1
|
Luo H, Chen R, Wang C, Chen Q. Role and mechanism of LINC02390 and its potential target genes, CLECL1 and CD69, in immune microenvironment of lung adenocarcinoma. Technol Health Care 2025; 33:635-647. [PMID: 39269874 DOI: 10.3233/thc-241452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
BACKGROUND Targeted therapy and immunotherapy has brought new hope to patients with lung adenocarcinoma (LUAD) with their applications. However, the prognosis of LUAD patients is still unpromising. OBJECTIVE It is particularly important to find the biomarkers that can predict the prognosis of LUAD. In our previous study, we found that patients with high expression of LINC02390 had a better prognosis. The clinical significance of LINC02390 and its potential target genes, CLECL1 and CD69, in the prognosis of LUAD and its role in the immune microenvironment were explored. METHODS Through the survival analysis, LINC02390 and its potential target genes, CLECL1 and CD69, were identified as good prognostic factors for LUAD. According to GO and KEGG analyses, LINC02390-related genes were identified potentially involved in immune-related signaling pathways. Gene mutations and their relationship with immune cell infiltration were verified through the online cbioportal and TIMER database. RESULTS CD69 was found to positively associate with CD8 + T cells and CLECL1 was also positively associated with CD4 + T cells. A high expression of CD69 in CD8 + T cells was identified through the single-cell sequencing dataset GSE111894. Finally, CLECL1 and CD69 were lowly expressed in clinical tissue samples with LUAD by immunohistochemical staining. CONCLUSIONS LINC02390 and its possible target genes, CLECL1 and CD69, may be potential targets for the immunotherapy in LUAD patients.
Collapse
|
2
|
Liu Y, Lin W, Gu Y, Lu C, Zhou X, Zhao H, Wang G, Shen A. Dysregulation of SIGLEC1 in non-small cell lung cancer: prognostic implications and immunomodulatory role-a multicenter cohort study. J Cancer Res Clin Oncol 2024; 150:481. [PMID: 39470815 PMCID: PMC11522155 DOI: 10.1007/s00432-024-06005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
PURPOSE To investigate the clinical significance and functional role of SIGLEC1-positive cells in non-small cell lungcancer (NSCLC) patients, focusing on their prognostic impact and therapeutic response. METHODS A multicenter retrospective cohort analysis was conducted, integrating data from multiple sources. Weanalyzed SIGLEC1 expression in NSCLC tissues, clinicopathological features, overall survival outcomes,chemotherapy responsiveness, and sensitivity to targeted therapies. We also developed a prognostic model basedon SIGLEC1 expression and clinical variables. RESULTS SIGLEC1 expression was significantly downregulated in NSCLC tissues, and the density of SIGLEC1-positivecells was inversely correlated with various clinicopathological features. Notably, patients with high infiltration ofSIGLEC1-positive cells exhibited significantly better overall survival outcomes. Furthermore, elevated SIGLEC1expression was associated with improved responsiveness to chemotherapy and demonstrated distinct patterns ofsensitivity to targeted therapies. A robust prognostic model was developed by integrating SIGLEC1 expression andclinical variables. CONCLUSIONS This study highlighted the downregulation of SIGLEC1 in NSCLC tissues and its significant associationwith patient prognosis and therapeutic response. The findings suggested that SIGLEC1 played a critical role inmodulating the tumor immune microenvironment and has potential as both a prognostic biomarker and therapeutictarget in NSCLC.
Collapse
Affiliation(s)
- Yuan Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, 226006, China
- Department of Neuroscience, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital and Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Wei Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yang Gu
- Department of Clinical Medicine, General Medical Class 8, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Chenlin Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 214504, China
| | - Xuan Zhou
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Hongyu Zhao
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Gaoren Wang
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, 226006, China.
| | - Aiguo Shen
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, 226006, China.
| |
Collapse
|
3
|
Yoshimura S, Li Z, Gocho Y, Yang W, Crews KR, Lee SHR, Roberts KG, Mullighan CG, Relling MV, Yu J, Yeoh AEJ, Loh ML, Saygin C, Litzow MR, Jeha S, Karol SE, Inaba H, Pui CH, Konopleva M, Jain N, Stock W, Paietta E, Jabbour E, Kornblau SM, Evans WE, Yang JJ. Impact of Age on Pharmacogenomics and Treatment Outcomes of B-Cell Acute Lymphoblastic Leukemia. J Clin Oncol 2024; 42:3478-3490. [PMID: 39102629 PMCID: PMC11458355 DOI: 10.1200/jco.24.00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) can occur across all age groups, with a strikingly higher cure rate in children compared with adults. However, the pharmacological basis of age-related differences in ALL treatment response remains unclear. METHODS Studying 767 children and 309 adults with newly diagnosed B-cell ALL enrolled on frontline trials at St Jude Children's Research Hospital, MD Anderson Cancer Center, the Alliance for Clinical Trials in Oncology, and the ECOG-ACRIN Cancer Research Group, we determined the ex vivo sensitivity of leukemia cells to 21 drugs. Twenty-three ALL molecular subtypes were identified using RNA sequencing. We systematically characterized the associations between drug response and ALL genomics in children, adolescents and young adults, and elderly adults. We evaluated the effect of age-related gene expression signature on ALL treatment outcomes. RESULTS Seven ALL drugs (asparaginase, prednisolone, mercaptopurine, dasatinib, nelarabine, daunorubicin, and inotuzumab ozogamicin) showed differential activity between children and adults, of which six were explained by age-related differences in leukemia molecular subtypes. Adolescents and young adults showed similar patterns of drug resistance as older adults, relative to young children. Mercaptopurine exhibited subtype-independent greater sensitivity in children. Transcriptomic profiling uncovered subclusters within CRLF2-, DUX4-, and KMT2A-rearranged ALL that were linked to age and cytotoxic drug resistance. In particular, a subset of children had adult-like ALL on the basis of leukemia gene expression patterns across subtypes, despite their chronological age. Resistant to cytotoxic drugs, children with adult-like ALL exhibited poor prognosis in pediatric ALL trials, even after adjusting for age and minimal residual diseases. CONCLUSION Our results provide pharmacogenomic insights into age-related disparities in ALL cure rates and identify leukemia prognostic features for treatment individualization across age groups.
Collapse
Affiliation(s)
- Satoshi Yoshimura
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Yoshihiro Gocho
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Kristine R Crews
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Shawn H R Lee
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | | | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Jiyang Yu
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN
| | - Allen E J Yeoh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Mignon L Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Caner Saygin
- Department of Medicine Section of Hematology-Oncology, University of Chicago, Chicago, IL
| | | | - Sima Jeha
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Seth E Karol
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Hiroto Inaba
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Marina Konopleva
- Department of Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Nitin Jain
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wendy Stock
- Department of Medicine Section of Hematology-Oncology, University of Chicago, Chicago, IL
| | - Elisabeth Paietta
- Cancer Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Elias Jabbour
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven M Kornblau
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William E Evans
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
4
|
Gunasena M, Alles M, Wijewantha Y, Mulhern W, Bowman E, Gabriel J, Kettelhut A, Kumar A, Weragalaarachchi K, Kasturiratna D, Horowitz JC, Scrape S, Pannu SR, Liu SL, Vilgelm A, Wijeratne S, Bednash JS, Demberg T, Funderburg NT, Liyanage NP. Synergy Between NK Cells and Monocytes in Potentiating Cardiovascular Disease Risk in Severe COVID-19. Arterioscler Thromb Vasc Biol 2024; 44:e243-e261. [PMID: 38989579 PMCID: PMC11448863 DOI: 10.1161/atvbaha.124.321085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Evidence suggests that COVID-19 predisposes to cardiovascular diseases (CVDs). While monocytes/macrophages play a central role in the immunopathogenesis of atherosclerosis, less is known about their immunopathogenic mechanisms that lead to CVDs during COVID-19. Natural killer (NK) cells, which play an intermediary role during pathologies like atherosclerosis, are dysregulated during COVID-19. Here, we sought to investigate altered immune cells and their associations with CVD risk during severe COVID-19. METHODS We measured plasma biomarkers of CVDs and determined phenotypes of circulating immune subsets using spectral flow cytometry. We compared these between patients with severe COVID-19 (severe, n=31), those who recovered from severe COVID-19 (recovered, n=29), and SARS-CoV-2-uninfected controls (controls, n=17). In vivo observations were supported using in vitro assays to highlight possible mechanistic links between dysregulated immune subsets and biomarkers during and after COVID-19. We performed multidimensional analyses of published single-cell transcriptome data of monocytes and NK cells during severe COVID-19 to substantiate in vivo findings. RESULTS During severe COVID-19, we observed alterations in cardiometabolic biomarkers including oxidized-low-density lipoprotein, which showed decreased levels in severe and recovered groups. Severe patients exhibited dysregulated monocyte subsets, including increased frequencies of proinflammatory intermediate monocytes (also observed in the recovered) and decreased nonclassical monocytes. All identified NK-cell subsets in the severe COVID-19 group displayed increased expression of activation and tissue-resident markers, such as CD69 (cluster of differentiation 69). We observed significant correlations between altered immune subsets and plasma oxidized-low-density lipoprotein levels. In vitro assays revealed increased uptake of oxidized-low-density lipoprotein into monocyte-derived macrophages in the presence of NK cells activated by plasma of patients with severe COVID-19. Transcriptome analyses confirmed enriched proinflammatory responses and lipid dysregulation associated with epigenetic modifications in monocytes and NK cells during severe COVID-19. CONCLUSIONS Our study provides new insights into the involvement of monocytes and NK cells in the increased CVD risk observed during and after COVID-19.
