1
|
Kontandreopoulou CN, Solomou EE, Kolorizos E, Diamantopoulos PT. Vaccine challenges in CLL: a comprehensive exploration of efficacy of SARS-CoV-2 immunization for patients with chronic lymphocytic leukemia. Ann Hematol 2024:10.1007/s00277-024-05869-8. [PMID: 39008060 DOI: 10.1007/s00277-024-05869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by disease- and treatment-related immunosuppression. Patients with CLL comprise a vulnerable population to coronavirus disease 2019 (COVID-19), while the protective effect of COVID-19 vaccination remains uncertain.We conducted a systematic review to evaluate published data reporting response to COVID-19 vaccination in patients with CLL. The primary outcome was the rate of seropositivity after full primary vaccination, while secondary outcomes were rates of positive neutralizing antibodies, cellular responses, and adverse events. Response after booster doses of vaccination was also evaluated.Twenty-three studies of full primary vaccination (12 CLL-specific with 1747 patients, 11 with mixed hematologic diseases including 1044 patients with CLL) with a total of 2791 patients, and eight studies on booster doses with 389 patients were included in the analysis. The serologic response varied between studies with a median of 55%. Where reported, the median neutralizing antibody response rate was 61.2% and the cellular response rate was 44.2%. Poor serologic response was noted in patients under active treatment with anti-CD20 monoclonal antibodies, BCL2, and BTK inhibitors.The present review highlights the substantially impaired humoral and cellular response to COVID-19 vaccination in patients with CLL with patients under active treatment being the most vulnerable.
Collapse
Affiliation(s)
- Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena E Solomou
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece.
| | - Epaminondas Kolorizos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis T Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Kamboj M, Bohlke K, Baptiste DM, Dunleavy K, Fueger A, Jones L, Kelkar AH, Law LY, LeFebvre KB, Ljungman P, Miller ED, Meyer LA, Moore HN, Soares HP, Taplitz RA, Woldetsadik ES, Kohn EC. Vaccination of Adults With Cancer: ASCO Guideline. J Clin Oncol 2024; 42:1699-1721. [PMID: 38498792 PMCID: PMC11095883 DOI: 10.1200/jco.24.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 03/20/2024] Open
Abstract
PURPOSE To guide the vaccination of adults with solid tumors or hematologic malignancies. METHODS A systematic literature review identified systematic reviews, randomized controlled trials (RCTs), and nonrandomized studies on the efficacy and safety of vaccines used by adults with cancer or their household contacts. This review builds on a 2013 guideline by the Infectious Disease Society of America. PubMed and the Cochrane Library were searched from January 1, 2013, to February 16, 2023. ASCO convened an Expert Panel to review the evidence and formulate recommendations. RESULTS A total of 102 publications were included in the systematic review: 24 systematic reviews, 14 RCTs, and 64 nonrandomized studies. The largest body of evidence addressed COVID-19 vaccines. RECOMMENDATIONS The goal of vaccination is to limit the severity of infection and prevent infection where feasible. Optimizing vaccination status should be considered a key element in the care of patients with cancer. This approach includes the documentation of vaccination status at the time of the first patient visit; timely provision of recommended vaccines; and appropriate revaccination after hematopoietic stem-cell transplantation, chimeric antigen receptor T-cell therapy, or B-cell-depleting therapy. Active interaction and coordination among healthcare providers, including primary care practitioners, pharmacists, and nursing team members, are needed. Vaccination of household contacts will enhance protection for patients with cancer. Some vaccination and revaccination plans for patients with cancer may be affected by the underlying immune status and the anticancer therapy received. As a result, vaccine strategies may differ from the vaccine recommendations for the general healthy adult population vaccine.Additional information is available at www.asco.org/supportive-care-guidelines.
Collapse
Affiliation(s)
- Mini Kamboj
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | - Kari Bohlke
- American Society of Clinical Oncology, Alexandria, VA
| | | | - Kieron Dunleavy
- MedStar Georgetown University Hospital, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC
| | - Abbey Fueger
- The Leukemia and Lymphoma Society, Rye Brook, NY
| | - Lee Jones
- Fight Colorectal Cancer, Arlington, VA
| | - Amar H Kelkar
- Harvard Medical School, Dana Farber Cancer Institute, Boston, MA
| | | | | | - Per Ljungman
- Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Eric D Miller
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Larissa A Meyer
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Heloisa P Soares
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | | | | | - Elise C Kohn
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD
| |
Collapse
|
3
|
Bernstein JA, Maurer M, Saini SS. BTK signaling-a crucial link in the pathophysiology of chronic spontaneous urticaria. J Allergy Clin Immunol 2024; 153:1229-1240. [PMID: 38141832 DOI: 10.1016/j.jaci.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Chronic spontaneous urticaria (CSU) is an inflammatory skin disorder that manifests with itchy wheals, angioedema, or both for more than 6 weeks. Mast cells and basophils are the key pathogenic drivers of CSU; their activation results in histamine and cytokine release with subsequent dermal inflammation. Two overlapping mechanisms of mast cell and basophil activation have been proposed in CSU: type I autoimmunity, also called autoallergy, which is mediated via IgE against various autoallergens, and type IIb autoimmunity, which is mediated predominantly via IgG directed against the IgE receptor FcεRI or FcεRI-bound IgE. Both mechanisms involve cross-linking of FcεRI and activation of downstream signaling pathways, and they may co-occur in the same patient. In addition, B-cell receptor signaling has been postulated to play a key role in CSU by generating autoreactive B cells and autoantibody production. A cornerstone of FcεRI and B-cell receptor signaling is Bruton tyrosine kinase (BTK), making BTK inhibition a clear therapeutic target in CSU. The potential application of early-generation BTK inhibitors, including ibrutinib, in allergic and autoimmune diseases is limited owing to their unfavorable benefit-risk profile. However, novel BTK inhibitors with improved selectivity and safety profiles have been developed and are under clinical investigation in autoimmune diseases, including CSU. In phase 2 trials, the BTK inhibitors remibrutinib and fenebrutinib have demonstrated rapid and sustained improvements in CSU disease activity. With phase 3 studies of remibrutinib ongoing, it is hoped that BTK inhibitors will present an effective, well-tolerated option for patients with antihistamine-refractory CSU, a phenotype that presents a considerable clinical challenge.
Collapse
Affiliation(s)
- Jonathan A Bernstein
- Department of Internal Medicine, Allergy and Immunology Section, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Sarbjit S Saini
- Johns Hopkins Asthma and Allergy Center, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
4
|
Mikulska M, Oltolini C, Zappulo E, Bartoletti M, Frustaci AM, Visentin A, Vitale C, Mauro FR. Prevention and management of infectious complications in patients with chronic lymphocytic leukemia (CLL) treated with BTK and BCL-2 inhibitors, focus on current guidelines. Blood Rev 2024; 65:101180. [PMID: 38331696 DOI: 10.1016/j.blre.2024.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
CLL is associated with an increased risk of infectious complications. Treatment with BTK or BCL-2 inhibitors does not seem to increase significantly the risk of opportunistic infections, but the role of combination therapies including BTK and/or BCL-2 inhibitors remains to be established. Various infectious complications can be successfully prevented with appropriate risk management strategies. In this paper we reviewed the international guidelines on prevention and management of infectious complications in patients with CLL treated with BTK or BCL-2 inhibitors. Universal pharmacological anti-herpes, antibacterial or antifungal prophylaxis is not warranted. Reactivation of HBV should be prevented in HBsAg-positive subjects. For HBsAg-negative/HBcAb-positive patients recommendations differ, but in case of combination treatment should follow those for other, particularly anti-CD20, agent. Immunization should be provided preferably before the onset of treatment. Immunoglobulin therapy has favourable impact on morbidity but not mortality in patients with hypogammaglobulinemia and severe or recurrent infections. Lack of high-quality data and heterogeneity of patients or protocols included in the studies might explain differences among the main guidelines. Better data collection is warranted.
Collapse
Affiliation(s)
- Malgorzata Mikulska
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | | | - Emanuela Zappulo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele Milan, Italy; Infectious Disease Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | | | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Italy
| | - Candida Vitale
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Francesca R Mauro
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Airas L, Bermel RA, Chitnis T, Hartung HP, Nakahara J, Stuve O, Williams MJ, Kieseier BC, Wiendl H. A review of Bruton's tyrosine kinase inhibitors in multiple sclerosis. Ther Adv Neurol Disord 2024; 17:17562864241233041. [PMID: 38638671 PMCID: PMC11025433 DOI: 10.1177/17562864241233041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/29/2024] [Indexed: 04/20/2024] Open
Abstract
Bruton's tyrosine kinase (BTK) inhibitors are an emerging class of therapeutics in multiple sclerosis (MS). BTK is expressed in B-cells and myeloid cells, key progenitors of which include dendritic cells, microglia and macrophages, integral effectors of MS pathogenesis, along with mast cells, establishing the relevance of BTK inhibitors to diverse autoimmune conditions. First-generation BTK inhibitors are currently utilized in the treatment of B-cell malignancies and show efficacy in B-cell modulation. B-cell depleting therapies have shown success as disease-modifying treatments (DMTs) in MS, highlighting the potential of BTK inhibitors for this indication; however, first-generation BTK inhibitors exhibit a challenging safety profile that is unsuitable for chronic use, as required for MS DMTs. A second generation of highly selective BTK inhibitors has shown efficacy in modulating MS-relevant mechanisms of pathogenesis in preclinical as well as clinical studies. Six of these BTK inhibitors are undergoing clinical development for MS, three of which are also under investigation for chronic spontaneous urticaria (CSU), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Phase II trials of selected BTK inhibitors for MS showed reductions in new gadolinium-enhancing lesions on magnetic resonance imaging scans; however, the safety profile is yet to be ascertained in chronic use. Understanding of the safety profile is developing by combining safety insights from the ongoing phase II and III trials of second-generation BTK inhibitors for MS, CSU, RA and SLE. This narrative review investigates the potential of BTK inhibitors as an MS DMT, the improved selectivity of second-generation inhibitors, comparative safety insights established thus far through clinical development programmes and proposed implications in female reproductive health and in long-term administration.
Collapse
Affiliation(s)
- Laura Airas
- Division of Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Robert A. Bermel
- Mellen Center for MS, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Harvard Medical School, Boston, MA, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neurology Section, VA North Texas Health Care System, Dallas, TX, USA
- Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Bernd C. Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Novartis Pharma AG, Basel, Switzerland
| | - Heinz Wiendl
- Department of Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A 1, Muenster 48149, Germany
| |
Collapse
|
6
|
Francis ER, Vu J, Perez CO, Sun C. Vaccinations in patients with chronic lymphocytic leukemia. Semin Hematol 2024; 61:131-138. [PMID: 38302313 PMCID: PMC11162341 DOI: 10.1053/j.seminhematol.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by immune dysfunction resulting in heightened susceptibility to infections and elevated rates of morbidity and mortality. A key strategy to mitigate infection-related complications has been immunization against common pathogens. However, the immunocompromised status of CLL patients poses challenges in eliciting an adequate humoral and cellular immune response to vaccination. Most CLL-directed therapy disproportionately impairs humoral immunity. Vaccine responsiveness also depends on the phase and type of immune response triggered by immunization. In this review, we discuss the immune dysfunction, vaccine responsiveness, and considerations for optimizing vaccine response in patients with CLL.
Collapse
Affiliation(s)
| | - Jennifer Vu
- Rosalind Franklin University of Medicine and Science, Chicago Medical School
| | | | - Clare Sun
- National Institutes of Health, National Heart, Lung, and Blood Institute.
| |
Collapse
|
7
|
Hill JA, Martens MJ, Young JAH, Bhavsar K, Kou J, Chen M, Lee LW, Baluch A, Dhodapkar MV, Nakamura R, Peyton K, Howard DS, Ibrahim U, Shahid Z, Armistead P, Westervelt P, McCarty J, McGuirk J, Hamadani M, DeWolf S, Hosszu K, Sharon E, Spahn A, Toor AA, Waldvogel S, Greenberger LM, Auletta JJ, Horowitz MM, Riches ML, Perales MA. SARS-CoV-2 vaccination in the first year after hematopoietic cell transplant or chimeric antigen receptor T cell therapy: A prospective, multicenter, observational study (BMT CTN 2101). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.24.24301058. [PMID: 38343800 PMCID: PMC10854344 DOI: 10.1101/2024.01.24.24301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. Objective To describe humoral and cellular responses after SARS-CoV-2 vaccination initiated <4 months versus 4-12 months after cellular therapy. Design Multicenter prospective observational study. Setting 34 centers in the United States. Participants 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), or chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients enrolled between April 2021 and June 2022. Interventions SARS-CoV-2 vaccination as part of routine care. Measurements We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. Results Anti-S IgG and neutralizing antibody responses increased with vaccination in HCT recipients irrespective of vaccine initiation timing but were unchanged in CAR-T cell recipients initiating vaccines within 4 months. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy anti-S IgG levels. Limitations The majority of participants were adults and received mRNA vaccines. Conclusions These data support starting mRNA SARS-CoV-2 vaccination three to four months after allogeneic HCT, autologous HCT, and CAR-T cell therapy. Funding National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.
