1
|
Su Y, Liu S, Long C, Zhou Z, Zhou Y, Tang J. The cross-talk between B cells and macrophages. Int Immunopharmacol 2024; 143:113463. [PMID: 39467344 DOI: 10.1016/j.intimp.2024.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
B cells and macrophages are significant immune cells that maintain the immune balance of the body. B cells are involved in humoral immunity, producing immune effects mainly by secreting antibodies. Macrophages participate in non-specific and specific immune responses. To gain a further understanding of macrophages and B cells, researchers have not only paid attention to the unidirectional influence between B cells and macrophages, but also have focused on the cross-talk between them, and the effect of this cross talk on diseases. Therefore, this review summarizes the influence of macrophages on B cells, the ways and mechanisms by which B cells affect macrophages, and their cross-talk, leading to a more comprehensive understanding of the mechanism of the interaction between macrophages and B cells.
Collapse
Affiliation(s)
- Yahui Su
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Siyi Liu
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chen Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zihua Zhou
- Department of Oncology, Loudi Central Hospital, Loudi 417000, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China.
| | - Jingqiong Tang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Minciacchi VR, Bravo J, Karantanou C, Pereira RS, Zanetti C, Kumar R, Thomasberger N, Llavona P, Krack T, Bankov K, Meister M, Hartmann S, Maguer-Satta V, Lefort S, Putyrski M, Ernst A, Huntly BJP, Meduri E, Ruf W, Krause DS. Exploitation of the fibrinolytic system by B-cell acute lymphoblastic leukemia and its therapeutic targeting. Nat Commun 2024; 15:10059. [PMID: 39567540 PMCID: PMC11579293 DOI: 10.1038/s41467-024-54361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Fibrinolysis influences the mobilization of hematopoietic stem cells from their bone marrow microenvironment (BMM). Here we show that activation of plasmin, a key fibrinolytic agent, by annexin A2 (ANXA2) distinctly impacts progression of BCR-ABL1+ B-cell acute lymphoblastic leukemia (B-ALL) via modulation of the extracellular matrix (ECM) in the BMM. The dense ECM in a BMM with decreased plasmin activity entraps insulin-like growth factor (IGF) 1 and reduces mTORC2-dependent signaling and proliferation of B-ALL cells. Conversely, B-ALL conditions the BMM to induce hepatic generation of plasminogen, the plasmin precursor. Treatment with ε-aminocaproic acid (EACA), which inhibits plasmin activation, reduces tumor burden and prolongs survival, including in xenogeneic models via increased fibronectin in the BMM. Human data confirm that IGF1 and fibronectin staining in trephine biopsies are correlated. Our studies suggest that fibrinolysis-mediated ECM remodeling and subsequent growth factor release influence B-ALL progression and inhibition of this process by EACA may be beneficial as adjunct therapy.
Collapse
Affiliation(s)
- Valentina R Minciacchi
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | - Jimena Bravo
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | - Christina Karantanou
- Department of Vascular Dysfunction - Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Raquel S Pereira
- Institute for Experimental Pediatric Hematology and Oncology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Costanza Zanetti
- Division of mRNA Cancer Immunotherapy, Helmholtz Institute for Translational Oncology Mainz, Mainz, Germany
| | - Rahul Kumar
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | | | | | - Theresa Krack
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | - Katrin Bankov
- Department of Pediatrics (Hematology/Oncology), Charité-Universitätsmedizin, Berlin, Germany
| | | | - Sylvia Hartmann
- Department of Pathology, Goethe University, Frankfurt am Main, Germany
| | | | - Sylvain Lefort
- CRCL, Inserm U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Mateusz Putyrski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
| | - Andreas Ernst
- Pharmazentrum/ZAFES Frankfurt, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Eshwar Meduri
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Daniela S Krause
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Du M, Sun L, Guo J, Lv H. Macrophages and tumor-associated macrophages in the senescent microenvironment: From immunosuppressive TME to targeted tumor therapy. Pharmacol Res 2024; 204:107198. [PMID: 38692466 DOI: 10.1016/j.phrs.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In-depth studies of the tumor microenvironment (TME) have helped to elucidate its cancer-promoting mechanisms and inherent characteristics. Cellular senescence, which acts as a response to injury and can the release of senescence-associated secretory phenotypes (SASPs). These SASPs release various cytokines, chemokines, and growth factors, remodeling the TME. This continual development of a senescent environment could be associated with chronic inflammation and immunosuppressive TME. Additionally, SASPs could influence the phenotype and function of macrophages, leading to the recruitment of tumor-associated macrophages (TAMs). This contributes to tumor proliferation and metastasis in the senescent microenvironment, working in tandem with immune regulation, angiogenesis, and therapeutic resistance. This comprehensive review covers the evolving nature of the senescent microenvironment, macrophages, and TAMs in tumor development. We also explored the links between chronic inflammation, immunosuppressive TME, cellular senescence, and macrophages. Moreover, we compiled various tumor-specific treatment strategies centered on cellular senescence and the current challenges in cellular senescence research. This study aimed to clarify the mechanism of macrophages and the senescent microenvironment in tumor progression and advance the development of targeted tumor therapies.