Collapse
Affiliation(s)
- Manuja Gunasena
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Mario Alles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Yasasvi Wijewantha
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Will Mulhern
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Emily Bowman
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Janelle Gabriel
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Aaren Kettelhut
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Amrendra Kumar
- Department of pathology, College of Medicine, The Ohio State University
| | | | - Dhanuja Kasturiratna
- Department of Mathematics and Statistics, Northern Kentucky University, KY, Highland Heights, KY, USA
| | - Jeffrey C Horowitz
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Scott Scrape
- Department of pathology, College of Medicine, The Ohio State University
| | - Sonal R Pannu
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Shan-Lu Liu
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Anna Vilgelm
- Department of pathology, College of Medicine, The Ohio State University
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Joseph S Bednash
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Thorsten Demberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Nicholas T Funderburg
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Namal P.M. Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| |
Collapse
|
5
|
Zhong Y, Zhai B, Zeng J, Yang B, Guo B, Lu X. Incidence rate and risk factors of second primary neoplasms among older patients with hematological malignancies: Insights from a Chinese single-center experience (1997-2021). CANCER PATHOGENESIS AND THERAPY 2024; 2:285-291. [PMID: 39371097 PMCID: PMC11447325 DOI: 10.1016/j.cpt.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 10/08/2024]
Abstract
Background Patients with hematological malignancies face an increased risk of developing second primary neoplasms due to various factors, including immune system compromise and chemotherapy-related effects. However, the incidence and associated risk factors in older patients remain poorly understood. This study aimed to assess the incidence, identify risk factors, and evaluate their impact on survival outcomes among older patients with hematological malignancies. Methods This retrospective single-center study analyzed data from 163 patients, focusing on the occurrence of second primary neoplasms. Cumulative incidence rates were calculated, and risk factor analysis was conducted using a competing risk model. Results Among 124 eligible patients with a total follow-up duration of 572.57 person-years, the incidence rate of second primary neoplasms was 15.72/1000 person-years. The standardized incidence ratio (SIR) was 0.81 (95% confidence interval [CI] [0.39-1.48], P = 0.518). History of radiotherapy emerged as a significant risk factor (sub-distribution hazard ratio [SHR] = 21.61 [2.81-166.14], P = 0.003), whereas regular natural killer (NK) cell infusion was associated with reduced risk (SHR = 3.25 e-8 [9.81 e-9-1.08 e-7], P < 0.001). Conclusions These findings underscore the importance of informing older patients with hematological malignancies about the long-term risks of second primary neoplasms. Healthcare providers should carefully weigh risk factors when formulating treatment strategies. The results are valuable for investigating the fundamental principles underlying the occurrence and progression of second primary neoplasms.
Collapse
Affiliation(s)
- Yadi Zhong
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Bing Zhai
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Zeng
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Yang
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Guo
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Xuechun Lu
- Department of Hematology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
6
|
Tu C, Buckle I, Leal Rojas I, Rossi GR, Sester DP, Moore AS, Radford K, Guillerey C, Souza‐Fonseca‐Guimaraes F. Exploring NK cell receptor dynamics in paediatric leukaemias: implications for immunotherapy and prognosis. Clin Transl Immunology 2024; 13:e1501. [PMID: 38525380 PMCID: PMC10960520 DOI: 10.1002/cti2.1501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Objectives Immunotherapies targeting natural killer (NK) cell receptors have shown promise against leukaemia. Unfortunately, cancer immunosuppressive mechanisms that alter NK cell phenotype prevent such approaches from being successful. The study utilises advanced cytometry to examine how cancer immunosuppressive pathways affect NK cell phenotypic changes in clinical samples. Methods In this study, we conducted a high-dimensional examination of the cell surface expression of 16 NK cell receptors in paediatric patients with acute myeloid leukaemia and acute lymphoblastic leukaemia, as well as in samples of non-age matched adult peripheral blood (APB) and umbilical cord blood (UCB). An unsupervised analysis was carried out in order to identify NK cell populations present in paediatric leukaemias. Results We observed that leukaemia NK cells clustered together with UCB NK cells and expressed relatively higher levels of the NKG2A receptor compared to APB NK cells. In addition, CD56dimCD16+CD57- NK cells lacking NKG2A expression were mainly absent in paediatric leukaemia patients. However, CD56br NK cell populations expressing high levels of NKG2A were highly represented in paediatric leukaemia patients. NKG2A expression on leukaemia NK cells was found to be positively correlated with the expression of its ligand, suggesting that the NKG2A-HLA-E interaction may play a role in modifying NK cell responses to leukaemia cells. Conclusion We provide an in-depth analysis of NK cell populations in paediatric leukaemia patients. These results support the development of immunotherapies targeting immunosuppressive receptors, such as NKG2A, to enhance innate immunity against paediatric leukaemia.
Collapse
Affiliation(s)
- Cui Tu
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
- Frazer Institute, The University of QueenslandWoolloongabbaQLDAustralia
| | - Irina Buckle
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Ingrid Leal Rojas
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | | | - David P Sester
- TRI Flow Cytometry SuiteTranslational Research InstituteWoolloongabbaQLDAustralia
- Translational Research InstituteQueensland University of TechnologyBrisbaneQLDAustralia
| | - Andrew S Moore
- Oncology ServiceChildren's Health Queensland Hospital & Health ServiceSouth BrisbaneQLDAustralia
- Child Health Research CentreThe University of QueenslandSouth BrisbaneQLDAustralia
| | - Kristen Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Camille Guillerey
- Cancer Immunotherapies Laboratory, Mater Research Institute, Translational Research InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | | |
Collapse
|
7
|
Liu J, Zhang Q, Wong YK, Luo P, Chen J, Xie L, Chen J, He X, Shi F, Gong P, Liu X, Wang J. Single-Cell Transcriptomics Reveals the Ameliorative Effect of Oridonin on Septic Liver Injury. Adv Biol (Weinh) 2024; 8:e2300542. [PMID: 38408269 DOI: 10.1002/adbi.202300542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/23/2023] [Indexed: 02/28/2024]
Abstract
Sepsis is a life-threatening syndrome leading to hemodynamic instability and potential organ dysfunction. Oridonin, commonly used in Traditional Chinese Medicine (TCM), exhibits significant anti-inflammation activity. To explore the protective mechanisms of oridonin against the pathophysiological changes, the authors conducted single-cell transcriptome (scRNA-seq) analysis on septic liver models induced by cecal ligation and puncture (CLP). They obtained a total of 63,486 cells, distributed across 11 major cell clusters, and concentrated their analysis on four specific clusters (hepatocytes/Heps, macrophages, endothelial/Endos and T/NK) based on their changes in proportion during sepsis and under oridonin treatment. Firstly, biological changes in Hep, which are related to metabolic dysregulation and pro-inflammatory signaling, are observed during sepsis. Secondly, they uncovered the dynamic profiles of macrophage's phenotype, indicating that a substantial number of macrophages exhibited a M1-skewed phenotype associated with pro-inflammatory characteristics in septic model. Thirdly, they detected an upregulation of both inflammatory cytokines and transcriptomic factor Nfkb1 expression within Endo, along with slight capillarization during sepsis. Moreover, excessive accumulation of cytotoxic NK led to an immune imbalance. Though, oridonin ameliorated inflammatory-related responses and improved the liver dysfunction in septic mice. This study provides fundamental evidence of the protective effects of oridonin against sepsis-induced cytokine storm.
Collapse
Affiliation(s)
- Jing Liu
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Qian Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yin Kwan Wong
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Piao Luo
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Junhui Chen
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Lulin Xie
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Jiayun Chen
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Shi
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| | - Ping Gong
- Department of Emergency, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| | - Xueyan Liu
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Jigang Wang
- Department of Critical Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
8
|
Li S, Zheng S, Huang X, Zhang W, Liu F, Cao Q. Expression and Clinical Significance of CD30 and CD56 in Lymphoblastic Lymphoma: A Retrospective Analysis on Paraffin-Embedded Tissues by Immunohistochemistry. Fetal Pediatr Pathol 2024; 43:111-122. [PMID: 38213180 DOI: 10.1080/15513815.2023.2301459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Background: We evaluated CD30 and CD56 expression in lymphoblastic lymphoma (LBL) and correlated the results with clinicopathological features and prognosis. Methods: Immunohistochemical (IHC) staining was performed on 85 formalin-fixed paraffin-embedded LBL specimens using two CD30 clones and one CD56 antibody clone. Results: Weak and diffuse expression of CD30 was expressed in 4.7% (clone Ber-H2) or 14.1% (clone EPR4102) in LBL, while CD56 was expressed in 24.7%. CD30 and CD56 expression correlated with lactate dehydrogenase levels. CD56-positive expression was closely associated with an unfavorable prognosis. Although CD30 expression exhibited a trend toward poorer overall survival, it did not reach statistical significance. Conclusion: CD56 is a potential negative prognostic marker. These findings suggest that CD30 and CD56 targeted therapies could be potential therapeutic targets for LBL patients.
