1
|
Wang Y, Casarin S, Daher M, Mohanty V, Dede M, Shanley M, Başar R, Rezvani K, Chen K. Agent-based modeling of cellular dynamics in adoptive cell therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638701. [PMID: 40027823 PMCID: PMC11870559 DOI: 10.1101/2025.02.17.638701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Adoptive cell therapies (ACT) leverage tumor-immune interactions to cure cancer. Despite promising phase I/II clinical trials of chimeric-antigen-receptor natural killer (CAR-NK) cell therapies, molecular mechanisms and cellular properties required to achieve clinical benefits in broad cancer spectra remain underexplored. While in vitro and in vivo experiments are required in this endeavor, they are typically expensive, laborious, and limited to targeted investigations. Here, we present ABMACT (Agent-Based Model for Adoptive Cell Therapy), an in silico approach employing agent-based models (ABM) to simulate the continuous course and dynamics of an evolving tumor-immune ecosystem, consisting of heterogeneous "virtual cells" created based on knowledge and omics data observed in experiments and patients. Applying ABMACT in multiple therapeutic context indicates that to achieve optimal ACT efficacy, it is key to enhance immune cellular proliferation, cytotoxicity, and serial killing capacity. With ABMACT, in silico trials can be performed systematically to inform ACT product development and predict optimal treatment strategies.
Collapse
|
2
|
Wang Y, Myers G, Yu L, Deng K, Balbin-Cuesta G, Singh SA, Guan Y, Khoriaty R, Engel JD. TR4 and BCL11A repress γ-globin transcription via independent mechanisms. Blood 2024; 144:2762-2772. [PMID: 39393056 PMCID: PMC11862819 DOI: 10.1182/blood.2024024599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 10/13/2024] Open
Abstract
ABSTRACT Nuclear receptor TR4 (NR2C2) was previously shown to bind to the -117 position of the γ-globin gene promoters in vitro, which overlaps the more recently described BCL11 transcription factor A (BCL11A) binding site. The role of TR4 in human γ-globin gene repression has not been extensively characterized in vivo, whereas any relationship between TR4 and BCL11A regulation through the γ-globin promoters is unclear at present. We show here that TR4 and BCL11A competitively bind in vitro to distinct, overlapping sequences, including positions overlapping -117 of the γ-globin promoter. We found that TR4 represses γ-globin transcription and fetal hemoglobin accumulation in vivo in a BCL11A-independent manner. Finally, examination of the chromatin occupancy of TR4 within the β-globin locus, compared with BCL11A, shows that both bind avidly to the locus control region and other sites, but only BCL11A binds to the γ-globin promoters at statistically significant frequency. These data resolve an important discrepancy in the literature and, thus, clarify possible approaches to the treatment of sickle cell disease and β-thalassaemia.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Kaiwen Deng
- Department of Computational and Medical Bioinformatics, University of Michigan Medical School, Ann Arbor, MI
| | - Ginette Balbin-Cuesta
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Sharon A. Singh
- Division of Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI
| | - Yuanfang Guan
- Department of Computational and Medical Bioinformatics, University of Michigan Medical School, Ann Arbor, MI
| | - Rami Khoriaty
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
3
|
Waterbury AL, Kwok HS, Lee C, Narducci DN, Freedy AM, Su C, Raval S, Reiter AH, Hawkins W, Lee K, Li J, Hoenig SM, Vinyard ME, Cole PA, Hansen AS, Carr SA, Papanastasiou M, Liau BB. An autoinhibitory switch of the LSD1 disordered region controls enhancer silencing. Mol Cell 2024; 84:2238-2254.e11. [PMID: 38870936 PMCID: PMC11193646 DOI: 10.1016/j.molcel.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Transcriptional coregulators and transcription factors (TFs) contain intrinsically disordered regions (IDRs) that are critical for their association and function in gene regulation. More recently, IDRs have been shown to promote multivalent protein-protein interactions between coregulators and TFs to drive their association into condensates. By contrast, here we demonstrate how the IDR of the corepressor LSD1 excludes TF association, acting as a dynamic conformational switch that tunes repression of active cis-regulatory elements. Hydrogen-deuterium exchange shows that the LSD1 IDR interconverts between transient open and closed conformational states, the latter of which inhibits partitioning of the protein's structured domains with TF condensates. This autoinhibitory switch controls leukemic differentiation by modulating repression of active cis-regulatory elements bound by LSD1 and master hematopoietic TFs. Together, these studies unveil alternative mechanisms by which disordered regions and their dynamic crosstalk with structured regions can shape coregulator-TF interactions to control cis-regulatory landscapes and cell fate.