Collapse
Affiliation(s)
- Ming Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lu Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Huina Lv
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
4
|
Aoki T, Jiang A, Xu A, Yin Y, Gamboa A, Milne K, Takata K, Miyata-Takata T, Chung S, Rai S, Wu S, Warren M, Strong C, Goodyear T, Morris K, Chong LC, Hav M, Colombo AR, Telenius A, Boyle M, Ben-Neriah S, Power M, Gerrie AS, Weng AP, Karsan A, Roth A, Farinha P, Scott DW, Savage KJ, Nelson BH, Merchant A, Steidl C. Spatially Resolved Tumor Microenvironment Predicts Treatment Outcomes in Relapsed/Refractory Hodgkin Lymphoma. J Clin Oncol 2024; 42:1077-1087. [PMID: 38113419 PMCID: PMC10950131 DOI: 10.1200/jco.23.01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 12/21/2023] Open
Abstract
PURPOSE About a third of patients with relapsed or refractory classic Hodgkin lymphoma (r/r CHL) succumb to their disease after high-dose chemotherapy followed by autologous stem-cell transplantation (HDC/ASCT). Here, we aimed to describe spatially resolved tumor microenvironment (TME) ecosystems to establish novel biomarkers associated with treatment failure in r/r CHL. PATIENTS AND METHODS We performed imaging mass cytometry (IMC) on 71 paired primary diagnostic and relapse biopsies using a marker panel specific to CHL biology. For each cell type in the TME, we calculated a spatial score measuring the distance of nearest neighbor cells to the malignant Hodgkin Reed Sternberg cells within the close interaction range. Spatial scores were used as features in prognostic model development for post-ASCT outcomes. RESULTS Highly multiplexed IMC data revealed shared TME patterns in paired diagnostic and early r/r CHL samples, whereas TME patterns were more divergent in pairs of diagnostic and late relapse samples. Integrated analysis of IMC and single-cell RNA sequencing data identified unique architecture defined by CXCR5+ Hodgkin and Reed Sternberg (HRS) cells and their strong spatial relationship with CXCL13+ macrophages in the TME. We developed a prognostic assay (RHL4S) using four spatially resolved parameters, CXCR5+ HRS cells, PD1+CD4+ T cells, CD68+ tumor-associated macrophages, and CXCR5+ B cells, which effectively separated patients into high-risk versus low-risk groups with significantly different post-ASCT outcomes. The RHL4S assay was validated in an independent r/r CHL cohort using a multicolor immunofluorescence assay. CONCLUSION We identified the interaction of CXCR5+ HRS cells with ligand-expressing CXCL13+ macrophages as a prominent crosstalk axis in relapsed CHL. Harnessing this TME biology, we developed a novel prognostic model applicable to r/r CHL biopsies, RHL4S, opening new avenues for spatial biomarker development.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Princess Margaret Cancer Centre—University Health Network, Toronto, Ontario, Canada
| | - Aixiang Jiang
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Yifan Yin
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | | | - Katy Milne
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Katsuyoshi Takata
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Shanee Chung
- Leukemia/Bone Marrow Transplant Program of BC, BC Cancer, Vancouver, British Columbia, Canada
| | - Shinya Rai
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Shaocheng Wu
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Mary Warren
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Celia Strong
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Talia Goodyear
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Kayleigh Morris
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Lauren C. Chong
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | | | | | - Adele Telenius
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Maryse Power
- Leukemia/Bone Marrow Transplant Program of BC, BC Cancer, Vancouver, British Columbia, Canada
| | - Alina S. Gerrie
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada
| | - Aly Karsan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Andrew Roth
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Brad H. Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | | | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Ma L, Wang J, Yang Y, Lu J, Ling J, Chu X, Zhang Z, Tao Y, Li X, Tian Y, Li Z, Zhang Y, Sang X, Lu L, Wan X, Zhang K, Chen Y, Yu J, Zhuo R, Wu S, Pan J, Zhou X, Hu Y, Hu S. BRD4 PROTAC degrader MZ1 exhibits anti-B-cell acute lymphoblastic leukemia effects via targeting CCND3. Hematology 2023; 28:2247253. [PMID: 37594294 DOI: 10.1080/16078454.2023.2247253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