Collapse
Affiliation(s)
- Shuqi Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinyi Huang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenhui Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Department of Liver Tumor Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinghua Cao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Parvini N, Akbari ME, Hamidieh AA, Fathi F, Amini AA, Ebrahimi M, Vahabzadeh Z. CTLA-4 Blockade of Natural Killer Cells Increases Cytotoxicity against Acute Lymphoid Leukaemia Cells Neda. CELL JOURNAL 2024; 26:150-157. [PMID: 38459732 PMCID: PMC10924838 DOI: 10.22074/cellj.2024.2015187.1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE There is interest in using cytotoxic T lymphocyte antigen-4 (CTLA-4) immunotherapy to treat blood cancers. Unfortunately, patients with acute lymphoblastic leukaemia (ALL) frequently exhibit resistance to treatment and natural killer (NK) cell exhaustion. This study aims to increase the cytotoxic potency of natural killer cells by using CTLA-4 to block the Nalm-6 leukaemia cell line. MATERIALS AND METHODS In this experimental study, NK cells were purified from the peripheral blood mononuclear cells (PBMCs) of 10 healthy people and assessed by flow cytometry for purity and viability. The purified cells were activated overnight at 37°C and 5% CO2 with interleukin-15 (IL-15, 10 ng/ml) followed by evaluation of expressions of CTLA-4, activating and inhibitory receptors, and the release of interferon gamma (IFN-γ) and granzyme B (GZM B). CTLA-4 expression on NK cells from recurrent ALL patients was also evaluated. Finally, the cytotoxic activity of NK cells was assessed after the CTLA-4 blockade. RESULTS The purity of the isolated cells was 96.58 ± 2.57%. Isolated NK cells activated with IL-15 resulted in significantly higher CTLA-4 expression (8.75%, P<0.05). Similarly, CTLA-4 expression on the surface of NK cells from patients with ALL was higher (7.46%) compared to healthy individuals (1.46%, P<0.05). IL-15 reduced NKG2A expression (P<0.01), and increased expressions of NKP30 (P<0.05) and NKP46 (P<0.01). The activated NK cells released more IFN-γ (P<0.5) and GZM B (P<0.01) compared to unactivated NK cells. Blockade of CTLA-4 enhanced the NK cell killing potential against Nalm-6 cells (56.3%, P<0.05); however, IFN-γ and GZM B levels were not statistically different between the blocked and non-blocked groups. CONCLUSION Our findings suggest that CTLA-4 blockage of Nalm-6 cells causes an increase in antitumour activity of NK cells against these cells. Our study also provides evidence for the potential of cancer immunotherapy treatment using blocking anti-CTLA-4 mAbs.
Collapse
Affiliation(s)
- Neda Parvini
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cellular and Molecular Research Centre, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cells, ACECR, Tehran, Iran
| | | | - Amir Ali Hamidieh
- Paediatric Cell and Gene Therapy Research Centre, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Centre, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abbas Ali Amini
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cells, ACECR, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Zakaria Vahabzadeh
- Cellular and Molecular Research Centre, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran .
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
10
|
Barshidi A, Ardeshiri K, Ebrahimi F, Alian F, Shekarchi AA, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of exhausted natural killer cells in the immunopathogenesis and treatment of leukemia. Cell Commun Signal 2024; 22:59. [PMID: 38254135 PMCID: PMC10802000 DOI: 10.1186/s12964-023-01428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
The immune responses to cancer cells involve both innate and acquired immune cells. In the meantime, the most attention has been drawn to the adaptive immune cells, especially T cells, while, it is now well known that the innate immune cells, especially natural killer (NK) cells, play a vital role in defending against malignancies. While the immune cells are trying to eliminate malignant cells, cancer cells try to prevent the function of these cells and suppress immune responses. The suppression of NK cells in various cancers can lead to the induction of an exhausted phenotype in NK cells, which will impair their function. Recent studies have shown that the occurrence of this phenotype in various types of leukemic malignancies can affect the prognosis of the disease, and targeting these cells may be considered a new immunotherapy method in the treatment of leukemia. Therefore, a detailed study of exhausted NK cells in leukemic diseases can help both to understand the mechanisms of leukemia progression and to design new treatment methods by creating a deeper understanding of these cells. Here, we will comprehensively review the immunobiology of exhausted NK cells and their role in various leukemic malignancies. Video Abstract.
Collapse
Affiliation(s)
- Asal Barshidi
- Department of Biological Sciences, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran
| | - Keivan Ardeshiri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Besla R, Penuel E, Del Rosario G, Cosino E, Myrta S, Dillon M, Lazar GA, Nickles D, Spiess C, Yu SF, Polson AG. T cell-Dependent Bispecific Therapy Enhances Innate Immune Activation and Antibody-Mediated Killing. Cancer Immunol Res 2024; 12:60-71. [PMID: 37902604 DOI: 10.1158/2326-6066.cir-23-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
T cell-retargeting therapies have transformed the therapeutic landscape for hematologic diseases. T cell-dependent bispecific antibodies (TDB) function as conditional agonists that induce a polyclonal T-cell response, resulting in target cell destruction and cytokine release. The relationship between this response and its effects on surrounding innate immune populations has not been fully explored. Here we show that treatment with mosunetuzumab in patients results in natural killer (NK) cell activation in the peripheral blood. We modeled this phenomenon in vitro and found that TDB-mediated killing activated NK cells, increasing NK function and antibody-dependent cellular cytotoxicity (ADCC), and enhanced the capability of macrophages to perform antibody-dependent cellular phagocytosis (ADCP). This enhancement was triggered by cytokines released through TDB treatment, with IL2 and IFNγ being major drivers for increased ADCC and ADCP, respectively. Surprisingly, cytolytic ability could be further augmented through neutralization of IL10 for NK cells and TNFα for macrophages. Finally, we showed that TDB treatment enhanced the efficacy of Fc-driven killing to an orthogonal solid tumor target in vivo. These results provide rationale for novel antibody therapy combinations that take advantage of both adaptive and innate immune responses.
Collapse
Affiliation(s)
- Rickvinder Besla
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Elicia Penuel
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Geoff Del Rosario
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Ely Cosino
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | | | - Mike Dillon
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Greg A Lazar
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Dorothee Nickles
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Christoph Spiess
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Shang-Fan Yu
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| | - Andrew G Polson
- Genentech Research and Early Development, Genentech Inc., South San Francisco, California
| |
Collapse
|
12
|
Xie Y, Jiang H. The exploration of mitochondrial-related features helps to reveal the prognosis and immunotherapy methods of colorectal cancer. Cancer Rep (Hoboken) 2024; 7:e1914. [PMID: 37903487 PMCID: PMC10809275 DOI: 10.1002/cnr2.1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Cancer cell survival, proliferation, and metabolism are all intertwined with mitochondria. However, a complete description of how the features of mitochondria relate to the tumor microenvironment (TME) and immunological landscape of colorectal cancer (CRC) has yet to be made. We performed subgroup analysis on CRC patient data obtained from the databases using non-negative matrix factorization (NMF) clustering. Construct a prognostic model using the mitochondrial-related gene (MRG) risk score, and then compare it to other models for accuracy. Comprehensive analyses of the risk score, in conjunction with the TME and immune landscape, were performed, and the relationship between the model and different types of cell death, radiation and chemotherapy, and drug resistance was investigated. Results from immunohistochemistry and single-cell sequencing were utilized to verify the model genes, and a drug sensitivity analysis was conducted to evaluate possible therapeutic medicines. The pan-cancer analysis is utilized to further investigate the role of genes in a wider range of malignancies. METHODS AND RESULTS We found that CRC patients based on MRG were divided into two groups with significant differences in survival outcomes and TME between groups. The predictive power of the risk score was further shown by building a prognostic model and testing it extensively in both internal and external cohorts. Multiple immune therapeutic responses and the expression of immunological checkpoints demonstrate that the risk score is connected to immunotherapy success. The correlation analysis of the risk score provide more ideas and guidance for prognostic models in clinical treatment. CONCLUSION The TME, immune cell infiltration, and responsiveness to immunotherapy in CRC were all thoroughly evaluated on the basis of MRG features. The comparative validation of multiple queues and models combined with clinical data ensures the effectiveness and clinical practicality of MRG features. Our studies help clinicians create individualized treatment programs for individuals with cancer.
Collapse
Affiliation(s)
- Yun‐hui Xie
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduChina
| | - Hui‐zhong Jiang
- College of GraduateGuizhou University of Traditional Chinese MedicineGuiyangChina
| |
Collapse
|
13
|
Huo Z, Chen F, Zhao J, Liu P, Chao Z, Liu K, Zhou J, Zhou D, Zhang L, Zhen H, Yang W, Tan Z, Zhu K, Luo Z. Prognostic impact of absolute peripheral blood NK cell count after four cycles of R-CHOP-like regimen treatment in patients with diffuse large B cell lymphoma. Clin Exp Med 2023; 23:4665-4672. [PMID: 37938466 PMCID: PMC10725372 DOI: 10.1007/s10238-023-01249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
As a subtype of lymphocyte, natural killer (NK) cell is the first line of defense that shows a strong function in tumor immunotherapy response and clinical outcomes. The current study aims to investigate the prognostic influence of peripheral blood absolute NK cell count after four cycles of rituximab combined with cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) treatment (NKCC4) in diffuse large B cell lymphoma (DLBCL) patients. A total of 261 DLBCL patients treated with R-CHOP from January 2018 to September 2022 were enrolled. The low NKCC4 was observed in patients who died during the study period compared with survival individuals. A NKCC4 < 135 cells/μl had a remarkable negative influence in overall survival and progression-free survival (PFS) compared to a NKCC4 ≥ 135 cells/μl (p < 0.0001 and p < 0.0004, respectively). In addition, the OS and PFS were synergistically lower in a NKCC4 < 135 cells/μl group among DLBCL patients with GCB type or high IPI. In conclusion, this study indicates NCKK4 as a valuable marker in clinical practice and provides an insight for combination treatment of R-CHOP to improve outcomes of DLBCL patients.