Collapse
Affiliation(s)
- Joshua A Hill
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Center, and Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael J Martens
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Kavita Bhavsar
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianqun Kou
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Min Chen
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lik Wee Lee
- Adaptive Biotechnologies Corp, Seattle, WA, USA
| | - Aliyah Baluch
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | | - Zainab Shahid
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Armistead
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Peter Westervelt
- Barnes-Jewish Hospital, Washington University, St. Louis, MO, USA
| | - John McCarty
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Susan DeWolf
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kinga Hosszu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, MD, USA
| | - Ashley Spahn
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Amir A Toor
- Lehigh Valley Health Network, Allentown, PA, USA
| | - Stephanie Waldvogel
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | - Jeffery J Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Mary M Horowitz
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcie L Riches
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miguel-Angel Perales
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
8
|
Dukes CW, Potez M, Lancet J, Kuter BJ, Whiting J, Mo Q, Leav B, Wang H, Vanas JS, Cubitt CL, Isaacs-Soriano K, Kennedy K, Rathwell J, Diaz Cobo J, O’Nan W, Sirak B, Dong N, Tan E, Hwu P, Giuliano AR, Pilon-Thomas S. Neutralizing Antibody Response following a Third Dose of the mRNA-1273 Vaccine among Cancer Patients. Vaccines (Basel) 2023; 12:13. [PMID: 38250826 PMCID: PMC10818923 DOI: 10.3390/vaccines12010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer patients are at an increased risk of morbidity and mortality from SARS-CoV-2 infection and have a decreased immune response to vaccination. We conducted a study measuring both the neutralizing and total antibodies in cancer patients following a third dose of the mRNA-1273 COVID-19 vaccine. Immune responses were measured with an enzyme-linked immunosorbent assay (ELISA) and neutralization assays. Kruskal-Wallis tests were used to evaluate the association between patient characteristics and neutralization geometric mean titers (GMTs), and paired t-tests were used to compare the GMTs between different timepoints. Spearman correlation coefficients were calculated to determine the correlation between total antibody and neutralization GMTs. Among 238 adults diagnosed with cancer, a third dose of mRNA-1273 resulted in a 37-fold increase in neutralization GMT 28 days post-vaccination and maintained a 14.6-fold increase at 6 months. Patients with solid tumors or lymphoid cancer had the highest and lowest neutralization GMTs, respectively, at both 28 days and 6 months post-dose 3. While total antibody GMTs in lymphoid patients continued to increase, other cancer types showed decreases in titers between 28 days and 6 months post-dose 3. A strong correlation (p < 0.001) was found between total antibody and neutralization GMTs. The third dose of mRNA-1273 was able to elicit a robust neutralizing antibody response in cancer patients, which remained for 6 months after administration. Lymphoid cancer patients can benefit most from this third dose, as it was shown to continue to increase total antibody GMTs 6 months after vaccination.
Collapse
Affiliation(s)
- Christopher W. Dukes
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, FL 33612, USA (A.R.G.)
| | - Marine Potez
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jeffrey Lancet
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Barbara J. Kuter
- Department of Infectious Diseases, Moderna, Inc., Cambridge, MA 02139, USA
| | - Junmin Whiting
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brett Leav
- Department of Infectious Diseases, Moderna, Inc., Cambridge, MA 02139, USA
| | - Haixing Wang
- Department of Infectious Diseases, Moderna, Inc., Cambridge, MA 02139, USA
| | - Julie S. Vanas
- Department of Infectious Diseases, Moderna, Inc., Cambridge, MA 02139, USA
| | | | - Kimberly Isaacs-Soriano
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, FL 33612, USA (A.R.G.)
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kayoko Kennedy
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, FL 33612, USA (A.R.G.)
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Julie Rathwell
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, FL 33612, USA (A.R.G.)
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Julian Diaz Cobo
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Wesley O’Nan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bradley Sirak
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ning Dong
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Elaine Tan
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Patrick Hwu
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anna R. Giuliano
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, FL 33612, USA (A.R.G.)
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Shari Pilon-Thomas
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, FL 33612, USA (A.R.G.)
| |
Collapse
|
9
|
Mwakingwe-Omari A, Lecrenier N, Naficy A, Curran D, Posiuniene I. Recombinant zoster vaccine in immunocompetent and immunocompromised adults: A review of clinical studies. Hum Vaccin Immunother 2023; 19:2278362. [PMID: 37965770 PMCID: PMC10653762 DOI: 10.1080/21645515.2023.2278362] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Herpes zoster (HZ) is a debilitating vaccine-preventable disease. Impairment of cell-mediated immunity, as observed with aging and immunosuppressive disorders and therapies, increases risk. Recombinant zoster vaccine (RZV) is efficacious against HZ in adults aged ≥50 years in different settings, and in immunocompromised adults aged ≥18 years who are at increased risk of developing HZ. RZV is the first and only HZ vaccine approved for use in immunocompromised adults globally, including in Europe and the US. RZV has a clinically acceptable safety profile and elicits robust immune responses in adults aged ≥50 years, and in immunocompromised adults aged ≥18 years who are at increased risk of HZ. Additionally, RZV is efficacious against HZ complications such as post-herpetic neuralgia and HZ-related pain. This review updates knowledge from a randomized controlled trial setting on the efficacy, safety, immunogenicity, and impact on quality of life of RZV.
Collapse
|
10
|
Tomasulo E, Paul S, Mu R, Tian X, Chen J, Pleyer C, Wiestner A, Sun C. Interruption of BTK inhibitor improves response to SARS-CoV-2 booster vaccination in patients with CLL. Leuk Lymphoma 2023; 64:2306-2315. [PMID: 37732614 DOI: 10.1080/10428194.2023.2258243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
B-cell targeted therapies, including anti-CD20 monoclonal antibodies (mAb) and Bruton's tyrosine kinase inhibitors (BTKi), further suppress antibody (Ab) response to vaccines in patients with chronic lymphocytic leukemia (CLL). We conducted a prospective cohort study of SARS-CoV-2 vaccination in 81 CLL patients receiving BTKi (n = 54), venetoclax (VEN, n = 9), or who were treatment naïve (TN, n = 18). Anti-spike Ab were detected in 53% of patients on BTKi post-primary series and 84% post-booster, 57% of patients on VEN post-primary series and 50% post-booster, and 67% of TN patients post-primary series and 87% post-booster. T-cell response to the primary series was independent of Ab response. At the time of booster, 12 patients interrupted BTKi (median 21 d, range 8-22) and 33 continued BTKi. Among patients with detectable Ab post-booster, those who interrupted BTKi (n = 10) had significantly higher Ab titers (median 7149 units/mL) compared with patients who continued BTKi (n = 27, median 2071 units/mL, p = .04).
Collapse
Affiliation(s)
- Emily Tomasulo
- Abramson Cancer Center, Penn Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shira Paul
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rui Mu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Tian
- Office of Biostatistics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Pleyer
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Harel R, Itchaki G. COVID-19 in Patients with Chronic Lymphocytic Leukemia: What Have We Learned? Acta Haematol 2023; 147:60-72. [PMID: 37820599 PMCID: PMC11251671 DOI: 10.1159/000534540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is a prevalent hematological malignancy (HM) characterized by inherent immunodeficiency, which is further pronounced by disease-directed therapy. The COVID-19 pandemic has had devastating outcomes, and although its impact has diminished over time, it continues to be a cause of significant morbidity and mortality, particularly among immunodeficient patients. SUMMARY In this review, we describe mechanisms of immune dysfunction in CLL in relation to COVID-19, provide an overview of the clinical outcomes of the disease in this patient population, and identify risk factors associated with severe morbidity and mortality. Additionally, we acknowledge the influence of the rapidly evolving landscape of new disease variants. The review further delineates the humoral and cellular responses to vaccination and their clinical efficacy in preventing COVID-19 in CLL patients. Moreover, we explore potential approaches to enhance these immune responses. Pre- and post-exposure prophylaxis strategies are discussed, along with description of common agents in the treatment of the disease in both outpatient and inpatient setting. Throughout the review, we emphasize the interplay between novel therapies for CLL and COVID-19 outcomes, prevention, and treatment and describe the impact of COVID-19 on the utilization of these novel agents. This information has the potential to guide clinical decision making in the management CLL patients. KEY MESSAGES CLL patients are at risk for severe COVID-19 infection. Vaccinations and COVID-19 directed therapy have improved outcomes in patients with CLL, yet clinical challenges persist.
Collapse
Affiliation(s)
- Reut Harel
- Department of Hematology, Emek Medical Center, Afula, Israel
| | - Gilad Itchaki
- Hematology, Meir Medical Center, Kefar Sava, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
12
|
Bar-Or A, Cross AH, Cunningham AL, Hyvert Y, Seitzinger A, Gühring H, Drouin EE, Alexandri N, Tomic D, Montalban X. Antibody response to SARS-CoV-2 vaccines in patients with relapsing multiple sclerosis treated with evobrutinib: A Bruton's tyrosine kinase inhibitor. Mult Scler 2023; 29:1471-1481. [PMID: 37626477 PMCID: PMC10580670 DOI: 10.1177/13524585231192460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Evobrutinib is an oral, central nervous system (CNS)-penetrant and highly selective covalent Bruton's tyrosine kinase inhibitor under clinical development for patients with relapsing multiple sclerosis (RMS). OBJECTIVE To investigate the effect of evobrutinib on immune responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinated patients with RMS from a Phase II trial (NCT02975349). METHODS A post hoc analysis of patients with RMS who received evobrutinib 75 mg twice daily and SARS-CoV-2 vaccines during the open-label extension (n = 45) was conducted. Immunoglobulin (Ig)G anti-S1/S2-specific SARS-CoV-2 antibodies were measured using an indirect chemiluminescence immunoassay. RESULTS In the vaccinated subgroup, mean/minimum evobrutinib exposure pre-vaccination was 105.2/88.7 weeks. In total, 43 of 45 patients developed/increased S1/S2 IgG antibody levels post-vaccination; one patient's antibody response remained negative post-vaccination and the other had antibody levels above the upper limit of detection, both pre- and post-vaccination. Most patients (n = 36/45), regardless of pre-vaccination serostatus, had a 10-100-fold increase of antibody levels pre- to post-vaccination. Antibody levels post-booster were higher versus post-vaccination. CONCLUSION These results suggest evobrutinib, an investigational drug with therapeutic potential for patients with RMS, acts as an immunomodulator, that is, it inhibits aberrant immune cell responses in patients with RMS, while responsiveness to foreign de novo and recall antigens is maintained.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne H Cross
- Department of Neurology, Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | | | | | | | - Elise E Drouin
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA
| | | | - Davorka Tomic
- Ares Trading SA, Eysins, Switzerland, an affiliate of Merck KGaA
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d’Hebron, Barcelona, Spain
| |
Collapse
|
13
|
Barber VS, Peckham N, Duley L, Francis A, Abhishek A, Moss P, Cook JA, Parry HM. Protocol for a multicentre randomised controlled trial examining the effects of temporarily pausing Bruton tyrosine kinase inhibitor therapy to coincide with SARS-CoV-2 vaccination and its impact on immune responses in patients with chronic lymphocytic leukaemia. BMJ Open 2023; 13:e077946. [PMID: 37770269 PMCID: PMC10546125 DOI: 10.1136/bmjopen-2023-077946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023] Open
Abstract
INTRODUCTION People who are immunocompromised have a poor biological response to vaccinations. This study aims to determine in patients with chronic lymphocytic leukaemia (CLL) if a 3-week pause in Bruton tyrosine kinase inhibitor therapy (BTKi) starting 1 week before delivery of SARS-CoV-2 vaccine booster, improves vaccine immune response when compared with continuation of BTKi. METHODS AND ANALYSIS An open-label, randomised controlled superiority trial will be conducted in haematology clinics in approximately 10 UK National Health Service (NHS) hospitals. The sample size is 120, randomised 1:1 to intervention and usual care arms. The primary outcome is anti-spike-receptor binding domain (RBD) antibody level at 3 weeks post-SARS-CoV-2 booster vaccination. Secondary outcomes are RBD antibody levels at 12 weeks postbooster vaccination, participant global assessments of disease activity, blood films, full blood count and lactate dehydrogenase levels, impact on quality of life, self-reported adherence with request to temporarily pause or continue BTKi, T cell response against spike protein and relative neutralising antibody titre against SARS-CoV-2 viral variants. Additionally, there will be an investigation of any effects in those given influenza vaccination contemporaneously versus COVID-19 alone.The primary analysis will be performed on the as randomised groups ('intention to treat'). The difference between the study arms in anti-spike-RBD antibody level will be estimated using a mixed effects regression model, allowing for repeated measures clustered within participants. The model will be adjusted for randomisation factor (first line or subsequent line of therapy), and prior infection status obtained from prerandomisation antinucleocapsid antibodies as fixed effects. ETHICS AND DISSEMINATION This study has been approved by Leeds East Research Ethics Committee and Health Research Authority (REC Reference:22/YH/0226, IRAS ID: 319057). Dissemination will be via peer-review publications, newsletters and conferences. Results will be communicated to participants, the CLL patient and clinical communities and health policy-makers. TRIAL REGISTRATION NUMBER ISRCTN14197181.
Collapse
Affiliation(s)
- Vicki S Barber
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Oxford Clinical Trials Research Unit (OCTRU), University of Oxford, Oxford, UK
| | - Nicholas Peckham
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Oxford Clinical Trials Research Unit (OCTRU), University of Oxford, Oxford, UK
| | - Lelia Duley
- Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK
| | - Anne Francis
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Oxford Clinical Trials Research Unit (OCTRU), University of Oxford, Oxford, UK
| | | | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Jonathan A Cook
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Oxford Clinical Trials Research Unit (OCTRU), University of Oxford, Oxford, UK
| | - Helen M Parry
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Rankin K, Hastak P, Wong A, Sasson SC, Beaton B, Yeola A, Warden A, Turville S, Kelleher AD, Brilot F, Trotman J. Immune response to COVID-19 vaccination in patients with Waldenström macroglobulinaemia who pause their BTKi therapy. EJHAEM 2023; 4:728-732. [PMID: 37601863 PMCID: PMC10435711 DOI: 10.1002/jha2.724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 08/22/2023]
Abstract
Patients with Waldenström macroglobulinaemia (WM) are at increased risk of severe COVID-19 infection and have poor immune responses to COVID-19 vaccination. This study assessed whether a closely monitored pause in Bruton's Tyrosine Kinase inhibitor (BTKi) therapy might result in an improved humoral response to a 3rd COVID-19 vaccine dose. Improved response was observed in WM patients who paused their BTKi, compared to a group who did not pause their BTKi. However, the response was attenuated after BTKi recommencement. This data contributes to our understanding of vaccination strategies in this patient group and may help inform consensus approaches in the future.