INTRODUCTION B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent malignant tumor affecting children. While the majority of B-ALL patients (90%) experience successful recovery, early relapse cases of B-ALL continue to exhibit high mortality rates. MZ1, a novel inhibitor of Bromodomains and extra-terminal (BET) proteins, has demonstrated potent antitumor activity against hematological malignancies. The objective of this study was to examine the role and therapeutic potential of MZ1 in the treatment of B-ALL. METHODS In order to ascertain the fundamental mechanism of MZ1, a sequence of in vitro assays was conducted on B-ALL cell lines, encompassing Cell Counting Kit 8 (CCK8) assay, Propidium iodide (PI) staining, and Annexin V/PI staining. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to examine protein and mRNA expression levels. Transcriptomic RNA sequencing (RNA-seq) was utilized to screen the target genes of MZ1, and lentiviral transfection was employed to establish stably-expressing/knockdown cell lines. RESULTS MZ1 has been observed to induce the degradation of Bromodomain Containing 4 (BRD4), Bromodomain Containing 3 (BRD3), and Bromodomain Containing 2 (BRD2) in B-ALL cell strains, leading to inhibited cell growth and induction of cell apoptosis and cycle arrest in vitro. These findings suggest that MZ1 exhibits cytotoxic effects on two distinct molecular subtypes of B-ALL, namely 697 (TCF3/PBX1) and RS4;11 (MLL-AF4) B-ALL cell lines. Additionally, RNA-sequencing analysis revealed that MZ1 significantly downregulated the expression of Cyclin D3 (CCND3) gene in B-ALL cell lines, which in turn promoted cell apoptosis, blocked cell cycle, and caused cell proliferation inhibition. CONCLUSION Our results suggest that MZ1 has potential anti-B-ALL effects and might be a novel therapeutic target.
Collapse
Affiliation(s)
- Li Ma
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, People's Republic of China
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yang Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jing Ling
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xinran Chu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yuanyuan Tian
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongping Zhang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xu Sang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lihui Lu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaomei Wan
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Kunlong Zhang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yanling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Juanjuan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ran Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Shuiyan Wu
- Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiuxia Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yixin Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
6
|
Ning Q, Jian T, Cui S, Shi L, Jian X, He X, Zhang X, Li X. Tim-3 facilitates immune escape in benzene-induced acute myeloid leukemia mouse model by promoting macrophage M2 polarization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115532. [PMID: 37806131 DOI: 10.1016/j.ecoenv.2023.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Benzene poisoning can cause acute myeloid leukemia (AML) through a variety of passways. Tim-3 has gained prominence as a potential candidate in mediating immunosuppression in tumor microenvironments. The macrophage polarization is also related to immune escape. Herein, we reported that Tim-3 and macrophage M2 polarization play a vital role in benzene-induced AML. First, the benzene-induced AML C3H/He mouse model was constructed by subcutaneously injecting 250 mg/kg of benzene. After six months, macrophage phenotype, cytokines, and Tim-3 expression levels were investigated. Flow cytometry assay revealed that the T-cell inhibitory receptor Tim-3 was significantly upregulated in both bone marrow and spleen of the benzene-induced AML mouse model. Elisa's results displayed a decreased serum level of IL-12 while increased TGF-β1. Mechanistically, changes in cytokine secretion promote the growth of M2-type macrophages in the bone marrow and spleen, as determined by immunofluorescence assay. The increased levels of PI3K, AKT, and mTOR in the benzene-exposure group further proved the crucial role of Tim-3 in regulating the functional status of macrophages in the AML microenvironment. These results demonstrate that Tim-3 and macrophage polarization may play a vital role during the immune escape of the benzene-induced AML. This study provides a new potential intervention site for immune checkpoint-based AML therapeutic strategy.
