am J Hematol 2024; 99:1979-1987. [PMID: 38874195 DOI: 10.1002/ajh.27419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Multiple myeloma (MM) is a heterogeneous and complex disease, both in mutational biology as well as in the clinical presentation of patients. While tailored and biomarker-targeted therapy remains the direct goal for patient-centric management, existing therapies in MM remain largely uniform. Translocation t(14;16) is a rare primary genetic event found in less than 5% of patients with newly diagnosed MM. Here, we present an overview of the biology of t(14;16), epidemiology, clinical presentation, prognostic impact, and discuss the future clinical and therapeutic strategies for targeting this rare yet high-risk group in MM to optimize patient outcomes.
Collapse
Affiliation(s)
- Hira Mian
- Department of Oncology, McMaster University, Ontario, Canada
| | - Martin Kaiser
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Department of Haematology, The Royal Marsden Hospital, London, UK
| | - Rafael Fonseca
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| |
Collapse
|
4
|
Wu Y, Mohd Sani SB, Peng K, Lin T, Tan C, Huang X, Li Z. Research progress of the Otubains subfamily in hepatocellular carcinoma. Biomed Pharmacother 2024; 179:117348. [PMID: 39208669 DOI: 10.1016/j.biopha.2024.117348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
In cancer research, oncogenesis can be affected by modulating the deubiquitination pathway. Ubiquitination regulates proteins post-translationally in variety of physiological processes. The Otubain Subfamily includes OTUB1 (ovarian tumor-associated proteinase B1) and OTUB2(ovarian tumor-associated proteinase B2). They are deubiquitinating enzymes, which are research hotspots in tumor immunotherapy, with their implications extending across the spectrum of tumor development. Understanding their important role in tumorigenesis, includ-ing hepatocellular carcinoma (HCC) is crucial. HCC has alarming global incidence rates and mortality statistics, ranking among the top five prevalent cancers in Malaysia1. Numerous studies have consistently indicated significant expression of OTUB1 and OTUB2 in HCC cells. In addition, OTUB1 has important biological functions in cancer, suggesting its important role in tumorigenesis. However, the mechanism underlying the action of OTUB1 and OTUB2 in liver cancer remains inadequately explored. Therefore, Otubain Subfamily, as potential molecular target, holds promise for advancing HCC treatments. However, further clinical studies are required to verify its efficacy and application prospects.
Collapse
Affiliation(s)
- Yanming Wu
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Sa'udah Badriah Mohd Sani
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Ke Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China.
| | - Tao Lin
- Department of General Surgery, Anyang People's Hospital, Anyang, Henan 450000, China.
| | - Chenghao Tan
- Department of Social Science, Universiti Sain Malaysia, Gelugor, Penang 11700, Malaysia.
| | | | - Zhengrui Li
- Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
| |
Collapse
|
5
|
Chen YJC, Bhaskara GB, Lu Y, Lin K, Dent SYR. The SAGA acetyltransferase module is required for the maintenance of MAF and MYC oncogenic gene expression programs in multiple myeloma. Genes Dev 2024; 38:738-754. [PMID: 39168636 PMCID: PMC11444170 DOI: 10.1101/gad.351789.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of data sets in the Cancer Dependency Map Project revealed that many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), and cleavage under targets and release using nuclease assay (CUT&RUN) results identified pathways directly regulated by ADA2B including MTORC1 signaling and oncogenic programs driven by MYC, E2F, and MM-specific MAF. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found that the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.
Collapse
Affiliation(s)
- Ying-Jiun C Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA;
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Govinal Badiger Bhaskara
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA;
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
6
|
Mao C, Li S, Che J, Liu D, Mao X, Rao H. The ubiquitin ligase UBR4 and the deubiquitylase USP5 modulate the stability of DNA mismatch repair protein MLH1. J Biol Chem 2024; 300:107592. [PMID: 39032648 PMCID: PMC11375253 DOI: 10.1016/j.jbc.2024.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
MLH1 plays a critical role in DNA mismatch repair and genome maintenance. MLH1 deficiency promotes cancer development and progression, but the mechanism underlying MLH1 regulation remains enigmatic. In this study, we demonstrated that MLH1 protein is degraded by the ubiquitin-proteasome system and have identified vital cis-elements and trans-factors involved in MLH1 turnover. We found that the region encompassing the amino acids 516 to 650 is crucial for MLH1 degradation. The mismatch repair protein PMS2 may shield MLH1 from degradation as it binds to the MLH1 segment key to its turnover. Furthermore, we have identified the E3 ubiquitin ligase UBR4 and the deubiquitylase USP5, which oppositely modulate MLH1 stability. In consistence, UBR4 or USP5 deficiency affects the cellular response to nucleotide analog 6-TG, supporting their roles in regulating mismatch repair. Our study has revealed important insights into the regulatory mechanisms underlying MLH1 proteolysis, critical to DNA mismatch repair related diseases.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Siqi Li
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun Che
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, Shenzhen, Guangdong, China; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinliang Mao
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
7
|
Wei L, Li Y, Tan H, Peng Y, Liu Q, Zheng T, Li F, Xu Z. OTUB1 regulates ferroptosis to inhibit myoblast differentiation into myotubes by deubiquitinating P62. Sci Rep 2024; 14:15696. [PMID: 38977909 PMCID: PMC11231240 DOI: 10.1038/s41598-024-66868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
As the largest organ in the human body, skeletal muscle is essential for breathing support, movement initiation, and maintenance homeostasis. It has been shown that programmed cell death (PCD), which includes autophagy, apoptosis, and necrosis, is essential for the development of skeletal muscle. A novel form of PCD called ferroptosis is still poorly understood in relation to skeletal muscle. In this study, we observed that the activation of ferroptosis significantly impeded the differentiation of C2C12 myoblasts into myotubes and concurrently suppressed the expression of OTUB1, a crucial deubiquitinating enzyme. OTUB1-silenced C2C12 mouse myoblasts were used to investigate the function of OTUB1 in ferroptosis. The results show that OTUB1 knockdown in vitro significantly increased C2C12 ferroptosis and inhibited myogenesis. Interestingly, the induction of ferroptosis resulting from OTUB1 knockdown was concomitant with the activation of autophagy. Furthermore, OTUB1 interacted with the P62 protein and stabilized its expression by deubiquitinating it, thereby inhibiting autophagy-dependent ferroptosis and promoting myogenesis. All of these findings demonstrate the critical role that OTUB1 plays in controlling ferroptosis, and we suggest that focusing on the OTUB1-P62 axis may be a useful tactic in the treatment and prevention of disorders involving the skeletal muscle.
