1
|
Maziarz RT, Cook RJ. The rationale behind grafting haploidentical hematopoietic stem cells. Hematology 2024; 29:2347673. [PMID: 38712914 DOI: 10.1080/16078454.2024.2347673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
The ability to perform hematopoietic cell transplant across major histocompatibility complex barriers can dramatically increase the availability of donors and allow more patients across the world to pursue curative transplant procedures for underlying hematologic disorders. Early attempts at haploidentical transplantation using broadly reactive T-cell depletion approaches were compromised by graft rejection, graft-versus-host disease and prolonged immune deficiency. The evolution of haploidentical transplantation focused on expanding transplanted hematopoietic progenitors as well as using less broadly reactive T-cell depletion. Significant outcome improvements were identified with technology advances allowing selective depletion of donor allospecific T cells, initially ex-vivo with evolution to its current in-vivo approach with the infusion of the highly immunosuppressive chemotherapy agent, cyclophosphamide after transplantation procedure. Current approaches are facile and portable, allowing expansion of allogeneic hematopoietic cell transplantation for patients across the world, including previously underserved populations.
Collapse
Affiliation(s)
- Richard T Maziarz
- Center for Hematologic Malignancies, Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Rachel J Cook
- Center for Hematologic Malignancies, Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Roloff GW, Kosuri S, Nawas MT, DuVall AS, Patel AA, Riedell PA, Odenike O, Stock W, Larson RA, Bishop MR, Nunley E, Godley LA, Hathaway F, Del Gaudio D, Das S, Canham LE, Drazer MW. Expedited evaluation of hereditary hematopoietic malignancies in the setting of stem cell transplantation. Haematologica 2024; 109:3739-3744. [PMID: 38618681 PMCID: PMC11532700 DOI: 10.3324/haematol.2023.284584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
| | | | | | - Adam S DuVall
- Section of Hematology/Oncology, University of Chicago
| | - Anand A Patel
- Section of Hematology/Oncology, University of Chicago
| | | | | | - Wendy Stock
- Section of Hematology/Oncology, University of Chicago
| | | | | | - Emma Nunley
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Lucy A Godley
- Division of Hematology/Oncology, Northwestern Medicine, Chicago IL
| | | | | | - Soma Das
- Division of Pathology, University of Chicago
| | | | | |
Collapse
|
3
|
Perrino MR, Das A, Scollon SR, Mitchell SG, Greer MLC, Yohe ME, Hansford JR, Kalish JM, Schultz KAP, MacFarland SP, Kohlmann WK, Lupo PJ, Maxwell KN, Pfister SM, Weksberg R, Michaeli O, Jongmans MCJ, Tomlinson GE, Brzezinski J, Tabori U, Ney GM, Gripp KW, Gross AM, Widemann BC, Stewart DR, Woodward ER, Kratz CP. Update on Pediatric Cancer Surveillance Recommendations for Patients with Neurofibromatosis Type 1, Noonan Syndrome, CBL Syndrome, Costello Syndrome, and Related RASopathies. Clin Cancer Res 2024; 30:4834-4843. [PMID: 39196581 PMCID: PMC11530332 DOI: 10.1158/1078-0432.ccr-24-1611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Neurofibromatosis type 1 (NF1), Noonan syndrome, and related syndromes, grouped as RASopathies, result from dysregulation of the RAS-MAPK pathway and demonstrate varied multisystemic clinical phenotypes. Together, RASopathies are among the more prevalent genetic cancer predisposition syndromes and require nuanced clinical management. When compared with the general population, children with RASopathies are at significantly increased risk of benign and malignant neoplasms. In the past decade, clinical trials have shown that targeted therapies can improve outcomes for low-grade and benign neoplastic lesions but have their own challenges, highlighting the multidisciplinary care needed for such individuals, specifically those with NF1. This perspective, which originated from the 2023 American Association for Cancer Research Childhood Cancer Predisposition Workshop, serves to update pediatric oncologists, neurologists, geneticists, counselors, and other health care professionals on revised diagnostic criteria, review previously published surveillance guidelines, and harmonize updated surveillance recommendations for patients with NF1 or RASopathies.
Collapse
Affiliation(s)
- Melissa R. Perrino
- Department of Oncology, St Jude Children’s Research Hospital, Department of Oncology, Memphis, Tennessee, United States
| | - Anirban Das
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Sarah R. Scollon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah G. Mitchell
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Mary-Louise C. Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Marielle E. Yohe
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Jordan R. Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital; South Australia Health and Medical Research Institute; South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Jennifer M. Kalish
- Division of Genetics and Center for Childhood Cancer Research Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Kris Ann P. Schultz
- Cancer and Blood Disorders, Children’s Minnesota, Minneapolis, Minnesota, United States
| | - Suzanne P. MacFarland
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Wendy K. Kohlmann
- VA Medical Center, National TeleOncology Clinical Cancer Genetics Service, Durham NC; University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, United States
| | - Philip J. Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Kara N. Maxwell
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Medicine Service, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, Pensylvannia, United States
| | - Stefan M. Pfister
- Hopp Childreńs Cancer Center Heidelberg (KiTZ), Division Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Dept Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Orli Michaeli
- Division of Hematology/ Oncology, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gail E. Tomlinson
- University of Texas Health Science Center at San Antonio, Department of Pediatrics, Division of Hematology-Oncology and Greehey Children’s Cancer Research Institute, San Antonio, Texas, United States
| | - Jack Brzezinski
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Uri Tabori
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Gina M. Ney
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States
| | - Karen W. Gripp
- Division of Medical Genetics, Nemours Children’s Hospital, Wilmington, Delaware, United States
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Douglas R. Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States
| | - Emma R. Woodward
- University of Manchester and Manchester Centre for Genomic Medicine, Manchester, United Kingdom
| | - Christian P. Kratz
- Hannover Medical School, Pediatric Hematology and Oncology, Hannover, Germany
| |
Collapse
|
4
|
Kim J, Ney G, Frone MN, Haley JS, Mirshahi UL, Astiazaran-Symonds E, Shandrina M, Urban G, Rao HS, Stahl R, Golden A, Yohe ME, Gross AM, Ding Y, Carey DJ, Gelb BD, Stewart DR. Genomic ascertainment to quantify prevalence and cancer risk in adults with pathogenic and likely pathogenic germline variants in RASopathy genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.09.24314324. [PMID: 39802765 PMCID: PMC11722494 DOI: 10.1101/2024.10.09.24314324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Purpose Genomic ascertainment of electronic health record-linked exome data in two large biobanks was used to quantify germline pathogenic/likely pathogenic (P/LP) variant prevalence, cancer prevalence, and survival in adults with non-NF1 RAS/mitogen-activated protein kinase genes (RASopathies). Patients and Methods Germline RASopathy variants were examined from adult participants in UK Biobank (UKBB; n=469,802), Geisinger MyCode (n=167,050) and Mount Sinai BioMe (n=30,470). Variants were classified as per American College of Medical Genetics/Association for Molecular Pathology criteria and reviewed by a RASopathy variant expert. Heterozygotes harbored a RASopathy pathogenic/likely pathogenic variant; controls harbored wild type or benign/likely benign RASopathy variation. To distinguish germline variants from clonal hematopoiesis, benign tissues were Sanger sequenced. Tumor phenotype and demographic data were retrieved from MyCode and UKBB. Results Pathogenic variants in Noonan syndrome-associated genes (excluding known Noonan syndrome with multiple lentigines variants) were the most common with an estimated prevalence that ranged between 1:1,772-1:3,330 in the three cohorts. Pathogenic variants in cardiofaciocutaneous syndrome-associated genes had an estimated prevalence of 1:41,762-1:55,683 in two cohorts. Pathogenic variants in SPRED1 (Legius syndrome) were more frequent in UKBB (1:19,567 [95%CI: 1:13,150-1:29,116]) compared to MyCode (1:41,762 [95%CI: 1:15,185-1:130,367]). In SPRED1-heterozygotes, cancer prevalence was significantly increased in UKBB (OR:3.8 [95% CI: 2.48-8.64]; p=1.2×10-3) but not in the MyCode cohort. Pathogenic variants in HRAS (Costello syndrome) were not identified. In MyCode and UKBB cohorts, there was no significant increase in cancer prevalence in individuals with Noonan-, CBL- and CFC syndrome-associated pathogenic variants. Conclusion Genomic ascertainment from two large biobanks did not show evidence of elevated cancer risk in adult Noonan syndrome heterozygotes. There may be an increased cancer risk for adult SPRED1 heterozygotes.
Collapse
Affiliation(s)
- Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Gina Ney
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Megan N Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Jeremy S Haley
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | | | | | - Mariya Shandrina
- Mindich Child Health and Development Institute and the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gretchen Urban
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - H Shanker Rao
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Rick Stahl
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Alicia Golden
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Marielle E Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Yi Ding
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - David J Carey
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| |
Collapse
|
5
|
Takahashi K, Nakada D, Goodell M. Distinct landscape and clinical implications of therapy-related clonal hematopoiesis. J Clin Invest 2024; 134:e180069. [PMID: 39352380 PMCID: PMC11444158 DOI: 10.1172/jci180069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Therapy-related clonal hematopoiesis (t-CH) is defined as clonal hematopoiesis detected in individuals previously treated with chemotherapy and/or radiation therapy. With the increased use of genetic analysis in oncological care, the detection of t-CH among cancer patients is becoming increasingly common. t-CH arises through the selective bottleneck imposed by chemotherapies and potentially through direct mutagenesis from chemotherapies, resulting in a distinct mutational landscape enriched with mutations in DNA damage-response pathway genes such as TP53, PPM1D, and CHEK2. Emerging evidence sheds light on the mechanisms of t-CH development and potential strategies to mitigate its emergence. Due to its unique characteristics that predominantly affect cancer patients, t-CH has clinical implications distinct from those of CH in the general population. This Review discusses the potential mechanisms of t-CH development, its mutational landscape, mutant-drug relationships, and its clinical significance. We highlight the distinct nature of t-CH and call for intensified research in this field.
Collapse
Affiliation(s)
- Koichi Takahashi
- Departments of Leukemia and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Margaret Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Stewart BL, Helber H, Bannon SA, Deuitch NT, Ferguson M, Fiala E, Hamilton KV, Malcolmson J, Pencheva B, Smith-Simmer K. Risk assessment and genetic counseling for hematologic malignancies-Practice resource of the National Society of Genetic Counselors. J Genet Couns 2024. [PMID: 39189353 DOI: 10.1002/jgc4.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Hematologic malignancies (HMs) are a heterogeneous group of cancers impacting individuals of all ages that have been increasingly recognized in association with various germline predisposition syndromes. Given the myriad of malignancy subtypes, expanding differential diagnoses, and unique sample selection requirements, evaluation for hereditary predisposition to HM presents both challenges as well as exciting opportunities in the ever-evolving field of genetic counseling. This practice resource has been developed as a foundational resource for genetic counseling approaches to hereditary HMs and aims to empower genetic counselors who encounter individuals and families with HMs in their practice.
Collapse
Affiliation(s)
| | - Hannah Helber
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Hematology and Cancer Center, Texas Children's Hospital, Houston, Texas, USA
| | - Sarah A Bannon
- National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Elise Fiala
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kayla V Hamilton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Janet Malcolmson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bojana Pencheva
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelcy Smith-Simmer
- Academic Affairs, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, UW Health, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Moore ME, Williams E, Pelkey L, Courville EL. A comparison of WHO-5 and ICC classifications in a series of myeloid neoplasms, considerations for hematopathologists and molecular pathologists. Cancer Genet 2024; 286-287:25-28. [PMID: 38964162 DOI: 10.1016/j.cancergen.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/19/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES The International Consensus Classification (ICC) and 5th Edition of the World Health Organization Classification (WHO-5) made substantive updates to the classification of myeloid neoplasms. This study compares the systems in a series of myeloid neoplasms with increased blasts, analyzing implications for diagnostic workflow and reporting. METHODS Bone marrow biopsies categorized as myelodysplastic syndrome with excess blasts (MDS-EB) or acute myeloid leukemia (AML) by WHO-R4 were identified. Results of morphology review, karyotype, fluorescence in situ hybridization, and next-generation sequencing were compiled. Cases were retrospectively re-classified by WHO-5 and ICC. RESULTS 46 cases were reviewed. 28 cases (61 %) had ≥20 % blasts, with the remaining cases having 5-19.5 % blasts. The most common differences in classification were 1) the designation of MDS versus MDS/AML (10/46, 22 %) for cases with 10-19 % blasts and 2) the ICC's designation of TP53 variants as a separate classifier for AML (8/46, 17 %). Bi-allelic/multi-hit TP53 alterations were identified in 15 cases (33 %). Variants of potential germline significance were identified in 29 (63 %) cases. CONCLUSIONS While terminology differences between WHO-5 and ICC exist, both systems invoke similar opportunities for improved reporting: standardized classification of pathogenic variants (notably TP53), streamlined systems to evaluate for potential germline variants, and integrated reporting of morphologic and genetic data.