Collapse
Affiliation(s)
- Katherine Rankin
- Haematology DepartmentConcord Repatriation General HospitalSydneyNew South WalesAustralia
| | - Priyanka Hastak
- The Kirby InstituteThe University of New South WalesSydneyNew South WalesAustralia
| | - Alexander Wong
- Haematology DepartmentConcord Repatriation General HospitalSydneyNew South WalesAustralia
- Concord Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Sarah C. Sasson
- The Kirby InstituteThe University of New South WalesSydneyNew South WalesAustralia
- Department of Clinical Immunology and ImmunopathologyICPMR Westmead HospitalSydneyNew South WalesAustralia
| | - Brendan Beaton
- Haematology DepartmentConcord Repatriation General HospitalSydneyNew South WalesAustralia
- Concord Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Avani Yeola
- Brain Autoimmunity GroupKids Neuroscience CentreKids ResearchThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Andrew Warden
- WMozzies: Australian Patient Support Group for Waldenström's MacroglobulinemiaSydneyNew South WalesAustralia
| | - Stuart Turville
- The Kirby InstituteThe University of New South WalesSydneyNew South WalesAustralia
| | - Anthony D. Kelleher
- The Kirby InstituteThe University of New South WalesSydneyNew South WalesAustralia
| | - Fabienne Brilot
- Brain Autoimmunity GroupKids Neuroscience CentreKids ResearchThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Sydney Institute of Infectious DiseaseThe University of SydneySydneyNew South WalesAustralia
- The School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Judith Trotman
- Haematology DepartmentConcord Repatriation General HospitalSydneyNew South WalesAustralia
- Concord Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
15
|
Baratè C, Caruso T, Mavilia F, Sammuri P, Pratesi F, Motta G, Guerri V, Galimberti S, Migliorini P. Induction of neutralizing antibodies in CLL patients after SARS-CoV-2 mRNA vaccination: a monocentric experience. Clin Exp Med 2023; 23:1197-1203. [PMID: 36074205 PMCID: PMC9453722 DOI: 10.1007/s10238-022-00877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
Abstract
Vaccination represents the best strategy to fight COVID-19 pandemics, especially in immune compromised subjects. In chronic lymphatic leukemia patients, a marked impairment of the immune response to mRNA SARS-CoV-2 vaccine was observed. In this report, we analyzed anti-RBD and neutralizing antibodies in CLL patients after two doses of mRNA SARS CoV 2 vaccine and evaluated the impact of Bruton kinase inhibitory agents. Twenty-seven CLL patients vaccinated with mRNA vaccines against SARS CoV-2 were recruited. Serum IgG, IgM and IgA anti-RBD antibodies and neutralizing antibodies were detected, and antibody avidity was measured. Peripheral blood leukocytes subsets were evaluated by flow cytometry. After two vaccine doses anti-RBD IgG were produced in 11/27 (40.5%) of patients and levels of IgG and IgA anti RBD in CLL patients were sensibly lower than in controls. Neutralizing antibodies were detectable in 12/27 (44.5%) of the patients and their level was lower than that observed in controls. Disease burden and treatment with Bruton kinases inhibitors markedly impaired vaccine induced antibody response. However, in responder patients, antibody avidity was comparable to normal subjects, indicating that the process of clonal selection and affinity maturation takes place as expected. Taken together, these data confirm the impact of disease burden and therapy on production of anti-RBD and neutralizing antibodies and support the current policy of vaccinating CLL patients.
Collapse
Affiliation(s)
- Claudia Baratè
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Teresita Caruso
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Fabrizio Mavilia
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Sammuri
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Pratesi
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
- General Pathology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giuseppe Motta
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Valentina Guerri
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Galimberti
- Division of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.
| |
Collapse
|
16
|
Haggenburg S, Garcia Garrido HM, Kant IMJ, Van der Straaten HM, De Boer F, Kersting S, Issa D, Te Raa D, Visser HPJ, Kater AP, Goorhuis A, De Heer K. Immunogenicity of the 13-Valent Pneumococcal Conjugated Vaccine Followed by the 23-Valent Polysaccharide Vaccine in Chronic Lymphocytic Leukemia. Vaccines (Basel) 2023; 11:1201. [PMID: 37515017 PMCID: PMC10385862 DOI: 10.3390/vaccines11071201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with Chronic Lymphocytic Leukemia (CLL) have a 29- to 36-fold increased risk of invasive pneumococcal disease (IPD) compared to healthy adults. Therefore, most guidelines recommend vaccination with the 13-valent pneumococcal conjugated vaccine (PCV13) followed 2 months later by the 23-valent polysaccharide vaccine (PPSV23). Because both CLL as well as immunosuppressive treatment have been identified as major determinants of immunogenicity, we aimed to assess the vaccination schedule in untreated and treated CLL patients. We quantified pneumococcal IgG concentrations against five serotypes shared across both vaccines, and against four serotypes unique to PPSV23, before and eight weeks after vaccination. In this retrospective cohort study, we included 143 CLL patients, either treated (n = 38) or naive to treatment (n = 105). While antibody concentrations increased significantly after vaccination, the overall serologic response was low (10.5%), defined as a ≥4-fold antibody increase against ≥70% of the measured serotypes, and significantly influenced by treatment status and prior lymphocyte number. The serologic protection rate, defined as an antibody concentration of ≥1.3 µg/mL for ≥70% of serotypes, was 13% in untreated and 3% in treated CLL patients. Future research should focus on vaccine regimens with a higher immunogenic potential, such as multi-dose schedules with higher-valent T cell dependent conjugated vaccines.
Collapse
Affiliation(s)
- Sabine Haggenburg
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hannah M Garcia Garrido
- Department of Infectious Diseases, Center for Tropical Medicine and Travel Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Iris M J Kant
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | - Fransien De Boer
- Department of Internal Medicine, Ikazia Ziekenhuis, 3083 AN Rotterdam, The Netherlands
| | - Sabina Kersting
- Department of Hematology, HagaZiekenhuis, 2545 AA The Hague, The Netherlands
| | - Djamila Issa
- Department of Internal Medicine, Jeroen Bosch Ziekenhuis, 5223 GZ 's-Hertogenbosch, The Netherlands
| | - Doreen Te Raa
- Department of Internal Medicine, Ziekenhuis Gelderse Vallei, 6716 RP Ede, The Netherlands
| | - Hein P J Visser
- Department of Internal Medicine, Noordwest Ziekenhuisgroep, 1815 JD Alkmaar, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Abraham Goorhuis
- Department of Infectious Diseases, Center for Tropical Medicine and Travel Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Koen De Heer
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Flevoziekenhuis, 1315 RA Almere, The Netherlands
| |
Collapse
|
17
|
Fattizzo B, Rampi N, Barcellini W. Vaccinations in hematological patients in the era of target therapies: Lesson learnt from SARS-CoV-2. Blood Rev 2023; 60:101077. [PMID: 37029066 PMCID: PMC10043962 DOI: 10.1016/j.blre.2023.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Novel targeting agents for hematologic diseases often exert on- or off-target immunomodulatory effects, possibly impacting on response to anti-SARS-CoV-2 vaccinations and other vaccines. Agents that primarily affect B cells, particularly anti-CD20 monoclonal antibodies (MoAbs), Bruton tyrosine kinase inhibitors, and anti-CD19 chimeric antigen T-cells, have the strongest impact on seroconversion. JAK2, BCL-2 inhibitors and hypomethylating agents may hamper immunity but show a less prominent effect on humoral response to vaccines. Conversely, vaccine efficacy seems not impaired by anti-myeloma agents such as proteasome inhibitors and immunomodulatory agents, although lower seroconversion rates are observed with anti-CD38 and anti-BCMA MoAbs. Complement inhibitors for complement-mediated hematologic diseases and immunosuppressants used in aplastic anemia do not generally affect seroconversion rate, but the extent of the immune response is reduced under steroids or anti-thymocyte globulin. Vaccination is recommended prior to treatment or as far as possible from anti-CD20 MoAb (at least 6 months). No clearcut indications for interrupting continuous treatment emerged, and booster doses significantly improved seroconversion. Cellular immune response appeared preserved in several settings.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Nicolò Rampi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
18
|
Giuliano A, Kuter B, Pilon-Thomas S, Whiting J, Mo Q, Leav B, Sirak B, Cubitt C, Dukes C, Isaacs-Soriano K, Kennedy K, Ball S, Dong N, Jain A, Hwu P, Lancet J. Safety and immunogenicity of a third dose of mRNA-1273 vaccine among cancer patients. Cancer Commun (Lond) 2023. [PMID: 37377402 PMCID: PMC10354405 DOI: 10.1002/cac2.12453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Compared to the general population, cancer patients are at higher risk of morbidity and mortality following SARS-CoV-2 infection. The immune response to a two-dose regimen of mRNA vaccines in cancer patients is generally lower than in immunocompetent individuals. Booster doses may meaningfully augment immune response in this population. We conducted an observational study with the primary objective of determining the immunogenicity of vaccine dose three (100 μg) of mRNA-1273 among cancer patients and a secondary objective of evaluating safety at 14 and 28 days. METHODS The mRNA-1273 vaccine was administered ∼7 to 9 months after administering two vaccine doses (i.e., the primary series). Immune responses (enzyme-linked immunosorbent assay [ELISA]) were assessed 28 days post-dose three. Adverse events were collected at days 14 (± 5) and 28 (+5) post-dose three. Fisher exact or X2 tests were used to compare SARS-CoV-2 antibody positivity rates, and paired t-tests were used to compare SARS-CoV-2 antibody geometric mean titers (GMTs) across different time intervals. RESULTS Among 284 adults diagnosed with solid tumors or hematologic malignancies, dose three of mRNA-1273 increased the percentage of patients seropositive for SARS-CoV-2 antibody from 81.7% pre-dose three to 94.4% 28 days post-dose three. GMTs increased 19.0-fold (15.8-22.8). Patients with lymphoid cancers or solid tumors had the lowest and highest antibody titers post-dose three, respectively. Antibody responses after dose three were reduced among those who received anti-CD20 antibody treatment, had lower total lymphocyte counts and received anticancer therapy within 3 months. Among patients seronegative for SARS-CoV-2 antibody pre-dose three, 69.2% seroconverted after dose three. A majority (70.4%) experienced mostly mild, transient adverse reactions within 14 days of dose three, whereas severe treatment-emergent events within 28 days were very rare (<2%). CONCLUSION Dose three of the mRNA-1273 vaccine was well-tolerated and augmented SARS-CoV-2 seropositivity in cancer patients, especially those who did not seroconvert post-dose two or whose GMTs significantly waned post-dose two. Lymphoid cancer patients experienced lower humoral responses to dose three of the mRNA-1273 vaccine, suggesting that timely access to boosters is important for this population.
Collapse
Affiliation(s)
- Anna Giuliano
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | | | - Junmin Whiting
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Bradley Sirak
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Christopher Dukes
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Kayoko Kennedy
- Non-Therapeutic Research Office (NTRO), Moffitt Cancer Center, Tampa, Florida, USA
| | - Somedeb Ball
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ning Dong
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Akriti Jain
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Patrick Hwu
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jeffrey Lancet
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
19
|
Qin K, Honjo K, Sherrill-Mix S, Liu W, Stoltz RM, Oman AK, Hall LA, Li R, Sterrett S, Frederick ER, Lancaster JR, Narkhede M, Mehta A, Ogunsile FJ, Patel RB, Ketas TJ, Cruz Portillo VM, Cupo A, Larimer BM, Bansal A, Goepfert PA, Hahn BH, Davis RS. Exposure of progressive immune dysfunction by SARS-CoV-2 mRNA vaccination in patients with chronic lymphocytic leukemia: A prospective cohort study. PLoS Med 2023; 20:e1004157. [PMID: 37384638 PMCID: PMC10309642 DOI: 10.1371/journal.pmed.1004157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Patients with chronic lymphocytic leukemia (CLL) have reduced seroconversion rates and lower binding antibody (Ab) and neutralizing antibody (NAb) titers than healthy individuals following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccination. Here, we dissected vaccine-mediated humoral and cellular responses to understand the mechanisms underlying CLL-induced immune dysfunction. METHODS AND FINDINGS We performed a prospective observational study in SARS-CoV-2 infection-naïve CLL patients (n = 95) and healthy controls (n = 30) who were vaccinated between December 2020 and June 2021. Sixty-one CLL patients and 27 healthy controls received 2 doses of the Pfizer-BioNTech BNT162b2 vaccine, while 34 CLL patients and 3 healthy controls received 2 doses of the Moderna mRNA-1273 vaccine. The median time to analysis was 38 days (IQR, 27 to 83) for CLL patients and 36 days (IQR, 28 to 57) for healthy controls. Testing plasma samples for SARS-CoV-2 anti-spike and receptor-binding domain Abs by enzyme-linked immunosorbent assay (ELISA), we found that all healthy controls seroconverted to both antigens, while CLL patients had lower response rates (68% and 54%) as well as lower median titers (23-fold and 30-fold; both p < 0.001). Similarly, NAb responses against the then prevalent D614G and Delta SARS-CoV-2 variants were detected in 97% and 93% of controls, respectively, but in only 42% and 38% of CLL patients, who also exhibited >23-fold and >17-fold lower median NAb titers (both p < 0.001). Interestingly, 26% of CLL patients failed to develop NAbs but had high-titer binding Abs that preferentially reacted with the S2 subunit of the SARS-CoV-2 spike. Since these patients were also seropositive for endemic human coronaviruses (HCoVs), these responses likely reflect cross-reactive HCoV Abs rather than vaccine-induced de novo responses. CLL disease status, advanced Rai stage (III-IV), elevated serum beta-2 microglobulin levels (β2m >2.4 mg/L), prior therapy, anti-CD20 immunotherapy (<12 months), and intravenous immunoglobulin (IVIg) prophylaxis were all predictive of an inability to mount SARS-CoV-2 NAbs (all p ≤ 0.03). T cell response rates determined for a subset of participants were 2.8-fold lower for CLL patients compared to healthy controls (0.05, 95% CI 0.01 to 0.27, p < 0.001), with reduced intracellular IFNγ staining (p = 0.03) and effector polyfunctionality (p < 0.001) observed in CD4+ but not in CD8+ T cells. Surprisingly, in treatment-naïve CLL patients, BNT162b2 vaccination was identified as an independent negative risk factor for NAb generation (5.8, 95% CI 1.6 to 27, p = 0.006). CLL patients who received mRNA-1273 had 12-fold higher (p < 0.001) NAb titers and 1.7-fold higher (6.5, 95% CI 1.3 to 32, p = 0.02) response rates than BNT162b2 vaccinees despite similar disease characteristics. The absence of detectable NAbs in CLL patients was associated with reduced naïve CD4+ T cells (p = 0.03) and increased CD8+ effector memory T cells (p = 0.006). Limitations of the study were that not all participants were subjected to the same immune analyses and that pre-vaccination samples were not available. CONCLUSIONS CLL pathogenesis is characterized by a progressive loss of adaptive immune functions, including in most treatment-naïve patients, with preexisting memory being preserved longer than the capacity to mount responses to new antigens. In addition, higher NAb titers and response rates identify mRNA-1273 as a superior vaccine for CLL patients.