Collapse
Affiliation(s)
- Zhongjun Huo
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Fang Chen
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Jiajia Zhao
- Department of Reproductive and Genetic Center, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Ping Liu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Zhi Chao
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Kang Liu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Ji Zhou
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Dan Zhou
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Lu Zhang
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Haifeng Zhen
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Wenqun Yang
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Zhenqing Tan
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Kaibo Zhu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Zimian Luo
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China.
| |
Collapse
|
14
|
Gunasena M, Alles M, Wijewantha Y, Mulhern W, Bowman E, Gabriel J, Kettelhut A, Kumar A, Weragalaarachchi K, Kasturiratna D, Horowitz JC, Scrape S, Pannu SR, Liu SL, Vilgelm A, Wijeratne S, Bednash JS, Demberg T, Funderburg NT, Liyanage NPM. Synergistic Role of NK Cells and Monocytes in Promoting Atherogenesis in Severe COVID-19 Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298322. [PMID: 37986806 PMCID: PMC10659469 DOI: 10.1101/2023.11.10.23298322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Clinical data demonstrate an increased predisposition to cardiovascular disease (CVD) following severe COVID-19 infection. This may be driven by a dysregulated immune response associated with severe disease. Monocytes and vascular tissue resident macrophages play a critical role in atherosclerosis, the main pathology leading to ischemic CVD. Natural killer (NK) cells are a heterogenous group of cells that are critical during viral pathogenesis and are known to be dysregulated during severe COVID-19 infection. Their role in atherosclerotic cardiovascular disease has recently been described. However, the contribution of their altered phenotypes to atherogenesis following severe COVID-19 infection is unknown. We demonstrate for the first time that during and after severe COVID-19, circulating proinflammatory monocytes and activated NK cells act synergistically to increase uptake of oxidized low-density lipoprotein (Ox-LDL) into vascular tissue with subsequent foam cell generation leading to atherogenesis despite recovery from acute infection. Our data provide new insights, revealing the roles of monocytes/macrophages, and NK cells in COVID-19-related atherogenesis.
Collapse
|
15
|
Zhu L, Chen C, Kang M, Ma X, Sun X, Xue Y, Fang Y. KIF11 serves as a cell cycle mediator in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 2023; 149:15609-15622. [PMID: 37656243 PMCID: PMC10620298 DOI: 10.1007/s00432-023-05240-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To identify key gene in childhood acute lymphoblastic leukemia (ALL) through weighted gene co-expression network analysis (WGCNA), and their enriched biological functions and signaling pathways. METHODS Array data of the GSE73578 dataset, involving 46 childhood ALL samples, were acquired from the Gene Expression Omnibus (GEO) database. Hub modules associated with childhood ALL were screened out by WGCNA. Enriched biological functions and signaling pathways were then identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Hub genes were selected by overlapping those between down-regulated genes in GSE73578, GSE4698 and the hub module. Guilt by association (GBA) was adopted to verify the function of the identified KIF11 gene and to predict its target genes. Regulatory effects of KIF11 on the proliferation and cell cycle progression of ALL in vitro were determined by cytological experiments. RESULTS WGCNA showed that the yellow module was the most relevant to childhood ALL treatment, containing 698 genes that were enriched in cell division, mitotic nuclear division, DNA replication and DNA repair, cell cycle, DNA replication and the P53 signaling pathway. The KIF11 gene was screened out and predicted as a cell cycle mediator in childhood ALL. Knockdown of KIF11 in ALL cells inhibited cell proliferation and arrested cell cycle progression in G2/M phase. CONCLUSIONS The KIF11 gene is critical in the treatment process of childhood ALL, which is a promising therapeutic target for childhood ALL.
Collapse
Affiliation(s)
- Liwen Zhu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
| | - Chuqin Chen
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
| | - Xiaopeng Ma
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
| | - Xiaoyan Sun
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
| | - Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 220000, Jiangsu Province, China.
| |
Collapse
|
16
|
Zedan AH, Nederby L, Volmer LM, Madsen CV, Sørensen BE, Hansen TF. Natural killer cell activity in metastatic castration resistant prostate cancer patients treated with enzalutamide. Sci Rep 2023; 13:17144. [PMID: 37816781 PMCID: PMC10564750 DOI: 10.1038/s41598-023-43937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
Metastatic castration resistant prostate cancer (mCRPC) is still the lethal stage for the whole spectrum of prostate cancer disease. Even though different treatment options have been introduced in the last decade with a significant survival improvement for this population, a lack of more reliable prognostic and predictive markers is still one of the main clinical challenges in management of mCRPC. The aim of this study was to investigate the correlation between Natural Killer cell activity (NKA) and both treatment effect and outcomes in patients with mCRPC treated with enzalutamide. A total of 87 patients with mCRPC treated with enzalutamide as the first line treatment were enrolled. NKA was estimated at baseline and prior to each treatment cycle. Endpoints included both treatment effect with biochemical response (BR), biochemical progression (BP) and radiological progression (RP), as well as outcome data with overall survival (OS), radiologic progression free survival (rPFS), and time to next treatment (TTT). At the time of BR, interferon-gamma (IFNγ) decreased significantly compared to levels detected at baseline (z-score = 2.33, p = 0.019). Regarding outcome data, the whole cohort was divided into four groups according to the change of IFNγ level during the first 3 cycles of enzalutamide treatment. In group 1 (n = 42) the IFNγ level remained within a normal range (≥ 250 pg/mL),while in group 2 (n = 7) it increased from an abnormal (< 250 pg/mL) to a normal level. In group 3 (n = 13) it dropped to an abnormal level, and it remained at an abnormal level during treatment in group 4 (n = 17). Patients in group 2 showed the worst prognosis with shorter both rPFS and TTT (HR 4.30, p = 0.037; and HR 6.82, p = 0.011, respectively). In this study inverse correlations between NKA and both treatment response and outcomes was observed in mCRPC patients receiving enzalutamide, suggesting an unfavourable role of NK cells in the late stage of PCa.
Collapse
Affiliation(s)
- A H Zedan
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark.
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - L Nederby
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - L M Volmer
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - C V Madsen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - B E Sørensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - T F Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Zhao X, Lin M, Huang X. Current status and future perspective of natural killer cell therapy for cancer. MEDICAL REVIEW (2021) 2023; 3:305-320. [PMID: 38235405 PMCID: PMC10790210 DOI: 10.1515/mr-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/23/2023] [Indexed: 01/19/2024]
Abstract
Natural killer (NK) cells possess innate abilities to effectively eliminate cancer cells. However, because of difficulties of proliferation and easy to be induced dysfunction in the setting of cancer post NK cell therapy, the curative effect of NK cell infusion has been constrained and not been widely applicable in clinical practice. The rapid development of biotechnology has promoted the development of NK cell therapy for cancer treatment. In this review, we will provide a comprehensive analysis of the current status and future prospects of NK cell therapy for cancer, focusing on the biological characteristics of NK cells, as well as strategies to enhance their targeting capabilities and overcome tumor immune suppression within the microenvironment.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Minghao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
18
|
Seo H, Verma A, Kinzel M, Huang Q, Mahoney DJ, Jacquelot N. Targeting Potential of Innate Lymphoid Cells in Melanoma and Other Cancers. Pharmaceutics 2023; 15:2001. [PMID: 37514187 PMCID: PMC10384206 DOI: 10.3390/pharmaceutics15072001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Reinvigorating the killing function of tumor-infiltrating immune cells through the targeting of regulatory molecules expressed on lymphocytes has markedly improved the prognosis of cancer patients, particularly in melanoma. While initially thought to solely strengthen adaptive T lymphocyte anti-tumor activity, recent investigations suggest that other immune cell subsets, particularly tissue-resident innate lymphoid cells (ILCs), may benefit from immunotherapy treatment. Here, we describe the recent findings showing immune checkpoint expression on tissue-resident and tumor-infiltrating ILCs and how their effector function is modulated by checkpoint blockade-based therapies in cancer. We discuss the therapeutic potential of ILCs beyond the classical PD-1 and CTLA-4 regulatory molecules, exploring other possibilities to manipulate ILC effector function to further impede tumor growth and quench disease progression.