Collapse
Affiliation(s)
- Qiong Ning
- Department of Occupational Diseases, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250002, China
| | - Tianzi Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Siqi Cui
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Longke Shi
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaopeng He
- Department of Thoracic surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxing Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangxin Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
7
|
Pereira RS, Kumar R, Cais A, Paulini L, Kahler A, Bravo J, Minciacchi VR, Krack T, Kowarz E, Zanetti C, Godavarthy PS, Hoeller F, Llavona P, Stark T, Tascher G, Nowak D, Meduri E, Huntly BJP, Münch C, Pampaloni F, Marschalek R, Krause DS. Distinct and targetable role of calcium-sensing receptor in leukaemia. Nat Commun 2023; 14:6242. [PMID: 37802982 PMCID: PMC10558580 DOI: 10.1038/s41467-023-41770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Haematopoietic stem cells (HSC) reside in the bone marrow microenvironment (BMM), where they respond to extracellular calcium [eCa2+] via the G-protein coupled calcium-sensing receptor (CaSR). Here we show that a calcium gradient exists in this BMM, and that [eCa2+] and response to [eCa2+] differ between leukaemias. CaSR influences the location of MLL-AF9+ acute myeloid leukaemia (AML) cells within this niche and differentially impacts MLL-AF9+ AML versus BCR-ABL1+ leukaemias. Deficiency of CaSR reduces AML leukaemic stem cells (LSC) 6.5-fold. CaSR interacts with filamin A, a crosslinker of actin filaments, affects stemness-associated factors and modulates pERK, β-catenin and c-MYC signaling and intracellular levels of [Ca2+] in MLL-AF9+ AML cells. Combination treatment of cytarabine plus CaSR-inhibition in various models may be superior to cytarabine alone. Our studies suggest CaSR to be a differential and targetable factor in leukaemia progression influencing self-renewal of AML LSC via [eCa2+] cues from the BMM.
Collapse
Affiliation(s)
- Raquel S Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alessia Cais
- Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lara Paulini
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alisa Kahler
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Jimena Bravo
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Valentina R Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Theresa Krack
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Costanza Zanetti
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Fabian Hoeller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Pablo Llavona
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Tabea Stark
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eshwar Meduri
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS, CEF-MC), Goethe University, Frankfurt am Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.
- Institute of General Pharmacology and Toxicology, Goethe-University, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt, Germany.
| |
Collapse
|
8
|
Allegra A, Caserta S, Mirabile G, Gangemi S. Aging and Age-Related Epigenetic Drift in the Pathogenesis of Leukemia and Lymphomas: New Therapeutic Targets. Cells 2023; 12:2392. [PMID: 37830606 PMCID: PMC10572300 DOI: 10.3390/cells12192392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
One of the traits of cancer cells is abnormal DNA methylation patterns. The idea that age-related epigenetic changes may partially explain the increased risk of cancer in the elderly is based on the observation that aging is also accompanied by comparable changes in epigenetic patterns. Lineage bias and decreased stem cell function are signs of hematopoietic stem cell compartment aging. Additionally, aging in the hematopoietic system and the stem cell niche have a role in hematopoietic stem cell phenotypes linked with age, such as leukemia and lymphoma. Understanding these changes will open up promising pathways for therapies against age-related disorders because epigenetic mechanisms are reversible. Additionally, the development of high-throughput epigenome mapping technologies will make it possible to identify the "epigenomic identity card" of every hematological disease as well as every patient, opening up the possibility of finding novel molecular biomarkers that can be used for diagnosis, prediction, and prognosis.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (G.M.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
9
|
Contreras Yametti GP, Evensen NA, Schloss JM, Aldebert C, Duan E, Zhang Y, Hu J, Chambers TM, Scheurer ME, Teachey DT, Rabin KR, Raetz EA, Aifantis I, Carroll WL, Witkowski MT. Flow cytometric assessment of leukemia-associated monocytes in childhood B-cell acute lymphoblastic leukemia outcome. Blood Adv 2023; 7:3928-3931. [PMID: 37196626 PMCID: PMC10405191 DOI: 10.1182/bloodadvances.2023010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Affiliation(s)
| | - Nikki A. Evensen
- Department of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Jennifer M. Schloss
- Department of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Clemence Aldebert
- Department of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Emily Duan
- Department of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Yan Zhang
- Division of Biostatistics, Department of Population Health, NYU Langone Health, New York, NY
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, NYU Langone Health, New York, NY
| | - Tiffany M. Chambers
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Michael E. Scheurer
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - David T. Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Karen R. Rabin
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Elizabeth A. Raetz