Collapse
Affiliation(s)
- Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yanhong Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 550004, China
| | - Helin Tan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Yue Peng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Qian Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Tingting Zheng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China.
| | - Zhongxian Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
8
|
Peng L, Wu T, Liu Y, Zhao D, He W, Yuan Y. OTUB1 accelerates hepatocellular carcinoma by stabilizing RACK1 via its non-canonical ubiquitination. Cell Oncol (Dordr) 2024; 47:987-1004. [PMID: 38315284 PMCID: PMC11219430 DOI: 10.1007/s13402-023-00913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Dysregulated ubiquitination modification occupies a pivotal role in hepatocellular carcinoma (HCC) tumorigenesis and progression. The ubiquitin aldehyde binding 1 (OTUB1) was aberrantly upregulated and exhibited the pro-tumorigenic function in HCC. However, the underlying mechanisms and responsible targets of OTUB1 remain unclear. METHODS First, bioinformatics analysis, western blot and immunohistochemistry staining were applied to analyze OTUB1 expression in HCC specimens. Then, immunoprecipitation assay-tandem mass spectrometry (MS) combined with the gene set enrichment analysis (GSEA) was used to explore the downstream target of OTUB1. Co-immunoprecipitation and ubiquitination assays were used to identify the mechanisms involved. Finally, we explored the regulatory effect of MAZ on OTUB1 through ChIP-qPCR and dual-luciferase reporter assay. RESULTS OTUB1 was broadly elevated in HCC tissues and promoted the proliferation and metastasis of HCC in vitro and in vivo. The receptor for activated C kinase 1 (RACK1) performed as a functional partner of OTUB1 and its hyperactivation was associated with aggressive development and other malignant features in HCC by activating oncogenes transcription. Mechanistically, OTUB1 directly bound to RACK1 at its C-terminal domain and decreased the K48-linked ubiquitination of RACK1 through its non-canonical suppression of ubiquitination activity, which stabilized RACK1 protein levels in HCC cells. Therefore, OTUB1 significantly increased multiple oncogenes expression and activated PI3K/AKT and FAK/ERK signaling in a RACK1-dependent manner in HCC. Moreover, the transcription factor MAZ upregulated OTUB1 expression through identifying a putative response element of OTUB1 promoter area. CONCLUSIONS Our findings might provide a new therapeutic strategy for HCC by modifying the MAZ-OTUB1-RACK1 axis.
Collapse
Affiliation(s)
- Liqun Peng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Tiangen Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Yingyi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Dongli Zhao
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Wenzhi He
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, China.
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, China.
| |
Collapse
|
9
|
St. Louis BM, Quagliato SM, Su YT, Dyson G, Lee PC. The Hippo kinases control inflammatory Hippo signaling and restrict bacterial infection in phagocytes. mBio 2024; 15:e0342923. [PMID: 38624208 PMCID: PMC11078001 DOI: 10.1128/mbio.03429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
The Hippo kinases MST1 and MST2 initiate a highly conserved signaling cascade called the Hippo pathway that limits organ size and tumor formation in animals. Intriguingly, pathogens hijack this host pathway during infection, but the role of MST1/2 in innate immune cells against pathogens is unclear. In this report, we generated Mst1/2 knockout macrophages to investigate the regulatory activities of the Hippo kinases in immunity. Transcriptomic analyses identified differentially expressed genes (DEGs) regulated by MST1/2 that are enriched in biological pathways, such as systemic lupus erythematosus, tuberculosis, and apoptosis. Surprisingly, pharmacological inhibition of the downstream components LATS1/2 in the canonical Hippo pathway did not affect the expression of a set of immune DEGs, suggesting that MST1/2 control these genes via alternative inflammatory Hippo signaling. Moreover, MST1/2 may affect immune communication by influencing the release of cytokines, including TNFα, CXCL10, and IL-1ra. Comparative analyses of the single- and double-knockout macrophages revealed that MST1 and MST2 differentially regulate TNFα release and expression of the immune transcription factor MAF, indicating that the two homologous Hippo kinases individually play a unique role in innate immunity. Notably, both MST1 and MST2 can promote apoptotic cell death in macrophages upon stimulation. Lastly, we demonstrate that the Hippo kinases are critical factors in mammalian macrophages and single-cell amoebae to restrict infection by Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa. Together, these results uncover non-canonical inflammatory Hippo signaling in macrophages and the evolutionarily conserved role of the Hippo kinases in the anti-microbial defense of eukaryotic hosts. IMPORTANCE Identifying host factors involved in susceptibility to infection is fundamental for understanding host-pathogen interactions. Clinically, individuals with mutations in the MST1 gene which encodes one of the Hippo kinases experience recurrent infection. However, the impact of the Hippo kinases on innate immunity remains largely undetermined. This study uses mammalian macrophages and free-living amoebae with single- and double-knockout in the Hippo kinase genes and reveals that the Hippo kinases are the evolutionarily conserved determinants of host defense against microbes. In macrophages, the Hippo kinases MST1 and MST2 control immune activities at multiple levels, including gene expression, immune cell communication, and programmed cell death. Importantly, these activities controlled by MST1 and MST2 in macrophages are independent of the canonical Hippo cascade that is known to limit tissue growth and tumor formation. Together, these findings unveil a unique inflammatory Hippo signaling pathway that plays an essential role in innate immunity.
Collapse
Affiliation(s)
- Brendyn M. St. Louis
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Sydney M. Quagliato
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Yu-Ting Su
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| | - Gregory Dyson
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Pei-Chung Lee
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
10
|
He Y, Jiang S, Cui Y, Liang J, Zhong Y, Sun Y, Moran MF, Huang Z, He G, Mao X. Induction of IFIT1/IFIT3 and inhibition of Bcl-2 orchestrate the treatment of myeloma and leukemia via pyroptosis. Cancer Lett 2024; 588:216797. [PMID: 38462032 DOI: 10.1016/j.canlet.2024.216797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Induction of pyroptosis is proposed as a promising strategy for the treatment of hematological malignancies, but little is known. In the present study, we find clioquinol (CLQ), an anti-parasitic drug, induces striking myeloma and leukemia cell pyroptosis on a drug screen. RNA sequencing reveals that the interferon-inducible genes IFIT1 and IFIT3 are markedly upregulated and are essential for CLQ-induced GSDME activation and cell pyroptosis. Specifically, IFIT1 and IFIT3 form a complex with BAX and N-GSDME therefore directing N-GSDME translocalization to mitochondria and increasing mitochondrial membrane permeabilization and triggering pyroptosis. Furthermore, venetoclax, an activator of BAX and an inhibitor of Bcl-2, displays strikingly synergistic effects with CLQ against leukemia and myeloma via pyroptosis. This study thus reveals a novel mechanism for mitochondrial GSDME in pyroptosis and it also illustrates that induction of IFIT1/T3 and inhibition of Bcl-2 orchestrate the treatment of leukemia and myeloma via pyroptosis.
Collapse
Affiliation(s)
- Yuanming He
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Shuoyi Jiang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yaoli Cui
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jingpei Liang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yueya Zhong
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yuening Sun
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Michael F Moran
- The Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5G 0A4, Canada; Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zhenqian Huang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Guisong He
- Department of Orthopedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Xinliang Mao
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
11
|
Chen YJC, Bhaskara GB, Lu Y, Lin K, Dent SYR. The SAGA acetyltransferase module is required for the maintenance of MAF and MYC oncogenic gene expression programs in multiple myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586811. [PMID: 38585845 PMCID: PMC10996596 DOI: 10.1101/2024.03.26.586811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of datasets in the Cancer Dependency Map Project revealed many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA-seq, ATAC-seq, and CUT&RUN results identified pathways directly regulated by ADA2B include MTORC1 signaling, MYC, E2F, and MM-specific MAF oncogenic programs. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.