Collapse
Affiliation(s)
- Hobin Seo
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Amisha Verma
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Megan Kinzel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Qiutong Huang
- The University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Douglas J Mahoney
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| | - Nicolas Jacquelot
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
19
|
Costa IM, Effer B, Costa-Silva TA, Chen C, Ciccone MF, Pessoa A, dos Santos CO, Monteiro G. Cathepsin B Is Not an Intrinsic Factor Related to Asparaginase Resistance of the Acute Lymphoblastic Leukemia REH Cell Line. Int J Mol Sci 2023; 24:11215. [PMID: 37446393 PMCID: PMC10342508 DOI: 10.3390/ijms241311215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
L-Asparaginase (ASNase) is a biopharmaceutical used as an essential drug in the treatment of acute lymphoblastic leukemia (ALL). Yet, some cases of ALL are naturally resistant to ASNase treatment, which results in poor prognosis. The REH ALL cell line, used as a model for studying the most common subtype of ALL, is considered resistant to treatment with ASNase. Cathepsin B (CTSB) is one of the proteases involved in the regulation of in vivo ASNase serum half-life and it has also been associated with the progression and resistance to treatment of several solid tumors. Previous works have shown that, in vitro, ASNase is degraded when incubated with REH cell lysate, which is prevented by a specific CTSB inhibitor, suggesting a function of this protease in the ASNase resistance of REH cells. In this work, we utilized a combination of CRISPR/Cas9 gene targeting and enzymatic measurements to investigate the relevance of CTSB on ASNase treatment resistance in the ALL model cell line. We found that deletion of CTSB in REH ALL cells did not confer ASNase treatment sensitivity, thus suggesting that intrinsic expression of CTSB is not a mechanism that drives the resistant nature of these ALL cells to enzymes used as the first-line treatment against leukemia.
Collapse
Affiliation(s)
- Iris Munhoz Costa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Brian Effer
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile
| | - Tales Alexandre Costa-Silva
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 14040-903, SP, Brazil
| | - Chen Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Michael F. Ciccone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
| | - Camila O. dos Santos
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; (C.C.); (M.F.C.); (C.O.d.S.)
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (I.M.C.); (B.E.); (T.A.C.-S.); (A.P.)
| |
Collapse
|
20
|
Merino A, Maakaron J, Bachanova V. Advances in NK cell therapy for hematologic malignancies: NK source, persistence and tumor targeting. Blood Rev 2023; 60:101073. [PMID: 36959057 PMCID: PMC10979648 DOI: 10.1016/j.blre.2023.101073] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Natural Killer (NK) cells yield promise in therapy of hematologic malignancies. The clinical experience with adoptively transferred allogeneic NK cells over past two decades has revealed safety and minimal risk of CRS or ICANS. Unlike T cells which have to be genetically altered to avoid graft vs host disease (GVHD), HLA mismatched NK cells can be infused without GVHD risk. This makes them ideal for the development of off-the-shelf products. In this review we focus on NK biology relevant to the cancer therapy, the trajectory of NK therapeutics for leukemia, lymphoma, and myeloma; and advantages of the NK cell platform. We will also discuss novel methods to enhance NK cell targeting, persistence, and function in the tumor microenvironment. The future of NK cell therapy depends on novel strategies to realize these qualities.
Collapse
Affiliation(s)
- Aimee Merino
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America
| | - Joseph Maakaron
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America.
| |
Collapse
|
21
|
Li L, Gao J, Sun Z, Li X, Wang N, Zhang R. Effects of CAR-T Cell Therapy on Immune Cells and Related Toxic Side Effect Analysis in Patients with Refractory Acute Lymphoblastic Leukemia. Mediators Inflamm 2023; 2023:2702882. [PMID: 37304661 PMCID: PMC10257545 DOI: 10.1155/2023/2702882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Objective To observe the effects of chimeric antigen receptor T (CAR-T) cell immunotherapy on immune cells and related toxic side effects in patients with refractory acute lymphoblastic leukemia (ALL). Methods A retrospective study was conducted in 35 patients with refractory ALL. The patients were treated with CAR-T cell therapy in our hospital from January 2020 to January 2021. The efficacy was evaluated at one and three months post treatments. The venous blood of the patients was collected before treatment, 1 month after treatment, and 3 months after treatment. The percentage of regulatory T cells (Treg cells), natural killer (NK) cells, and T lymphocyte subsets (CD3+, CD4+, and CD8+ T cells) was detected by flow cytometry. The ratio of CD4+/CD8+ was calculated. Patient's toxic side effects such as fever, chills, gastrointestinal bleeding, nervous system symptoms, digestive system symptoms, abnormal liver function, and blood coagulation dysfunction were monitored and recorded. The incidence of toxic and side effects was calculated, and the incidence of infection was recorded. Results After one month of CAR-T cell therapy in 35 patients with ALL, the efficacy evaluation showed that complete response (CR) patients accounted for 68.57%, CR with incomplete hematological recovery (CRi) patients accounted for 22.86%, and partial disease (PD) patients accounted for 8.57%, and the total effective rate was 91.43%. In addition, compared with that before treatment, the Treg cell level in CR+CRi patients treated for 1 month and 3 months decreased prominently, and the NK cell level increased dramatically (P < 0.05). Compared with that before treatment, the levels of CD3+, CD4+, and CD4+/CD8+ in patients with CR+CRi in the 1-month and 3-month groups were markedly higher, and the levels of CD4+/CD8+ in the 3-month group were memorably higher than those in the 1-month group (P < 0.05). During CAR-T cell therapy in 35 patients with ALL, fever accounted for 62.86%, chills for 20.00%, gastrointestinal bleeding for 8.57%, nervous system symptoms for 14.29%, digestive system symptoms for 28.57%, abnormal liver function for 11.43%, and coagulation dysfunction for 8.57%. These side effects were all relieved after symptomatic treatment. During the course of CAR-T therapy in 35 patients with ALL, 2 patients had biliary tract infection and 13 patients had lung infection. No correlations were found between the infection and age, gender, CRS grade, usage of glucocorticoids or tocilizumab, and laboratory indicators such as WBC, ANC, PLT, and Hb (P > 0.05). Conclusion CAR-T cell therapy had a good effect on patients with refractory ALL by regulating the immune function of the body via mediating the content of immune cells. CAR-T cell therapy may have therapeutic effect on refractory ALL patients with mild side effects and high safety.
Collapse
Affiliation(s)
- Lianlian Li
- Department of Hematology, Cangzhou People's Hospital, Cangzhou City, Hebei Province, China
| | - Jie Gao
- Department of Hematology, Cangzhou People's Hospital, Cangzhou City, Hebei Province, China
| | - Zhaojun Sun
- Department of Hematology, Cangzhou People's Hospital, Cangzhou City, Hebei Province, China
| | - Xiaolei Li
- Department of Hematology, Cangzhou People's Hospital, Cangzhou City, Hebei Province, China
| | - Ning Wang
- Department of Hematology, Cangzhou People's Hospital, Cangzhou City, Hebei Province, China
| | - Rui Zhang
- Department of Hematology, Cangzhou People's Hospital, Cangzhou City, Hebei Province, China
| |
Collapse
|
22
|
Portale F, Di Mitri D. NK Cells in Cancer: Mechanisms of Dysfunction and Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24119521. [PMID: 37298470 DOI: 10.3390/ijms24119521] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Natural killer cells (NK) are innate lymphocytes endowed with the ability to recognize and kill cancer cells. Consequently, adoptive transfer of autologous or allogeneic NK cells represents a novel opportunity in cancer treatment that is currently under clinical investigation. However, cancer renders NK cells dysfunctional, thus restraining the efficacy of cell therapies. Importantly, extensive effort has been employed to investigate the mechanisms that restrain NK cell anti-tumor function, and the results have offered forthcoming solutions to improve the efficiency of NK cell-based therapies. The present review will introduce the origin and features of NK cells, summarize the mechanisms of action and causes of dysfunction of NK cells in cancer, and frame NK cells in the tumoral microenvironment and in the context of immunotherapies. Finally, we will discuss therapeutic potential and current limitations of NK cell adoptive transfer in tumors.