Collapse
Affiliation(s)
- Margaret E Moore
- University of Virginia, Department of Pathology and Laboratory Medicine, United States.
| | - Eli Williams
- University of Virginia, Department of Pathology and Laboratory Medicine, United States
| | - Lauren Pelkey
- University of Virginia, Department of Pathology and Laboratory Medicine, United States
| | - Elizabeth L Courville
- University of Virginia, Department of Pathology and Laboratory Medicine, United States
| |
Collapse
|
8
|
Torres-Esquius S, Beas F, Chen-Liang TH, Pomares H, Santiago M, Varela ND, Liquori A, Hernandez F, Xicoy B, Hermosín L, Arnan M, Tazón-Vega B, Blanco A, Cervera J, Diez-Campelo M, Lozano ML, Valcárcel D, Bosch F, Montoro MJ, Jerez A. Germline assessment for alloHSCT candidates over 50 years: A 'Fast-Track' screening in myeloid neoplasms. Br J Haematol 2024; 205:503-509. [PMID: 38639421 DOI: 10.1111/bjh.19460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Patients aged 50 or above diagnosed with myeloid neoplasms (MNs) are typically not candidates for germline testing. However, approximately 8% carry pathogenic germline variants. Allogeneic haematopoietic stem cell transplantation (alloHSCT) remains an option for those aged over 50; neglecting germline testing could mask the risk for relative donor cell-derived MN. We propose a germline-augmented somatic panel (GASP), combining MN predisposition genes with a myeloid somatic panel for timely germline variant identification when initial testing is not indicated. Out of our 133 whole-exome-sequenced MN cases aged over 50 years, 9% had pathogenic/likely variants. GASP detected 92%, compared to 50% with somatic-only panel. Our study highlights the relevance of germline screening in MN, particularly for alloHSCT candidates without established germline-testing recommendations.
Collapse
Affiliation(s)
- Sara Torres-Esquius
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francisco Beas
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Tzu Hua Chen-Liang
- Department of Hematology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, Murcia, Spain
| | - Helena Pomares
- Department of Hematology, Institut Català d'Oncologia. Hospital Duran i Reynals, IDIBELL. Hospitalet, Badalona, Barcelona, Spain
| | - Marta Santiago
- Department of Hematology, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Nicolás Díaz Varela
- Department of Hematology, Hospital Universitario Central de Asturias, Instituto. Universitario (IUOPA), Instituto de Investigación del Principado de Asturias (ISPA), Oviedo, Spain
| | - Alessandro Liquori
- Department of Hematology, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | | | - Blanca Xicoy
- Department of Hematology, Hospital Germans Trias i Pujol, Badalona, Spain
| | | | - Montserrat Arnan
- Department of Hematology, Institut Català d'Oncologia. Hospital Duran i Reynals, IDIBELL. Hospitalet, Badalona, Barcelona, Spain
| | - Bárbara Tazón-Vega
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Adoración Blanco
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - José Cervera
- Department of Hematology, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - María Diez-Campelo
- Department of Hematology, Hospital Clínico Universitario de Salamanca, Salamanca, Spain
| | - María Luisa Lozano
- Department of Hematology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, Murcia, Spain
| | - David Valcárcel
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Bosch
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Maria Julia Montoro
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Andrés Jerez
- Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
9
|
Marconi G, Rondoni M, Zannetti BA, Zacheo I, Nappi D, Mattei A, Rocchi S, Lanza F. Novel insights and therapeutic approaches in secondary AML. Front Oncol 2024; 14:1400461. [PMID: 39135995 PMCID: PMC11317385 DOI: 10.3389/fonc.2024.1400461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Secondary acute myeloid leukemia (sAML) presents as a complex and multifaceted ensemble of disorders, positioning itself as both a challenge and an intriguing frontier within hematologic oncology. Its origins are diverse, stemming from antecedent hematologic conditions, germline predisposing mutations, or the sequelae of cytotoxic therapies, and its development is driven by intricate genetic and epigenetic modifications. This complexity necessitates a diverse array of therapeutic strategies, each meticulously tailored to address the distinctive challenges sAML introduces. Such strategies require a personalized approach, considering the variegated clinical backgrounds of patients and the inherent intricacies of the disease. Allogeneic stem cell transplantation stands as a cornerstone, offering the potential for curative outcomes. This is complemented by the emergence of innovative treatments such as CPX-351, venetoclax, and glasdegib, which have demonstrated promising results in enhancing prognosis. The evolving landscape of sAML treatment underscores the importance of continued research and innovation in the field, aiming not only to improve patient outcomes but also to deepen our understanding of the disease's biological underpinnings, thereby illuminating pathways toward more effective and individualized therapies.
Collapse
Affiliation(s)
- Giovanni Marconi
- Hematology Unit and Romagna Transplant Network, Hospital of Ravenna, University of Bologna, Ravenna, Italy
| | - Michela Rondoni
- Hematology Unit and Romagna Transplant Network, Hospital of Ravenna, Ravenna, Italy
| | | | - Irene Zacheo
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Davide Nappi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Agnese Mattei
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Serena Rocchi
- Hematology Unit and Romagna Transplant Network, Hospital of Ravenna, Ravenna, Italy
| | - Francesco Lanza
- Hematology Unit and Romagna Transplant Network, Hospital of Ravenna, University of Bologna, Ravenna, Italy
| |
Collapse
|
10
|
Banaszak LG, Cabral PL, Smith-Simmer K, Hassan A, Brunner M, Fallon M, Shoger K, Lovrien L, Golner D, Zurbriggen L, Mattison R, Gahvari Z, Hall A, Nadiminti K, Reinig E, Churpek JE. Implementation of and Systems-Level Barriers to Guideline-Driven Germline Genetic Evaluation in the Care of Patients With Myelodysplastic Syndrome and Acute Myeloid Leukemia. JCO Precis Oncol 2024; 8:e2300518. [PMID: 38848520 PMCID: PMC11234342 DOI: 10.1200/po.23.00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 06/09/2024] Open
Abstract
PURPOSE Knowledge of an inherited predisposition to myelodysplastic syndrome (MDS) and AML has important clinical implications for treatment decisions, surveillance, and care of at-risk relatives. National Comprehensive Cancer Network (NCCN) guidelines recently incorporated recommendations for germline genetic evaluation of patients with MDS/AML on the basis of personal and family history features, but the practicality of implementing these recommendations has not been studied. METHODS A hereditary hematology quality improvement (QI) committee was formed to implement these guidelines in a prospective cohort of patients diagnosed with MDS/AML. Referral for germline genetic testing was recommended for patients meeting NCCN guideline criteria. Referral patterns and genetic evaluation outcomes were compared with a historical cohort of patients with MDS/AML. Barriers to evaluation were identified. RESULTS Of the 90 patients with MDS/AML evaluated by the QI committee, 59 (66%) met criteria for germline evaluation. Implementation of the QI committee led to more referrals for germline evaluation in accordance with NCCN guidelines (31% v 14%, P = .03). However, the majority of those meeting criteria were never referred due to high medical acuity or being deceased or in hospice at the time of QI committee recommendations. Despite this, two (17%) of the 12 patients undergoing genetic testing were diagnosed with a hereditary myeloid malignancy syndrome. CONCLUSION Current NCCN guidelines resulted in two thirds of patients with MDS/AML meeting criteria for germline evaluation. A hereditary hematology-focused QI committee aided initial implementation and modestly improved NCCN guideline adherence. However, the high morbidity and mortality and prolonged inpatient stays associated with MDS/AML challenged traditional outpatient genetic counseling models. Further improvements in guideline adherence require innovating new models of genetic counseling and testing for this patient population.
Collapse
Affiliation(s)
- Lauren G. Banaszak
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Paloma L. Cabral
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Kelcy Smith-Simmer
- Oncology Genetics; University of Wisconsin Carbone Cancer Center; UWHealth; Madison, Wisconsin, USA
| | - Ayesha Hassan
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Matthew Brunner
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Michael Fallon
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Kyle Shoger
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Lauren Lovrien
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Danielle Golner
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Luke Zurbriggen
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Ryan Mattison
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Zhubin Gahvari
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Aric Hall
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Kalyan Nadiminti
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Erica Reinig
- Department of Pathology and Laboratory Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Jane E. Churpek
- Department of Medicine; University of Wisconsin-Madison; Madison, Wisconsin, USA
| |
Collapse
|
11
|
Kwok M, Agathanggelou A, Stankovic T. DNA damage response defects in hematologic malignancies: mechanistic insights and therapeutic strategies. Blood 2024; 143:2123-2144. [PMID: 38457665 DOI: 10.1182/blood.2023019963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT The DNA damage response (DDR) encompasses the detection and repair of DNA lesions and is fundamental to the maintenance of genome integrity. Germ line DDR alterations underlie hereditary chromosome instability syndromes by promoting the acquisition of pathogenic structural variants in hematopoietic cells, resulting in increased predisposition to hematologic malignancies. Also frequent in hematologic malignancies are somatic mutations of DDR genes, typically arising from replication stress triggered by oncogene activation or deregulated tumor proliferation that provides a selective pressure for DDR loss. These defects impair homology-directed DNA repair or replication stress response, leading to an excessive reliance on error-prone DNA repair mechanisms that results in genomic instability and tumor progression. In hematologic malignancies, loss-of-function DDR alterations confer clonal growth advantage and adverse prognostic impact but may also provide therapeutic opportunities. Selective targeting of functional dependencies arising from these defects could achieve synthetic lethality, a therapeutic concept exemplified by inhibition of poly-(adenosine 5'-diphosphate ribose) polymerase or the ataxia telangiectasia and Rad 3 related-CHK1-WEE1 axis in malignancies harboring the BRCAness phenotype or genetic defects that increase replication stress. Furthermore, the role of DDR defects as a source of tumor immunogenicity, as well as their impact on the cross talk between DDR, inflammation, and tumor immunity are increasingly recognized, thus providing rationale for combining DDR modulation with immune modulation. The nature of the DDR-immune interface and the cellular vulnerabilities conferred by DDR defects may nonetheless be disease-specific and remain incompletely understood in many hematologic malignancies. Their comprehensive elucidation will be critical for optimizing therapeutic strategies to target DDR defects in these diseases.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Modak RV, de Oliveira Rebola KG, McClatchy J, Mohammadhosseini M, Damnernsawad A, Kurtz SE, Eide CA, Wu G, Laderas T, Nechiporuk T, Gritsenko MA, Hansen JR, Hutchinson C, Gosline SJ, Piehowski P, Bottomly D, Short N, Rodland K, McWeeney SK, Tyner JW, Agarwal A. Targeting CCL2/CCR2 Signaling Overcomes MEK Inhibitor Resistance in Acute Myeloid Leukemia. Clin Cancer Res 2024; 30:2245-2259. [PMID: 38451486 PMCID: PMC11094423 DOI: 10.1158/1078-0432.ccr-23-2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Emerging evidence underscores the critical role of extrinsic factors within the microenvironment in protecting leukemia cells from therapeutic interventions, driving disease progression, and promoting drug resistance in acute myeloid leukemia (AML). This finding emphasizes the need for the identification of targeted therapies that inhibit intrinsic and extrinsic signaling to overcome drug resistance in AML. EXPERIMENTAL DESIGN We performed a comprehensive analysis utilizing a cohort of ∼300 AML patient samples. This analysis encompassed the evaluation of secreted cytokines/growth factors, gene expression, and ex vivo drug sensitivity to small molecules. Our investigation pinpointed a notable association between elevated levels of CCL2 and diminished sensitivity to the MEK inhibitors (MEKi). We validated this association through loss-of-function and pharmacologic inhibition studies. Further, we deployed global phosphoproteomics and CRISPR/Cas9 screening to identify the mechanism of CCR2-mediated MEKi resistance in AML. RESULTS Our multifaceted analysis unveiled that CCL2 activates multiple prosurvival pathways, including MAPK and cell-cycle regulation in MEKi-resistant cells. Employing combination strategies to simultaneously target these pathways heightened growth inhibition in AML cells. Both genetic and pharmacologic inhibition of CCR2 sensitized AML cells to trametinib, suppressing proliferation while enhancing apoptosis. These findings underscore a new role for CCL2 in MEKi resistance, offering combination therapies as an avenue to circumvent this resistance. CONCLUSIONS Our study demonstrates a compelling rationale for translating CCL2/CCR2 axis inhibitors in combination with MEK pathway-targeting therapies, as a potent strategy for combating drug resistance in AML. This approach has the potential to enhance the efficacy of treatments to improve AML patient outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Receptors, CCR2/metabolism
- Receptors, CCR2/antagonists & inhibitors
- Receptors, CCR2/genetics
- Drug Resistance, Neoplasm/genetics
- Chemokine CCL2/metabolism
- Chemokine CCL2/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Animals
- Pyridones/pharmacology
- Pyridones/therapeutic use
- Mice
Collapse
Affiliation(s)
- Rucha V. Modak
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Katia G. de Oliveira Rebola
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - John McClatchy
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Mona Mohammadhosseini
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Alisa Damnernsawad
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Stephen E. Kurtz
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Christopher A. Eide
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Guanming Wu
- Division of Bioinformatics & Computational Biology, Oregon Health & Science University, Portland, Oregon
| | - Ted Laderas
- Division of Bioinformatics & Computational Biology, Oregon Health & Science University, Portland, Oregon
| | - Tamilla Nechiporuk
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | | | | | | | - Sara J.C. Gosline
- Pacific Northwest National Laboratory, Richland, Washington
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington
| | - Daniel Bottomly
- Division of Bioinformatics & Computational Biology, Oregon Health & Science University, Portland, Oregon
| | - Nicholas Short
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Karin Rodland
- Pacific Northwest National Laboratory, Richland, Washington
| | - Shannon K. McWeeney
- Division of Bioinformatics & Computational Biology, Oregon Health & Science University, Portland, Oregon
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Anupriya Agarwal
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
13
|
Matsui H, Hirata M. Evaluation of the pathogenic potential of germline DDX41 variants in hematopoietic neoplasms using the ACMG/AMP guidelines. Int J Hematol 2024; 119:552-563. [PMID: 38492200 DOI: 10.1007/s12185-024-03728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Clinical use of gene panel testing for hematopoietic neoplasms in areas, such as diagnosis, prognosis prediction, and exploration of treatment options, has increased in recent years. The keys to interpreting gene variants detected in gene panel testing are to distinguish between germline and somatic variants and accurately determine whether the detected variants are pathogenic. If a variant is suspected to be a pathogenic germline variant, it is essential to confirm its consistency with the disease phenotype and gather a thorough family history. Donor eligibility must also be considered, especially if the patient's variant is also detected in the expected donor for hematopoietic stem cell transplantation. However, determining the pathogenicity of gene variants is often complicated, given the current limited availability of databases covering germline variants of hematopoietic neoplasms. This means that hematologists will frequently need to interpret gene variants themselves. Here, we outline how to assess the pathogenicity of germline variants according to criteria from the American College of Medical Genetics and Genomics/Association for Molecular Pathology standards and guidelines for the interpretation of variants using DDX41, a gene recently shown to be closely associated with myeloid neoplasms with a germline predisposition, as an example.