Collapse
Affiliation(s)
- Ying-Jiun C. Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Govinal Badiger Bhaskara
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Zhu L, Liang R, Guo Y, Cai Y, Song F, Hu Y, Liu Y, Ge M, Zheng G. Incorporating Network Pharmacology and Experimental Validation to Identify Bioactive Compounds and Potential Mechanisms of Digitalis in Treating Anaplastic Thyroid Cancer. ACS OMEGA 2024; 9:15590-15602. [PMID: 38585091 PMCID: PMC10993403 DOI: 10.1021/acsomega.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most lethal malignant tumors for which there is no effective treatment. There are an increasing number of studies on herbal medicine for treating malignant tumors, and the classic botanical medicine Digitalis and its active ingredients for treating heart failure and arrhythmias have been revealed to have significant antitumor efficacy against a wide range of malignant tumors. However, the main components of Digitalis and the molecular mechanisms of its anti-ATC effects have not been extensively studied. Here, we screened the main components and core targets of Digitalis and verified the relationship between the active components and targets through network pharmacology, molecular docking, and experimental validation. These experiments showed that the active ingredients of Digitalis inhibit ATC cell activity and lead to ATC cell death through the apoptotic pathway.
Collapse
Affiliation(s)
- Lei Zhu
- Suzhou
Medical College of Soochow University, 215123 Suzhou, Jiangsu, China
- Department
of Head and Neck Surgery, the Fifth Hospital Affiliated to Wenzhou
Medical University, Lishui Central Hospital, 323020 Lishui City, Zhejiang Province, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Ruimin Liang
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yawen Guo
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yefeng Cai
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Department
of Thyroid Surgery, The First Affiliated
Hospital of Wenzhou Medical University, 325015 Wenzhou City, Zhejiang Province, China
| | - Fahuan Song
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yiqun Hu
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yunye Liu
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Minghua Ge
- Suzhou
Medical College of Soochow University, 215123 Suzhou, Jiangsu, China
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Guowan Zheng
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Liu B, Zhao X, Zhang S, Li Q, Li X, Huang D, Xia J, Ma N, Duan Y, Zhang X, Rao J. Targeting ZDHHC21/FASN axis for the treatment of diffuse large B-cell lymphoma. Leukemia 2024; 38:351-364. [PMID: 38195819 PMCID: PMC10844076 DOI: 10.1038/s41375-023-02130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
S-palmitoylation is essential for cancer development via regulating protein stability, function and subcellular location, yet the roles S-palmitoylation plays in diffuse large B-cell lymphoma (DLBCL) progression remain enigmatic. In this study, we uncovered a novel function of the palmitoyltransferase ZDHHC21 as a tumor suppressor in DLBCL and identified ZDHHC21 as a key regulator of fatty acid synthetase (FASN) S-palmitoylation for the first time. Specifically, ZDHHC21 was downregulated in DLBCL, and its expression level was associated with the clinical prognosis of patients with DLBCL. In vitro and in vivo experiments suggested that ZDHHC21 suppressed DLBCL cell proliferation. Mechanistically, ZDHHC21 interacted with FASN and mediated its palmitoylation at Cys1317, resulting in a decrease in FASN protein stability and fatty acid synthesis, consequently leading to the inhibition of DLBCL cell growth. Of note, an FDA-approved small-molecule compound lanatoside C interacted with ZDHHC21, increased ZDHHC21 protein stability and decreased FASN expression, which contributed to the suppression of DLBCL growth in vitro and in vivo. Our results demonstrate that ZDHHC21 strongly represses DLBCL cell proliferation by mediating FASN palmitoylation, and suggest that targeting ZDHHC21/FASN axis is a potential therapeutic strategy against DLBCL.
Collapse
MESH Headings
- Humans
- Cell Line, Tumor
- Cell Proliferation
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Fatty Acids
- Gene Expression Regulation, Neoplastic
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Prognosis
Collapse
Affiliation(s)
- Bangdong Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing, China
| | - Xianlan Zhao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shihao Zhang
- Department of Basic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dezhi Huang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jing Xia
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Naya Ma
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yishuo Duan
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing, China.
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
14
|
Li H, Zhu X, Sun Z, Wang Q, Song S, Xu Y, He G, Mao X. Bruceine B Displays Potent Antimyeloma Activity by Inducing the Degradation of the Transcription Factor c-Maf. ACS Pharmacol Transl Sci 2024; 7:176-185. [PMID: 38230274 PMCID: PMC10789117 DOI: 10.1021/acsptsci.3c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
The oncogenic transcription factor c-Maf has been proposed as an ideal therapeutic target for multiple myeloma (MM), a not-yet-curable malignancy of plasma cells. In the present study, we establish a c-Maf-based luciferase screen system and apply it to screen a homemade library composed of natural products from which bruceine B (BB) is identified to display potent antimyeloma activity. BB is a key ingredient isolated from the Chinese traditional medicinal plant Brucea javanica (L.) Merr. (Simaroubaceae). BB inhibits MM cell proliferation and induces MM cell apoptosis in a caspase-3-dependent manner. The mechanism studies showed that BB inhibits c-Maf transcriptional activity and downregulates the expression of CCND2 and ITGB7, the downstream genes typically modulated by c-Maf. Moreover, BB induces c-Maf degradation via proteasomes by inducing c-Maf for K48-linked polyubiquitination in association with downregulated Otub1 and USP5, two proven deubiquitinases of c-Maf. We also found that c-Maf activates STAT3 and BB suppresses the STAT3 signaling. In the in vivo study, BB displays potent antimyeloma activity and almost suppresses the growth of myeloma xenografts in 7 days but shows no overt toxicity to mice. In conclusion, this study identifies BB as a novel inhibitor of c-Maf by promoting its degradation via the ubiquitin-proteasomal pathway. Given the safety and the successful clinical application of bruceine products in traditional medicine, BB is ensured for further investigation for the treatment of patients with MM.