Collapse
Affiliation(s)
- Federica Portale
- Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Diletta Di Mitri
- Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| |
Collapse
|
23
|
Kumar A, Taghi Khani A, Duault C, Aramburo S, Sanchez Ortiz A, Lee SJ, Chan A, McDonald T, Huang M, Lacayo NJ, Sakamoto KM, Yu J, Hurtz C, Carroll M, Tasian SK, Ghoda L, Marcucci G, Gu Z, Rosen ST, Armenian S, Izraeli S, Chen CW, Caligiuri MA, Forman SJ, Maecker HT, Swaminathan S. Intrinsic suppression of type I interferon production underlies the therapeutic efficacy of IL-15-producing natural killer cells in B-cell acute lymphoblastic leukemia. J Immunother Cancer 2023; 11:jitc-2022-006649. [PMID: 37217248 DOI: 10.1136/jitc-2022-006649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Type I interferons (IFN-Is), secreted by hematopoietic cells, drive immune surveillance of solid tumors. However, the mechanisms of suppression of IFN-I-driven immune responses in hematopoietic malignancies including B-cell acute lymphoblastic leukemia (B-ALL) are unknown. METHODS Using high-dimensional cytometry, we delineate the defects in IFN-I production and IFN-I-driven immune responses in high-grade primary human and mouse B-ALLs. We develop natural killer (NK) cells as therapies to counter the intrinsic suppression of IFN-I production in B-ALL. RESULTS We find that high expression of IFN-I signaling genes predicts favorable clinical outcome in patients with B-ALL, underscoring the importance of the IFN-I pathway in this malignancy. We show that human and mouse B-ALL microenvironments harbor an intrinsic defect in paracrine (plasmacytoid dendritic cell) and/or autocrine (B-cell) IFN-I production and IFN-I-driven immune responses. Reduced IFN-I production is sufficient for suppressing the immune system and promoting leukemia development in mice prone to MYC-driven B-ALL. Among anti-leukemia immune subsets, suppression of IFN-I production most markedly lowers the transcription of IL-15 and reduces NK-cell number and effector maturation in B-ALL microenvironments. Adoptive transfer of healthy NK cells significantly prolongs survival of overt ALL-bearing transgenic mice. Administration of IFN-Is to B-ALL-prone mice reduces leukemia progression and increases the frequencies of total NK and NK-cell effectors in circulation. Ex vivo treatment of malignant and non-malignant immune cells in primary mouse B-ALL microenvironments with IFN-Is fully restores proximal IFN-I signaling and partially restores IL-15 production. In B-ALL patients, the suppression of IL-15 is the most severe in difficult-to-treat subtypes with MYC overexpression. MYC overexpression promotes sensitivity of B-ALL to NK cell-mediated killing. To counter the suppressed IFN-I-induced IL-15 production in MYChigh human B-ALL, we CRISPRa-engineered a novel human NK-cell line that secretes IL-15. CRISPRa IL-15-secreting human NK cells kill high-grade human B-ALL in vitro and block leukemia progression in vivo more effectively than NK cells that do not produce IL-15. CONCLUSION We find that restoration of the intrinsically suppressed IFN-I production in B-ALL underlies the therapeutic efficacy of IL-15-producing NK cells and that such NK cells represent an attractive therapeutic solution for the problem of drugging MYC in high-grade B-ALL.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Systems Biology, City of Hope Beckman Research Institute, Monrovia, California, USA
| | - Adeleh Taghi Khani
- Department of Systems Biology, City of Hope Beckman Research Institute, Monrovia, California, USA
| | - Caroline Duault
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA
| | - Soraya Aramburo
- Department of Systems Biology, City of Hope Beckman Research Institute, Monrovia, California, USA
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, City of Hope Beckman Research Institute, Monrovia, California, USA
| | - Sung June Lee
- Department of Systems Biology, City of Hope Beckman Research Institute, Monrovia, California, USA
| | - Anthony Chan
- Department of Systems Biology, City of Hope Beckman Research Institute, Monrovia, California, USA
| | - Tinisha McDonald
- The Hematopoietic Tissue Biorepository/Research Pathology Shared Resources, City of Hope, Duarte, California, USA
| | - Min Huang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Norman J Lacayo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Kathleen M Sakamoto
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Christian Hurtz
- Department of Cancer and Cellular Biology, Fels Cancer Institute for Personalized Medicine Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Martin Carroll
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sarah K Tasian
- Department of Pediatrics, Division of Oncology, The Children's Hospital, Philadelphia, Pennsylvania, USA
| | - Lucy Ghoda
- Hematological Malignancies Translational Science, City of Hope, Duarte, California, USA
| | - Guido Marcucci
- The Hematopoietic Tissue Biorepository/Research Pathology Shared Resources, City of Hope, Duarte, California, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
- Hematological Malignancies Translational Science, City of Hope, Duarte, California, USA
| | - Zhaohui Gu
- Department of Systems Biology, City of Hope Beckman Research Institute, Monrovia, California, USA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Saro Armenian
- Department of Pediatrics, City of Hope, Duarte, California, USA
| | - Shai Izraeli
- Department of Systems Biology, City of Hope Beckman Research Institute, Monrovia, California, USA
- Hematology-Oncology Department, Tel Aviv University, Tel Aviv, Israel
| | - Chun-Wei Chen
- Department of Systems Biology, City of Hope Beckman Research Institute, Monrovia, California, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Holden T Maecker
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA
| | - Srividya Swaminathan
- Department of Systems Biology, City of Hope Beckman Research Institute, Monrovia, California, USA
- Department of Pediatrics, City of Hope, Duarte, California, USA
| |
Collapse
|
24
|
Piccinelli S, Romee R, Shapiro RM. The natural killer cell immunotherapy platform: an overview of the landscape of clinical trials in liquid and solid tumors. Semin Hematol 2023; 60:42-51. [PMID: 37080710 DOI: 10.1053/j.seminhematol.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
The translation of natural killer (NK) cells to the treatment of malignant disease has made significant progress in the last few decades. With a variety of available sources and improvements in both in vitro and in vivo NK cell expansion, the NK cell immunotherapy platform has come into its own. The enormous effort continues to further optimize this platform, including ways to enhance NK cell persistence, trafficking to the tumor microenvironment, and cytotoxicity. As this effort bears fruit, it is translated into a plethora of clinical trials in patients with advanced malignancies. The adoptive transfer of NK cells, either as a standalone therapy or in combination with other immunotherapies, has been applied for the treatment of both liquid and solid tumors, with numerous early-phase trials showing promising results. This review aims to summarize the key advantages of NK cell immunotherapy, highlight several of the current approaches being taken for its optimization, and give an overview of the landscape of clinical trials translating this platform into clinic.
Collapse
|
25
|
Lu C, Liu Y, Ali NM, Zhang B, Cui X. The role of innate immune cells in the tumor microenvironment and research progress in anti-tumor therapy. Front Immunol 2023; 13:1039260. [PMID: 36741415 PMCID: PMC9893925 DOI: 10.3389/fimmu.2022.1039260] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
Innate immune cells in the tumor microenvironment (TME) mainly include macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow derived suppressor cells. They play an anti-tumor or pro-tumor role by secreting various cytokines, chemokines and other factors, and determine the occurrence and development of tumors. Comprehending the role of innate immune cells in tumorigenesis and progression can help improve therapeutic approaches targeting innate immune cells in the TME, increasing the likelihood of favorable prognosis. In this review, we discussed the cell biology of innate immune cells, their role in tumorigenesis and development, and the current status of innate immune cell-based immunotherapy, in order to provide an overview for future research lines and clinical trials.
Collapse
Affiliation(s)
- Chenglin Lu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Nasra Mohamoud Ali
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Bin Zhang,
| |
Collapse
|
26
|
Adoptive Cell Therapy for T-Cell Malignancies. Cancers (Basel) 2022; 15:cancers15010094. [PMID: 36612092 PMCID: PMC9817702 DOI: 10.3390/cancers15010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
T-cell malignancies are often aggressive and associated with poor prognoses. Adoptive cell therapy has recently shown promise as a new line of therapy for patients with hematological malignancies. However, there are currently challenges in applying adoptive cell therapy to T-cell malignancies. Various approaches have been examined in preclinical and clinical studies to overcome these obstacles. This review aims to provide an overview of the recent progress on adoptive cell therapy for T-cell malignancies. The benefits and drawbacks of different types of adoptive cell therapy are discussed. The potential advantages and current applications of innate immune cell-based adoptive cell therapy for T cell malignancies are emphasized.
Collapse
|
27
|
Leveraging Natural Killer Cell Innate Immunity against Hematologic Malignancies: From Stem Cell Transplant to Adoptive Transfer and Beyond. Int J Mol Sci 2022; 24:ijms24010204. [PMID: 36613644 PMCID: PMC9820370 DOI: 10.3390/ijms24010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous recent advancements in T-cell based immunotherapies have revolutionized the treatment of hematologic malignancies. In the race towards the first approved allogeneic cellular therapy product, there is growing interest in utilizing natural killer (NK) cells as a platform for off-the-shelf cellular therapies due to their scalable manufacturing potential, potent anti-tumor efficacy, and superior safety profile. Allogeneic NK cell therapies are now being actively explored in the setting of hematopoietic stem cell transplantation and adoptive transfer. Increasingly sophisticated gene editing techniques have permitted the engineering of chimeric antigen receptors, ectopic cytokine expression, and tumor recognition signals to improve the overall cytotoxicity of NK cell therapies. Furthermore, the enhancement of antibody-dependent cellular cytotoxicity has been achieved through the use of NK cell engagers and combination regimens with monoclonal antibodies that act synergistically with CD16-expressing NK cells. Finally, a greater understanding of NK cell biology and the mechanisms of resistance have allowed the preclinical development of NK checkpoint blockade and methods to modulate the tumor microenvironment, which have been evaluated in early phase trials. This review will discuss the recent clinical advancements in NK cell therapies in hematologic malignancies as well as promising avenues of future research.
Collapse
|
28
|
Identification of immune and stromal cell infiltration-related gene signature for prognosis prediction in acute lymphoblastic leukemia. Aging (Albany NY) 2022; 14:7470-7504. [PMID: 36126190 PMCID: PMC9550239 DOI: 10.18632/aging.204292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a common and life-threatening hematologic malignancy, its occurrence and progression are closely related to immune/stromal cell infiltration in the bone marrow (BM) microenvironment. However, no studies have described an immune/stromal cell infiltration-related gene (ISCIRG)-based prognostic signature for ALL. A total of 444 patients involving 437 bulk and 7 single-cell RNA-seq datasets were included in this study. Eligible datasets were searched and reviewed from the database of TCGA, TARGET project and GEO. Then an integrated bioinformatics analysis was performed to select optimal prognosis-related genes from ISCIRGs, construct a nomogram model for predicting prognosis, and assess the predictive power. After LASSO and multivariate Cox regression analyses, a seven ISCIRGs-based signature was proved to be able to significantly stratify patients into high- and low-risk groups in terms of OS. The seven genes were confirmed that directly related to the composition and status of immune/stromal cells in BM microenvironment by analyzing bulk and single-cell RNA-seq datasets. The calibration plot showed that the predicted results of the nomogram were consistent with the actual observation results of training/validation cohort. This study offers a reference for future research regarding the role of ISCIRGs in ALL and the clinical care of patients.