Collapse
Affiliation(s)
- Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
14
|
Freiman L, Larcher L, Tueur G, Vasquez N, Da Costa M, Duchmann M, Raffoux E, Adès L, Fenaux P, Soulier J, Duployez N, Clappier E, Sébert M. Germline CHEK2 mutations in patients with myeloid neoplasms. Leukemia 2024; 38:908-911. [PMID: 38378842 DOI: 10.1038/s41375-024-02179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Affiliation(s)
- Lucie Freiman
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010, Paris, France
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Lise Larcher
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010, Paris, France
- Hematology Laboratory, Saint-Louis Hospital, APHP, Paris, France
- INSERM U944/CNRS UMR7212, Paris, France
| | - Giulia Tueur
- Hematology Laboratory, Saint-Louis Hospital, APHP, Paris, France
| | - Nadia Vasquez
- Hematology Laboratory, Saint-Louis Hospital, APHP, Paris, France
| | - Mélanie Da Costa
- Hematology Laboratory, Saint-Louis Hospital, APHP, Paris, France
| | - Matthieu Duchmann
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010, Paris, France
- Hematology Laboratory, Saint-Louis Hospital, APHP, Paris, France
- INSERM U944/CNRS UMR7212, Paris, France
| | - Emmanuel Raffoux
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Lionel Adès
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010, Paris, France
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- INSERM U944/CNRS UMR7212, Paris, France
| | - Pierre Fenaux
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010, Paris, France
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- INSERM U944/CNRS UMR7212, Paris, France
| | - Jean Soulier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010, Paris, France
- Hematology Laboratory, Saint-Louis Hospital, APHP, Paris, France
- INSERM U944/CNRS UMR7212, Paris, France
| | - Nicolas Duployez
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010, Paris, France
- Hematology Laboratory, Saint-Louis Hospital, APHP, Paris, France
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, Lille, France
| | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010, Paris, France
- Hematology Laboratory, Saint-Louis Hospital, APHP, Paris, France
- INSERM U944/CNRS UMR7212, Paris, France
| | - Marie Sébert
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010, Paris, France.
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.
- INSERM U944/CNRS UMR7212, Paris, France.
| |
Collapse
|
15
|
Jerez J, Santiago M. Unraveling germline predisposition in hematological neoplasms: Navigating complexity in the genomic era. Blood Rev 2024; 64:101143. [PMID: 37989620 DOI: 10.1016/j.blre.2023.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Genomic advancements have yielded pivotal insights into hematological neoplasms, particularly concerning germline predisposition mutations. Following the WHO 2016 revisions, dedicated segments were proposed to address these aspects. Current WHO 2022, ICC 2022, and ELN 2022 classifications recognize their significance, introducing more mutations and prompting integration into clinical practice. Approximately 5-10% of hematological neoplasm patients show germline predisposition gene mutations, rising with risk factors such as personal cancer history and familial antecedents, even in older adults. Nevertheless, technical challenges persist. Optimal DNA samples are skin fibroblast-extracted, although not universally applicable. Alternatives such as hair follicle use are explored. Moreover, the scrutiny of germline genomics mandates judicious test selection to ensure precise and accurate interpretation. Given the significant influence of genetic counseling on patient care and post-assessment procedures, there arises a demand for dedicated centers offering specialized services.
Collapse
Affiliation(s)
- Joaquín Jerez
- Hematology Department, Fundación Arturo López Pérez, Chile; Resident of Hematology, Universidad de los Andes, Chile.
| | - Marta Santiago
- Hematology Department, Hospital La Fe, 46026, Valencia, Spain; Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain.
| |
Collapse
|
16
|
Kraft IL, Basdag H, Koppayi A, Rodgers CV, Saygin C, Haribabu Y, Wanjari P, Niu N, Das S, de Jong JLO, Segal J, Godley LA. Sequential tumor molecular profiling identifies likely germline variants. Genet Med 2024; 26:101037. [PMID: 38054407 PMCID: PMC11401608 DOI: 10.1016/j.gim.2023.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE To identify likely germline DNA variants from sequential tumor profiling data from hematopoietic malignancies (HMs). METHODS The coefficient of variance was calculated from variant allele frequency of next-generation sequencing assays. Variants' likelihood of being germline was ranked on a 1 to 5 scale. Outcomes were examined in patients with such variants. RESULTS In a pilot set of 33 genes, 89% of grade 1, 77% of grade 2, 62% of grade 3, 52% of grade 4, and 21% of grade 5 variants were confirmed to be germline. Among those, 22% were pathogenic or likely pathogenic in genes recognized as conferring hereditary HM risk, including BRCA1/2, CHEK2, CSF3R, and DDX41. To determine if this approach identified genes with known autosomal dominant inheritance, we analyzed sequential data from 1336 genes in 1135 HM patients. Among unique variants, 16% occurred in hereditary HM genes, and 15% were deleterious. Patients with grade 1/2 alleles had decreased survival 2 years after initial molecular testing (78% versus 88%, P = .0037) and increased all-cause mortality compared with those without (hazard ratio 2.02, 95% CI 1.18-3.46, P = .019). CONCLUSION Variant germline status may be predicted using sequential tumor profiling and patients with likely germline variants experience inferior outcomes compared with those without.
Collapse
Affiliation(s)
- Ira L Kraft
- Section of Hematology/Oncology, Department of Pediatrics, The University of Chicago, Chicago, IL; Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hatice Basdag
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Ashwin Koppayi
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL; Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, IL
| | - Courtnee V Rodgers
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL; Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, IL
| | - Caner Saygin
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Yogameenakshi Haribabu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL; Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, IL
| | | | - Nifang Niu
- Department of Pathology, The University of Chicago, Chicago, IL
| | - Soma Das
- Department of Human Genetics, The University of Chicago, Chicago, IL
| | - Jill L O de Jong
- Section of Hematology/Oncology, Department of Pediatrics, The University of Chicago, Chicago, IL
| | - Jeremy Segal
- Department of Pathology, The University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL; Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, IL.
| |
Collapse
|
17
|
Williams LS, Williams KM, Gillis N, Bolton K, Damm F, Deuitch NT, Farhadfar N, Gergis U, Keel SB, Michelis FV, Panch SR, Porter CC, Sucheston-Campbell L, Tamari R, Stefanski HE, Godley LA, Lai C. Donor-Derived Malignancy and Transplantation Morbidity: Risks of Patient and Donor Genetics in Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2024; 30:255-267. [PMID: 37913908 PMCID: PMC10947964 DOI: 10.1016/j.jtct.2023.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a key treatment option for hematologic malignancies (HMs), although it carries significant risks. Up to 30% of patients relapse after allo-HSCT, of which up to 2% to 5% are donor-derived malignancies (DDMs). DDMs can arise from a germline genetic predisposition allele or clonal hematopoiesis (CH) in the donor. Increasingly, genetic testing reveals that patient and donor genetic factors contribute to the development of DDM and other allo-HSCT complications. Deleterious germline variants in CEBPA, DDX41, GATA2, and RUNX1 predispose to inferior allo-HSCT outcomes. DDM has been linked to donor-acquired somatic CH variants in DNMT3A, ASXL1, JAK2, and IDH2, often with additional new variants. We do not yet have evidence to standardize donor genetic sequencing prior to allo-HSCT. The presence of hereditary HM disorders should be considered in patients with myeloid malignancies and their related donors, and screening of unrelated donors should include family and personal history of cytopenia and HMs. Excellent multidisciplinary care is critical to ensure efficient timelines for screening and necessary discussions among medical oncologists, genetic counselors, recipients, and potential donors. After allo-HSCT, HM relapse monitoring with genetic testing effectively results in genetic sequencing of the donor, as the transplanted hematopoietic system is donor-derived, which presents ethical challenges for disclosure to patients and donors. We encourage consideration of the recent National Marrow Donor Program policy that allows donors to opt-in for notification about detection of their genetic variants after allo-HSCT, with appropriate genetic counseling when feasible. We look forward to prospective investigation of the impact of germline and acquired somatic genetic variants on hematopoietic stem cell mobilization/engraftment, graft-versus-host disease, and DDM to facilitate improved outcomes through knowledge of genetic risk.
Collapse
Affiliation(s)
- Lacey S Williams
- Lombardi Clinical Cancer Center, Georgetown University, Washington, District of Columbia.
| | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Nancy Gillis
- Department of Cancer Epidemiology and Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kelly Bolton
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Frederik Damm
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Nosha Farhadfar
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Usama Gergis
- Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Siobán B Keel
- Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | | | - Sandhya R Panch
- Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | | | - Roni Tamari
- Memorial Sloan Kettering, New York, New York
| | - Heather E Stefanski
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Lucy A Godley
- Division of Hematology/Oncology and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Catherine Lai
- Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Wachter F, Pikman Y. Pathophysiology of Acute Myeloid Leukemia. Acta Haematol 2024; 147:229-246. [PMID: 38228114 DOI: 10.1159/000536152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a biologically heterogenous disease arising in clonally proliferating hematopoietic stem cells. Sequential acquisition of mutations leads to expanded proliferation of clonal myeloid progenitors and failure of differentiation, leading to fulminant AML. SUMMARY Here, we review the pathophysiology of AML with a focus on factors predisposing to AML development, including prior chemo- and radiation therapy, environmental factors, and germline predisposition. KEY MESSAGE Increasing genomic characterization of AML and insight into mechanisms of its development will be critical to improvement in AML prognostication and therapy.