Collapse
Affiliation(s)
- Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hui Si Kwok
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ceejay Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Domenic N Narducci
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Allyson M Freedy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Cindy Su
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Shaunak Raval
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew H Reiter
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - William Hawkins
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiaming Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samuel M Hoenig
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anders S Hansen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Steven A Carr
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Tur S, Palii CG, Brand M. Cell fate decision in erythropoiesis: Insights from multiomics studies. Exp Hematol 2024; 131:104167. [PMID: 38262486 PMCID: PMC10939800 DOI: 10.1016/j.exphem.2024.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Every second, the body produces 2 million red blood cells through a process called erythropoiesis. Erythropoiesis is hierarchical in that it results from a series of cell fate decisions whereby hematopoietic stem cells progress toward the erythroid lineage. Single-cell transcriptomic and proteomic approaches have revolutionized the way we understand erythropoiesis, revealing it to be a gradual process that underlies a progressive restriction of fate potential driven by quantitative changes in lineage-specifying transcription factors. Despite these major advances, we still know very little about what cell fate decision entails at the molecular level. Novel approaches that simultaneously measure additional properties in single cells, including chromatin accessibility, transcription factor binding, and/or cell surface proteins are being developed at a fast pace, providing the means to exciting new advances in the near future. In this review, we briefly summarize the main findings obtained from single-cell studies of erythropoiesis, highlight outstanding questions, and suggest recent technological advances to address them.
Collapse
Affiliation(s)
- Steven Tur
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Carbone Cancer Center, Madison, WI; Cellular and Molecular Biology Graduate Program, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Carmen G Palii
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Carbone Cancer Center, Madison, WI
| | - Marjorie Brand
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Carbone Cancer Center, Madison, WI.
| |
Collapse
|
5
|
Xue L, Mukherjee K, Kelley KA, Bieker JJ. Generation, characterization, and use of EKLF(Klf1)/CRE knock-in mice for cell-restricted analyses. FRONTIERS IN HEMATOLOGY 2024; 2:1292589. [PMID: 39280931 PMCID: PMC11393758 DOI: 10.3389/frhem.2023.1292589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Introduction EKLF/Klf1 is a tissue-restricted transcription factor that plays a critical role in all aspects of erythropoiesis. Of particular note is its tissue-restricted pattern of expression, a property that could prove useful for expression control of a linked marker or enzymatic gene. Methods and results With this in mind, we fused the CRE recombinase to the genomic EKLF coding region and established mouse lines. We find by FACS analyses that CRE expression driven by the EKLF transcription unit recapitulates erythroid-restricted expression with high penetrance in developing embryos. We then used this line to test its properties in the adult, where we found EKLF/CRE is an active and is a robust mimic of normal EKLF expression in the adult bone marrow. EKLF/CRE is also expressed in erythroblastic island macrophage in the fetal liver, and we demonstrate for the first time that, as seen during embryonic development, EKLF is also expressed in adult BM-derived erythroblastic island macrophage. Our data also support lineage studies showing EKLF expression at early stages of hematopoiesis. Discussion The EKLF/CRE mouse lines are novel reagents whose availability will be of great utility for future experiments by investigators in the red cell field.