Collapse
Affiliation(s)
- Hongyue Li
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Xiaoting Zhu
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Ziying Sun
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Qi Wang
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shaojiang Song
- Department
of Natural Medicinal Chemistry, Shenyang
Pharmaceutical University, Shenyang 110016, China
| | - Yujia Xu
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Guisong He
- Department
of Orthopaedics, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Xinliang Mao
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
15
|
Wu M, Sun L, Song T. OTUB1-mediated inhibition of ubiquitination: a growing list of effectors, multiplex mechanisms, and versatile functions. Front Mol Biosci 2024; 10:1261273. [PMID: 38264570 PMCID: PMC10803509 DOI: 10.3389/fmolb.2023.1261273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Protein ubiquitination plays a pivotal role in protein homeostasis. Ubiquitination may regulate the stability, activity, protein-protein interaction, and localization of a protein. Ubiquitination is subject to regulation by two groups of counteracting enzymes, the E3 ubiquitin ligases and deubiquitinases. Consistently, deubiquitinases are involved in essentially all biological processes. OTUB1, an OTU-family deubiquitinase, is a critical regulator of development, cancer, DNA damage response, and immune response. OTUB1 antagonizes the ubiquitination of a wide-spectrum of proteins through at least two different mechanisms. Besides direct deubiquitination, OTUB1 can also inhibit ubiquitination by non-canonically blocking ubiquitin transfer from certain ubiquitin-conjugases (E2). In this review, we start with a general background of protein ubiquitination and deubiquitination. Next, we introduce the basic characteristics of OTUB1 and then elaborate on the updated biological functions of OTUB1. Afterwards, we discuss potential mechanisms underlying the versatility and specificity of OTUB1 functions. In the end, we discuss the perspective that OTUB1 can be a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Miaomiao Wu
- Deparment of Obstetrics and Gynecology, Shuyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Hu Z, Zeng Y, Zhang Y, Zhang Q, Xu J, Liu L. Discovery of small molecule c-Maf inhibitors using molecular docking-based virtual screening, molecular dynamics simulation, and biological evaluation. Chem Biol Drug Des 2024; 103:e14403. [PMID: 37984986 DOI: 10.1111/cbdd.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Multiple myeloma (MM) is a prevalent plasma cell malignancy in the blood system that remains incurable. Given the abnormally high expression of c-Maf in most MM patients, targeting c-Maf presents an attractive therapeutic approach for treating MM malignancies. In this study, we employed a combined strategy involving molecular docking-based virtual screening, molecular dynamics (MD) simulation, and molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculation on existing FDA-approved drugs. Six compounds were selected for further experimental assay: vemurafenib, sorafenib, sildenafil, fluvastatin, erlotinib, and glimepiride. Among these compounds, sorafenib and glimepiride exhibited significant inhibition of myeloma cell proliferation in the RPMI-8226 cell line. Moreover, both compounds simultaneously downregulated c-Maf protein expression to induce G1 phase arrest and apoptosis in myeloma cells. Collectively, sorafenib and glimepiride may be considered promising candidates for developing more potent c-Maf inhibitors in the future.
Collapse
Affiliation(s)
- Zhiwei Hu
- College of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yindi Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yaxin Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiurong Zhang
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinge Xu
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linlin Liu
- College of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
17
|
Zhao Y, Ruan J, Li Z, Su X, Chen K, Lin Y, Cai Y, Wang P, Liu B, Schlüter D, Liang G, Wang X. OTUB1 inhibits breast cancer by non-canonically stabilizing CCN6. Clin Transl Med 2023; 13:e1385. [PMID: 37608493 PMCID: PMC10444971 DOI: 10.1002/ctm2.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND CCN6 is a matricellular protein that critically regulates the tumourigenesis and progression of breast cancer. Although the tumour-suppressive function of CCN6 has been extensively studied, molecular mechanisms regulating protein levels of CCN6 remain largely unclear. This study aims to investigate the regulation of CCN6 by ubiquitination and deubiquitinating enzymes (DUBs) in breast cancer. METHODS A screening assay was performed to identify OTUB1 as the DUB for CCN6. Various biochemical methods were applied to elucidate the molecular mechanism of OTUB1 in the regulation of CCN6. The role of OTUB1-CCN6 interaction in breast cancer was studied with cell experiments and the allograft model. The correlation of OTUB1 and CCN6 in human breast cancer was determined by immunohistochemistry and Western blot. RESULTS We found that CCN6 protein levels were controlled by the ubiquitin-proteasome system. The K48 ubiquitination and degradation of CCN6 was inhibited by OTUB1, which directly interacted with CCN6 through its linker domain. Furthermore, OTUB1 inhibited the ubiquitination of CCN6 in a non-canonical manner. Deletion of OTUB1, concomitant with reduced CCN6 abundance, increased the migration, proliferation and viability of breast cancer cells. Supplementation of CCN6 abolished the effect of OTUB1 deletion on breast cancer. Importantly, OTUB1 expression was downregulated in human breast cancer and positively correlated with CCN6 levels. CONCLUSION This study identified OTUB1 as a novel regulator of CCN6 in breast cancer.
Collapse
Affiliation(s)
- Ying Zhao
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jing Ruan
- Department of PathologyThe First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Zhongding Li
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xian Su
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Kangmin Chen
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yimin Lin
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yuepiao Cai
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Peng Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Baohua Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Guang Liang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouChina
| | - Xu Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Department of Neurological RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Institute of Medical Microbiology and Hospital EpidemiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
18
|
Liang JP, He YM, Cui YL, Sun YN, He GS, Zhu ZG, Mao XL. Proteasomal inhibitors induce myeloma cell pyroptosis via the BAX/GSDME pathway. Acta Pharmacol Sin 2023; 44:1464-1474. [PMID: 36807412 PMCID: PMC10310844 DOI: 10.1038/s41401-023-01060-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Proteasomes are overexpressed in multiple myeloma (MM) and proteasomal inhibitors (PIs) have been widely used for the treatment of MM. PIs are reported to induce MM cell apoptosis but impair necroptosis. In the present study, we found that PIs MG132 and bortezomib induce MM cell pyroptosis, a novel type of cell death, in a GSDME-dependent manner. Lack of GSDME totally blocks PI-induced pyroptosis. Interestingly, we found that Caspase-3/6/7/9 are all involved in pyroptosis triggered by PIs because the specific inhibitor of each caspase ablates GSDME activation. PIs markedly reduce mitochondrial membrane potential. Moreover, PIs disrupt the interaction of Bcl-2 and BAX, induce cytochrome c release from mitochondria to cytosol and activate GSDME. Furthermore, we found that overexpression of an N-terminal portion of GSDME suffices to release cytochrome c from mitochondria and to activate Caspase-3/9, suggesting N-GSDME might penetrate the mitochondrial membrane. Consistent with Bcl-2 inhibition, BAX can induce MM cell pyroptosis in a GSDME-dependent manner. In accordance with these findings, inhibition of Bcl-2 synergizes with PIs to induce MM cell pyroptosis. Therefore, the present study indicates that PIs trigger MM cell pyroptosis via the mitochondrial BAX/GSDME pathway and provides a rationale for combined treatment of MM with Bcl-2 and proteasome inhibitors to increase therapeutic efficiency via induction of pyroptosis.