Collapse
|
29
|
Eldewi DM, El‑Hagrasy HA, Gouda RM, Hassan MAEM, Kamel SM, Abd El Haliem NF, Anani HAA. Residual Bone Marrow T & NK-Cells at Diagnosis in Pediatric Pre-B-ALL: A Case-Control Study. Int J Gen Med 2022; 15:6475-6483. [PMID: 35966509 PMCID: PMC9369084 DOI: 10.2147/ijgm.s375991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Mature bone marrow T lymphocytes and NK may have a special relevance in the control of the malignant growth. Objective We aimed to assess the percentage of the residual BM T-cells, (T-helper -T-cytotoxic- NKT) and the NK cells of childhood precursor B-lymphoblastic leukemia (B-ALL) as an indicator of innate and adaptive immunity in these patients. Subjects and Methods This study was conducted on 40 B-ALL patients, and 40 apparently healthy matched children served as a control group. The flow cytometry was used to assess the percentage of the residual BM T-cells (T-helper, T-cytotoxic and NKT), and the NK cells. Results Compared with the control group, the percentage of the residual BM T-cells, its subtypes (T-helper, T-cytotoxic), and NKT cells in addition to the NK cells was significantly decreased in Group IA, and Group IB, but there was no significant difference between Group IA and Group IB in all studied parameters. In terms of the CD4/CD8 ratio, there was a significant increase in Group IA as compared to the control group (P < 0.026), but there were no significant statistical differences in CD4/CD8 ratio between Groups IB, and the control. Likewise, in CD4/CD8 ratio between groups IA, and Groups IB (P > 0.05). The percentage of NK, and NKT cells shows a significant increase in Hepatomegaly and Splenomegaly, as compared to non-Hepatomegaly and non-Splenomegaly patients of Groups IB (P < 0.05). However, there was a significant increase in statistical differences in the percentage of NKT cell between non-Splenomegaly, as compared to Splenomegaly patients of Group IA (P < 0.05). Additionally, there is a negative correlation between B.M Blast% to CD4/CD8 ratio and NK%, but there is no significant correlation between B.M Blast% to NK T% in the group 1 A.
Collapse
Affiliation(s)
- Dalia Mahmoud Eldewi
- Department of Clinical Pathology - Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| | - Hanan A El‑Hagrasy
- Department of Clinical Pathology - Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| | - Rasha Mahmoud Gouda
- Department of Pediatric - Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| | | | - Shimaa Moustafa Kamel
- Department of Pediatric - Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| | - Naglaa F Abd El Haliem
- Departments of Medical Microbiology and Immunology Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| | - Haneya A A Anani
- Departments of Medical Microbiology and Immunology Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| |
Collapse
|
30
|
Functional crosstalk and regulation of natural killer cells in tumor microenvironment: Significance and potential therapeutic strategies. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Fallati A, Di Marzo N, D’Amico G, Dander E. Mesenchymal Stromal Cells (MSCs): An Ally of B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells in Disease Maintenance and Progression within the Bone Marrow Hematopoietic Niche. Cancers (Basel) 2022; 14:cancers14143303. [PMID: 35884364 PMCID: PMC9323332 DOI: 10.3390/cancers14143303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer. Even though the cure rate actually exceeds 85%, the prognosis of relapsed/refractory patients is dismal. Recent literature data indicate that the bone marrow (BM) microenvironment could play a crucial role in the onset, maintenance and progression of the disease. In particular, mesenchymal stromal cells (MSCs), which are key components of the BM niche, actively crosstalk with leukemic cells providing crucial signals for their survival and resistance to therapy. We hereby review the main mechanisms exploited by MSCs to nurture and protect B-ALL cells that could become appealing targets for innovative microenvironment remodeling therapies to be coupled with classical leukemia-directed strategies. Abstract Mesenchymal stromal cells (MSCs) are structural components of the bone marrow (BM) niche, where they functionally interact with hematopoietic stem cells and more differentiated progenitors, contributing to hematopoiesis regulation. A growing body of evidence is nowadays pointing to a further crucial contribution of MSCs to malignant hematopoiesis. In the context of B-cell acute lymphoblastic leukemia (B-ALL), MSCs can play a pivotal role in the definition of a leukemia-supportive microenvironment, impacting on disease pathogenesis at different steps including onset, maintenance and progression. B-ALL cells hijack the BM microenvironment, including MSCs residing in the BM niche, which in turn shelter leukemic cells and protect them from chemotherapeutic agents through different mechanisms. Evidence is now arising that altered MSCs can become precious allies to leukemic cells by providing nutrients, cytokines, pro-survivals signals and exchanging organelles, as hereafter reviewed. The study of the mechanisms exploited by MSCs to nurture and protect B-ALL blasts can be instrumental in finding new druggable candidates to target the leukemic BM microenvironment. Some of these microenvironment-targeting strategies are already in preclinical or clinical experimentation, and if coupled with leukemia-directed therapies, could represent a valuable option to improve the prognosis of relapsed/refractory patients, whose management represents an unmet medical need.
Collapse
|
32
|
Gilbert JR, Sabnis HS, Radzievski R, Doxie DB, DeRyckere D, Castellino SM, Dhodapkar K. Association of race/ethnicity with innate immune tumor microenvironment of children with B-acute lymphoblastic leukemia. J Immunother Cancer 2022; 10:jitc-2022-004774. [PMID: 35710294 PMCID: PMC9204408 DOI: 10.1136/jitc-2022-004774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Black and Hispanic children with B-acute lymphoblastic leukemia (B-ALL) experience worse outcomes compared with their non-Hispanic white (NHW) counterparts. Immune-based approaches have begun to transform the therapeutic landscape in children with B-ALL. Recent studies identified several alterations in both innate and adaptive immune cells in children with B-ALL that may impact disease risk and outcome. However, the impact of racial/ethnic background on immune microenvironment is less studied, as children of minorities background have to date been severely under-represented in such studies. METHODS We performed high-dimensional analysis of bone marrow from 85 children with newly diagnosed B-ALL (Hispanic=29, black=18, NHW=38) using mass cytometry with 40 and 38-marker panels. RESULTS Race/ethnicity-associated differences were most prominent in the innate immune compartment. Hispanic patients had significantly increased proportion of distinct mature CD57 +T-bet+DR+ NK cells compared with other cohorts. These differences were most apparent within standard risk (SR) patients with Hispanic SR patients having greater numbers of CD57 +NK cells compared with other cohorts (43% vs 26% p=0.0049). Hispanic and Black children also had distinct alterations in myeloid cells, with a significant increase in a population of non-classical activated HLA-DR +CD16+myeloid cells, previously implicated in disease progression, compared with NHW counterparts. Racial background also correlated with altered expression of inhibitory checkpoint PD-L1 on myeloid cells. CONCLUSION There are surprisingly substantial race/ethnicity-based differences in innate immune cells of children with newly diagnosed B-ALL. These differences urge the need to enhance accrual of children from minorities background in immunetherapy trials and may impact their outcome following such therapy.
Collapse
Affiliation(s)
- Julie R Gilbert
- Aflac Cancer and Blood Disprders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, U.S.A
| | - Himalee S Sabnis
- Aflac Cancer and Blood Disprders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, U.S.A
| | - Roman Radzievski
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Deon B Doxie
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disprders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, U.S.A
| | - Sharon M Castellino
- Aflac Cancer and Blood Disprders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, U.S.A
| | - Kavita Dhodapkar
- Aflac Cancer and Blood Disprders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, U.S.A,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
33
|
Wang Y, Ma X, Huang J, Yang X, Kang M, Sun X, Li H, Wu Y, Zhang H, Zhu Y, Xue Y, Fang Y. Somatic FOXC1 insertion mutation remodels the immune microenvironment and promotes the progression of childhood acute lymphoblastic leukemia. Cell Death Dis 2022; 13:431. [PMID: 35504885 PMCID: PMC9065155 DOI: 10.1038/s41419-022-04873-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignant hematological diseases in children. An immunosuppressive microenvironment, particularly regulatory T cell (Treg) infiltration, has been documented to be highly associated with childhood ALL. This present study, based on genetic factors, was aimed at investigating the mutations potentially involved in the immunosuppressive microenvironment in childhood ALL. After whole-exome sequencing was used on DNA extracted from the T cells of ALL bone marrow samples, we found the FOXC1 H446HG induced a increased Treg while decreased cytotoxic T lymphocyte (CTL) in bone marrow. The mutation of FOXC1 in T cell promoted the proliferation of leukemia cells in vitro and in vivo. CpG islands formed by insertion mutation led to an abnormal increase in exon methylation and were associated with the suppression of FOXC1. Decreased FOXC1 attenuated the transcription of HDAC1, thus resulting in the activation of KLF10 through increasing H3K27 acetylation in the promoter region. In conclusion, the de novo insertion mutation in FOXC1 induced suppression of FOXC1, thereby promoting a Treg/CTL shift in the ALL immune microenvironment. The FOXC1 H446HG mutation might be a potential therapeutic target for ALL in the future.