Collapse
Affiliation(s)
- Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Regina M. Stoltz
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Allisa K. Oman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lucinda A. Hall
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ellen R. Frederick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey R. Lancaster
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mayur Narkhede
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amitkumar Mehta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Foluso J. Ogunsile
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rima B. Patel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Thomas J. Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Victor M. Cruz Portillo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Benjamin M. Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
20
|
Hill JA, Martens MJ, Young JAH, Bhavsar K, Kou J, Chen M, Lee LW, Baluch A, Dhodapkar MV, Nakamura R, Peyton K, Shahid Z, Armistead P, Westervelt P, McCarty J, McGuirk J, Hamadani M, DeWolf S, Hosszu K, Sharon E, Spahn A, Toor AA, Waldvogel S, Greenberger LM, Auletta JJ, Horowitz MM, Riches ML, Perales MA. SARS-CoV-2 vaccination in the first year after allogeneic hematopoietic cell transplant: a prospective, multicentre, observational study. EClinicalMedicine 2023; 59:101983. [PMID: 37128256 PMCID: PMC10133891 DOI: 10.1016/j.eclinm.2023.101983] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Background The optimal timing for SARS-CoV-2 vaccines within the first year after allogeneic hematopoietic cell transplant (HCT) is poorly understood. Methods We conducted a prospective, multicentre, observational study of allogeneic HCT recipients who initiated SARS-CoV-2 vaccinations within 12 months of HCT. Participants were enrolled at 22 academic cancer centers across the United States. Participants of any age who were planning to receive a first post-HCT SARS-CoV-2 vaccine within 12 months of HCT were eligible. We obtained blood prior to and after each vaccine dose for up to four vaccine doses, with an end-of-study sample seven to nine months after enrollment. We tested for SARS-CoV-2 spike protein (anti-S) IgG; nucleocapsid protein (anti-N) IgG; neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains; and SARS-CoV-2-specific T-cell receptors (TCRs). The primary outcome was a comparison of anti-S IgG titers at the post-V2 time point in participants initiating vaccinations <4 months versus 4-12 months after HCT using a propensity-adjusted analysis. We also evaluated factors associated with high-level anti-S IgG titers (≥2403 U/mL) in logistic regression models. Findings Between April 22, 2021 and November 17, 2021, 175 allogeneic HCT recipients were enrolled in the study, of whom all but one received mRNA SARS-CoV-2 vaccines. SARS-CoV-2 anti-S IgG titers, neutralizing antibody titers, and TCR breadth and depth did not significantly differ at all tested time points following the second vaccination among those initiating vaccinations <4 months versus 4-12 months after HCT. Anti-S IgG ≥2403 U/mL correlated with neutralizing antibody levels similar to those observed in a prior study of non-immunocompromised individuals, and 57% of participants achieved anti-S IgG ≥2403 U/mL at the end-of-study time point. In models adjusted for SARS-CoV-2 infection pre-enrollment, SARS-CoV-2 vaccination pre-HCT, CD19+ B-cell count, CD4+ T-cell count, and age (as applicable to the model), vaccine initiation timing was not associated with high-level anti-S IgG titers at the post-V2, post-V3, or end-of-study time points. Notably, prior graft-versus-host-disease (GVHD) or use of immunosuppressive medications were not associated with high-level anti-S IgG titers. Grade ≥3 vaccine-associated adverse events were infrequent. Interpretation These data support starting mRNA SARS-CoV-2 vaccination three months after HCT, irrespective of concurrent GVHD or use of immunosuppressive medications. This is one of the largest prospective analyses of vaccination for any pathogen within the first year after allogeneic HCT and supports current guidelines for SARS-CoV-2 vaccination starting three months post-HCT. Additionally, there are few studies of mRNA vaccine formulations for other pathogens in HCT recipients, and these data provide encouraging proof-of-concept for the utility of early vaccination targeting additional pathogens with mRNA vaccine platforms. Funding National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.
Collapse
Affiliation(s)
- Joshua A. Hill
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael J. Martens
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Kavita Bhavsar
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianqun Kou
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Min Chen
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lik Wee Lee
- Adaptive Biotechnologies Corp, Seattle, WA, USA
| | - Aliyah Baluch
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | - Zainab Shahid
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Armistead
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Peter Westervelt
- Barnes-Jewish Hospital, Washington University, St. Louis, MO, USA
| | - John McCarty
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Susan DeWolf
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kinga Hosszu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, MD, USA
| | - Ashley Spahn
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Amir A. Toor
- Virginia Commonwealth University, Richmond, VA, USA
| | - Stephanie Waldvogel
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | - Jeffery J. Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Mary M. Horowitz
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcie L. Riches
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miguel-Angel Perales
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weil Cornell Medical College, New York, NY, USA
| |
Collapse
|
21
|
Dybowski S, Torke S, Weber MS. Targeting B Cells and Microglia in Multiple Sclerosis With Bruton Tyrosine Kinase Inhibitors: A Review. JAMA Neurol 2023; 80:404-414. [PMID: 36780171 DOI: 10.1001/jamaneurol.2022.5332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Importance Currently, disease-modifying therapies for multiple sclerosis (MS) use 4 mechanisms of action: immune modulation, suppressing immune cell proliferation, inhibiting immune cell migration, or cellular depletion. Over the last decades, the repertoire substantially increased because of the conceptual progress that not only T cells but also B cells play an important pathogenic role in MS, fostered by the empirical success of B cell-depleting antibodies against the surface molecule CD20. Notwithstanding this advance, a continuous absence of B cells may harbor safety risks, such as a decline in the endogenous production of immunoglobulins. Accordingly, novel B cell-directed MS therapies are in development, such as inhibitors targeting Bruton tyrosine kinase (BTK). Observations BTK is centrally involved in the B cell receptor-mediated activation of B cells, one key requirement in the development of autoreactive B cells, but also in the activation of myeloid cells, such as macrophages and microglia. Various compounds in development differ in their binding mode, selectivity and specificity, relative inhibitory concentration, and potential to enter the central nervous system. The latter may be important in assessing whether BTK inhibition is a promising strategy to control inflammatory circuits within the brain, the key process that is assumed to drive MS progression. Accordingly, clinical trials using BTK inhibitors are currently conducted in patients with relapsing-remitting MS as well as progressive MS, so far generating encouraging data regarding efficacy and safety. Conclusions and Relevance While the novel approach of targeting BTK is highly promising, several questions remain unanswered, such as the long-term effects of using BTK inhibitors in the treatment of inflammatory CNS disease. Potential changes in circulating antibody levels should be evaluated and compared with B cell depletion. Also important is the potential of BTK inhibitors to enter the CNS, which depends on the given compound. Remaining questions involve where BTK inhibitors fit in the landscape of MS therapeutics. A comparative analysis of their distinct properties is necessary to identify which inhibitors may be used in relapsing vs progressive forms of MS as well as to clarify which agent may be most suitable for sequential use after anti-CD20 treatment.
Collapse
Affiliation(s)
- Sarah Dybowski
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Sebastian Torke
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology, Göttingen, Germany
| |
Collapse
|
22
|
Gargiulo E, Ribeiro EFO, Niemann CU. SOHO State of the Art Updates and Next Questions | Infections in Chronic Lymphocytic Leukemia Patients: Risks and Management. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:322-332. [PMID: 36868914 DOI: 10.1016/j.clml.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Although chronic lymphocytic leukemia (CLL) is a malignancy characterized by accumulation of tumor cells in the blood, bone marrow, lymph nodes and secondary lymphoid tissues, the hallmark of the disease and the major cause of death for patients with CLL is actually immune dysfunction and associated infections. Despite improvement in treatment based on combination chemoimmunotherapy and targeted treatment with BTK and BCL-2 inhibitors leading to longer overall survival for patients with CLL, the mortality due to infections have not improved over the last 4 decades. Thus, infections are now the main cause of death for patients with CLL, posing threats to the patient whether during the premalignant state of monoclonal B lymphocytosis (MBL), during the watch & wait phase for treatment naïve patients, or upon treatment in terms of chemoimmunotherapy or targeted treatment. To test whether the natural history of immune dysfunction and infections in CLL can be changed, we have developed the machine learning based algorithm CLL-TIM.org to identify these patients. The CLL-TIM algorithm is currently being used for selection of patients for the clinical trial PreVent-ACaLL (NCT03868722), testing whether short-term treatment with the BTK inhibitor acalabrutinib and the BCL-2 inhibitor venetoclax can improve immune function and decrease the risk of infections for this high-risk patient population. We here review the background for and management of infectious risks in CLL.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; PERSIMUNE, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | | | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Center of Oncology and Hematology, Hospital Santa Lúcia Sul, Brasilia, Brazil; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Herpes Simplex Virus and Varicella Zoster Virus Infections in Cancer Patients. Viruses 2023; 15:v15020439. [PMID: 36851652 PMCID: PMC9961783 DOI: 10.3390/v15020439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Herpes simplex virus (HSV) and varicella zoster virus (VZV) are alpha herpesviruses that establish life-long latent infection in neuronal ganglia after primary infection. Periodic reactivation of these viruses results in recurrent infections that can have significant impact on patients' quality of life. HSV commonly causes oral and genital mucocutaneous infections whereas VZV is responsible for varicella/chickenpox and herpes zoster/shingles, but cancer patients are at particularly higher risk of complications including disseminated and visceral infections due to impaired cell-mediated immunity. While diagnosis of more common HSV and/or VZV infections is frequently clinically based, immunocompromised hosts may have atypical skin presentation or visceral involvement. Thus, diagnostic confirmation using virus-specific tests such as polymerase chain reaction or immunohistochemical staining is crucial in some cases. Oral acyclovir, valacyclovir and famciclovir are usually used for mild to moderate infections and intravenous acyclovir is the drug of choice for severe or disseminated infections. Foscarnet can be used when acyclovir-resistance is confirmed or suspected. Pharmaceutical prophylaxis against HSV and/or VZV should be considered in high-risk cancers patients. Currently, there is no commercially available vaccine against HSV, but VZV vaccines are available to prevent varicella and zoster.
Collapse
|
24
|
Sullivan KM, Farraye FA, Winthrop KL, Willer DO, Vink P, Tavares-Da-Silva F. Safety and efficacy of recombinant and live herpes zoster vaccines for prevention in at-risk adults with chronic diseases and immunocompromising conditions. Vaccine 2023; 41:36-48. [PMID: 36460534 DOI: 10.1016/j.vaccine.2022.10.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022]
Abstract
Compared with the general population, older adults with immune senescence and individuals who are immunocompromised (IC) due to disease or immunosuppressive therapy are at increased risk for herpes zoster (HZ) and its associated complications, which can be debilitating and life-threatening. Vaccination can be an effective strategy against HZ and studies have shown that HZ vaccination in IC individuals can elicit immune responses and provide protection from infection. Recently, the first approvals have been granted in the United States and the European Union for the recombinant HZ vaccine (RZV) in adults ≥ 18 years of age at risk of HZ due to immunodeficiency or immunosuppression. Existing systematic reviews have highlighted the risks for HZ in limited immunocompromising conditions and have only examined clinical data for RZV. This review details the risks and burden of HZ in a broad range of clinically relevant IC populations and summarizes key efficacy and safety data for RZV and live HZ vaccine in these individuals. Research has shown IC individuals can benefit from HZ vaccination; however, these insights have yet to be fully incorporated into vaccination guidelines and clinical care. Clinicians should consider HZ vaccination in eligible at-risk populations to protect against HZ and its associated complications and thereby, reduce the burden that HZ poses on the healthcare system. Electronic health records and linked personal health records could be used to identify and contact patients eligible for HZ vaccination and provide clinical decision support-generated alerts for missing or delayed vaccinations. This review will help clinicians identify eligible IC individuals who may benefit from HZ vaccination. A video abstract linked to this article is available on Figshare https://doi.org/10.6084/m9.figshare.21517605.