Collapse
Affiliation(s)
- Jing-Pei Liang
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Ming He
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yao-Li Cui
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yue-Ning Sun
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Gui-Song He
- Department of Orthopaedics, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Zhi-Gang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Xin-Liang Mao
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
19
|
Deng Y, Lu L, Zhang H, Fu Y, Liu T, Chen Y. The role and regulation of Maf proteins in cancer. Biomark Res 2023; 11:17. [PMID: 36750911 PMCID: PMC9903618 DOI: 10.1186/s40364-023-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023] Open
Abstract
The Maf proteins (Mafs) belong to basic leucine zipper transcription factors and are members of the activator protein-1 (AP-1) superfamily. There are two subgroups of Mafs: large Mafs and small Mafs, which are involved in a wide range of biological processes, such as the cell cycle, proliferation, oxidative stress, and inflammation. Therefore, dysregulation of Mafs can affect cell fate and is closely associated with diverse diseases. Accumulating evidence has established both large and small Mafs as mediators of tumor development. In this review, we first briefly describe the structure and physiological functions of Mafs. Then we summarize the upstream regulatory mechanisms that control the expression and activity of Mafs. Furthermore, we discuss recent studies on the critical role of Mafs in cancer progression, including cancer proliferation, apoptosis, metastasis, tumor/stroma interaction and angiogenesis. We also review the clinical implications of Mafs, namely their potential possibilities and limitations as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yalan Deng
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Liqing Lu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Huajun Zhang
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ying Fu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
20
|
Tian C, Chen Z, Wang L, Si J, Kang J, Li Y, Zheng Y, Gao Y, Nuermaimaiti R, You MJ, Zheng G. Over expression of ubiquitin-conjugating enzyme E2O in bone marrow mesenchymal stromal cells partially attenuates acute myeloid leukaemia progression. Br J Haematol 2023; 200:476-488. [PMID: 36345807 DOI: 10.1111/bjh.18541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) are implicated in the pathogenesis of acute myeloid leukaemia (AML). However, due to the high heterogeneity of AML the mechanism underlying the cross-talk between MSCs and leukaemia cells is not well understood. We found that mixed-lineage leukaemia-AF9 (MLL-AF9)-induced AML mice-derived MSCs had higher proliferative viability compared to wild-type mice-derived MSCs with ubiquitin-conjugating enzyme E2O (Ube2o) down-regulation. After overexpression of UBE2O in AML-derived MSCs, the growth capacity of MSCs was reduced with nuclear factor kappa B subunit 1 (NF-κB) pathway deactivation. In vitro co-culture assay revealed that UBE2O-overexpression MSCs suppressed the proliferation and promoted apoptosis of AML cells by direct contact. In vivo results revealed that the leukaemia burden was reduced and the overall survival of AML mice was prolonged, with decreased dissemination of leukaemia cells in BM, spleen, liver and peripheral blood. Additionally, subcutaneous tumorigenesis revealed that tumour growth was also suppressed in the UBE2O-overexpression MSCs group. In conclusion, UBE2O was expressed at a low level in MLL-AF9-induced AML mice-derived MSCs. Overexpression of UBE2O in MSCs suppressed their proliferation through NF-κB pathway deactivation, which resulted in AML suppression. Our study provides a theoretical basis for a BM microenvironment-based therapeutic strategy to control disease progression.
Collapse
Affiliation(s)
- Chen Tian
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Haematology, Hotan District People's Hospital, Hotan, China
| | - Zehui Chen
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junqi Si
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Junnan Kang
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yueyang Li
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yaxin Zheng
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanan Gao
- Department of Haematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - M James You
- Department of Haematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guoguang Zheng
- State Key Laboratory of Experimental Haematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
21
|
Galindo-Hernández O, García-Salazar LA, García-González VG, Díaz-Molina R, Vique-Sánchez JL. Potential Inhibitors of The OTUB1 Catalytic Site to Develop an Anti-Cancer Drug Using In-Silico Approaches. Rep Biochem Mol Biol 2023; 11:684-693. [PMID: 37131907 PMCID: PMC10149122 DOI: 10.52547/rbmb.11.4.684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 05/04/2023]
Abstract
Background : Cancer continues worldwide. It has been reported that OTUB1, a cysteine protease, plays a critical role in a variety of tumors and is strongly related to tumor proliferation, migration, and clinical prognosis by its functions on deubiquitination. Drug advances continue against new therapeutic targets. In this study we used OTUB1 to develop a specific pharmacological treatment to regulate deubiquitination by OTUB1. The aim of this research is to regulate OTUB1 functions. Methods By molecular docking in a specific potential OTUB1 interaction site between Asp88, Cys91, and His26 amino acids, using a chemical library of over 500,000 compounds, we selected potential inhibitors of the OTUB1 catalytic site. Results Ten compounds (OT1 - OT10) were selected by molecular docking to develop a new anti-cancer drug to decrease OTUB1 functions in cancer processes. Conclusion OT1 - OT10 compounds could be interacting in the potential site between Asp88, Cys91, and His265 amino acids in OTUB1. This site is necessary for the deubiquitinating function of OTUB1. Therefore, this study shows another way to attack cancer.
Collapse
Affiliation(s)
- Octavio Galindo-Hernández
- Autonomous University of Baja California, School of Medicine Campus Mexicali, Mexicali, BC, México.
- Corresponding author: José Luis Vique-Sánchez; Tel: +52 5549928664; E-mail: .
| | | | | | - Raúl Díaz-Molina
- Autonomous University of Baja California, School of Medicine Campus Mexicali, Mexicali, BC, México.
| | - José Luis Vique-Sánchez
- Autonomous University of Baja California, School of Medicine Campus Mexicali, Mexicali, BC, México.
- Corresponding author: José Luis Vique-Sánchez; Tel: +52 5549928664; E-mail: .
| |
Collapse
|
22
|
Tan L, Shan H, Han C, Zhang Z, Shen J, Zhang X, Xiang H, Lu K, Qi C, Li Y, Zhuang G, Chen G, Tan L. Discovery of Potent OTUB1/USP8 Dual Inhibitors Targeting Proteostasis in Non-Small-Cell Lung Cancer. J Med Chem 2022; 65:13645-13659. [PMID: 36221183 DOI: 10.1021/acs.jmedchem.2c00408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deubiquitinating enzymes (DUBs) are key regulatory components of the ubiquitination system. Many DUBs have been revealed to play key roles in normal physiology and diseases. However, only very limited DUB members have well-characterized inhibitors. OTUB1 and USP8 are two DUBs reported to promote both immune evasion and tumorigenesis in tumor models, yet their targeted inhibitors are in the early stages of development. Here, we describe the lead identification and optimization of an OTUB1/USP8 dual inhibitor, 61, which exhibits highly potent and selective inhibition of both targets with subnanomolar IC50s in vitro. By inhibiting both DUBs, 61 phenocopies the double knockdown of OTUB1/USP8 and exerts pronounced antiproliferative effects in H1975 and other non-small-cell lung cancer (NSCLC) cell lines. Moreover, 61 efficaciously mitigates tumor growth in vivo. Collectively, our results provide a useful tool for pharmacological perturbation of OTUB1/USP8 and introduce a promising therapeutic strategy of dual DUB inhibition for treating NSCLC.