Collapse
Affiliation(s)
- Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
20
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
21
|
Wagner JN, Al-Bazaz M, Forstreuter A, Hammada MI, Hille J, Papingi D, Bokemeyer C, Fiedler W. Case Report of a DDX41 Germline Mutation in a Family with Multiple Relatives Suffering from Leukemia. Biomedicines 2023; 12:64. [PMID: 38255170 PMCID: PMC10813731 DOI: 10.3390/biomedicines12010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
INTRODUCTION Previously, it was assumed that genetic influence played a minor role in acute myeloid leukemia (AML). Increasing evidence of germline mutations has emerged, such as DDX41 germline mutation associated with familial AML. CASE PRESENTATION A 64-year-old male patient presented with reduced exercise tolerance and shortness of breath. Following confirmation of AML diagnosis, the patient was enrolled into the AMLSG-30-18 study with a requirement for allogenic stem cell transplantation. The sister was initially selected as a fully HLA-matched donor. However, the family history showed risks for familial AML. Due to the striking family history, further diagnostic steps were initiated to detect a germline mutation. METHODS Using NGS in the patients' bone marrow AML sample, a DDX41 mutation with a VAF of 49% was detected, raising the possibility of a germline mutation. DNA from cheek swabs and eyebrows were tested for the presence of the DDX41 mutation in all siblings. RESULTS DDX41 germline mutation was detected in 5 out of 6 siblings. The sister was excluded as a related donor and the search for an unrelated donor was initiated. CONCLUSION Obtaining family history of cancer patients plays a crucial role in oncology. If a germline mutation is suspected, further family work-up should be initiated.
Collapse
Affiliation(s)
- Jan Nicolai Wagner
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Maximilian Al-Bazaz
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Anika Forstreuter
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Mohammad Ibrahim Hammada
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Jurek Hille
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Dzhoy Papingi
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.A.-B.); (A.F.); (M.I.H.); (J.H.); (C.B.)
| |
Collapse
|
22
|
Zahid MF, Moriarty K, Dryden C, Weinberg O, Asif M, Ikpefan R, Anderson JM, Collins RH, Chung SS, Chen W, Patel PA, Madanat YF. Identifying patients at risk for hereditary myeloid malignancy syndromes incorporating a novel, self-administered questionnaire to an initial screening platform. Eur J Haematol 2023; 111:844-850. [PMID: 37587783 DOI: 10.1111/ejh.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Four to 10% of cases of myeloid malignancies are inherited. We report our experience on hereditary myeloid malignancy syndromes (HMMS) incorporating a novel questionnaire in the screening platform for patients with myeloid malignancies and aplastic anemia. METHODS The questionnaire was sent via electronic patient portal prior to clinic visits. Patients screened positive based on responses to questionnaire items, presence of suspicion disease characteristics (young age, family history, monosomy 7 etc.) and/or presence of signs of HMMS. Those deemed at-risk based on questionnaire responses, clinical features and/or somatic mutation profile were offered germline testing. RESULTS A total of 408 patients were screened, 141 (35%) were deemed at-risk. Fifty-four (38%) of at-risk patients were seen in the genetics clinic. Forty-one (76%) of the patients seen agreed to germline testing and 13 declined due to cost or personal decision. Twenty pathogenic (P)/likely-pathogenic (LP) germline mutations were identified in 16 (39%) of the tested patients. Five patients also had a variant of uncertain significance (VUS) and an additional 13 had at least 1 VUS without P/LP mutations (total 29 VUS's were found in 18 (44%) of tested patients). The median age of diagnosis for patients with P/LP mutations was 56 years versus 66 years in the entire cohort. CONCLUSION Incorporating an electronic questionnaire is an effective screening method for HMMS. Many patients declined testing due to cost. These results highlight the importance of germline testing in patients with myeloid malignancies, further research in HMMS, and coverage by healthcare plans.
Collapse
Affiliation(s)
- Mohammad Faizan Zahid
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Leukemia Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kelsey Moriarty
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Courtney Dryden
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Olga Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Misha Asif
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ruth Ikpefan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julia M Anderson
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert H Collins
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Leukemia Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Stephen S Chung
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Leukemia Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prapti A Patel
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Leukemia Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yazan F Madanat
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Leukemia Program, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
23
|
Kanagal-Shamanna R, Schafernak KT, Calvo KR. Diagnostic work-up of hematological malignancies with underlying germline predisposition disorders (GPD). Semin Diagn Pathol 2023; 40:443-456. [PMID: 37977953 DOI: 10.1053/j.semdp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Hematological malignancies with underlying germline predisposition disorders have been recognized by the World Health Organization 5th edition and International Consensus Classification (ICC) classification systems. The list of genes and the associated phenotypes are expanding and involve both pediatric and adult populations. While the clinical presentation and underlying molecular pathogenesis are relatively well described, the knowledge regarding the bone marrow morphologic features, the landscape of somatic aberrations associated with progression to hematological malignancies is limited. These pose challenges in the diagnosis of low-grade myelodysplastic syndrome (MDS) to hematopathologists which carries direct implication for various aspects of clinical management of the patient, donor selection for transplantation, and family members. Here in, we provide a focused review on the diagnostic work-up of hematological malignancies with underlying germline predisposition disorders with emphasis on the spectrum of hematological malignancies associated with each entity, and characteristic bone marrow morphologic, somatic cytogenetic and molecular alterations at the time of diagnosis of hematological malignancies. We also review the key clinical, morphologic, and molecular features, that should initiate screening for these entities.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kristian T Schafernak
- Division of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States.
| |
Collapse
|
24
|
Bataller A, Loghavi S, Gerstein Y, Bazinet A, Sasaki K, Chien KS, Hammond D, Montalban-Bravo G, Borthakur G, Short N, Issa GC, Kadia TM, Daver N, Tang G, Quesada A, Patel KP, Ravandi F, Fiskus W, Mill CP, Kantarjian HM, Bhalla K, Garcia-Manero G, Oran B, DiNardo CD. Characteristics and clinical outcomes of patients with myeloid malignancies and DDX41 variants. Am J Hematol 2023; 98:1780-1790. [PMID: 37665752 DOI: 10.1002/ajh.27070] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
DDX41 is the most frequently mutated gene in myeloid neoplasms associated with germline predisposition including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). We analyzed 3795 patients with myeloid neoplasms and identified 151 (4%) with DDX41 variants and a diagnosis of AML (n = 96), MDS (n = 52), and chronic myelomonocytic leukemia (n = 3). The most frequent DDX41 variants were the somatic variant p.R525H, followed by the germline variants p.M1I and p.D140fs. Most neoplasms had a normal karyotype (59%) and the most frequent co-mutations were TP53 (16%) and ASXL1 (15%). 30% of patients had no concomitant mutations besides DDX41 mutation. Patients with myeloid malignancies and DDX41 variants responded well to therapy, with an overall response rate for patients with treatment naïve AML and MDS of 87% and 84%, respectively. The median overall survival (mOS) of patients with treatment-naïve AML or MDS was 49 and 71 months, respectively. Patients with AML treated with low-intensity regimens including venetoclax had an improved survival (2-year OS 91% vs. 60%, p = .02) and lower cumulative incidence of relapse compared to those treated without venetoclax (10% vs. 56%, p = .03). In the 33% of patients receiving hematopoietic stem cell transplantation, the 2-year OS was 80% and 85% for AML and MDS, respectively.
Collapse
Affiliation(s)
- Alex Bataller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanam Loghavi
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yoheved Gerstein
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly S Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guilin Tang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andres Quesada
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keyur P Patel
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cristopher P Mill
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kapil Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Homan CC, Drazer MW, Yu K, Lawrence DM, Feng J, Arriola-Martinez L, Pozsgai MJ, McNeely KE, Ha T, Venugopal P, Arts P, King-Smith SL, Cheah J, Armstrong M, Wang P, Bödör C, Cantor AB, Cazzola M, Degelman E, DiNardo CD, Duployez N, Favier R, Fröhling S, Rio-Machin A, Klco JM, Krämer A, Kurokawa M, Lee J, Malcovati L, Morgan NV, Natsoulis G, Owen C, Patel KP, Preudhomme C, Raslova H, Rienhoff H, Ripperger T, Schulte R, Tawana K, Velloso E, Yan B, Kim E, Sood R, Hsu AP, Holland SM, Phillips K, Poplawski NK, Babic M, Wei AH, Forsyth C, Mar Fan H, Lewis ID, Cooney J, Susman R, Fox LC, Blombery P, Singhal D, Hiwase D, Phipson B, Schreiber AW, Hahn CN, Scott HS, Liu P, Godley LA, Brown AL. Somatic mutational landscape of hereditary hematopoietic malignancies caused by germline variants in RUNX1, GATA2, and DDX41. Blood Adv 2023; 7:6092-6107. [PMID: 37406166 PMCID: PMC10582382 DOI: 10.1182/bloodadvances.2023010045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Individuals with germ line variants associated with hereditary hematopoietic malignancies (HHMs) have a highly variable risk for leukemogenesis. Gaps in our understanding of premalignant states in HHMs have hampered efforts to design effective clinical surveillance programs, provide personalized preemptive treatments, and inform appropriate counseling for patients. We used the largest known comparative international cohort of germline RUNX1, GATA2, or DDX41 variant carriers without and with hematopoietic malignancies (HMs) to identify patterns of genetic drivers that are unique to each HHM syndrome before and after leukemogenesis. These patterns included striking heterogeneity in rates of early-onset clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 and GATA2 variant carriers who did not have malignancies (carriers-without HM). We observed a paucity of CH in DDX41 carriers-without HM. In RUNX1 carriers-without HM with CH, we detected variants in TET2, PHF6, and, most frequently, BCOR. These genes were recurrently mutated in RUNX1-driven malignancies, suggesting CH is a direct precursor to malignancy in RUNX1-driven HHMs. Leukemogenesis in RUNX1 and DDX41 carriers was often driven by second hits in RUNX1 and DDX41, respectively. This study may inform the development of HHM-specific clinical trials and gene-specific approaches to clinical monitoring. For example, trials investigating the potential benefits of monitoring DDX41 carriers-without HM for low-frequency second hits in DDX41 may now be beneficial. Similarly, trials monitoring carriers-without HM with RUNX1 germ line variants for the acquisition of somatic variants in BCOR, PHF6, and TET2 and second hits in RUNX1 are warranted.
Collapse
Affiliation(s)
- Claire C. Homan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael W. Drazer
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Kai Yu
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - David M. Lawrence
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Jinghua Feng
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Luis Arriola-Martinez
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Matthew J. Pozsgai
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Kelsey E. McNeely
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Thuong Ha
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Parvathy Venugopal
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sarah L. King-Smith
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jesse Cheah
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Mark Armstrong
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Paul Wang
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Alan B. Cantor
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Erin Degelman
- Alberta Children’s Hospital, Calgary, Alberta, Canada
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicolas Duployez
- Laboratory of Hematology, Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille, Lille, France
- Jean-Pierre Aubert Research Center, INSERM, Universitaire de Lille, Lille, France
| | - Remi Favier
- Assistance Publique-Hôpitaux de Paris, Armand Trousseau Children's Hospital, Paris, France
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ana Rio-Machin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Mineo Kurokawa
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Neil V. Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Carolyn Owen
- Division of Hematology and Hematological Malignancies, Foothills Medical Centre, Calgary, AB, Canada
| | - Keyur P. Patel
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Claude Preudhomme
- Laboratory of Hematology, Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille, Lille, France
- Jean-Pierre Aubert Research Center, INSERM, Universitaire de Lille, Lille, France
| | - Hana Raslova
- Institut Gustave Roussy, Université Paris Sud, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | | | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Rachael Schulte
- Division of Pediatric Hematology and Oncology, Riley Children’s Hospital, Indiana University School of Medicine, Indianapolis, IN
| | - Kiran Tawana
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Elvira Velloso
- Service of Hematology, Transfusion and Cell Therapy and Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31) HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Genetics Laboratory, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Benedict Yan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Erika Kim
- National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Raman Sood
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | | | - Amy P. Hsu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M. Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Nicola K. Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Milena Babic
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andrew H. Wei
- Department of Haematology, Peter McCallum Cancer Centre, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Cecily Forsyth
- Central Coast Haematology, North Gosford, NSW, Australia
| | - Helen Mar Fan
- Department of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ian D. Lewis
- Adelaide Oncology & Haematology, North Adelaide, SA, Australia
| | - Julian Cooney
- Department of Haematology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Rachel Susman
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - Lucy C. Fox
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Deepak Singhal
- Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Devendra Hiwase
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Belinda Phipson
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics and Department of Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas W. Schreiber
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Paul Liu
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lucy A. Godley
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Anna L. Brown
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
26
|
Guijarro F, López-Guerra M, Morata J, Bataller A, Paz S, Cornet-Masana JM, Banús-Mulet A, Cuesta-Casanovas L, Carbó JM, Castaño-Díez S, Jiménez-Vicente C, Cortés-Bullich A, Triguero A, Martínez-Roca A, Esteban D, Gómez-Hernando M, Álamo Moreno JR, López-Oreja I, Garrote M, Risueño RM, Tonda R, Gut I, Colomer D, Díaz-Beya M, Esteve J. Germ line variants in patients with acute myeloid leukemia without a suspicion of hereditary hematologic malignancy syndrome. Blood Adv 2023; 7:5799-5811. [PMID: 37450374 PMCID: PMC10561046 DOI: 10.1182/bloodadvances.2023009742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Germ line predisposition in acute myeloid leukemia (AML) has gained attention in recent years because of a nonnegligible frequency and an impact on management of patients and their relatives. Risk alleles for AML development may be present in patients without a clinical suspicion of hereditary hematologic malignancy syndrome. In this study we investigated the presence of germ line variants (GVs) in 288 genes related to cancer predisposition in 47 patients with available paired, tumor-normal material, namely bone marrow stroma cells (n = 29), postremission bone marrow (n = 17), and saliva (n = 1). These patients correspond to 2 broad AML categories with heterogeneous genetic background (AML myelodysplasia related and AML defined by differentiation) and none of them had phenotypic abnormalities, previous history of cytopenia, or strong cancer aggregation. We found 11 pathogenic or likely pathogenic variants, 6 affecting genes related to autosomal dominant cancer predisposition syndromes (ATM, DDX41, and CHEK2) and 5 related to autosomal recessive bone marrow failure syndromes (FANCA, FANCM, SBDS, DNAJC21, and CSF3R). We did not find differences in clinical characteristics nor outcome between carriers of GVs vs noncarriers. Further studies in unselected AML cohorts are needed to determine GV incidence and penetrance and, in particular, to clarify the role of ATM nonsense mutations in AML predisposition.