- Division of Pediatric Hematology Oncology, Department of Pediatrics, NYU Langone Health, New York, NY
| | | | - William L. Carroll
- Division of Pediatric Hematology Oncology, Department of Pediatrics, NYU Langone Health, New York, NY
- Department of Pediatrics and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Matthew T. Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
10
|
Duan Z, Ma L, Jin J, Ma L, Ye L, Wu J, Luo Y. The G allele of SNP rs3922 reduces the binding affinity between IGF2BP3 and CXCR5 correlating with a lower antibody production. Eur J Immunol 2023; 53:e2250261. [PMID: 37141498 DOI: 10.1002/eji.202250261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/23/2023] [Accepted: 05/03/2023] [Indexed: 05/06/2023]
Abstract
Effective vaccines that function through humoral immunity seek to produce high-affinity antibodies. Our previous research identified the single-nucleotide polymorphism rs3922G in the 3'UTR of CXCR5 as being associated with nonresponsiveness to the hepatitis B vaccine. The differential expression of CXCR5 between the dark zone (DZ) and light zone (LZ) is critical for organizing the functional structure of the germinal center (GC). In this study, we report that the RNA-binding protein IGF2BP3 can bind to CXCR5 mRNA containing the rs3922 variant to promote its degradation via the nonsense-mediated mRNA decay pathway. Deficiency of IGF2BP3 leads to increased CXCR5 expression, which results in the disappearance of CXCR5 differential expression between DZ and LZ, disorganized GCs, aberrant somatic hypermutations, and reduced production of high-affinity antibodies. Furthermore, the affinity of IGF2BP3 for the rs3922G-containing sequence is lower than that for the rs3922A counterpart, which may explain the nonresponsiveness to the hepatitis B vaccination. Together, our findings suggest that IGF2BP3 plays a crucial role in the production of high-affinity antibodies in the GC by binding to the rs3922-containing sequence to regulate CXCR5 expression.
Collapse
Affiliation(s)
- Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, P. R. China
| | - Longfei Ma
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, P. R. China
| | - Jing Jin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Lingyu Ma
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, P. R. China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, P. R.China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
- Institute of Medical Microbiology, Guangdong Provincial Key Laboratory of Virology, Jinan University, Guangzhou, P.R.China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
11
|
Duan J, Li Z, Liu E, Long H, Chen L, Yang S. BSHXF-medicated serum combined with ADSCs regulates the TGF-β1/Smad pathway to repair oxidatively damaged NPCs and its component analysis. JOURNAL OF ETHNOPHARMACOLOGY 2023:116692. [PMID: 37277086 DOI: 10.1016/j.jep.2023.116692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/14/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lower back pain (LBP) is a common and frequent clinical condition, and intervertebral disc degeneration (IDD) is recognized as the leading cause of LBP, typically manifested by increased nucleus pulposus cell (NPC) senescence and death. In recent years, the treatment of IDD with stem cell injections has had great potential compared to surgical treatment. Combining the two may achieve better results, as BuShenHuoXueFang (BSHXF) is an herbal formula that improves the survival rate of transplanted stem cells and enhances their efficacy. AIM OF THE STUDY We aimed to qualitatively and quantitatively analyze BSHXF-medicated serum and investigate the molecular mechanism of BSHXF-mediated serum in promoting the differentiation of adipose mesenchymal stem cells (ADSCs) into NPCs and delaying the senescence of NPCs by regulating the TGF-β1/Smad pathway. MATERIALS AND METHODS In this study, an ultrahigh-performance liquid chromatography-quadrupole-time-of-flight mass spectrometer (UPLC-Q-TOF-MS) was used to establish a method for the analysis of rat serum samples to track the active components in vivo; the oxidative damage model of NPCs was induced by T-BHP, and a Transwell chamber was used to construct a coculture system of ADSCs and NPCs. Flow cytometry was used to determine the cell cycle; SA-β-Gal staining was used to assess cell senescence; ELISA was used to detect IL-1β, IL-6 inflammatory factors, CXCL-1, CXCL-3, CXCL-10 chemokines, and TGF-β1 in the supernatants of ADSCs and NPCs. WB was used to detect COL2A1, COL1A1, and Aggrecan in ADSCs to assess the manifestation of NP differentiation in ADSCs, and the WB method was used to detect COL2A1, COL1A1, Aggrecan, p16, p21, p53, and p-p53 protein expression in NPCs to reflect the cellular senescence status and to detect TGF-β1, Smad2, Smad3, p- Smad2, and p- Smad3 protein expression in NPCs to reflect the pathway condition. RESULTS We finally identified 70 blood components and their metabolites, including 38 prototypes, from the BSHXF-medicated serum. Compared with that in the nonmedicated serum group, the TGF-β1/Smad pathway was activated in the medicated serum group, ADSCs moved toward NPC characteristics, the number of NPCs in the S/G2M phase increased, the number of senescent NPCs decreased, IL-1β and IL-6 inflammatory factors in the Transwell decreased, CXCL-1, CXCL-3, and CXCL-10 chemokines decreased, and the expression of p16, p21, p53 and p-p53 proteins in NPCs was inhibited. CONCLUSION By regulating the TGF-β1/Smad pathway, BSHXF-medicated serum promoted ADSCs to NPCs, effectively alleviated the cycle blockage of NPCs after oxidative damage, encouraged the growth and proliferation of NPCs, delayed the aging of NPCs, improved the deteriorating microenvironment around NPCs, and repaired oxidatively damaged NPCs. The combination of BSHXF or its compounds with ADSCs has great potential for the treatment of IDD in the future.