Collapse
Affiliation(s)
- Lingli Tan
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hengyue Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiali Shen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuankuan Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunting Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
23
|
Han X, Ren C, Lu C, Qiao P, Yang T, Yu Z. Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Death Differ 2022; 29:1864-1873. [PMID: 35296795 PMCID: PMC9433372 DOI: 10.1038/s41418-022-00971-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
MYC as a transcriptional factor plays a crucial role in breast cancer progression. However, the mechanisms underlying MYC deubiquitination in breast cancer are not well defined. Here, we report that OTUB1 is responsible for MYC deubiquitination. OTUB1 could directly deubiquitinate MYC at K323 site, which blocks MYC protein degradation. Moreover, OTUB1 mediated MYC protein stability is also confirmed in OTUB1-knockout mice. Stabilized MYC by OTUB1 promotes its transcriptional activity and induces HK2 expression, which leads to enhance aerobic glycolysis. Therefore, OTUB1 promotes breast tumorigenesis in vivo and in vitro via blocking MYC protein degradation. Taken together, our data identify OTUB1 as a new deubiquitination enzyme for MYC protein degradation, which provides a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
24
|
Zhuang H, Ren Y, Mao C, Zhong Y, Zhang Z, Cao B, Zhang Y, Huang J, Xu G, Huang Z, Xu Y, Mao X. Induction of zinc finger protein RNF6 auto-ubiquitination for the treatment of myeloma and chronic myeloid leukemia. J Biol Chem 2022; 298:102314. [PMID: 35926709 PMCID: PMC9436814 DOI: 10.1016/j.jbc.2022.102314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
The zinc finger ubiquitin ligase RNF6 has been proposed as a potential therapeutic target in several cancers, but understanding its molecular mechanism of degradation has been elusive. In the present study, we find that RNF6 is degraded via auto-ubiquitination in a manner dependent on its Really Interesting New Gene (RING) domain. We determine that when the RING domain is deleted (ΔRING) or the core cysteine residues in the zinc finger are mutated (C632S/C635S), the WT protein, but not the ΔRING or mutant RNF6 protein, undergoes polyubiquitination. We also identify USP7 as a deubiquitinase of RNF6 by tandem mass spectrometry. We show that USP7 interacts with RNF6 and abolishes its K48-linked polyubiquitination, thereby preventing its degradation. In contrast, we found a USP7-specific inhibitor promotes RNF6 polyubiquitination, degradation, and cell death. Furthermore, we demonstrate the anti-leukemic drug Nilotinib and anti-myeloma drug Panobinostat (LBH589) induce RNF6 K48-linked polyubiquitination and degradation in both multiple myeloma (MM) and leukemia cells. In agreement with our hypothesis on the mode of RNF6 degradation, we show these drugs promote RNF6 auto-ubiquitination in an in vitro ubiquitination system without other E3 ligases. Consistently, reexpression of RNF6 ablates drug-induced MM and leukemia cell apoptosis. Therefore, our results reveal that RNF6 is a RING E3 ligase that undergoes auto-ubiquitination, which could be abolished by USP7 and induced by anti-cancer drugs. We propose that chemical induction of RNF6 auto-ubiquitination and degradation could be a novel strategy for the treatment of hematological malignancies including MM and leukemia.
Collapse
Affiliation(s)
- Haixia Zhuang
- Department of Hematology, the First Affiliated Hospital & Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, P. R. China
| | - Ying Ren
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chenyu Mao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yueya Zhong
- Department of Hematology, the First Affiliated Hospital & Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, P. R. China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yuming Zhang
- Department of Hematology, Hematology Research Institute, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jinqi Huang
- Department of Hematology, Hematology Research Institute, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guoqiang Xu
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhenqian Huang
- Department of Hematology, the First Affiliated Hospital & Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, P. R. China.
| | - Yujia Xu
- Department of Hematology, the First Affiliated Hospital & Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, P. R. China.
| | - Xinliang Mao
- Department of Hematology, the First Affiliated Hospital & Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, P. R. China.
| |
Collapse
|
25
|
Jiang Q, Mao H, He G, Mao X. Targeting the oncogenic transcription factor c-Maf for the treatment of multiple myeloma. Cancer Lett 2022; 543:215791. [PMID: 35700821 DOI: 10.1016/j.canlet.2022.215791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Multiple myeloma (MM) is a hematologic malignancy derived from clonal expansion of plasma cells within the bone marrow and it may progress to the extramedullary region in late stage of the disease course. c-Maf, an oncogenic zipper leucine transcription factor, is overexpressed in more than 50% MM cell lines and primary species in association with chromosomal translocation, aberrant signaling transduction and modulation of stability. By triggering the transcription of critical genes including CCND2, ITGB7, CCR1, ARK5, c-Maf promotes MM progress, proliferation, survival and chemoresistance. Notably, c-Maf is usually expressed at the embryonic stage to promote cell differentiation but less expressed in healthy adult cells. c-Maf has long been proposed as a promising therapeutic target of MM and a panel of small molecule compounds have been identified to downregulate c-Maf and display potent anti-myeloma activities. In the current article, we take a concise summary on the advances in c-Maf biology, pathophysiology, and targeted drug discovery in the potential treatment of MM.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Guangdong Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Key Laboratory of Protein Modifications and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hongwu Mao
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Guisong He
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Key Laboratory of Protein Modifications and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
26
|
Moree SE, Maneix L, Iakova P, Stossi F, Sahin E, Catic A. Imaging-Based Screening of Deubiquitinating Proteases Identifies Otubain-1 as a Stabilizer of c-MYC. Cancers (Basel) 2022; 14:806. [PMID: 35159073 PMCID: PMC8833929 DOI: 10.3390/cancers14030806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
The ubiquitin-proteasome pathway precisely controls the turnover of transcription factors in the nucleus, playing an important role in maintaining appropriate quantities of these regulatory proteins. The transcription factor c-MYC is essential for normal development and is a critical cancer driver. Despite being highly expressed in several tissues and malignancies, the c-MYC protein is also continuously targeted by the ubiquitin-proteasome pathway, which can either facilitate or inhibit c-MYC degradation. Deubiquitinating proteases can remove ubiquitin chains from target proteins and rescue them from proteasomal digestion. This study sought to determine novel elements of the ubiquitin-proteasome pathway that regulate c-MYC levels. We performed an overexpression screen with 41 human proteases to identify which deubiquitinases stabilize c-MYC. We discovered that the highly expressed Otubain-1 (OTUB1) protease increases c-MYC protein levels. Confirming its role in enhancing c-MYC activity, we found that elevated OTUB1 correlates with inferior clinical outcomes in the c-MYC-dependent cancer multiple myeloma, and overexpression of OTUB1 accelerates the growth of myeloma cells. In summary, our study identifies OTUB1 as a novel amplifier of the proto-oncogene c-MYC.
Collapse
Affiliation(s)
- Shannon E. Moree
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Polina Iakova
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Gulf Coast Consortia, Center for Advanced Microscopy and Image Informatics, Houston, TX 77030, USA
| | - Ergun Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.M.); (L.M.); (P.I.); (F.S.)
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA;
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Liao Y, Yang M, Wang K, Wang Y, Zhong B, Jiang N. Deubiquitinating enzyme OTUB1 in immunity and cancer: Good player or bad actor? Cancer Lett 2022; 526:248-258. [PMID: 34875341 DOI: 10.1016/j.canlet.2021.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
Abstract
OTU domain-containing ubiquitin aldehyde-binding proteins 1 (OTUB1) is the most important element of the deubiquitinase OTU superfamily, which has been identified as an essential regulator of diverse physiological processes, such as DNA damage repair and cytokines secretion. Recently, we found that the pro-carcinogenesis role of OTUB1 and the relationship between OTUB1 and immune response have gradually become the research hot-spot. OTUB1 regulates NK/CD8 T cell activation, autoimmune diseases, PD-L1 mediated immune evasion, viral or bacterial infection related immune response and the occurrence and progression of various cancers via deubiquitinating and stabilizing related proteins. This review provides a comprehensive description about the role and regulatory axis of OTUB1. We can explore the balance between immune response and defense via regulating the level of OTUB1, and targeting OTUB1 might restrain the progression of cancers. This review highlights the experimental evidence that OTUB1 is a feasible and potential therapeutic target against various cancers progression and immune diseases or disorder.