Collapse
Affiliation(s)
- Francesca Guijarro
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Monica López-Guerra
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Jordi Morata
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Alex Bataller
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Sara Paz
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
| | | | | | | | | | - Sandra Castaño-Díez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carlos Jiménez-Vicente
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Albert Cortés-Bullich
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Ana Triguero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Alexandra Martínez-Roca
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Daniel Esteban
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Marta Gómez-Hernando
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Irene López-Oreja
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marta Garrote
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Raúl Tonda
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Ivo Gut
- Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Dolors Colomer
- Pathology Department, Hematopathology Section, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- University of Barcelona, Barcelona, Spain
| | - Marina Díaz-Beya
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Cheloor Kovilakam S, Gu M, Dunn WG, Marando L, Barcena C, Nik-Zainal S, Mohorianu I, Kar SP, Fabre MA, Quiros PM, Vassiliou GS. Prevalence and significance of DDX41 gene variants in the general population. Blood 2023; 142:1185-1192. [PMID: 37506341 DOI: 10.1182/blood.2023020209] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Germ line variants in the DDX41 gene have been linked to myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) development. However, the risks associated with different variants remain unknown, as do the basis of their leukemogenic properties, impact on steady-state hematopoiesis, and links to other cancers. Here, we investigate the frequency and significance of DDX41 variants in 454 792 United Kingdom Biobank (UKB) participants and identify 452 unique nonsynonymous DNA variants in 3538 (1/129) individuals. Many were novel, and the prevalence of most varied markedly by ancestry. Among the 1059 individuals with germ line pathogenic variants (DDX41-GPV) 34 developed MDS/AML (odds ratio, 12.3 vs noncarriers). Of these, 7 of 218 had start-lost, 22 of 584 had truncating, and 5 of 257 had missense (odds ratios: 12.9, 15.1, and 7.5, respectively). Using multivariate logistic regression, we found significant associations of DDX41-GPV with MDS, AML, and family history of leukemia but not lymphoma, myeloproliferative neoplasms, or other cancers. We also report that DDX41-GPV carriers do not have an increased prevalence of clonal hematopoiesis (CH). In fact, CH was significantly more common before sporadic vs DDX41-mutant MDS/AML, revealing distinct evolutionary paths. Furthermore, somatic mutation rates did not differ between sporadic and DDX41-mutant AML genomes, ruling out genomic instability as a driver of the latter. Finally, we found that higher mean red cell volume (MCV) and somatic DDX41 mutations in blood DNA identify DDX41-GPV carriers at increased MDS/AML risk. Collectively, our findings give new insights into the prevalence and cognate risks associated with DDX41 variants, as well as the clonal evolution and early detection of DDX41-mutant MDS/AML.
Collapse
Affiliation(s)
- Sruthi Cheloor Kovilakam
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Muxin Gu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - William G Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Ludovica Marando
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Clea Barcena
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry and Molecular Biology, Universidad de Oviedo, Oviedo, Spain
| | - Serena Nik-Zainal
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Irina Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Siddhartha P Kar
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Section of Translational Epidemiology, Division of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Margarete A Fabre
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Cambridge, United Kingdom
| | - Pedro M Quiros
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
28
|
Chin HL, Lam JCM, Christopher D, Michelle PL, Junrong BY. Challenges associated with the identification of germline variants on myeloid malignancy genomic profiling-a Singaporean experience. Front Oncol 2023; 13:1182639. [PMID: 37860182 PMCID: PMC10582742 DOI: 10.3389/fonc.2023.1182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Genomic profiling to identify myeloid-malignancy-related gene mutations is routinely performed for patients with suspected or definite myeloid malignancies. The most common specimen types in our experience are peripheral blood and bone marrow aspirates. Although primarily intended to identify somatic mutations, not infrequently, potentially clinically significant germline variants are also identified. Confirmation of the germline status of these variants is typically performed by hair follicle or skin fibroblast testing. If the germline variant is classified as a pathogenic or likely pathogenic variant and occurs in a gene known to be associated with a disease relevant to the patient's phenotype (for example, the identification of a DDX41 pathogenic variant in an individual with acute myeloid leukemia), the management algorithm is typically quite straightforward. Challenging situations may occur such as when the germline variant is classified as a pathogenic or likely pathogenic variant and occurs in a gene not known to be associated with the patient's phenotype/presenting complaint. We have encountered several such challenging cases in which potentially clinically significant germline variants were identified on the initial genomic profiling of peripheral blood or bone marrow aspirate. In this article, we present these cases and discuss the genetic counseling and management approaches.
Collapse
Affiliation(s)
- Hui-Lin Chin
- Khoo Teck Puat National University Children's Medical Institute, Department of Paediatrics, National University Hospital, Singapore, Singapore
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Joyce Ching Mei Lam
- Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Dheepa Christopher
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Poon Limei Michelle
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore, Singapore
| | - Benedict Yan Junrong
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
29
|
Patel N, Calvo KR. How I diagnose myeloid neoplasms with germline predisposition. Am J Clin Pathol 2023; 160:352-364. [PMID: 37458302 PMCID: PMC11004794 DOI: 10.1093/ajcp/aqad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/05/2023] [Indexed: 10/04/2023] Open
Abstract
OBJECTIVES Pathologists play a crucial role in the initial diagnosis of germline predisposition to myeloid neoplasia and subsequent surveillance for disease progression. The diagnostic workup can be challenging, particularly if clinical history, laboratory testing, or genetic studies are incomplete or unavailable. METHODS Through case-based examples, we illustrate common diagnostic challenges and pitfalls encountered during bone marrow examination of patients being evaluated for myeloid malignancy with potential germline predisposition to myeloid neoplasia. RESULTS Lack of familial disease, the absence of syndromic manifestations, and late-onset hematologic malignancy do not exclude an underlying germline predisposition syndrome. Targeted myeloid sequencing panels can help identify potential germline alterations but may not detect large deletions or insertions, noncoding, or novel variants. Confirmation of the germline nature of an alteration detected in the peripheral blood or bone marrow ideally requires genetic testing using nonhematopoietic germline DNA to definitively distinguish between germline and somatic alterations. The ideal tissue source for germline testing is cultured skin fibroblasts. Certain germline predisposition syndromes can contain characteristic baseline bone marrow dysplastic-appearing features associated with cytopenias without constituting myelodysplastic syndrome. CONCLUSION Recognizing germline predisposition to myeloid neoplasia is critical for proper disease management. This recognition is particularly important for patients who will undergo hematopoietic stem cell transplantation to screen potential related donors. Integration of the clinical history, bone marrow findings, cytogenetic studies, and specialized laboratory and molecular genetic testing is often essential for accurate diagnosis and subsequent disease monitoring.
Collapse
Affiliation(s)
- Nisha Patel
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, US
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, US
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, US
| |
Collapse
|
30
|
Hamidi A, Roloff GW, Shaw R, Acevedo M, Smith S, Drazer MW. Clinical guideline variability in the diagnosis of hereditary hematopoietic malignancy syndromes. Leuk Lymphoma 2023; 64:1562-1565. [PMID: 37294121 DOI: 10.1080/10428194.2023.2220457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
A growing understanding of the complexities of hematopoietic malignancies necessitates the existence of clinical recommendations that are sufficiently comprehensive. Although hereditary hematopoietic malignancies (HHMs) are increasingly recognized for conferring risk of myeloid malignancy, frequently utilized clinical recommendations have never been appraised for the ability to reliably guide HHM evaluation. We assessed established society-level clinical guidelines for inclusion of critical HHM genes and graded the strength of testing recommendations. We uncovered a substantial lack of consistency of recommendations guiding HHM evaluation. Such heterogeneity in guidelines likely contributes to refusal by payers to support HHM testing, leading to underdiagnoses and lost opportunities for clinical surveillance.
Collapse
Affiliation(s)
- Adam Hamidi
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Gregory W Roloff
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Reid Shaw
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Maria Acevedo
- University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| | - Shaili Smith
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Michael W Drazer
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Pettersson H, Adamsson J, Johansson P, Nilsson S, Palmqvist L, Andréasson B, Asp J. The clinical relevance of broad mutational screening of myeloproliferative neoplasms at diagnosis. Front Oncol 2023; 13:1190305. [PMID: 37637067 PMCID: PMC10451068 DOI: 10.3389/fonc.2023.1190305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Myeloproliferative neoplasm (MPN) is a heterogenous group of hematological malignancies including polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). JAK2V617F is the most frequent driver mutation in all three entities, but in PMF and ET mutations in CALR and MPL are also frequent. Mutations seen in additional genes are also often the same regardless of subtype of MPN. The aim of this study was to analyze a population based MPN cohort for genetic variants with prognostic value that can guide clinical decisions. Methods MPN patients from Western Sweden diagnosed between 2008-2013 (n=248) were screened for mutations in 54 genes associated with myeloid malignancy. Results Mutations in the genes SRSF2 and U2AF1 correlated significantly with impaired overall survival but did not correlate to increased risk for vascular events, neither before nor after diagnosis. Rather, mutations in these genes showed an association with disease transformation. Several recurrent gene variants with allele frequency close to 50% were confirmed to be germline. However, none of these variants was found to have an earlier onset of MPN. Discussion In conclusion, we identified gene mutations to be independent markers of impaired survival in MPN. This indicates the need for more individualized assessment and treatment of MPN patients and a wider gene mutation screening already at diagnosis. This could ensure the identification of patients with high-risk mutations early on. In addition, several genetic variants were also identified as germline in this study but gave no obvious clinical relevance. To avoid conclusions from non-informative genetic variants, a simultaneous analysis of normal cell DNA from patients at diagnosis should be considered.