Collapse
Affiliation(s)
- Jiahao Duan
- Hunan University of TCM, Changsha, Hunan, 410208, China; The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Zhaoyong Li
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Enxu Liu
- Hunan University of TCM, Changsha, Hunan, 410208, China; The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Hongping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Long Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Shaofeng Yang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| |
Collapse
|
12
|
Wu M, Zhang S, Chi C, Zhu H, Ma H, Liu L, Shi Q, Li D, Ju X. 1,5-AG suppresses pro-inflammatory polarization of macrophages and promotes the survival of B-ALL in vitro by upregulating CXCL14. Mol Immunol 2023; 158:91-102. [PMID: 37178520 DOI: 10.1016/j.molimm.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
B-lineage acute lymphoblastic leukemia (B-ALL) is one of the most common malignancies in children. Despite advances in treatment, the role of the tumor microenvironment in B-ALL remains poorly understood. Among the key components of the immune microenvironment, macrophages play a critical role in the progression of the disease. However, recent research has suggested that abnormal metabolites may influence the function of macrophages, altering the immune microenvironment and promoting tumor growth. Our previous non-targeted metabolomic detection revealed that the metabolite 1,5-anhydroglucitol (1,5-AG) level in the peripheral blood of children newly diagnosed with B-ALL was significantly elevated. Except for its direct influence on leukemia cells, the effect of 1,5-AG on macrophages is still unclear. Herein, we demonstrated new potential therapeutic targets by focusing on the effect of 1,5-AG on macrophages. We used polarization-induced macrophages to determine how 1,5-AG acted on M1-like polarization and screened out the target gene CXCL14 via transcriptome sequencing. Furthermore, we constructed CXCL14 knocked-down macrophages and a macrophage-leukemia cell coculture model to validate the interaction between macrophages and leukemia cells. We discovered that 1,5-AG upregulated the CXCL14 expression, thereby inhibiting M1-like polarization. CXCL14 knockdown restored the M1-like polarization of macrophages and induced leukemia cells apoptosis in the coculture model. Our findings offer new possibilities for the genetic engineering of human macrophages to rehabilitate their immune activity against B-ALL in cancer immunotherapy.
Collapse
Affiliation(s)
- Min Wu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shule Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Cheng Chi
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Huasu Zhu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Huixian Ma
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Linghong Liu
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China; Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
13
|
Garcia-Gimenez A, Richardson SE. The role of microenvironment in the initiation and evolution of B-cell precursor acute lymphoblastic leukemia. Front Oncol 2023; 13:1150612. [PMID: 36959797 PMCID: PMC10029760 DOI: 10.3389/fonc.2023.1150612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignant disorder of immature B lineage immune progenitors and is the commonest cancer in children. Despite treatment advances it remains a leading cause of death in childhood and response rates in adults remain poor. A preleukemic state predisposing children to BCP-ALL frequently arises in utero, with an incidence far higher than that of transformed leukemia, offering the potential for early intervention to prevent disease. Understanding the natural history of this disease requires an appreciation of how cell-extrinsic pressures, including microenvironment, immune surveillance and chemotherapy direct cell-intrinsic genetic and epigenetic evolution. In this review, we outline how microenvironmental factors interact with BCP-ALL at different stages of tumorigenesis and highlight emerging therapeutic avenues.