Collapse
Affiliation(s)
- Yihao Liao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Mengyue Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150000, China
| | - Keke Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Youzhi Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boqiang Zhong
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ning Jiang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
28
|
Lee BS, Kang SU, Huang M, Kim YS, Lee YS, Park JY, Kim CH. OTUB1 knockdown promotes apoptosis in melanoma cells by upregulating TRAIL expression. BMB Rep 2021. [PMID: 34488924 PMCID: PMC8728537 DOI: 10.5483/bmbrep.2021.54.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Bok-Soon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Mei Huang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Korea
| | - Young-Sun Lee
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, 5Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, 5Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| |
Collapse
|
29
|
Zhao X, Zhou M, Yang Y, Luo M. The ubiquitin hydrolase OTUB1 promotes glioma cell stemness via suppressing ferroptosis through stabilizing SLC7A11 protein. Bioengineered 2021; 12:12636-12645. [PMID: 34927544 PMCID: PMC8810032 DOI: 10.1080/21655979.2021.2011633] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin hydrolase OTUB1 has been elucidated to be highly expressed in tumors, however, its roles in glioma progression are still confusing. Here, via analyzing several online datasets, OTUB1 expression was shown to be remarkably increased in glioma tissues compared to that in the adjacent tissues, and predicted a poor overall survival of glioma patients. Then OTUB1 was knocked down in glioma cells and it was found that OTUB1 knockdown significantly reduced glioma cell stemness by detecting sphere-formation ability, stemness marker expression, and ALDH activity. Mechanistic experiments revealed that OTUB1 stabilized SLC7A11 protein via directly interacting with SLC7A11, which is a key suppressor of ferripotosis. Indeed, OTUB1 knockdown triggered ferroptosis dependent on SLC7A11 expression. Notably, ectopic expression of SLC7A11 attenuated the inhibition of OTUB1 knockdown on the stemenss of glioma cells. Finally, we found a positive correlation between OTUB1 and SLC7A11 expression in clinical samples. Taken together, this work identifies a novel OTUB1/SLC7A11 axis contributing to glioma cell stemness.
Collapse
Affiliation(s)
- Xinde Zhao
- Department of Pediatric Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ming Zhou
- Department of Pediatric Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yong Yang
- Department of Pediatric Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Minjie Luo
- Department of Pediatric Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Lei H, Wang J, Hu J, Zhu Q, Wu Y. Deubiquitinases in hematological malignancies. Biomark Res 2021; 9:66. [PMID: 34454635 PMCID: PMC8401176 DOI: 10.1186/s40364-021-00320-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Deubiquitinases (DUBs) are enzymes that control the stability, interactions or localization of most cellular proteins by removing their ubiquitin modification. In recent years, some DUBs, such as USP7, USP9X and USP10, have been identified as promising therapeutic targets in hematological malignancies. Importantly, some potent inhibitors targeting the oncogenic DUBs have been developed, showing promising inhibitory efficacy in preclinical models, and some have even undergone clinical trials. Different DUBs perform distinct function in diverse hematological malignancies, such as oncogenic, tumor suppressor or context-dependent effects. Therefore, exploring the biological roles of DUBs and their downstream effectors will provide new insights and therapeutic targets for the occurrence and development of hematological malignancies. We summarize the DUBs involved in different categories of hematological malignancies including leukemia, multiple myeloma and lymphoma. We also present the recent development of DUB inhibitors and their applications in hematological malignancies. Together, we demonstrate DUBs as potential therapeutic drug targets in hematological malignancies.
Collapse
Affiliation(s)
- Hu Lei
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiaqi Wang
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiacheng Hu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Zhu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingli Wu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
31
|
Sun T, Xu YJ, Jiang SY, Xu Z, Cao BY, Sethi G, Zeng YY, Kong Y, Mao XL. Suppression of the USP10/CCND1 axis induces glioblastoma cell apoptosis. Acta Pharmacol Sin 2021; 42:1338-1346. [PMID: 33184448 PMCID: PMC8285505 DOI: 10.1038/s41401-020-00551-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies show that the expression of CCND1, a key factor in cell cycle control, is increased following the progress and deteriotation of glioma and predicts poor outcomes. On the other hand, dysregulated deubiquitinase USP10 also predicts poor prognosis for patients with glioblastoma (GBM). In the present study, we investigated the interplay between CCND1 protein and USP10 in GBM cells. We showed that the expression of CCND1 was significantly higher in both GBM tissues and GBM-derived stem cells. USP10 interacted with CCND1 and prevented its K48- but not K63-linked polyubiquitination in GBM U251 and HS683 cells, which led to increased CCND1 stability. Consistent with the action of USP10 on CCND1, knockdown of USP10 by single-guided RNA downregulated CCND1 and caused GBM cell cycle arrest at the G1 phase and induced GBM cell apoptosis. To implement this finding in the treatment of GBMs, we screened a natural product library and found that acevaltrate (AVT), an active component derived from the herbal plant Valeriana jatamansi Jones was strikingly potent to induce GBM cell apoptosis, which was confirmed by the Annexin V staining and activation of the apoptotic signals. Furthermore, we revealed that AVT concentration-dependently suppressed USP10-mediated deubiquitination on CCND1 therefore inducing CCND1 protein degradation. Collectively, the present study demonstrates that the USP10/CCND1 axis could be a promising therapeutic target for patients with GBMs.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100, China
| | - Yu-Jia Xu
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
- Guangdong Key Laboratory of Protein Modifications and Degradation, School of Basic Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuo-Yi Jiang
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Zhuan Xu
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Bi-Yin Cao
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Yuan-Ying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, 215100, China.
| | - Yan Kong
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100, China.
| | - Xin-Liang Mao
- Department of Pharmacology, Soochow University, Suzhou, 215123, China.
- Guangdong Key Laboratory of Protein Modifications and Degradation, School of Basic Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
32
|
Loss of the MAF Transcription Factor in Laryngeal Squamous Cell Carcinoma. Biomolecules 2021; 11:biom11071035. [PMID: 34356658 PMCID: PMC8301809 DOI: 10.3390/biom11071035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
MAF is a transcription factor that may act either as a tumor suppressor or as an oncogene, depending on cell type. We have shown previously that the overexpressed miR-1290 influences MAF protein levels in LSCC (laryngeal squamous cell carcinoma) cell lines. In this study, we shed further light on the interaction between miR-1290 and MAF, as well as on cellular MAF protein localization in LSCC. We confirmed the direct interaction between miR-1290 and MAF 3′UTR by a dual-luciferase reporter assay. In addition, we used immunohistochemistry staining to analyze MAF protein distribution and observed loss of MAF nuclear expression in 58% LSCC samples, of which 10% showed complete absence of MAF, compared to nuclear and cytoplasmatic expression in 100% normal mucosa. Using TCGA data, bisulfite pyrosequencing and CNV analysis, we excluded the possibility that loss-of-function mutations, promoter region DNA methylation or CNV are responsible for MAF loss in LSCC. Finally, we identified genes involved in the regulation of apoptosis harboring the MAF binding motif in their promoter region by applied FIMO and DAVID GO analysis. Our results highlight the role of miR-1290 in suppressing MAF expression in LSCC. Furthermore, MAF loss or mislocalization in FFPE LSCC tumor samples might suggest that MAF acts as a LSCC tumor suppressor by regulating apoptosis.