Collapse
Affiliation(s)
- Helna Pettersson
- Hematology Section, Department of Medicine, NU Hospital Group, Uddevalla, Sweden
| | - Jenni Adamsson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Johansson
- Hematology and Coagulation Section, Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Lars Palmqvist
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Björn Andréasson
- Hematology Section, Department of Medicine, NU Hospital Group, Uddevalla, Sweden
| | - Julia Asp
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
32
|
Reinig EF, Rubinstein JD, Patil AT, Schussman AL, Horner VL, Kanagal-Shamanna R, Churpek JE, Matson DR. Needle in a haystack or elephant in the room? Identifying germline predisposition syndromes in the setting of a new myeloid malignancy diagnosis. Leukemia 2023; 37:1589-1599. [PMID: 37393344 PMCID: PMC10529926 DOI: 10.1038/s41375-023-01955-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Myeloid malignancies associated with germline predisposition syndromes account for up to 10% of myeloid neoplasms. They are classified into three categories by the proposed 5th Edition of the World Health Organization Classification of Hematolymphoid Tumors: (1) neoplasms with germline predisposition without a pre-existing platelet disorder or organ dysfunction, (2) neoplasms with germline predisposition and pre-existing platelet disorder, or (3) neoplasms with germline predisposition and potential organ dysfunction. Recognizing these entities is critical because patients and affected family members benefit from interfacing with hematologists who specialize in these disorders and can facilitate tailored treatment strategies. However, identification of these syndromes in routine pathology practice is often challenging, as characteristic findings associated with these diagnoses at baseline are frequently absent, nonspecific, or impossible to evaluate in the setting of a myeloid malignancy. Here we review the formally classified germline predisposition syndromes associated with myeloid malignancies and summarize practical recommendations for pathologists evaluating a new myeloid malignancy diagnosis. Our intent is to empower clinicians to better screen for germline disorders in this common clinical setting. Recognizing when to suspect a germline predisposition syndrome, pursue additional ancillary testing, and ultimately recommend referral to a cancer predisposition clinic or hematology specialist, will ensure optimal patient care and expedite research to improve outcomes for these individuals.
Collapse
Affiliation(s)
- Erica F Reinig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy D Rubinstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Apoorva T Patil
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda L Schussman
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Vanessa L Horner
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jane E Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Blood Cancer Research Institute, Madison, WI, USA
| | - Daniel R Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Blood Cancer Research Institute, Madison, WI, USA.
| |
Collapse
|
33
|
Roloff GW, Shaw R, O’Connor TE, Hathaway F, Drazer MW. Stagnation in quality of next-generation sequencing assays for the diagnosis of hereditary hematopoietic malignancies. J Genet Couns 2023; 32:744-749. [PMID: 36642751 PMCID: PMC11310923 DOI: 10.1002/jgc4.1672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023]
Abstract
Hereditary hematopoietic malignancies (HHMs) are inherited syndromes that confer the risk of blood cancer development. With the rapid acceleration of next-generation sequencing (NGS) into commercial biotechnology markets, HHMs are increasingly recognized by genetic counselors and clinicians. In 2020, it was demonstrated that most diagnostic test offerings for HHMs were insufficient for accurate diagnosis, failing to sequence the full spectrum of genetic events known to cause HHMs. We hypothesized the number of genes on commercially available HHM assay increased from 2020 to 2022, consistent with a more comprehensive sequencing approach. Here, we analyzed assays from eight commercial laboratories to determine the HHM-related genes sequenced by these assays. We compared these assays with panels from 2020 to determine trends in sequencing quality. Most HHM diagnostic assays did not change and remain insensitive for the detection of all HHM-related variants. Most (75%) HHM assays do not sequence CHEK2, the gene most frequently mutated in HHMs, and 25% of HHM assays does not sequence DDX41, the second most frequent HHM driver. The quality of HHM diagnostic assays stagnated despite the discovery of novel HHM-related genes and prior work demonstrating heterogeneity in the quality of HHM testing. Most commercially available HHM tests remain insufficient.
Collapse
Affiliation(s)
- Gregory W. Roloff
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Reid Shaw
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Timothy E. O’Connor
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Feighanne Hathaway
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Michael W. Drazer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
34
|
Huang L, Yuan X, Zhao L, Han Q, Yan H, Yuan J, Guan S, Xu X, Dai G, Wang J, Shi Y. Gene signature developed for predicting early relapse and survival in early-stage pancreatic cancer. BJS Open 2023; 7:7169392. [PMID: 37196196 DOI: 10.1093/bjsopen/zrad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The aim of this study was to construct a predictive signature integrating tumour-mutation- and copy-number-variation-associated features using machine learning to precisely predict early relapse and survival in patients with resected stage I-II pancreatic ductal adenocarcinoma. METHODS Patients with microscopically confirmed stage I-II pancreatic ductal adenocarcinoma undergoing R0 resection at the Chinese PLA General Hospital between March 2015 and December 2016 were enrolled. Whole exosome sequencing was performed, and genes with different mutation or copy number variation statuses between patients with and without relapse within 1 year were identified using bioinformatics analysis. A support vector machine was used to evaluate the importance of the differential gene features and to develop a signature. Signature validation was performed in an independent cohort. The associations of the support vector machine signature and single gene features with disease-free survival and overall survival were assessed. Biological functions of integrated genes were further analysed. RESULTS Overall, 30 and 40 patients were included in the training and validation cohorts, respectively. Some 11 genes with differential patterns were first identified; using a support vector machine, four features (mutations of DNAH9, TP53, and TUBGCP6, and copy number variation of TMEM132E) were further selected and integrated to construct a predictive signature (the support vector machine classifier). In the training cohort, the 1-year disease-free survival rates were 88 per cent (95 per cent c.i. 73 to 100) and 7 per cent (95 per cent c.i. 1 to 47) in the low-support vector machine subgroup and the high-support vector machine subgroup respectively (P < 0.001). Multivariable analyses showed that high support vector machine was significantly and independently associated with both worse overall survival (HR 29.20 (95 per cent c.i. 4.48 to 190.21); P < 0.001) and disease-free survival (HR 72.04 (95 per cent c.i. 6.74 to 769.96); P < 0.001). The area under the curve of the support vector machine signature for 1-year disease-free survival (0.900) was significantly larger than the area under the curve values of the mutations of DNAH9 (0.733; P = 0.039), TP53 (0.767; P = 0.024), and TUBGCP6 (0.733; P = 0.023), the copy number variation of TMEM132E (0.700; P = 0.014), TNM stage (0.567; P = 0.002), and differentiation grade (0.633; P = 0.005), suggesting higher predictive accuracy for prognosis. The value of the signature was further validated in the validation cohort. The four genes included in the support vector machine signature (DNAH9, TUBGCP6, and TMEM132E were novel in pancreatic ductal adenocarcinoma) were significantly associated with the tumour immune microenvironment, G protein-coupled receptor binding and signalling, cell-cell adhesion, etc. CONCLUSION The newly constructed support vector machine signature precisely and powerfully predicted relapse and survival in patients with stage I-II pancreatic ductal adenocarcinoma after R0 resection.
Collapse
Affiliation(s)
- Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Centre on Ageing of Ruijin Hospital, MCARJH, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodong Yuan
- Organ Transplant Center, Department of Hepatobiliary and Transplantation Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liangchao Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanli Han
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Huan Yan
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Jing Yuan
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Shasha Guan
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Xiaofeng Xu
- Shanghai Chief Technician Studio (Information & Technology), Shanghai, China
| | - Guanghai Dai
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shi
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
36
|
Santiago M, Liquori A, Such E, Zúñiga Á, Cervera J. The Clinical Spectrum, Diagnosis, and Management of GATA2 Deficiency. Cancers (Basel) 2023; 15:cancers15051590. [PMID: 36900380 PMCID: PMC10000430 DOI: 10.3390/cancers15051590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Hereditary myeloid malignancy syndromes (HMMSs) are rare but are becoming increasingly significant in clinical practice. One of the most well-known syndromes within this group is GATA2 deficiency. The GATA2 gene encodes a zinc finger transcription factor essential for normal hematopoiesis. Insufficient expression and function of this gene as a result of germinal mutations underlie distinct clinical presentations, including childhood myelodysplastic syndrome and acute myeloid leukemia, in which the acquisition of additional molecular somatic abnormalities can lead to variable outcomes. The only curative treatment for this syndrome is allogeneic hematopoietic stem cell transplantation, which should be performed before irreversible organ damage happens. In this review, we will examine the structural characteristics of the GATA2 gene, its physiological and pathological functions, how GATA2 genetic mutations contribute to myeloid neoplasms, and other potential clinical manifestations. Finally, we will provide an overview of current therapeutic options, including recent transplantation strategies.
Collapse
Affiliation(s)
- Marta Santiago
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Alessandro Liquori
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| | - Esperanza Such
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ángel Zúñiga
- Genetics Unit, Hospital La Fe, 46026 Valencia, Spain;
| | - José Cervera
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Genetics Unit, Hospital La Fe, 46026 Valencia, Spain;
| |
Collapse
|
37
|
Braunstein EM, Imada E, Pasca S, Wang S, Chen H, Alba C, Hupalo DN, Wilkerson M, Dalgard CL, Ghannam J, Liu Y, Marchionni L, Moliterno A, Hourigan CS, Gondek LP. Recurrent germline variant in ATM associated with familial myeloproliferative neoplasms. Leukemia 2023; 37:627-635. [PMID: 36543879 DOI: 10.1038/s41375-022-01797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Genetic predisposition (familial risk) in the myeloproliferative neoplasms (MPNs) is more common than the risk observed in most other cancers, including breast, prostate, and colon. Up to 10% of MPNs are considered to be familial. Recent genome-wide association studies have identified genomic loci associated with an MPN diagnosis. However, the identification of variants with functional contributions to the development of MPN remains limited. In this study, we have included 630 MPN patients and whole genome sequencing was performed in 64 individuals with familial MPN to uncover recurrent germline predisposition variants. Both targeted and unbiased filtering of single nucleotide variants (SNVs) was performed, with a comparison to 218 individuals with MPN unselected for familial status. This approach identified an ATM L2307F SNV occurring in nearly 8% of individuals with familial MPN. Structural protein modeling of this variant suggested stabilization of inactive ATM dimer, and alteration of the endogenous ATM locus in a human myeloid cell line resulted in decreased phosphorylation of the downstream tumor suppressor CHEK2. These results implicate ATM, and the DNA-damage response pathway, in predisposition to MPN.
Collapse
Affiliation(s)
- Evan M Braunstein
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Division of Hematology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Eddie Imada
- Division of Computational and Systems Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sergiu Pasca
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Shiyu Wang
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Hang Chen
- Division of Hematology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA.,Committee on Genetics, Genomics and Systems Biology, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Camille Alba
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Dan N Hupalo
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Matthew Wilkerson
- Department of Anatomy Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jack Ghannam
- Laboratory of Myeloid Malignancies, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yujia Liu
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Luigi Marchionni
- Division of Computational and Systems Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alison Moliterno
- Division of Hematology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lukasz P Gondek
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
38
|
Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 2023; 98:502-526. [PMID: 36594187 DOI: 10.1002/ajh.26822] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
DISEASE OVERVIEW Acute myeloid leukemia (AML) is a frequently fatal bone marrow stem cell cancer characterized by unbridled proliferation of malignant marrow stem cells with associated infection, anemia, and bleeding. An improved understanding of pathophysiology, improvements in measurement technology and at least 10 recently approved therapies have led to revamping the diagnostic, prognostic, and therapeutic landscape of AML. DIAGNOSIS One updated and one new classification system were published in 2022, both emphasizing the integration of molecular analysis into daily practice. Differences between the International Consensus Classification and major revisions from the previous 2016 WHO system provide both challenges and opportunities for care and clinical research. RISK ASSESSMENT AND MONITORING The European Leukemia Net 2022 risk classification integrates knowledge from novel molecular findings and recent trial results, as well as emphasizing dynamic risk based on serial measurable residual disease assessment. However, how to leverage our burgeoning ability to measure a small number of potentially malignant myeloid cells into therapeutic decision making is controversial. RISK ADAPTED THERAPY The diagnostic and therapeutic complexity plus the availability of newly approved agents requires a nuanced therapeutic algorithm which should integrate patient goals of care, comorbidities, and disease characteristics including the specific mutational profile of the patient's AML. The framework we suggest only represents the beginning of the discussion.
Collapse
Affiliation(s)
- Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Rabin Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Saygin C, Roloff G, Hahn CN, Chhetri R, Gill S, Elmariah H, Talati C, Nunley E, Gao G, Kim A, Bishop M, Kosuri S, Das S, Singhal D, Venugopal P, Homan CC, Brown A, Scott HS, Hiwase D, Godley LA. Allogeneic hematopoietic stem cell transplant outcomes in adults with inherited myeloid malignancies. Blood Adv 2023; 7:549-554. [PMID: 36001442 PMCID: PMC9979761 DOI: 10.1182/bloodadvances.2022008172] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
There is increasing recognition that pathogenic germ line variants drive the development of hematopoietic cancers in many individuals. Currently, patients with hereditary hematologic malignancies (HHMs) receive similar standard therapies and hematopoietic stem cell transplant (HSCT) approaches as those with sporadic disease. We hypothesize that patients with myeloid malignancies and deleterious germ line predisposition variants have different posttransplant outcomes than those without such alleles. We studied 472 patients with myeloid neoplasms, of whom 26% had deleterious germ line variants and 34% underwent HSCT. Deleterious germ line variants in CHEK2 and DDX41 were most commonly seen in American and Australian cohorts, respectively. Patients with deleterious germ line DDX41 variants had a higher incidence of severe (stage 3-4) acute graft-versus-host disease (GVHD) (38%) than recipients with deleterious CHEK2 variants (0%), other HHM variants (12%), or patients without such germ line variants (9%) (P = .002). Importantly, the use of posttransplant cyclophosphamide reduced the risk of severe acute GVHD in patients receiving HSCT for deleterious germ line DDX41-associated myeloid neoplasms (0% vs 53%, P = .03). Based on these results, we advocate the use of posttransplant cyclophosphamide when individuals with deleterious germ line DDX41 variants undergo allogeneic HSCT for myeloid malignancies, even when transplantation has been performed using wild-type donors.