Collapse
Affiliation(s)
- Keith M Sullivan
- Duke University Medical Center, 200 Trent Dr, Durham, NC 27710, USA.
| | - Francis A Farraye
- Inflammatory Bowel Disease Center, Division of Gastroenterology and Hepatology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Kevin L Winthrop
- Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| | - David O Willer
- GSK Vaccines, 100 Milverton Drive Suite 800, Mississauga, ON, Canada.
| | - Peter Vink
- GSK Vaccines, 14200 Shady Grove Rd, Rockville, MD 20850, USA.
| | | |
Collapse
|
25
|
Almeida Neto JBD, Arce IL, Figueiredo VLDP, Vicari P. Immunogenicity profile after COVID-19 vaccination in patients with onco-hematological diseases. EINSTEIN-SAO PAULO 2023; 21:eAO0089. [PMID: 36946824 PMCID: PMC10010256 DOI: 10.31744/einstein_journal/2023ao0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/27/2022] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE To evaluate the influence of onco-hematological pathologies on seroconversion to COVID-19 vaccines, in addition to the effects of chemotherapy treatment on this response. METHODS The present study evaluated the immunogenic response of 76 patients with onco-hematological diseases to multiple vaccine platforms compared to 25 control individuals. RESULTS Our results showed positive response rates of 74.02% in patients with onco-hematological diseases and 100% in controls. When analyzed according to etiological group, patients with lymphoproliferative disorders achieved a positive vaccine response rate of 58.7%, whereas those with myeloproliferative diseases achieved a 100% response rate. We also observed that patients previously exposed to COVID-19 presented a 75% increase in their antibody values after vaccination, and these values were 37% higher than those of patients who did not have such exposure. We found that patients who underwent B-lymphocyte-depleting therapy in the last 2 years before vaccination had a worse response rate of 18.75%. CONCLUSION Despite the immunosuppression of patients with onco-hematological diseases, caused by the biology of their diseases and treatment, benefit and safety in vaccinating these patients are observed, in view of the important recall immune response and incidence of adverse effects similar to those of the healthy population.
Collapse
Affiliation(s)
| | - Inara Lúcia Arce
- Hospital do Servidor Público Estadual de São Paulo , São Paulo , SP , Brazil
| | | | - Perla Vicari
- Hospital do Servidor Público Estadual de São Paulo , São Paulo , SP , Brazil
| |
Collapse
|
26
|
Wang KY, Shah P, Skavla B, Fayaaz F, Chi J, Rhodes JM. Vaccination efficacy in patients with chronic lymphocytic leukemia. Leuk Lymphoma 2023; 64:42-56. [PMID: 36270021 DOI: 10.1080/10428194.2022.2133538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a disorder of mature malignant B cells with multiple elements of immune dysfunction. Infections are common in CLL patients due to complex immunodeficiency. Vaccines are used as preventative measures for common diseases including influenza, pneumococcus, tetanus/diphtheria and shingles in the general population. Vaccines are utilized to mitigate this risk, although there have been some concerns regarding the efficacy of vaccines in the CLL population due to the inherent complex immune dysfunction associated with the disease. In this review, we describe the clinical and laboratory indicators for efficacy of the vaccines in the CLL population (including COVID-19, influenza, pneumonia, herpes zoster, and tetanus) and discuss immunization recommendations for patients with CLL.
Collapse
Affiliation(s)
- Kevin Y Wang
- Department of Internal Medicine, Northwell Health, Manhasset, NY, USA
| | - Pratik Shah
- Department of Internal Medicine, Northwell Health, Manhasset, NY, USA
| | - Brandon Skavla
- Department of Internal Medicine, Northwell Health, Manhasset, NY, USA
| | - Fatima Fayaaz
- Department of Hematology Oncology, Northwell Health, Manhasset, NY, USA
| | - Jeffrey Chi
- Department of Hematology Oncology, Northwell Health, Manhasset, NY, USA
| | - Joanna M Rhodes
- Department of Hematology Oncology, Northwell Health, Manhasset, NY, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
27
|
Hassan H, Ammad Ud Din M, Jamshed S, Bress J, Mustafa SS. Effect of Ibrutinib on Hmphocytic Leukemia: a Single-Center Experience. Hematol Oncol Stem Cell Ther 2022; 15:208-212. [PMID: 34391729 DOI: 10.1016/j.hemonc.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/27/2021] [Accepted: 07/26/2021] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE/BACKGROUND In the era of novel agents, Bruton tyrosine kinase (BTK) inhibitors have changed the dynamics of treating chronic lymphocytic leukemia. However, small studies have shown conflicting results regarding the additive humoral dysfunction with their use. METHODS We prospectively compared vaccine responses in patients on ibrutinib (n = 10) with matched controls (n = 16) and analyzed whether a protein-based (tetanus-diphtheria toxoid) or a carbohydrate (Pneumovax) moiety will result in an improved immunological response. RESULTS An appropriate serological response in IgG titers for diphtheria was seen in 40% of patients on ibrutinib and 31% of patients in the control group. About 30% of patients on ibrutinib and 44% of patients in the control group had an adequate response to tetanus toxoid. None of the patients on ibrutinib mounted an adequate response to Pneumovax, while 31% of patients in the control arm responded appropriately. These differences in the results were considered insignificant as all p values were greater than the cut-off of 0.05. CONCLUSION Our study did not show significant detrimental vaccine responses with ibrutinib and calls for larger multicenter studies to elucidate long-term effects, especially in patients with prior exposure to anti-CD20 monoclonal antibodies.
Collapse
Affiliation(s)
- Hamza Hassan
- Department of Hematology & Medical Oncology, Boston University Medical Center, Boston, MA, USA
| | | | - Saad Jamshed
- Division of Hematology and Oncology, Rochester Regional Health, Rochester, NY, USA
| | - Jonathan Bress
- Division of Nephrology, Rochester Regional Health, Rochester, NY, USA
| | - S Shahzad Mustafa
- Division of Allergy, Immunology, and Rheumatology, Rochester Regional Health, Rochester, NY, USA.,Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
28
|
Qin K, Honjo K, Sherrill-Mix S, Liu W, Stoltz R, Oman AK, Hall LA, Li R, Sterrett S, Frederick ER, Lancaster JR, Narkhede M, Mehta A, Ogunsile FJ, Patel RB, Ketas TJ, Cruz Portillo VM, Cupo A, Larimer BM, Bansal A, Goepfert PA, Hahn BH, Davis RS. SARS-CoV-2 mRNA vaccination exposes progressive adaptive immune dysfunction in patients with chronic lymphocytic leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.12.19.22283645. [PMID: 36597532 PMCID: PMC9810225 DOI: 10.1101/2022.12.19.22283645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic lymphocytic leukemia (CLL) patients have lower seroconversion rates and antibody titers following SARS-CoV-2 vaccination, but the reasons for this diminished response are poorly understood. Here, we studied humoral and cellular responses in 95 CLL patients and 30 healthy controls after two BNT162b2 or mRNA-2173 mRNA immunizations. We found that 42% of CLL vaccinees developed SARS-CoV-2-specific binding and neutralizing antibodies (NAbs), while 32% had no response. Interestingly, 26% were seropositive, but had no detectable NAbs, suggesting the maintenance of pre-existing endemic human coronavirus-specific antibodies that cross-react with the S2 domain of the SARS-CoV-2 spike. These individuals had more advanced disease. In treatment-naïve CLL patients, mRNA-2173 induced 12-fold higher NAb titers and 1.7-fold higher response rates than BNT162b2. These data reveal a graded loss of immune function, with pre-existing memory being preserved longer than the capacity to respond to new antigens, and identify mRNA-2173 as a superior vaccine for CLL patients.
Collapse
Affiliation(s)
- Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,These authors contributed equally
| | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,These authors contributed equally
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Regina Stoltz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Allisa K. Oman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucinda A. Hall
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ellen R. Frederick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey R. Lancaster
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mayur Narkhede
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amitkumar Mehta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Foluso J. Ogunsile
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rima B. Patel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas J. Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Victor M Cruz Portillo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Benjamin M. Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA,Lead Contact,Correspondence: (R.S.D.)
| |
Collapse
|
29
|
Sorcini D, De Falco F, Gargaro M, Bozza S, Guarente V, Cardinali V, Stella A, Adamo FM, Silva Barcelos EC, Rompietti C, Dorillo E, Geraci C, Esposito A, Arcaleni R, Capoccia S, Mameli MG, Graziani A, Moretti L, Cipiciani A, Riccardi C, Mencacci A, Fallarino F, Rosati E, Sportoletti P. Immune correlates of protection by vaccine against SARS-CoV-2 in patients with chronic lymphocytic leukaemia. Br J Haematol 2022; 201:45-57. [PMID: 36484163 PMCID: PMC9878216 DOI: 10.1111/bjh.18602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
In chronic lymphocytic leukaemia (CLL) the efficacy of SARS-CoV-2 vaccination remains unclear as most studies have focused on humoral responses. Here we comprehensively examined humoral and cellular responses to vaccine in CLL patients. Seroconversion was observed in 55.2% of CLL with lower rate and antibody titres in treated patients. T-cell responses were detected in a significant fraction of patients. CD4+ and CD8+ frequencies were significantly increased independent of serology with higher levels of CD4+ cells in patients under a Bruton tyrosine kinase (BTK) or a B-cell lymphoma 2 (BCL-2) inhibitor. Vaccination skewed CD8+ cells towards a highly cytotoxic phenotype, more pronounced in seroconverted patients. A high proportion of patients showed spike-specific CD4+ and CD8+ cells producing interferon gamma (IFNγ) and tumour necrosis factor alpha (TNFα). Patients under a BTK inhibitor showed increased production of IFNγ and TNFα by CD4+ cells. Vaccination induced a Th1 polarization reverting the Th2 CLL T-cell profile in the majority of patients with lower IL-4 production in untreated and BTK-inhibitor-treated patients. Such robust T-cell responses may have contributed to remarkable protection against hospitalization and death in a cohort of 540 patients. Combining T-cell metrics with seroprevalence may yield a more accurate measure of population immunity in CLL, providing consequential insights for public health.
Collapse
Affiliation(s)
- Daniele Sorcini
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Marco Gargaro
- Pharmacology Section, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Silvia Bozza
- Microbiology and Clinical Microbiology Section, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Valerio Guarente
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Valeria Cardinali
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Arianna Stella
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Francesco Maria Adamo
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Estevao Carlos Silva Barcelos
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Chiara Rompietti
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Erica Dorillo
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Clelia Geraci
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Angela Esposito
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Roberta Arcaleni
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Silvia Capoccia
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Maria Grazia Mameli
- Institute of Hematology, Santa Maria della Misericordia HospitalPerugiaItaly
| | - Alessandro Graziani
- Microbiology and Clinical Microbiology Section, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Lorenzo Moretti
- Institute of Hematology, Santa Maria della Misericordia HospitalPerugiaItaly
| | - Alessandra Cipiciani
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| | - Carlo Riccardi
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Antonella Mencacci
- Microbiology and Clinical Microbiology Section, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Francesca Fallarino
- Pharmacology Section, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Emanuela Rosati
- Biosciences and Medical Embryology Section, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato‐Oncologica (CREO)University of PerugiaPerugiaItaly
| |
Collapse
|
30
|
Wang X, Sima L. Antibody response after vaccination against SARS-CoV-2 in adults with hematological malignancies: a systematic review and meta-analysis. J Infect 2022:S0163-4453(22)00674-0. [PMID: 36417984 PMCID: PMC9675635 DOI: 10.1016/j.jinf.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Vaccines against SARS-CoV-2 have shown remarkable efficacy and thus constitute an important preventive option against coronavirus disease 2019 (COVID-19), especially in fragile patients. We aimed to systematically analyze the outcomes of patients with hematological malignancies who received vaccination and to identify specific groups with differences in outcomes. The primary end point was antibody response after full vaccination (2 doses of mRNA or one dose of vector- based vaccines). We identified 49 studies comprising 11,086 individuals. Overall risk of bias was low. The pooled response for hematological malignancies was 64% (95% confidence interval [CI]: 59-69; I²=93%) versus 96% (95% CI: 92-97; I²=44%) for solid cancer and 98% (95% CI: 96-99; I²=55%) for healthy controls (P<0.001). Outcome was different across hematological malignancies (P<0.001). The pooled response was 50% (95% CI: 43-57; I²=84%) for chronic lymphocytic leukemia, 76% (95% CI: 67-83; I²=92%) for multiple myeloma, 83% (95% CI: 69-91; I²=85%) for myeloproliferative neoplasms, 91% (95% CI: 82-96; I²=12%) for Hodgkin lymphoma, and 58% (95% CI: 44-70; I²=84%) for aggressive and 61% (95% CI: 48-72; I²=85%) for indolent non-Hodgkin lymphoma. The pooled response for allogeneic and autologous hematopoietic cell transplantation was 82% and 83%, respectively. Being in remission and prior COVID-19 showed significantly higher responses. Low pooled response was identified for active treatment (35%), anti-CD20 therapy ≤1 year (15%), Bruton kinase inhibition (23%), venetoclax (26%), ruxolitinib (42%), and chimeric antigen receptor T-cell therapy (42%). Studies on timing, value of boosters, and long-term efficacy are needed. This study is registered with PROSPERO (clinicaltrials gov. Identifier: CRD42021279051).