Collapse
Affiliation(s)
- Yaping Wang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Xiaopeng Ma
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Jie Huang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Xiaoyun Yang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Meiyun Kang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Xiaoyan Sun
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Huimin Li
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Yijun Wu
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Heng Zhang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Yuting Zhu
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Yao Xue
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Yongjun Fang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| |
Collapse
|
34
|
Venglar O, Bago JR, Motais B, Hajek R, Jelinek T. Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Front Immunol 2022; 12:816499. [PMID: 35087536 PMCID: PMC8787055 DOI: 10.3389/fimmu.2021.816499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.
Collapse
Affiliation(s)
- Ondrej Venglar
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Julio Rodriguez Bago
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Benjamin Motais
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Roman Hajek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Jelinek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| |
Collapse
|
35
|
Muscari I, Fierabracci A, Adorisio S, Moretti M, Cannarile L, Thi Minh Hong V, Ayroldi E, Delfino DV. Glucocorticoids and natural killer cells: A suppressive relationship. Biochem Pharmacol 2022; 198:114930. [PMID: 35149054 DOI: 10.1016/j.bcp.2022.114930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
Abstract
Glucocorticoids exert their pharmacological actions by mimicking and amplifying the function of the endogenous glucocorticoid system's canonical physiological stress response. They affect the immune system at the levels of inflammation and adaptive and innate immunity. These effects are the basis for therapeutic use of glucocorticoids. Innate immunity is the body's first line of defense against disease conditions. It is relatively nonspecific and, among its mediators, natural killer(NK) cells link innate and acquired immunity. NK cell numbers are altered in patients with auto immune diseases, and research suggests that interactions between glucocorticoids and natural killer cells arecritical for successful glucocorticoid therapy. The aim of this review is to summarize these interactions while highlighting the latest and most important developments in this field. Production and release in theblood of endogenous glucocorticoids are strictly regulated by the hypothalamus-pituitary-adrenal axis. Aself-regulatory mechanism prevents excessive plasma levels of these hormones. However, exogenousstimuli such as stress, inflammation, infections, cancer, and autoimmune disease can trigger thehypothalamus-pituitary-adrenal axis response and lead to excessive systemic release of glucocorticoids.Thus, stress stimuli, such as sleep deprivation, intense exercise, depression, viral infections, andcancer, can result in release of glucocorticoids and associated immunosuppressant effects. Among theseeffects are decreases in the numbers and activities of NK cells in inflammatory and autoimmune diseases(e.g., giant cell arteritis, polymyalgia rheumatica, and familial hypogammaglobulinemia).
Collapse
Affiliation(s)
- Isabella Muscari
- Section of Onco-hematology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Immunology and Pharmacotherapy Research Area Bambino Gesù Children's Hospital, Rome, Italy
| | - Sabrina Adorisio
- Foligno Nursing School, Department of Medicine, University of Perugia, Foligno, PG, Italy
| | - Marina Moretti
- Section of Onco-hematology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Lorenza Cannarile
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Foligno Nursing School, Department of Medicine, University of Perugia, Foligno, PG, Italy; Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
36
|
Natural Killer Cell-Mediated Immunotherapy for Leukemia. Cancers (Basel) 2022; 14:cancers14030843. [PMID: 35159109 PMCID: PMC8833963 DOI: 10.3390/cancers14030843] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Conventional therapies such as chemotherapy and radiation in leukemia increase infection susceptibility, adverse side effects and immune cell inactivation. Natural killer (NK) cells are the first line of defense against cancer and are critical in the recognition and cytolysis of rapidly dividing and abnormal cell populations. In this review, we describe NK cells and NK cell receptors, functional impairment of NK cells in leukemia, NK cell immunotherapies currently under investigation including monoclonal antibodies (mAbs), adoptive transfer, chimeric antigen receptor-NKs (CAR-NKs), bi-specific/tri-specific killer engagers (BiKEs/TriKEs) and potential targets of NK cell-mediated immunotherapy for leukemia in the future. Abstract Leukemia is a malignancy of the bone marrow and blood resulting from the abnormal differentiation of hematopoietic stem cells (HSCs). There are four main types of leukemia including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL). While chemotherapy and radiation have been conventional forms of treatment for leukemia, these therapies increase infection susceptibility, adverse side effects and immune cell inactivation. Immunotherapies are becoming promising treatment options for leukemia, with natural killer (NK) cell-mediated therapy providing a specific direction of interest. The role of NK cells is critical for cancer cell elimination as these immune cells are the first line of defense against cancer proliferation and are involved in both recognition and cytolysis of rapidly dividing and abnormal cell populations. NK cells possess various activating and inhibitory receptors, which regulate NK cell function, signaling either inhibition and continued surveillance, or activation and subsequent cytotoxic activity. In this review, we describe NK cells and NK cell receptors, functional impairment of NK cells in leukemia, NK cell immunotherapies currently under investigation, including monoclonal antibodies (mAbs), adoptive transfer, chimeric antigen receptor-NKs (CAR-NKs), bi-specific/tri-specific killer engagers (BiKEs/TriKEs) and future potential targets of NK cell-based immunotherapy for leukemia.
Collapse
|
37
|
Del Gaizo M, Sergio I, Lazzari S, Cialfi S, Pelullo M, Screpanti I, Felli MP. MicroRNAs as Modulators of the Immune Response in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:829. [PMID: 35055013 PMCID: PMC8776227 DOI: 10.3390/ijms23020829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is an aggressive haematological tumour driven by the malignant transformation and expansion of B-cell (B-ALL) or T-cell (T-ALL) progenitors. The evolution of T-ALL pathogenesis encompasses different master developmental pathways, including the main role played by Notch in cell fate choices during tissue differentiation. Recently, a growing body of evidence has highlighted epigenetic changes, particularly the altered expression of microRNAs (miRNAs), as a critical molecular mechanism to sustain T-ALL. The immune response is emerging as key factor in the complex multistep process of cancer but the role of miRNAs in anti-leukaemia response remains elusive. In this review we analyse the available literature on miRNAs as tuners of the immune response in T-ALL, focusing on their role in Natural Killer, T, T-regulatory and Myeloid-derived suppressor cells. A better understanding of this molecular crosstalk may provide the basis for the development of potential immunotherapeutic strategies in the leukemia field.
Collapse
Affiliation(s)
- Martina Del Gaizo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy;
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| |
Collapse
|
38
|
Kumar A, Lee SJ, Liu Q, Chan AK, Pokharel SP, Yu J, Chen CW, Swaminathan S. Generation and validation of CRISPR-engineered human natural killer cell lines for research and therapeutic applications. STAR Protoc 2021; 2:100874. [PMID: 34746857 PMCID: PMC8551845 DOI: 10.1016/j.xpro.2021.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytotoxic natural killer cells kill tumors and infected cells. We carried out CRISPR-based gene editing and transcriptional regulation in hard-to-manipulate NK-92 cells. NK-92-based therapies were found to be safe and efficacious in preclinical studies of cancers. Here, we have pioneered the generation and validation of NK-92 cells constitutively expressing Cas9 or dCas9 for knockout (CRISPRko), transcriptional activation (CRISPRa), or transcriptional repression (CRISPRi) of genes. Our CRISPR-engineered NK-92 cell platforms can be modified for research and off-the-shelf therapeutic applications.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Sung June Lee
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Qiao Liu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Anthony K.N. Chan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Sheela Pangeni Pokharel
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
39
|
Buckle I, Guillerey C. Inhibitory Receptors and Immune Checkpoints Regulating Natural Killer Cell Responses to Cancer. Cancers (Basel) 2021; 13:cancers13174263. [PMID: 34503073 PMCID: PMC8428224 DOI: 10.3390/cancers13174263] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent years marked the discovery and increased understanding of the role immune checkpoints play in immunity against cancer. This has revolutionized cancer treatment, saving the lives of many patients. For numerous years the spotlight of success has been directed towards T cells; however, it is now appreciated that other cells play vital roles in this protection. In this review we focused on cytotoxic lymphocytes Natural Killer (NK) cells, which are known to be well equipped in the fight against cancer. We explored the role of well-described and newly emerging inhibitory receptors, including immune checkpoints in regulating NK cell activity against cancer. The knowledge summarized in this review should guide the development of immunotherapies targeting inhibitory receptors with the aim of restoring NK cell responses in cancer patients. Abstract The discovery of immune checkpoints provided a breakthrough for cancer therapy. Immune checkpoints are inhibitory receptors that are up-regulated on chronically stimulated lymphocytes and have been shown to hinder immune responses to cancer. Monoclonal antibodies against the checkpoint molecules PD-1 and CTLA-4 have shown early clinical success against melanoma and are now approved to treat various cancers. Since then, the list of potential candidates for immune checkpoint blockade has dramatically increased. The current paradigm stipulates that immune checkpoint blockade therapy unleashes pre-existing T cell responses. However, there is accumulating evidence that some of these immune checkpoint molecules are also expressed on Natural Killer (NK) cells. In this review, we summarize our latest knowledge about targetable NK cell inhibitory receptors. We discuss the HLA-binding receptors KIRS and NKG2A, receptors binding to nectin and nectin-like molecules including TIGIT, CD96, and CD112R, and immune checkpoints commonly associated with T cells such as PD-1, TIM-3, and LAG-3. We also discuss newly discovered pathways such as IL-1R8 and often overlooked receptors such as CD161 and Siglecs. We detail how these inhibitory receptors might regulate NK cell responses to cancer, and, where relevant, we discuss their implications for therapeutic intervention.
Collapse
|