Collapse
Affiliation(s)
- Caner Saygin
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Gregory Roloff
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Christopher N. Hahn
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Rakchha Chhetri
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Saar Gill
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Hany Elmariah
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Chetasi Talati
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Emma Nunley
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Guimin Gao
- Department of Public Health Sciences, The University of Chicago, Chicago, IL
| | - Aelin Kim
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Michael Bishop
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Satyajit Kosuri
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Soma Das
- Department of Human Genetics, The University of Chicago, Chicago, IL
| | - Deepak Singhal
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Health Network, Adelaide, SA, Australia
| | - Parvathy Venugopal
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Claire C. Homan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Anna Brown
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Devendra Hiwase
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Health Network, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lucy A. Godley
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
- Department of Human Genetics, The University of Chicago, Chicago, IL
| |
Collapse
|
40
|
Kubota Y, Zawit M, Durrani J, Shen W, Bahaj W, Kewan T, Ponvilawan B, Mori M, Meggendorfer M, Gurnari C, LaFramboise T, Feurstein S, Sekeres MA, Visconte V, Godley LA, Haferlach T, Maciejewski JP. Significance of hereditary gene alterations for the pathogenesis of adult bone marrow failure versus myeloid neoplasia. Leukemia 2022; 36:2827-2834. [PMID: 36266327 DOI: 10.1038/s41375-022-01729-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Broader genetic screening has led to the growing recognition of the role of germline variants associated with adult bone marrow failure (BMF) and myeloid neoplasia (MN) not exclusively in children and young adults. In this study, we applied a germline variant panel to 3008 adult BMF and MN cases to assess the importance of germline genetics and its impact on disease phenotype and prognosis. In our cohort, up to 9.7% of BMF and 5.3% of MN cases carried germline variants. Our cohort also included heterozygous carriers of recessive traits, suggesting they contribute to the risk of BMF and MN. By gene category, variants of Fanconi anemia gene family represented the highest-frequency category for both BMF and MN cases, found in 4.9% and 1.7% cases, respectively. In addition, about 1.4% of BMF and 0.19% of MN cases harbored multiple germline variants affecting often functionally related genes as compound heterozygous. The burden of germline variants in BMF and MN was clearly associated with acquisition of monosomy 7. While BMF cases carrying germline variants showed similar overall survival as compared to the wild-type (WT) cases, MN cases with germline variants experienced a significantly shorter overall survival as compared to WT cases.
Collapse
Affiliation(s)
- Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Misam Zawit
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jibran Durrani
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wenyi Shen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Waled Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Simone Feurstein
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
- Department of Internal Medicine, Section of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mikkael A Sekeres
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
41
|
Ney G, Gross A, Livinski A, Kratz CP, Stewart DR. Cancer incidence and surveillance strategies in individuals with RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:530-540. [PMID: 36533693 PMCID: PMC9825668 DOI: 10.1002/ajmg.c.32018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022]
Abstract
RASopathies are a set of clinical syndromes that have molecular and clinical overlap. Genetically, these syndromes are defined by germline pathogenic variants in RAS/MAPK pathway genes resulting in activation of this pathway. Clinically, their common molecular signature leads to comparable phenotypes, including cardiac anomalies, neurologic disorders and notably, elevated cancer risk. Cancer risk in individuals with RASopathies has been estimated from retrospective reviews and cohort studies. For example, in Costello syndrome, cancer incidence is significantly elevated over the general population, largely due to solid tumors. In some forms of Noonan syndrome, cancer risk is also elevated over the general population and is enriched for hematologic malignancies. Thus, cancer surveillance guidelines have been developed to monitor for the occurrence of such cancers in individuals with some RASopathies. These include abdominal ultrasound and urinalyses for individuals with Costello syndrome, while complete blood counts and splenic examination are recommended in Noonan syndrome. Improved cancer risk estimates and refinement of surveillance recommendations will improve the care of individuals with RASopathies.
Collapse
Affiliation(s)
- Gina Ney
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland, USA
| | - Andrea Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Alicia Livinski
- National Institutes of Health Library, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland, USA
| |
Collapse
|
42
|
Baranwal A, Hahn CN, Shah MV, Hiwase DK. Role of Germline Predisposition to Therapy-Related Myeloid Neoplasms. Curr Hematol Malig Rep 2022; 17:254-265. [PMID: 35986863 DOI: 10.1007/s11899-022-00676-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Therapy-related myeloid neoplasms (t-MNs) are aggressive leukemias that develop following exposure to DNA-damaging agents. A subset of patients developing t-MN may have an inherited susceptibility to develop myeloid neoplasia. Herein, we review studies reporting t-MN and their association with a germline or inherited predisposition. RECENT FINDINGS Emerging evidence suggests that development of t-MN is the result of complex interactions including generation of somatic variants in hematopoietic stem cells and/or clonal selection pressure exerted by the DNA-damaging agents, and immune evasion on top of any inherited genetic susceptibility. Conventionally, alkylating agents, topoisomerase inhibitors, and radiation have been associated with t-MN. Recently, newer modalities including poly (ADP-ribose) polymerase inhibitors (PARPi) and peptide receptor radionucleotide therapy (PRRT) are associated with t-MN. At the same time, the role of pathogenic germline variants (PGVs) in genes such as BRCA1/2, BARD1, or TP53 on the risk of t-MN is being explored. Moreover, studies have shown that while cytotoxic therapy increases the risk of developing myeloid neoplasia, it may be exposing the vulnerability of an underlying germline predisposition. t-MN remains a disease with poor prognosis. Studies are needed to better define an individual's inherited neoplastic susceptibility which will help predict the risk of myeloid neoplasia in the future. Understanding the genes driving the inherited neoplastic susceptibility will lead to better patient- and cancer-specific management including choice of therapeutic regimen to prevent, or at least delay, development of myeloid neoplasia after treatment of a prior malignancy.
Collapse
Affiliation(s)
- Anmol Baranwal
- Division of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55906, USA
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Mithun Vinod Shah
- Division of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55906, USA.
| | - Devendra K Hiwase
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
43
|
Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, Jaiswal S, Malcovati L, Vannucchi AM, Patel KP, Arber DA, Arcila ME, Bejar R, Berliner N, Borowitz MJ, Branford S, Brown AL, Cargo CA, Döhner H, Falini B, Garcia-Manero G, Haferlach T, Hellström-Lindberg E, Kim AS, Klco JM, Komrokji R, Lee-Cheun Loh M, Loghavi S, Mullighan CG, Ogawa S, Orazi A, Papaemmanuil E, Reiter A, Ross DM, Savona M, Shimamura A, Skoda RC, Solé F, Stone RM, Tefferi A, Walter MJ, Wu D, Ebert BL, Cazzola M. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood 2022; 140:2228-2247. [PMID: 36130297 PMCID: PMC10488320 DOI: 10.1182/blood.2022015853] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.
Collapse
Affiliation(s)
- Eric J. Duncavage
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Courtney D. DiNardo
- Division of Cancer Medicine, Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Lucy A. Godley
- Section of Hematology and Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia & Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Alessandro M. Vannucchi
- Department of Hematology, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence and Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Keyur P. Patel
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Maria E. Arcila
- Department of Pathology, Memorial Sloan Lettering Cancer Center, New York, NY
| | - Rafael Bejar
- Division of Hematology and Oncology, University of California San Diego, La Jolla, CA
| | - Nancy Berliner
- Division of Hematology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Michael J. Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Center for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Anna L. Brown
- Department of Pathology, South Australia Heath Alliance, Adelaide, Australia
| | - Catherine A. Cargo
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Brunangelo Falini
- Department of Hematology, CREO, University of Perugia, Perugia, Italy
| | | | | | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rami Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Mignon Lee-Cheun Loh
- Department of Pediatrics, Ben Towne Center for Childhood Cancer Research, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Sanam Loghavi
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Seishi Ogawa
- University of Kyoto School of Medicine, Kyoto, Japan
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX
| | | | - Andreas Reiter
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - David M. Ross
- Haematology Directorate, SA Pathology, Adelaide, Australia
| | - Michael Savona
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Akiko Shimamura
- Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Radek C. Skoda
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Francesc Solé
- MDS Group, Institut de Recerca contra la Leucèmia Josep Carreras, Barcelona, Spain
| | - Richard M. Stone
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mario Cazzola
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
44
|
Impaired Overall Survival in Young Patients With Acute Myeloid Leukemia and Variants in Genes Predisposing for Myeloid Malignancies. Hemasphere 2022; 6:e787. [PMID: 36258922 PMCID: PMC9561384 DOI: 10.1097/hs9.0000000000000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/04/2022] [Indexed: 11/07/2022] Open
|
45
|
Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022; 140:1345-1377. [PMID: 35797463 DOI: 10.1182/blood.2022016867] [Citation(s) in RCA: 1220] [Impact Index Per Article: 406.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
The 2010 and 2017 editions of the European LeukemiaNet (ELN) recommendations for diagnosis and management of acute myeloid leukemia (AML) in adults are widely recognized among physicians and investigators. There have been major advances in our understanding of AML, including new knowledge about the molecular pathogenesis of AML, leading to an update of the disease classification, technological progress in genomic diagnostics and assessment of measurable residual disease, and the successful development of new therapeutic agents, such as FLT3, IDH1, IDH2, and BCL2 inhibitors. These advances have prompted this update that includes a revised ELN genetic risk classification, revised response criteria, and treatment recommendations.
Collapse
|
46
|
Li P, Brown S, Williams M, White T, Xie W, Cui W, Peker D, Lei L, Kunder CA, Wang HY, Murray SS, Vagher J, Kovacsovics T, Patel JL. The genetic landscape of germline DDX41 variants predisposing to myeloid neoplasms. Blood 2022; 140:716-755. [PMID: 35671390 PMCID: PMC9389629 DOI: 10.1182/blood.2021015135] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/09/2022] [Indexed: 11/20/2022] Open
Abstract
Germline DDX41 variants are the most common mutations predisposing to acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) in adults, but the causal variant (CV) landscape and clinical spectrum of hematologic malignancies (HMs) remain unexplored. Here, we analyzed the genomic profiles of 176 patients with HM carrying 82 distinct presumably germline DDX41 variants among a group of 9821 unrelated patients. Using our proposed DDX41-specific variant classification, we identified features distinguishing 116 patients with HM with CV from 60 patients with HM with variant of uncertain significance (VUS): an older age (median 69 years), male predominance (74% in CV vs 60% in VUS, P = .03), frequent concurrent somatic DDX41 variants (79% in CV vs 5% in VUS, P < .0001), a lower somatic mutation burden (1.4 ± 0.1 in CV vs 2.9 ± 0.04 in VUS, P = .012), near exclusion of canonical recurrent genetic abnormalities including mutations in NPM1, CEBPA, and FLT3 in AML, and favorable overall survival (OS) in patients with AML/MDS. This superior OS was determined independent of blast count, abnormal karyotypes, and concurrent variants, including TP53 in patients with AML/MDS, regardless of patient's sex, age, or specific germline CV, suggesting that germline DDX41 variants define a distinct clinical entity. Furthermore, unrelated patients with myeloproliferative neoplasm and B-cell lymphoma were linked by DDX41 CV, thus expanding the known disease spectrum. This study outlines the CV landscape, expands the phenotypic spectrum in unrelated DDX41-mutated patients, and underscores the urgent need for gene-specific diagnostic and clinical management guidelines.