Collapse
|
33
|
Jiang S, Wang X, He Y, Huang H, Cao B, Zhang Z, Liu J, Wang Q, Huang Z, Mao X. Suppression of USP7 induces BCR-ABL degradation and chronic myelogenous leukemia cell apoptosis. Cell Death Dis 2021; 12:456. [PMID: 33963175 PMCID: PMC8105359 DOI: 10.1038/s41419-021-03732-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
Chronic myelogenous leukemia (CML) is a clonal malignancy of hematopoietic stem cells featured with the fusion protein kinase BCR-ABL. To elicit the mechanism underlying BCR-ABL stability, we perform a screen against a panel of deubiquitinating enzymes (DUBs) and find that the ubiquitin-specific protease 7 (USP7) drastically stabilizes the BCR-ABL fusion protein. Further studies show that USP7 interacts with BCR-ABL and blocks its polyubiquitination and degradation. Moreover, USP7 knockdown triggers BCR-ABL degradation and suppresses its downstream signaling transduction. In line with this finding, genetic or chemical inhibition of USP7 leads to BCR-ABL protein degradation, suppresses BCR/ABL signaling, and induces CML cell apoptosis. Furthermore, we find the antimalarial artesunate (ART) significantly inhibits USP7/BCR-ABL interaction, thereby promoting BCR-ABL degradation and inducing CML cell death. This study thus identifies USP7 as a putative Dub of BCR-ABL and provides a rationale in targeting USP7/BCR-ABL for the treatment of CML.
Collapse
Affiliation(s)
- Shuoyi Jiang
- Department of Hematology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Guangdong and Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.,Department of Pharmacology, Soochow University, Jiangsu, 215123, P. R. China
| | - Xiaoge Wang
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuanming He
- Guangdong and Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.,Department of Pharmacology, Soochow University, Jiangsu, 215123, P. R. China
| | - Hongbiao Huang
- Guangdong and Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Biyin Cao
- Department of Pharmacology, Soochow University, Jiangsu, 215123, P. R. China
| | - Zubin Zhang
- Department of Pharmacology, Soochow University, Jiangsu, 215123, P. R. China
| | - Jinbao Liu
- Guangdong and Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Qi Wang
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhenqian Huang
- Department of Hematology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Xinliang Mao
- Department of Hematology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,Guangdong and Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China. .,Department of Pharmacology, Soochow University, Jiangsu, 215123, P. R. China. .,Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
34
|
Sun T, Xu Y, Xu Z, Cao B, Zhang Z, Wang Q, Kong Y, Mao X. Inhibition of the Otub1/c-Maf axis by the herbal acevaltrate induces myeloma cell apoptosis. Cell Commun Signal 2021; 19:24. [PMID: 33627137 PMCID: PMC7905600 DOI: 10.1186/s12964-020-00676-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The oncogenic transcript factor c-Maf is stabilized by the deubiquitinase Otub1 and promotes myeloma cell proliferation and confers to chemoresistance. Inhibition of the Otub1/c-Maf axis is a promising therapeutic target, but there are no inhibitors reported on this specific axis. METHODS A luciferase assay was applied to screen potential inhibitors of Otub1/c-Maf. Annexin V staining/flow cytometry was applied to evaluate cell apoptosis. Immunoprecipitation was applied to examine protein ubiquitination and interaction. Xenograft models in nude mice were used to evaluate anti-myeloma activity of AVT. RESULTS Acevaltrate (AVT), isolated from Valeriana glechomifolia, was identified based on a bioactive screen against the Otub1/c-Maf/luciferase system. AVT disrupts the interaction of Otub1/c-Maf thus inhibiting Otub1 activity and leading to c-Maf polyubiquitination and subsequent degradation in proteasomes. Consistently, AVT inhibits c-Maf transcriptional activity and downregulates the expression of its target genes key for myeloma growth and survival. Moreover, AVT displays potent anti-myeloma activity by triggering myeloma cell apoptosis in vitro and impairing myeloma xenograft growth in vivo but presents no marked toxicity. CONCLUSIONS The natural product AVT inhibits the Otub1/c-Maf axis and displays potent anti-myeloma activity. Given its great safety and efficacy, AVT could be further developed for MM treatment. Video Abstract.
Collapse
Affiliation(s)
- Tong Sun
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100 Jiangsu People’s Republic of China
| | - Yujia Xu
- Department of Pharmacology, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Zhuan Xu
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100 Jiangsu People’s Republic of China
| | - Biyin Cao
- Department of Pharmacology, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Zubin Zhang
- Department of Pharmacology, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Qi Wang
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
| | - Yan Kong
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100 Jiangsu People’s Republic of China
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 People’s Republic of China
- Department of Pharmacology, Soochow University, Suzhou, 215123 Jiangsu People’s Republic of China
- Guangdong Institute of Cardiovascular Diseases & Guangdong Key Lab for Protein Modifications and Degradation, The Second Affiliated Hospital & School of Basic Medicine, Guangzhou Medical University , Guangzhou, 511436 People’s Republic of China
| |
Collapse
|
35
|
Xu Y, Sun T, Zeng K, Xu M, Chen J, Xu X, Zhang Z, Cao B, Tang X, Wu D, Kong Y, Zeng Y, Mao X. Anti-bacterial and anti-viral nanchangmycin displays anti-myeloma activity by targeting Otub1 and c-Maf. Cell Death Dis 2020; 11:818. [PMID: 32999280 PMCID: PMC7527563 DOI: 10.1038/s41419-020-03017-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
Abstract
As a deubiqutinase Otub1 stabilizes and promotes the oncogenic activity of the transcription factor c-Maf in multiple myeloma (MM), a malignancy of plasma cells. In the screen for bioactive inhibitors of the Otub1/c-Maf axis for MM treatment, nanchangmycin (Nam), a polyketide antibiotic, was identified to suppress c-Maf activity in the presence of Otub1. By suppressing Otub1, Nam induces c-Maf polyubiquitination and subsequent degradation in proteasomes but does not alter its mRNA level. Consistently, Nam downregulates the expression of CCND2, ARK5, and ITGB7, the downstream genes regulated by c-Maf, and promotes MM cell apoptosis as evidenced by PARP and Caspase-3 cleavage, as well as Annexin V staining. In line with the hypothesis, overexpression of Otub1 partly rescues Nam-induced MM cell apoptosis, and interestingly, when Otub1 is knocked down, Nam-decreased MM cell survival is also partly ablated, suggesting Otub1 is essential for Nam anti-MM activity. Nam also displays potent anti-MM activity synergistically with Doxorubicin or lenalidomide. In the in vivo assays, Nam almost completely suppresses the growth of MM xenografts in nude mice at low dosages but it shows no toxicity. Given its safety and efficacy, Nam has a potential for MM treatment by targeting the Otub1/c-Maf axis.
Collapse
Affiliation(s)
- Yujia Xu
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital; Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tong Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Kun Zeng
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Min Xu
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215620, China
| | - Jinhao Chen
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215620, China
| | - Xiaofeng Xu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaowen Tang
- Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, P. R. China
| | - Depei Wu
- Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, P. R. China
| | - Yan Kong
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215100, P. R. China.
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital; Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|