Collapse
Affiliation(s)
- Xia Wang
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Laozei Sima
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
31
|
Sun C. EXABS-181-CLL Infection Prophylaxis in Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22 Suppl 2:S83-S84. [PMID: 36164243 DOI: 10.1016/s2152-2650(22)00673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Fiorcari S, Atene CG, Maffei R, Mesini N, Debbia G, Colasante C, Pozzi S, Barbieri E, Maccaferri M, Leonardi G, Potenza L, Luppi M, Marasca R. Effects of the BTN162b2 mRNA COVID-19 vaccine in humoral and cellular immunity in patients with chronic lymphocytic leukemia. Hematol Oncol 2022; 41:120-127. [PMID: 36156278 PMCID: PMC9537931 DOI: 10.1002/hon.3077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 02/03/2023]
Abstract
Chronic lymphocytic leukemia (CLL), the most common leukemia in the western countries, is characterized by immunosuppression due to disease itself and cytotoxic treatments. Since the beginning of COVID-19 pandemic, patients with CLL appear to be a vulnerable population. In addition, phase III mRNA vaccine trials did not provide information about the efficacy in immunocomprised population. In CLL, the antibody-mediated response to SARS-CoV-2 vaccine is impaired. The goal of this study was to evaluate the effects of SARS-CoV-2 vaccination on humoral immune response and on cellular immunity in CLL patients. Humoral immune response to BNT162b2 messenger RNA COVID-19 vaccine was evaluated in 44 CLL patients comprising 20 treatment-naïve, 14 under treatment with ibrutinib and 10 in follow-up after completion of therapy. A positive serological response to SARS-CoV-2 vaccination with IgG titers higher than 13 UA/ml was detected in 54.6% of CLL patients with a higher response in patients who obtained remission after treatment. Reduced antibody response was detected in patients under ibrutinib treatment. T-cell response to overlapping pool of peptides representing the spike region was assessed in paired CLL samples collected before and after 1 month from the second dose of COVID-19 vaccine in treatment-naïve and ibrutinib-treated CLL patients using cytokine secretion assay. Both CD3+ CD4+ and CD3+ CD8+ T cells are able to mount a cellular response to spike peptides with secretion of IFNγ and TNFα before and after vaccination in both treatment naïve and ibrutinib-treated patients and this cellular immune response is independent by COVID-19 vaccination. Collectively, T cell response to spike peptides appeared more blunted in CLL patients under treatment with ibrutinib compared to untreated ones. Our study supports the need for optimization of vaccination strategy to achieve an adequate immune response keeping strict preventive measures by CLL patients against COVID-19.
Collapse
Affiliation(s)
- Stefania Fiorcari
- Department of Medical and Surgical SciencesSection of HematologyUniversity of Modena and Reggio EmiliaModenaItaly
| | - Claudio Giacinto Atene
- Department of Medical and Surgical SciencesSection of HematologyUniversity of Modena and Reggio EmiliaModenaItaly
| | - Rossana Maffei
- Hematology UnitDepartment of Oncology and HematologyA.O.U of Modena, PoliclinicoModenaItaly
| | - Nicolò Mesini
- Department of Medical and Surgical SciencesSection of HematologyUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giulia Debbia
- Department of Medical and Surgical SciencesSection of HematologyUniversity of Modena and Reggio EmiliaModenaItaly
| | - Corrado Colasante
- Hematology UnitDepartment of Oncology and HematologyA.O.U of Modena, PoliclinicoModenaItaly
| | - Stefano Pozzi
- Hematology UnitDepartment of Oncology and HematologyA.O.U of Modena, PoliclinicoModenaItaly
| | - Emiliano Barbieri
- Hematology UnitDepartment of Oncology and HematologyA.O.U of Modena, PoliclinicoModenaItaly
| | - Monica Maccaferri
- Hematology UnitDepartment of Oncology and HematologyA.O.U of Modena, PoliclinicoModenaItaly
| | - Giovanna Leonardi
- Hematology UnitDepartment of Oncology and HematologyA.O.U of Modena, PoliclinicoModenaItaly
| | - Leonardo Potenza
- Department of Medical and Surgical SciencesSection of HematologyUniversity of Modena and Reggio EmiliaModenaItaly,Hematology UnitDepartment of Oncology and HematologyA.O.U of Modena, PoliclinicoModenaItaly
| | - Mario Luppi
- Department of Medical and Surgical SciencesSection of HematologyUniversity of Modena and Reggio EmiliaModenaItaly,Hematology UnitDepartment of Oncology and HematologyA.O.U of Modena, PoliclinicoModenaItaly
| | - Roberto Marasca
- Department of Medical and Surgical SciencesSection of HematologyUniversity of Modena and Reggio EmiliaModenaItaly,Hematology UnitDepartment of Oncology and HematologyA.O.U of Modena, PoliclinicoModenaItaly
| |
Collapse
|
33
|
Guven DC, Incesu FGG, Yildirim HC, Erul E, Chalabiyev E, Aktas BY, Yuce D, Arik Z, Kilickap S, Aksoy S, Erman M, Hayran KM, Unal S, Alp A, Dizdar O. Immunogenicity of two doses of inactive COVID-19 vaccine and third booster dose mRNA vaccine in patients with cancer receiving active systemic therapy. Int J Cancer 2022; 152:679-685. [PMID: 36082448 PMCID: PMC9538436 DOI: 10.1002/ijc.34280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
We aimed to evaluate the seroconversion rates after two doses of inactive COVID-19 vaccine (CoronaVac) and the benefit of a third dose mRNA vaccine booster in patients with cancer receiving active treatment. Patients with solid tumors receiving active treatment (n = 101) and patients with no-cancer (n = 48) as the control group were included in the study. All the patients and controls had received two doses of CoronaVac and a third booster dose of the mRNA vaccine (Bnt162b2). Anti-SARS-CoV-2 Spike Receptor Binding Domain IgG antibody levels after the second and third dose were measured with quantitative ELISA. The median age of the patients was 66 (IQR 60-71). 79% of the patients were receiving chemotherapy, and 21% were receiving immunotherapy at the time of vaccination. Antibody levels measured after two doses of CoronaVac were significantly lower in patients with cancer than in the control group (median 0 μg/ml [IQR 0-1.17 μg/ml] vs median 0.91 μg/ml [IQR 0-2.24 μg/ml], respectively, P = .002). Seropositivity rates were 46.5% in patients with cancer and 72.9% in the control group (P = .002). Antibody measurement was performed in 26 patients after the third dose. Seroconversion rate increased from 46.5% to 88.5% (P < .001), and the antibody titers significantly increased with the third-dose booster (median 0 μg/ml [IQR 0-1.17 μg/ml] after two doses vs 12.6 μg/ml [IQR 1.8-69.1 μg/ml] after third booster dose, P < .001). Immunogenicity of CoronaVac is low in patients with cancer receiving active treatment, and administering a third dose of an mRNA vaccine is effective in terms of improving seroconversion rates.
Collapse
Affiliation(s)
| | | | | | - Enes Erul
- Hacettepe University Cancer InstituteAnkaraTurkey
| | | | | | - Deniz Yuce
- Hacettepe University Cancer InstituteAnkaraTurkey
| | - Zafer Arik
- Hacettepe University Cancer InstituteAnkaraTurkey
| | | | - Sercan Aksoy
- Hacettepe University Cancer InstituteAnkaraTurkey
| | | | | | - Serhat Unal
- Faculty of Medicine, Department of Infectious DiseaseHacettepe UniversityAnkaraTurkey
| | - Alpaslan Alp
- Department of MicrobiologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Omer Dizdar
- Hacettepe University Cancer InstituteAnkaraTurkey
| |
Collapse
|
34
|
Wang H, Guo H, Yang J, Liu Y, Liu X, Zhang Q, Zhou K. Bruton tyrosine kinase inhibitors in B-cell lymphoma: beyond the antitumour effect. Exp Hematol Oncol 2022; 11:60. [PMID: 36138486 PMCID: PMC9493169 DOI: 10.1186/s40164-022-00315-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/11/2022] [Indexed: 01/08/2023] Open
Abstract
Targeting B-cell receptor signalling using Bruton tyrosine kinase (BTK) inhibitors (BTKis) has become a highly successful treatment modality for B-cell malignancies, especially for chronic lymphocytic leukaemia. However, long-term administration of BTKis can be complicated by adverse on- and/or off-target effects in particular cell types. BTK is widely expressed in cells of haematopoietic origin, which are pivotal components of the tumour microenvironment. BTKis, thus, show broad immunomodulatory effects on various non-B immune cell subsets by inhibiting specific immune receptors, including T-cell receptor and Toll-like receptors. Furthermore, due to the off-target inhibition of other kinases, such as IL-2-inducible T-cell kinase, epidermal growth factor receptor, and the TEC and SRC family kinases, BTKis have additional distinct effects on T cells, natural killer cells, platelets, cardiomyocytes, and other cell types. Such mechanisms of action might contribute to the exceptionally high clinical efficacy as well as the unique profiles of adverse effects, including infections, bleeding, and atrial fibrillation, observed during BTKi administration. However, the immune defects and related infections caused by BTKis have not received sufficient attention in clinical studies till date. The broad involvement of BTK in immunological pathways provides a rationale to combine BTKis with specific immunotherapies, such as immune checkpoint inhibitor or chimeric antigen receptor-T-cell therapy, for the treatment of relapsed or refractory diseases. This review discusses and summarises the above-mentioned issues as a reference for clinicians and researchers.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Hao Guo
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Jingyi Yang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Yanyan Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Xingchen Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Qing Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127 Dongming Road, Jinshui District, Zhengzhou, 450003, China.
| |
Collapse
|
35
|
Bossi E, Aroldi A, Borin LM, Verga L, Fontana D, Cocito F, Manghisi B, Rindone G, Cavalca F, Ripamonti A, Raggi M, Malandrin SMI, Cavallero A, Antolini L, Bonardi D, Piazza RG, Gambacorti-Passerini C. Humoral and cellular immune response in patients with hematological disorders after two doses of BNT162b2 mRNA COVID-19 vaccine: A single-center prospective observational study (NCT05074706). EJHAEM 2022; 3:JHA2544. [PMID: 36248617 PMCID: PMC9538646 DOI: 10.1002/jha2.544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/12/2022]
Abstract
Hematological patients at higher risk of severe COVID-19 were excluded from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine trials. In this single-center observational prospective study (NCT05074706), we evaluate immune response in the hematological patients followed at the Hematological Division of San Gerardo Hospital, Monza (Italy) deemed to be severely immunosuppressed after vaccination with two doses of the BNT162b2 vaccine. Anti-SARS-CoV-2 immunoglobulin G titers above the cutoff value of 33.8 BAU/ml were detected in 303 (80.2%) out of the 378 patients enrolled. Patients with lymphoproliferative disorders had a significant lower probability of immunization (43.2% vs. 88.4%, p < 0.001). Patients treated with anti-CD20 showed a significantly lower probability of immunization compared to all other treatments (21.4%, p < 0.0001). Among 69 patients who failed seroconversion, 15 patients (22.7%) showed a positive T-cell response. Patients previously treated with anti-CD20 were 2.4 times more likely to test positive for T-cell responses (p = 0.014). Within a follow-up of 9 months from the second COVID-19 vaccination, symptomatic SARS-CoV-2 infections were reported by 20 patients (5.3%) and four of them required hospitalization. Successful serological or T-cell-mediated immunization conferred protection from symptomatic COVID-19. Patients treated with anti-CD20 who were not seroconverted after vaccination might still be protected from COVID-19 due to the T-cell immune response.
Collapse
Affiliation(s)
- Elisa Bossi
- Department of Hematology San Gerardo Hospital Monza Italy
| | - Andrea Aroldi
- Department of Hematology San Gerardo Hospital Monza Italy
- Department of Medicine and Surgery University of Milano-Bicocca Milano Italy
| | | | - Luisa Verga
- Department of Hematology San Gerardo Hospital Monza Italy
| | - Diletta Fontana
- Department of Medicine and Surgery University of Milano-Bicocca Milano Italy
| | | | - Beatrice Manghisi
- Department of Hematology San Gerardo Hospital Monza Italy
- Department of Medicine and Surgery University of Milano-Bicocca Milano Italy
| | - Giovanni Rindone
- Department of Hematology San Gerardo Hospital Monza Italy
- Department of Medicine and Surgery University of Milano-Bicocca Milano Italy
| | - Fabrizio Cavalca
- Department of Hematology San Gerardo Hospital Monza Italy
- Department of Medicine and Surgery University of Milano-Bicocca Milano Italy
| | - Alessia Ripamonti
- Department of Hematology San Gerardo Hospital Monza Italy
- Department of Medicine and Surgery University of Milano-Bicocca Milano Italy
| | - Monica Raggi
- Microbiology Laboratory San Gerardo Hospital Monza Italy
| | | | | | - Laura Antolini
- Department of Medicine and Surgery University of Milano-Bicocca Milano Italy
| | - Diego Bonardi
- Department of Hematology San Gerardo Hospital Monza Italy
| | - Rocco Giovanni Piazza
- Department of Hematology San Gerardo Hospital Monza Italy
- Department of Medicine and Surgery University of Milano-Bicocca Milano Italy
| | - Carlo Gambacorti-Passerini
- Department of Hematology San Gerardo Hospital Monza Italy
- Department of Medicine and Surgery University of Milano-Bicocca Milano Italy
| |
Collapse
|
36
|
Lovell AR, Jammal N, Bose P. Selecting the optimal BTK inhibitor therapy in CLL: rationale and practical considerations. Ther Adv Hematol 2022; 13:20406207221116577. [PMID: 35966045 PMCID: PMC9373150 DOI: 10.1177/20406207221116577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) inhibitors have dramatically changed the treatment of newly diagnosed and relapsed/refractory chronic lymphocytic leukemia (CLL). Ibrutinib, acalabrutinib, and zanubrutinib are Food and Drug Administration (FDA)-approved BTK inhibitors that have all demonstrated progression-free survival (PFS) benefit compared with chemoimmunotherapy. The efficacy of these agents compared to one another is under study; however, current data suggest they provide similar efficacy. Selectivity for BTK confers different adverse effect profiles, and longer follow-up and real-world use have characterized side effects over time. The choice of BTK inhibitor is largely patient-specific, and this review aims to highlight the differences among the agents and guide the choice of BTK inhibitor in clinical practice.