Collapse
Affiliation(s)
- Alicia Garcia-Gimenez
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Simon E. Richardson
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Cambridge, United Kingdom
- *Correspondence: Simon E. Richardson,
| |
Collapse
|
14
|
Wu T, Yang W, Sun A, Wei Z, Lin Q. The Role of CXC Chemokines in Cancer Progression. Cancers (Basel) 2022; 15:cancers15010167. [PMID: 36612163 PMCID: PMC9818145 DOI: 10.3390/cancers15010167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
CXC chemokines are small chemotactic and secreted cytokines. Studies have shown that CXC chemokines are dysregulated in multiple types of cancer and are closely correlated with tumor progression. The CXC chemokine family has a dual function in tumor development, either tumor-promoting or tumor-suppressive depending on the context of cellular signaling. Recent evidence highlights the pro-tumorigenic properties of CXC chemokines in most human cancers. CXC chemokines were found to play pivotal roles in promoting angiogenesis, stimulating inflammatory responses, and facilitating tumor metastases. Enhanced expression of CXC chemokines is always signatured with inferior survival and prognosis. The levels of CXC chemokines in cancer patients are in dynamic change according to the tumor contexts (e.g., chemotherapy resistance and tumor recurrence after surgery). Thus, CXC chemokines have great potential to be used as diagnostic and prognostic biomarkers and therapeutic targets. Currently, the molecular mechanisms underlying the effect of CXC chemokines on tumor inflammation and metastasis remain unclear and application of antagonists and neutralizing antibodies of CXC chemokines signaling for cancer therapy is still not fully established. This article will review the roles of CXC chemokines in promoting tumorigenesis and progression and address the future research directions of CXC chemokines for cancer treatment.
Collapse
|
15
|
Changes in the Expression and Functional Activities of C-X-C Motif Chemokine Ligand 13 ( CXCL13) in Hyperplastic Prostate. Int J Mol Sci 2022; 24:ijms24010056. [PMID: 36613500 PMCID: PMC9820459 DOI: 10.3390/ijms24010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND C-X-C motif chemokine ligand 13 (CXCL13), a member of the CXC subtype in chemokine superfamily, affects numerous biological processes of various types of cells and the progress of a great number of clinical diseases. The purpose of the current study was to reveal the internal mechanism between CXCL13 and benign prostatic hyperplasia (BPH). METHODS Human serum, prostate tissues and human prostate cell lines (BPH-1, WPMY-1) were utilized. The effect of recombinant human CXCL13 (rHuCXCL13) protein and the influences of the knockdown/overexpression of CXCL13 on two cell lines were studied. Rescue experiments by anti-CXCR5 were also conducted. In vivo, rHuCXCL13 was injected into the ventral prostate of rats. Additionally, a tissue microarray of hyperplastic prostate tissues was constructed to analyze the correlations between CXCL13 and clinical parameters. RESULTS CXCL13 was highly expressed in the prostate tissues and upregulated in the BPH group. It was observed that CXCL13 modulated cell proliferation, apoptosis, and the epithelial-mesenchymal transition (EMT) through CXCR5 via AKT and the ERK1/2 pathway in BPH-1, while it contributed to inflammation and fibrosis through CXCR5 via the STAT3 pathway in WPMY-1. In vivo, rHuCXCL13 induced the development of rat BPH. Additionally, CXCL13 was positively correlated with the prostate volume and total prostate specific antigen. CONCLUSIONS Our novel data demonstrated that CXCL13 modulated cell proliferation, cell cycle, the EMT of epithelial cells, and induced the fibrosis of prostatic stromal cells via a variety of inflammatory factors, suggesting that CXCL13 might be rediscovered as a potential therapeutic target for the treatment of BPH.
Collapse
|
16
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
17
|
Chen Y, Luo L, Zheng Y, Zheng Q, Zhang N, Gan D, Yirga SK, Lin Z, Shi Q, Fu L, Hu J, Chen Y. Association of Platelet Desialylation and Circulating Follicular Helper T Cells in Patients With Thrombocytopenia. Front Immunol 2022; 13:810620. [PMID: 35450072 PMCID: PMC9016750 DOI: 10.3389/fimmu.2022.810620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Thrombocytopenia is a multifactorial condition that frequently involves concomitant defects in platelet production and clearance. The physiopathology of low platelet count in thrombocytopenia remains unclear. Sialylation on platelet membrane glycoprotein and follicular helper T cells (TFHs) are thought to be the novel platelet clearance pathways. The aim of this study was to clarify the roles of platelet desialylation and circulating TFHs in patients with immune thrombocytopenia (ITP) and non-ITP thrombocytopenia. We enrolled 190 patients with ITP and 94 patients with non-ITP related thrombocytopenia including case of aplastic anemia (AA) and myelodysplastic syndromes (MDS). One hundred and ten healthy volunteers were included as controls. We found significantly increased desialylated platelets in patients with ITP or thrombocytopenia in the context of AA and MDS. Platelet desialylation was negatively correlated with platelet count. Meanwhile, the circulating TFH levels in patients with thrombocytopenia were significantly higher than those of normal controls, and were positively correlated with desialylated platelet levels. Moreover, TFHs-related chemokine CXCL13 and apoptotic platelet levels were abnormally high in ITP patients. The upregulation of pro-apoptotic proteins and the activation of the MAPK/mTOR pathway were observed in the same cohort. These findings suggested that platelet desialylation and circulating TFHs may become the potential biomarkers for evaluating the disease process associated with thrombocytopenia in patients with ITP and non-ITP.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liping Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yongzhi Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiaoyun Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Na Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Donghui Gan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shimuye Kalayu Yirga