Collapse
Affiliation(s)
- Peng Li
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Sara Brown
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Margaret Williams
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Thomas White
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Wei Xie
- Department of Pathology, School of Medicine, Oregon Health and Science University, Portland, OR
| | - Wei Cui
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Deniz Peker
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Li Lei
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA
| | - Christian A Kunder
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA
| | - Huan-You Wang
- Department of Pathology & Immunology, University of California San Diego Health System, La Jolla, CA
| | - Sarah S Murray
- Department of Pathology & Immunology, University of California San Diego Health System, La Jolla, CA
| | - Jennie Vagher
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT; and
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Tibor Kovacsovics
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT; and
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Jay L Patel
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
47
|
Duployez N, Largeaud L, Duchmann M, Kim R, Rieunier J, Lambert J, Bidet A, Larcher L, Lemoine J, Delhommeau F, Hirsch P, Fenwarth L, Kosmider O, Decroocq J, Bouvier A, Le Bris Y, Ochmann M, Santagostino A, Adès L, Fenaux P, Thomas X, Micol JB, Gardin C, Itzykson R, Soulier J, Clappier E, Recher C, Preudhomme C, Pigneux A, Dombret H, Delabesse E, Sébert M. Prognostic impact of DDX41 germline mutations in intensively treated acute myeloid leukemia patients: an ALFA-FILO study. Blood 2022; 140:756-768. [PMID: 35443031 PMCID: PMC9389637 DOI: 10.1182/blood.2021015328] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
DDX41 germline mutations (DDX41MutGL) are the most common genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia (AML). Recent reports suggest that DDX41MutGL myeloid malignancies could be considered as a distinct entity, even if their specific presentation and outcome remain to be defined. We describe here the clinical and biological features of 191 patients with DDX41MutGL AML. Baseline characteristics and outcome of 86 of these patients, treated with intensive chemotherapy in 5 prospective Acute Leukemia French Association/French Innovative Leukemia Organization trials, were compared with those of 1604 patients with DDX41 wild-type (DDX41WT) AML, representing a prevalence of 5%. Patients with DDX41MutGL AML were mostly male (75%), in their seventh decade, and with low leukocyte count (median, 2 × 109/L), low bone marrow blast infiltration (median, 33%), normal cytogenetics (75%), and few additional somatic mutations (median, 2). A second somatic DDX41 mutation (DDX41MutSom) was found in 82% of patients, and clonal architecture inference suggested that it could be the main driver for AML progression. DDX41MutGL patients displayed higher complete remission rates (94% vs 69%; P < .0001) and longer restricted mean overall survival censored at hematopoietic stem cell transplantation (HSCT) than 2017 European LeukemiaNet intermediate/adverse (Int/Adv) DDX41WT patients (5-year difference in restricted mean survival times, 13.6 months; P < .001). Relapse rates censored at HSCT were lower at 1 year in DDX41MutGL patients (15% vs 44%) but later increased to be similar to Int/Adv DDX41WT patients at 3 years (82% vs 75%). HSCT in first complete remission was associated with prolonged relapse-free survival (hazard ratio, 0.43; 95% confidence interval, 0.21-0.88; P = .02) but not with longer overall survival (hazard ratio, 0.77; 95% confidence interval, 0.35-1.68; P = .5).
Collapse
Affiliation(s)
- Nicolas Duployez
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, INSERM, Lille, France
| | - Laëtitia Largeaud
- Hematology Laboratory, CHU de Toulouse-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Matthieu Duchmann
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Rathana Kim
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Julie Rieunier
- Hematology Laboratory, CHU de Toulouse-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Audrey Bidet
- Hematology Laboratory, CHU de Bordeaux, Bordeaux, France
| | - Lise Larcher
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean Lemoine
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - François Delhommeau
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Laboratoire d'hématologie biologique, Hôpital Saint-Antoine, Paris, France
| | - Pierre Hirsch
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Laboratoire d'hématologie biologique, Hôpital Saint-Antoine, Paris, France
| | - Laurène Fenwarth
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, INSERM, Lille, France
| | | | | | - Anne Bouvier
- Hematology Laboratory, CHU Angers, Angers, France
| | - Yannick Le Bris
- Hematology Biology, Nantes University Hospital, Nantes, France
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | | | | | - Lionel Adès
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Pierre Fenaux
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Xavier Thomas
- Hematology Department, Hospices Civils de Lyon, Lyon-Sud Hospital, Lyon, France
| | - Jean-Baptiste Micol
- Hematology Department, Gustave Roussy Institute, University of Paris-Saclay, Villejuif, France
| | - Claude Gardin
- Hematology Department, Avicenne Hospital, AP-HP, Bobigny, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Raphael Itzykson
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Jean Soulier
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Emmanuelle Clappier
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christian Recher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France; and
| | - Claude Preudhomme
- Hematology Laboratory, Unité 1277-Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), Centre Hospitalier Universitaire (CHU) de Lille, University of Lille, INSERM, Lille, France
| | - Arnaud Pigneux
- Hematology Department, CHU de Bordeaux, Bordeaux, France
| | - Hervé Dombret
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Unité 3518, Saint-Louis Institute for Research, Université de Paris, Paris, France
| | - Eric Delabesse
- Hematology Laboratory, CHU de Toulouse-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Marie Sébert
- Université de Paris, Unité 944/7212-GenCellDi, INSERM and Centre National de la Recherche Scientifique (CNRS), Paris, France
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
| |
Collapse
|
48
|
Hu X, Song J, Chyr J, Wan J, Wang X, Du J, Duan J, Zhang H, Zhou X, Wu X. APAview: A web-based platform for alternative polyadenylation analyses in hematological cancers. Front Genet 2022; 13:928862. [PMID: 36035147 PMCID: PMC9411867 DOI: 10.3389/fgene.2022.928862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Hematologic malignancies, such as acute promyelocytic leukemia (APL) and acute myeloid leukemia (AML), are cancers that start in blood-forming tissues and can affect the blood, bone marrow, and lymph nodes. They are often caused by genetic and molecular alterations such as mutations and gene expression changes. Alternative polyadenylation (APA) is a post-transcriptional process that regulates gene expression, and dysregulation of APA contributes to hematological malignancies. RNA-sequencing-based bioinformatic methods can identify APA sites and quantify APA usages as molecular indexes to study APA roles in disease development, diagnosis, and treatment. Unfortunately, APA data pre-processing, analysis, and visualization are time-consuming, inconsistent, and laborious. A comprehensive, user-friendly tool will greatly simplify processes for APA feature screening and mining. Results: Here, we present APAview, a web-based platform to explore APA features in hematological cancers and perform APA statistical analysis. APAview server runs on Python3 with a Flask framework and a Jinja2 templating engine. For visualization, APAview client is built on Bootstrap and Plotly. Multimodal data, such as APA quantified by QAPA/DaPars, gene expression data, and clinical information, can be uploaded to APAview and analyzed interactively. Correlation, survival, and differential analyses among user-defined groups can be performed via the web interface. Using APAview, we explored APA features in two hematological cancers, APL and AML. APAview can also be applied to other diseases by uploading different experimental data.
Collapse
Affiliation(s)
- Xi Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jialin Song
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jacqueline Chyr
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | - Jinping Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jianqiang Du
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Junbo Duan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Huqin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | - Xiaoming Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Xiaoming Wu,
| |
Collapse
|
49
|
Stubbins RJ, Korotev S, Godley LA. Germline CHEK2 and ATM Variants in Myeloid and Other Hematopoietic Malignancies. Curr Hematol Malig Rep 2022; 17:94-104. [PMID: 35674998 DOI: 10.1007/s11899-022-00663-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW An intact DNA damage response is crucial to preventing cancer development, including in myeloid and lymphoid malignancies. Deficiencies in the homologous recombination (HR) pathway can lead to defective DNA damage responses, and this can occur through inherited germline mutations in HR pathway genes, such as CHEK2 and ATM. We now understand that germline mutations can be identified frequently (~ 5-10%) in patients with myeloid and lymphoid malignancies, and among the most common of these are CHEK2 and ATM. We review the role that deleterious germline CHEK2 and ATM variants play in the development of hematopoietic malignancies, and how this influences clinical practice, including cancer screening, hematopoietic stem cell transplantation, and therapy choice. RECENT FINDINGS In recent large cohorts of patients diagnosed with myeloid or lymphoid malignancies, deleterious germline loss of function variants in CHEK2 and ATM are among the most common identified. Germline CHEK2 variants predispose to a range of myeloid malignancies, most prominently myeloproliferative neoplasms and myelodysplastic syndromes (odds ratio range: 2.1-12.3), and chronic lymphocytic leukemia (odds ratio 14.83). Deleterious germline ATM variants have been shown to predispose to chronic lymphocytic leukemia (odds ratio range: 1.7-10.1), although additional studies are needed to demonstrate the risk they confer for myeloid malignancies. Early studies suggest there may also be associations between deleterious germline CHEK2 and ATM variants and development of clonal hematopoiesis. Identifying CHEK2 and ATM variants is crucial for the optimal management of patients and families affected by hematopoietic malignancies. OPENING CLINICAL CASE: "A 45 year-old woman presents to your clinic with a history of triple-negative breast cancer diagnosed five years ago, treated with surgery, radiation, and chemotherapy. About six months ago, she developed cervical lymphadenopathy, and a biopsy demonstrated small lymphocytic leukemia. Peripheral blood shows a small population of lymphocytes with a chronic lymphocytic leukemia immunophenotype, and FISH demonstrates a complex karyotype: gain of one to two copies of IGH and FGFR3; gain of two copies of CDKN2C at 1p32.3; gain of two copies of CKS1B at 1q21; tetrasomy for chromosome 3; trisomy and tetrasomy for chromosome 7; tetrasomy for chromosome 9; tetrasomy for chromosome 12; gain of one to two copies of ATM at 11q22.3; deletion of chromosome 13 deletion positive; gain of one to two copies of TP53 at 17p13.1). Given her history of two cancers, you arrange for germline genetic testing using DNA from cultured skin fibroblasts, which demonstrates pathogenic variants in ATM [c.1898 + 2 T > G] and CHEK2 [p.T367Metfs]. Her family history is significant for multiple cancers. (Fig. 1)." Fig. 1 Representative pedigree from a patient with germline pathogenic ATM and CHEK2 variants who was affected by early onset breast cancer and chronic lymphocytic leukemia. Arrow indicates proband. Colors indicate cancer type/disease: purple, breast cancer; blue, lymphoma; brown, melanoma; yellow, colon cancer; and green, autoimmune disease.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA.,Leukemia/BMT Program of BC, BC Cancer, Vancouver, BC, Canada
| | - Sophia Korotev
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA
| | - Lucy A Godley
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
50
|
Rossini L, Durante C, Bresolin S, Opocher E, Marzollo A, Biffi A. Diagnostic Strategies and Algorithms for Investigating Cancer Predisposition Syndromes in Children Presenting with Malignancy. Cancers (Basel) 2022; 14:cancers14153741. [PMID: 35954404 PMCID: PMC9367486 DOI: 10.3390/cancers14153741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Here we provide an overview of several genetically determined conditions that predispose to the development of solid and hematologic malignancies in children. Diagnosing these conditions, whose prevalence is estimated around 10% in children with cancer, is useful to warrant personalized oncologic treatment and follow-up, as well as psychological and genetic counseling to these children and their families. We reviewed the most recent studies focusing on the prevalence of cancer predisposition syndromes in cancer-bearing children and the most-used clinical screening tools. Our work highlighted the value of clinical screening tools in the management of young cancer patients, especially in settings where genetic testing is not promptly accessible. Abstract In the past recent years, the expanding use of next-generation sequencing has led to the discovery of new cancer predisposition syndromes (CPSs), which are now known to be responsible for up to 10% of childhood cancers. As knowledge in the field is in constant evolution, except for a few “classic” CPSs, there is no consensus about when and how to perform germline genetic diagnostic studies in cancer-bearing children. Several clinical screening tools have been proposed to help identify the patients who carry higher risk, with heterogeneous strategies and results. After introducing the main clinical and molecular features of several CPSs predisposing to solid and hematological malignancies, we compare the available clinical evidence on CPS prevalence in pediatric cancer patients and on the most used decision-support tools in identifying the patients who could benefit from genetic counseling and/or direct genetic testing. This analysis highlighted that a personalized stepwise approach employing clinical screening tools followed by sequencing in high-risk patients might be a reasonable and cost-effective strategy in the care of children with cancer.
Collapse
Affiliation(s)
- Linda Rossini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
| | - Caterina Durante
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
| | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, 35128 Padua, Italy
| | - Enrico Opocher
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
- Correspondence: (A.M.); (A.B.)
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, 35128 Padua, Italy
- Correspondence: (A.M.); (A.B.)
| |
Collapse
|