Collapse
Affiliation(s)
- Alexandra R. Lovell
- Division of Pharmacy, The University of Texas
MD Anderson Cancer Center, Houston, TX, USA
| | - Nadya Jammal
- Division of Pharmacy, The University of Texas
MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas
MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
37
|
Ito Y, Honda A, Kurokawa M. COVID-19 mRNA Vaccine in Patients With Lymphoid Malignancy or Anti-CD20 Antibody Therapy: A Systematic Review and Meta-Analysis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e691-e707. [PMID: 35459624 PMCID: PMC8958822 DOI: 10.1016/j.clml.2022.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 04/09/2023]
Abstract
BACKGROUND The humoral response to vaccination in individuals with lymphoid malignancies or those undergoing anti-CD20 antibody therapy is impaired, but details of the response to mRNA vaccines to protect against COVID-19 remain unclear. This systematic review and meta-analysis aimed to characterize the response to COVID-19 mRNA vaccines in patients with lymphoid malignancies or those undergoing anti-CD20 antibody therapy. MATERIALS AND METHODS A literature search retrieved 52 relevant articles, and random-effect models were used to analyze humoral and cellular responses. RESULTS Lymphoid malignancies and anti-CD20 antibody therapy for non-malignancies were significantly associated with lower seropositivity rates (risk ratio 0.60 [95% CI 0.53-0.69]; risk ratio 0.45 [95% CI 0.39-0.52], respectively). Some subtypes (chronic lymphocytic leukemia, treatment-naïve chronic lymphocytic leukemia, myeloma, and non-Hodgkin's lymphoma) exhibited impaired humoral response. Anti-CD20 antibody therapy within 6 months of vaccination decreased humoral response; moreover, therapy > 12 months before vaccination still impaired the humoral response. However, anti-CD20 antibody therapy in non-malignant patients did not attenuate T cell responses. CONCLUSION These data suggest that patients with lymphoid malignancies or those undergoing anti-CD20 antibody therapy experience an impaired humoral response, but cellular response can be detected independent of anti-CD20 antibody therapy. Studies with long-term follow-up of vaccine effectiveness are warranted (PROSPERO registration number: CRD42021265780).
Collapse
Affiliation(s)
- Yusuke Ito
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Akira Honda
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Therapy and Transplantation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
38
|
Rivera D, Ferrajoli A. Managing the Risk of Infection in Chronic Lymphocytic Leukemia in the Era of New Therapies. Curr Oncol Rep 2022; 24:1003-1014. [PMID: 35366167 PMCID: PMC8976213 DOI: 10.1007/s11912-022-01261-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Patients diagnosed with CLL have an increased susceptibility to infections. Over the years, there has been a shift of the treatment arsenal to an increasing use of chemotherapy-free regimens, particularly small molecule inhibitors. These therapies have proven to be effective and have a favorable toxicity profile. Infections continue to represent a significant complication in the era of novel therapies. RECENT FINDINGS Recent studies continue to bring new insights into the effects of modern therapies on the immune system. Evidence supporting infection prevention strategies is scarce. We will review the available recommendations to prevent infections in patients with CLL treated with novel therapies. New CLL therapies are broadly adopted in routine practice, requiring optimization of their side effects. Timely prevention, recognition, and treatment of infections should remain an important aspect of the standard management of a patient with CLL.
Collapse
Affiliation(s)
- Daniel Rivera
- Department of Leukemia, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0428, Houston, TX, 77030, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0428, Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Tang K, Wei Z, Wu X. Impaired serological response to COVID-19 vaccination following anti-cancer therapy: a systematic review and meta-analysis. J Med Virol 2022; 94:4860-4868. [PMID: 35750492 PMCID: PMC9349696 DOI: 10.1002/jmv.27956] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Owing to the high coronavirus disease 2019 (COVID‐19)‐related morbidity and fatality rate among patients with cancer, the introduction of COVID‐19 vaccines is of profound significance in this fragile population. Accumulating data suggested that oncologic patients, especially those with anticancer therapy have an impaired immune response to COVID‐19 vaccination. However, the exact effect of anticancer treatments on postvaccination response has not been elucidated yet. We, therefore, conducted a meta‐analysis to evaluate the impact of treatments on response to COVID‐19 vaccination in patients with cancer. A total of 39 studies were finally included comprising 11 075 oncologic patients. Overall, we found the humoral response was significantly decreased in patients undergoing anticancer treatments (odds ratio [OR] = 2.55, 95% confidence interval [CI]: 2.04–3.18) compared with those without active treatment. The seroconversion rates were significantly lower in patients with chemotherapy (OR = 3.04, 95% CI: 2.28–4.05), targeted therapy (OR = 4.72, 95% CI: 3.18–7.01) and steroid usage (OR = 2.19, 95% CI: 1.57–3.07), while there was no significant association between immunotherapy or hormonal therapy and seroconversion after vaccination. Subgroup analyses showed therapies with anti‐CD20 antibody (OR = 11.28, 95% CI: 6.40–19.90), B‐cell lymphoma 2 inhibitor (OR = 5.76, 95% CI: 3.64–9.10), and Bruton tyrosine kinase inhibitor (OR = 6.86, 95% CI: 4.23–11.15) were significantly correlated with the risk of negative humoral response to vaccination. In conclusion, our results demonstrated that specific oncologic therapies may significantly affect serological response to COVID‐19 vaccines in patients with cancer. Thus, an adapted vaccination strategy taking the influence of active treatment into account is in need, and further research on the effect of the third dose of vaccine and the role of postvaccination cellular response in oncologic patients is also needed.
Collapse
Affiliation(s)
- Kefu Tang
- Prenatal Diagnosis Center, Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 200051, China
| | - Zhiying Wei
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University,, Shanghai, 200030, China
| |
Collapse
|
40
|
Nitipir C, Parosanu AI, Olaru M, Popa AM, Pirlog C, Iaciu C, Vrabie R, Stanciu MI, Oprescu-Macovei A, Bumbacea D, Negrei C, Orlov-Slavu C. Infection and reinfection with SARS-CoV-2 in cancer patients: A cohort study. Exp Ther Med 2022; 23:399. [PMID: 35619634 PMCID: PMC9115626 DOI: 10.3892/etm.2022.11326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
COVID-19 reinfection, although a controversial issue, is an important clinical problem in cancer patients and beyond. The present study aimed to identify the risk factors associated with worse outcomes in cancer patients with Covid-19 in both first infection and reinfection and to describe the involvement of vaccines in reinfection outcome. The present study enrolled 85 patients with solid tumors who had Covid-19 infection and had not been previously vaccinated. Classical risk factors associated with worse outcomes in cancer patients with second SARS-Cov infection were considered. The patients were followed up retrospectively, measuring mortality at the first and second infection and the vaccination rate after the first infection. The factors associated with the highest risk of mortality at the first infection were, in order of importance: intensive care unit (ICU) admission, unfavorable performance status, radiologically quantifiable presence of oncological disease, and administration of cytotoxic chemotherapy in the period immediately before infection. The risk factors associated with higher mortality from reinfection were ECOG 3-4 performance status and administration of cytotoxic chemotherapy in the period immediately before infection. In the studied patients, mortality from reinfection was not affected by prior vaccination. Thus, bearing in mind all of these risk factors for poor outcomes in cancer patients with solid tumors presenting with Covid-19 can help the treating oncologists make personalized decisions about patient care during the pandemic.
Collapse
Affiliation(s)
- Cornelia Nitipir
- Department of Medical Oncology, Elias University Emergency Hospital, 11468 Bucharest, Romania
- Department of Oncology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andreea Ioana Parosanu
- Department of Medical Oncology, Elias University Emergency Hospital, 11468 Bucharest, Romania
- Department of Oncology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihaela Olaru
- Department of Medical Oncology, Elias University Emergency Hospital, 11468 Bucharest, Romania
- Department of Oncology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ana Maria Popa
- Department of Medical Oncology, Elias University Emergency Hospital, 11468 Bucharest, Romania
- Department of Oncology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Pirlog
- Department of Medical Oncology, Elias University Emergency Hospital, 11468 Bucharest, Romania
- Department of Oncology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristian Iaciu
- Department of Medical Oncology, Elias University Emergency Hospital, 11468 Bucharest, Romania
- Department of Oncology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Radu Vrabie
- Department of Medical Oncology, Elias University Emergency Hospital, 11468 Bucharest, Romania
- Department of Oncology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Miruna Ioana Stanciu
- Department of Medical Oncology, Elias University Emergency Hospital, 11468 Bucharest, Romania
| | - Anca Oprescu-Macovei
- Department of Gastroenterology, Agrippa Ionescu Emergency Hospital, 011356 Bucharest, Romania
- Department of Gastroenterology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dragos Bumbacea
- Department of Pneumology, Elias University Emergency Hospital, 11468 Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Orlov-Slavu
- Department of Medical Oncology, Elias University Emergency Hospital, 11468 Bucharest, Romania
- Department of Oncology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
41
|
Fendler A, de Vries EGE, GeurtsvanKessel CH, Haanen JB, Wörmann B, Turajlic S, von Lilienfeld-Toal M. COVID-19 vaccines in patients with cancer: immunogenicity, efficacy and safety. Nat Rev Clin Oncol 2022; 19:385-401. [PMID: 35277694 PMCID: PMC8916486 DOI: 10.1038/s41571-022-00610-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Patients with cancer have a higher risk of severe coronavirus disease (COVID-19) and associated mortality than the general population. Owing to this increased risk, patients with cancer have been prioritized for COVID-19 vaccination globally, for both primary and booster vaccinations. However, given that these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, and the extent of humoral and cellular immune responses in these patients, as well as the risks of vaccine-related adverse events. In this Review, we summarize the current knowledge generated in studies conducted since COVID-19 vaccines first became available. We also highlight critical points that might affect vaccine efficacy in patients with cancer in the future.
Collapse
Affiliation(s)
- Annika Fendler
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | | | - John B Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Bernhard Wörmann
- Division of Hematology, Oncology and Tumour Immunology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Marie von Lilienfeld-Toal
- Department of Haematology and Medical Oncology, University Hospital Jena, Jena, Germany.
- Research Group Infections in Haematology/Oncology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
| |
Collapse
|
42
|
Diamantopoulos PT, Stafylidis C, Vlachopoulou D, Kontandreopoulou CN, Giannakopoulou N, Vardaka M, Mpouhla A, Mastrogianni E, Variami E, Galanopoulos A, Pappa V, Psichogiou M, Hatzakis A, Viniou NA. Safety and immunogenicity of the BNT162b2 mRNA Covid-19 vaccine in patients with chronic lymphocytic leukemia: a prospective study. Ther Adv Hematol 2022; 13:20406207221090150. [PMID: 35646300 PMCID: PMC9131386 DOI: 10.1177/20406207221090150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Immunization of patients with chronic lymphocytic leukemia (CLL) with vaccines against several infectious diseases has proven insufficient. Data on seroconversion of patients with CLL after vaccination against severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) are still young, but accumulating evidence shows low seroconversion rates. Methods: We conducted a prospective, noninterventional study evaluating the safety and immunogenicity of two doses of the BNT162b2 mRNA Covid-19 vaccine, administered 21 days apart in consecutive adult patients with CLL. Patients vaccinated with other vaccines against SARS-CoV-2, with a history of confirmed Coronavirus Disease 19 (COVID-19), with known human immunodeficiency virus infection, or with an inability to provide written informed consent were excluded. Sera were tested before the first and after the second dose of the vaccine for anti-SARS-CoV-2 receptor binding domain (RBD) spike protein IgG (anti-RBD), using the Abbott SARS-CoV-2 IgG II Quant assay (Abbott Laboratories, Abbott Park, IL, USA), with a cutoff value for seroconversion at 50 AU/ml. Results: Sixty-one patients (28 males/33 females) with CLL, with a median age of 61 years, were included in the study. The majority of the patients (82.0%) were lower (0–2) stage per the RAI staging system. The seroconversion rate at 14 days after the second dose was 45% and was correlated with RAI stage (0–2 versus 3–4; 51.0% versus 18.3%, p = 0.047), the treatment status (treatment naïve, previously treated, or actively treated patients; 63.0% versus 40.0% versus 26.1%, respectively, p = 0.031), the number of previous treatment lines (0–2 versus >2; 55.3% versus 8.3%, p = 0.004), and the platelet count of the patients (over or under 100 × 109/L; 52.9% versus 10.0%, p = 0.015). Moreover, there was a positive linear relationship between the antibody titers and the gamma-globulin levels ( r = 0.182, p = 0.046) and platelet count ( r = 0.277, p = 0.002). Finally, patients actively treated with venetoclax had higher antibody titers than those treated with ibrutinib (15.8 AU/ml versus 0.0 AU/ml, p = 0.047). No safety issues were identified while the emergence of adverse events was not correlated with immunogenicity. Discussion: This study confirms results from previous studies on the low seroconversion rates in patients with CLL vaccinated with the BNT162b2 mRNA Covid-19 vaccine and on the detrimental effect of advanced disease and multiple treatment lines on seroconversion, while it is suggested that treatment with venetoclax may offer a chance for higher antibody titers, suggesting a treatment strategy change during the pandemic provided that this result is confirmed by larger studies specifically designed to address this issue.