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenxing Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Yingyu Chen, ; Jianda Hu,
| | - Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Yingyu Chen, ; Jianda Hu,
| |
Collapse
|
18
|
Potential Role of CXCL13/CXCR5 Signaling in Immune Checkpoint Inhibitor Treatment in Cancer. Cancers (Basel) 2022; 14:cancers14020294. [PMID: 35053457 PMCID: PMC8774093 DOI: 10.3390/cancers14020294] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immunotherapy is currently the backbone of new drug treatments for many cancer patients. CXC chemokine ligand 13 (CXCL13) is an important factor involved in recruiting immune cells that express CXC chemokine receptor type 5 (CXCR5) in the tumor microenvironment and serves as a key molecular determinant of tertiary lymphoid structure (TLS) formation. An increasing number of studies have identified the influence of CXCL13 on prognosis in patients with cancer, regardless of the use of immunotherapy treatment. However, no comprehensive reviews of the role of CXCL13 in cancer immunotherapy have been published to date. This review aims to provide an overview of the CXCL13/CXCR5 signaling axis to summarize its mechanisms of action in cancer cells and lymphocytes, in addition to effects on immunity and cancer pathobiology, and its potential as a biomarker for the response to cancer immunotherapy. Abstract Immune checkpoint inhibitors (ICIs), including antibodies that target programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4), represent some of the most important breakthroughs in new drug development for oncology therapy from the past decade. CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type 5 (CXCR5), which plays a critical role in immune cell recruitment and activation and the regulation of the adaptive immune response. CXCL13 is a key molecular determinant of the formation of tertiary lymphoid structures (TLSs), which are organized aggregates of T, B, and dendritic cells that participate in the adaptive antitumor immune response. CXCL13 may also serve as a prognostic and predictive factor, and the role played by CXCL13 in some ICI-responsive tumor types has gained intense interest. This review discusses how CXCL13/CXCR5 signaling modulates cancer and immune cells to promote lymphocyte infiltration, activation by tumor antigens, and differentiation to increase the antitumor immune response. We also summarize recent preclinical and clinical evidence regarding the ICI-therapeutic implications of targeting the CXCL13/CXCR5 axis and discuss the potential role of this signaling pathway in cancer immunotherapy.
Collapse
|
19
|
Leukemia Stem Cells as a Potential Target to Achieve Therapy-Free Remission in Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13225822. [PMID: 34830976 PMCID: PMC8616035 DOI: 10.3390/cancers13225822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Leukemia stem cells (LSCs, also known as leukemia-initiating cells) not only drive leukemia initiation and progression, but also contribute to drug resistance and/or disease relapse. Therefore, eradication of every last LSC is critical for a patient's long-term cure. Chronic myeloid leukemia (CML) is a myeloproliferative disorder that arises from multipotent hematopoietic stem and progenitor cells. Tyrosine kinase inhibitors (TKIs) have dramatically improved long-term outcomes and quality of life for patients with CML in the chronic phase. Point mutations of the kinase domain of BCR-ABL1 lead to TKI resistance through a reduction in drug binding, and as a result, several new generations of TKIs have been introduced to the clinic. Some patients develop TKI resistance without known mutations, however, and the presence of LSCs is believed to be at least partially associated with resistance development and CML relapse. We previously proposed targeting quiescent LSCs as a therapeutic approach to CML, and a number of potential strategies for targeting insensitive LSCs have been presented over the last decade. The identification of specific markers distinguishing CML-LSCs from healthy HSCs, and the potential contributions of the bone marrow microenvironment to CML pathogenesis, have also been explored. Nonetheless, 25% of CML patients are still expected to switch TKIs at least once, and various TKI discontinuation studies have shown a wide range in the incidence of molecular relapse (from 30% to 60%). In this review, we revisit the current knowledge regarding the role(s) of LSCs in CML leukemogenesis and response to pharmacological treatment and explore how durable treatment-free remission may be achieved and maintained after discontinuing TKI treatment.
Collapse
|
20
|
A young microenvironment promotes B-ALL in mice. Blood 2021; 138:1789-1790. [PMID: 34762133 DOI: 10.1182/blood.2021013699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 11/20/2022] Open
|