Collapse
Affiliation(s)
- Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Vlachopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Vardaka
- Department of Clinical Hematology, ‘G. Gennimatas’ District General Hospital, Athens, Greece
| | - Anthi Mpouhla
- Haematology Division, Second Department of Internal Medicine, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elpida Mastrogianni
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Variami
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Galanopoulos
- Department of Clinical Hematology, ‘G. Gennimatas’ District General Hospital, Athens, Greece
| | - Vasiliki Pappa
- Haematology Division, Second Department of Internal Medicine, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Mina Psichogiou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
43
|
Early Cellular and Humoral Responses Developed in Oncohematological Patients after Vaccination with One Dose against COVID-19. J Clin Med 2022; 11:jcm11102803. [PMID: 35628927 PMCID: PMC9147947 DOI: 10.3390/jcm11102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
Individuals with oncohematological diseases (OHD) may develop an impaired immune response against vaccines due to the characteristics of the disease or to its treatment. Humoral response against SARS-CoV-2 has been described to be suboptimal in these patients, but the quality and efficiency of the cellular immune response has not been yet completely characterized. In this study, we analyzed the early humoral and cellular immune responses in individuals with different OHD after receiving one dose of an authorized vaccine against SARS-CoV-2. Humoral response, determined by antibodies titers and neutralizing capacity, was overall impaired in individuals with OHD, except for the cohort of chronic myeloid leukemia (CML), which showed higher levels of specific IgGs than healthy donors. Conversely, the specific direct cytotoxic cellular immunity response (DCC) against SARS-CoV-2, appeared to be enhanced, especially in individuals with CML and chronic lymphocytic leukemia (CLL). This increased cellular immune response, developed earlier than in healthy donors, showed a modest cytotoxic activity that was compensated by significantly increased numbers, likely due to the disease or its treatment. The analysis of the immune response through subsequent vaccine doses will help establish the real efficacy of COVID-19 vaccines in individuals with OHD.
Collapse
|
44
|
Ujjani C, Shadman M, Lynch RC, Tu B, Stevenson PA, Grainger C, Zhu H, Hill JA, Huang M, Nielsen L, Poh C, Sorensen T, Gopal AK, Warren EH, Till BG, Lee S, Gausman D, Smith SD, Gooley T, Greninger A. The impact of B-cell-directed therapy on SARS-CoV-2 vaccine efficacy in chronic lymphocytic leukaemia. Br J Haematol 2022; 197:306-309. [PMID: 35149986 PMCID: PMC9111753 DOI: 10.1111/bjh.18088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
Prior reports evaluating SARS-CoV-2 vaccine efficacy in chronic lymphocytic leukaemia (CLL) used semiquantitative measurements of anti-S to evaluate immunity; however, neutralization assays were used to assess functional immunity in the trials leading to vaccine approval. Here, we identified decreased rates of seroconversion in vaccinated CLL patients and lower anti-S levels compared to healthy controls. Notably, we demonstrated similar results with the Roche anti-S assay and neutralization activity. Durable responses were seen at six months; augmentation with boosters was possible in responding patients. Absence of normal B cells, frequently seen in patients receiving Bruton tyrosine kinase and B-cell lymphoma 2 inhibitors, was a strong predictor of lack of seroconversion.
Collapse
Affiliation(s)
- Chaitra Ujjani
- University of WashingtonSeattleWashingtonUSA
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Mazyar Shadman
- University of WashingtonSeattleWashingtonUSA
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Ryan C. Lynch
- University of WashingtonSeattleWashingtonUSA
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Brian Tu
- University of WashingtonSeattleWashingtonUSA
| | | | | | - Haiying Zhu
- University of WashingtonSeattleWashingtonUSA
| | - Joshua A. Hill
- University of WashingtonSeattleWashingtonUSA
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Meei‐Li Huang
- University of WashingtonSeattleWashingtonUSA
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | | | | | | | - Ajay K. Gopal
- University of WashingtonSeattleWashingtonUSA
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Edus H. Warren
- University of WashingtonSeattleWashingtonUSA
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Brian G. Till
- University of WashingtonSeattleWashingtonUSA
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Sydney Lee
- University of WashingtonSeattleWashingtonUSA
| | | | - Stephen D. Smith
- University of WashingtonSeattleWashingtonUSA
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Ted Gooley
- Fred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | | |
Collapse
|
45
|
Walewska R, Parry-Jones N, Eyre TA, Follows G, Martinez-Calle N, McCarthy H, Parry H, Patten PEM, Riches JC, Hillmen P, Schuh AH. Guideline for the treatment of chronic lymphocytic leukaemia. Br J Haematol 2022; 197:544-557. [PMID: 35313007 DOI: 10.1111/bjh.18075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Renata Walewska
- Department of Haematology, University Hospitals Dorset, Bournemouth, UK
| | - Nilima Parry-Jones
- Department of Haematology, Aneurin Bevan University Health Board, Wales, UK
| | - Toby A Eyre
- Department of Haematology, Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | - Helen McCarthy
- Department of Haematology, University Hospitals Dorset, Bournemouth, UK
| | - Helen Parry
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,University Hospitals Birmingham NHS Trust, Birmingham, UK
| | - Piers E M Patten
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.,Department of Haematology, King's College Hospital NHS Trust, London, UK
| | - John C Riches
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Peter Hillmen
- St. James's Institute of Oncology, Leeds, UK.,Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Anna H Schuh
- Department of Haematology, Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Department of Oncology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
46
|
Moia R, Gaidano G. Updated revision of the British Society of Haematology guidelines for chronic lymphocytic leukaemia. Br J Haematol 2022; 197:513-514. [PMID: 35313005 DOI: 10.1111/bjh.18119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Riccardo Moia
- Division of Haematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
47
|
Molica S, Tam C, Polliack A. Current perspectives regarding SARS-CoV-2 vaccination in chronic lymphocytic leukemia. Hematol Oncol 2022; 40:313-319. [PMID: 35304771 PMCID: PMC9087408 DOI: 10.1002/hon.2990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022]
Abstract
In immunocompetent people, the mRNA vaccines BNT162b2 and mRNA‐1273 have been shown to be safe and effective against coronavirus disease of 2019 (COVID‐19). However, results of cohort studies and meta‐analyses have indicated that the degree of humoral response to SARS‐CoV‐2 vaccines in patients with chronic lymphocytic leukemia (CLL) appears to be lower than that observed in the general population. These inadequate responses are mainly related to the disease itself and to the immunosuppressive effect of therapies administered. In the specific context of CLL, enrolling patients with sub‐optimal vaccine‐response in pivotal vaccine trials could be considered as an appropriate approach to improve response to the COVID‐19 vaccine. These clinical trials should also address the issues of regularity and timing of vaccine booster doses or re‐vaccinations, especially in patients undergoing therapy with pathway‐targeting agents and anti‐CD20 monoclonal antibodies. However, since hypogammaglobulinemia is a serious consequence of CLL, patients who do not have a detectable antibody response should be natural candidates for preventive antibody therapy.
Collapse
Affiliation(s)
- Stefano Molica
- Department Hematology, Hull University Teaching Hospitals NHS Trust, Hull, UK, Hall, United Kingdom
| | - Constantine Tam
- St Vincent's Hospital, Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron Polliack
- Department of Hematology, Hadassah-Hebrew-University Medical Center, Jerusalem, Israel
| |
Collapse
|
48
|
Giuliano AR, Lancet JE, Pilon-Thomas S, Dong N, Jain AG, Tan E, Ball S, Tworoger SS, Siegel EM, Whiting J, Mo Q, Cubitt CL, Dukes CW, Hensel JA, Keenan RJ, Hwu P. Evaluation of Antibody Response to SARS-CoV-2 mRNA-1273 Vaccination in Patients With Cancer in Florida. JAMA Oncol 2022; 8:748-754. [PMID: 35266953 PMCID: PMC8914884 DOI: 10.1001/jamaoncol.2022.0001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Importance Patients with cancer experience high rates of morbidity and mortality after SARS-CoV-2 infection. Immune response to mRNA-1273 vaccination across multiple cancer types and treatments remains to be established. Objective To quantitate antibody responses after mRNA-1273 vaccination among patients with solid tumors and hematologic cancer and to assess clinical and treatment factors associated with vaccine response. Design, Setting, and Participants This cohort study included patients with cancer who were aged 18 years or older, spoke English or Spanish, had received their first mRNA-1273 dose between January 12 and 25, 2021, and agreed to blood tests before and after vaccination. Exposures Receipt of 1 and 2 mRNA-1273 SARS-CoV-2 vaccine doses. Main Outcomes and Measures Seroconversion after each vaccine dose and IgG levels against SARS-CoV-2 spike protein obtained immediately before the first and second vaccine doses and 57 days (plus or minus 14 days) after the first vaccine dose. Cancer diagnoses and treatments were ascertained by medical record review. Serostatus was assessed via enzyme-linked immunosorbent assay. Paired t tests were applied to examine days 1, 29, and 57 SARS-CoV-2 antibody levels. Binding antibody IgG geometric mean titers were calculated based on log10-transformed values. Results The 515 participants were a mean (SD) age of 64.5 (11.4) years; 262 (50.9%) were women; and 32 (6.2%) were Hispanic individuals and 479 (93.0%) White individuals; race and ethnicity data on 4 (0.7%) participants were missing. Seropositivity after vaccine dose 2 was 90.3% (465; 95% CI, 87.4%-92.7%) among patients with cancer, was significantly lower among patients with hematologic cancer (84.7% [255]; 95% CI, 80.1%-88.6%) vs solid tumors (98.1% [210]; 95% CI, 95.3%-99.5%), and was lowest among patients with lymphoid cancer (70.0% [77]; 95% CI, 60.5%-78.4%). Patients receiving a vaccination within 6 months after anti-CD20 monoclonal antibody treatment had a significantly lower seroconversion (6.3% [1]; 95% CI, 0.2%-30.2%) compared with those treated 6 to 24 months earlier (53.3% [8]; 95% CI, 26.6%-78.7%) or those who never received anti-CD20 treatment (94.2% [456]; 95% CI, 91.7%-96.1%). Low antibody levels after vaccination were observed among patients treated with anti-CD20 within 6 months before vaccination (GM, 15.5 AU/mL; 95% CI, 9.8-24.5 AU/mL), patients treated with small molecules (GM, 646.7 AU/mL; 95% CI, 441.9-946.5 AU/mL), and patients with low lymphocyte (GM, 547.4 AU/mL; 95% CI, 375.5-797.7 AU/mL) and IgG (GM, 494.7 AU/mL; 95% CI, 304.9-802.7 AU/mL) levels. Conclusions and Relevance This cohort study found that the mRNA-1273 SARS-CoV-2 vaccine induced variable antibody responses that differed by cancer diagnosis and treatment received. These findings suggest that patients with hematologic cancer and those who are receiving immunosuppressive treatments may need additional vaccination doses.
Collapse
Affiliation(s)
| | | | | | - Ning Dong
- Moffitt Cancer Center, Tampa, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Molica S, Giannarelli D, Montserrat E. mRNA COVID-19 vaccines in patients with chronic lymphocytic leukemia: A systematic review and meta-analysis. Eur J Haematol 2022; 108:264-267. [PMID: 34856031 DOI: 10.1111/ejh.13729] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Stefano Molica
- Department Hematology-Oncology, Azienda Ospedaliera Pugliese-Ciaccio, Catanzaro, Italy
| | | | - Emili Montserrat
- Department of Hematology, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
50
|
Shree T, Shankar V, Lohmeyer JJ, Czerwinski DK, Schroers-Martin JG, Rodriguez GM, Beygi S, Kanegai AM, Corbelli KS, Gabriel E, Kurtz DM, Khodadoust MS, Gupta NK, Maeda LS, Advani RH, Alizadeh AA, Levy R. CD20-Targeted Therapy Ablates De Novo Antibody Response to Vaccination but Spares Preestablished Immunity. Blood Cancer Discov 2022; 3:95-102. [PMID: 35015688 PMCID: PMC9610898 DOI: 10.1158/2643-3230.bcd-21-0222] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
To obtain a deeper understanding of poor responses to COVID-19 vaccination in patients with lymphoma, we assessed blocking antibodies, total anti-spike IgG, and spike-specific memory B cells in the peripheral blood of 126 patients with lymphoma and 20 age-matched healthy controls 1 and 4 months after COVID-19 vaccination. Fifty-five percent of patients developed blocking antibodies postvaccination, compared with 100% of controls. When evaluating patients last treated from days to nearly 18 years prior to vaccination, time since last anti-CD20 was a significant independent predictor of vaccine response. None of 31 patients who had received anti-CD20 treatment within 6 months prior to vaccination developed blocking antibodies. In contrast, patients who initiated anti-CD20 treatment shortly after achieving a vaccine-induced antibody response tended to retain that response during treatment, suggesting a policy of immunizing prior to treatment whenever possible. SIGNIFICANCE In a large cohort of patients with B-cell lymphoma, time since anti-CD20 treatment was an independent predictor of neutralizing antibody response to COVID-19 vaccination. Comparing patients who received anti-CD20 treatment before or after vaccination, we demonstrate that vaccinating first can generate an antibody response that endures through anti-CD20-containing treatment. This article is highlighted in the In This Issue feature, p. 85.
Collapse
Affiliation(s)
- Tanaya Shree
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Vishnu Shankar
- Program in Immunology, Stanford University School of Medicine, Stanford, California
| | - Julian J.K. Lohmeyer
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Debra K. Czerwinski
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | | | - Gladys M. Rodriguez
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Sara Beygi
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Alyssa M. Kanegai
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Karen S. Corbelli
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Etelka Gabriel
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - David M. Kurtz
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Michael S. Khodadoust
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Neel K. Gupta
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Lauren S. Maeda
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Ranjana H. Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Ronald Levy
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California.,Corresponding Author: Ronald Levy, Division of Oncology, Stanford University Hospital and Clinics, 269 Campus Drive, Stanford, CA 94305. Phone: 650-725-6452; Fax: 650-736-1454; E-mail:
| |
Collapse
|