Collapse
Affiliation(s)
- Li Xue
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Kevin A Kelley
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|
6
|
Ibanez V, Vaitkus K, Ruiz MA, Lei Z, Maienschein-Cline M, Arbieva Z, Lavelle D. Effect of the LSD1 inhibitor RN-1 on γ-globin and global gene expression during erythroid differentiation in baboons (Papio anubis). PLoS One 2023; 18:e0289860. [PMID: 38134183 PMCID: PMC10745162 DOI: 10.1371/journal.pone.0289860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Elevated levels of Fetal Hemoglobin interfere with polymerization of sickle hemoglobin thereby reducing anemia, lessening the severity of symptoms, and increasing life span of patients with sickle cell disease. An affordable, small molecule drug that stimulates HbF expression in vivo would be ideally suited to treat the large numbers of SCD patients that exist worldwide. Our previous work showed that administration of the LSD1 (KDM1A) inhibitor RN-1 to normal baboons increased Fetal Hemoglobin (HbF) and was tolerated over a prolonged treatment period. HbF elevations were associated with changes in epigenetic modifications that included increased levels of H3K4 di-and tri-methyl lysine at the γ-globin promoter. While dramatic effects of the loss of LSD1 on hematopoietic differentiation have been observed in murine LSD1 gene deletion and silencing models, the effect of pharmacological inhibition of LSD1 in vivo on hematopoietic differentiation is unknown. The goal of these experiments was to investigate the in vivo mechanism of action of the LSD1 inhibitor RN-1 by determining its effect on γ-globin expression in highly purified subpopulations of bone marrow erythroid cells enriched for varying stages of erythroid differentiation isolated directly from baboons treated with RN-1 and also by investigating the effect of RN1 on the global transcriptome in a highly purified population of proerythroblasts. Our results show that RN-1 administered to baboons targets an early event during erythroid differentiation responsible for γ-globin repression and increases the expression of a limited number of genes including genes involved in erythroid differentiation such as GATA2, GFi-1B, and LYN.
Collapse
Affiliation(s)
- Vinzon Ibanez
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Kestis Vaitkus
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Maria Armila Ruiz
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Zhengdeng Lei
- Research Informatics Core, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Ambry Genetics, Aliso Viejo, California, United States of America
| | - Mark Maienschein-Cline
- Research Informatics Core, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zarema Arbieva
- Genomics Research Core, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Donald Lavelle
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
7
|
Xiong D, Zhang L, Sun ZJ. Targeting the epigenome to reinvigorate T cells for cancer immunotherapy. Mil Med Res 2023; 10:59. [PMID: 38044445 PMCID: PMC10694991 DOI: 10.1186/s40779-023-00496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICIs) has revolutionized the field of cancer treatment; however, ICI efficacy is constrained by progressive dysfunction of CD8+ tumor-infiltrating lymphocytes (TILs), which is termed T cell exhaustion. This process is driven by diverse extrinsic factors across heterogeneous tumor immune microenvironment (TIME). Simultaneously, tumorigenesis entails robust reshaping of the epigenetic landscape, potentially instigating T cell exhaustion. In this review, we summarize the epigenetic mechanisms governing tumor microenvironmental cues leading to T cell exhaustion, and discuss therapeutic potential of targeting epigenetic regulators for immunotherapies. Finally, we outline conceptual and technical advances in developing potential treatment paradigms involving immunostimulatory agents and epigenetic therapies.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Lu Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
8
|
Myers G, Wang Y, Wang Q, Friedman A, Sanchez-Martinez A, Liu X, Sharon SA, Lim KC, Khoriaty R, Engel JD, Yu L. Murine erythroid differentiation kinetics in vivo under normal and anemic stress conditions. Blood Adv 2023; 7:5727-5732. [PMID: 37552129 PMCID: PMC10539864 DOI: 10.1182/bloodadvances.2023010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
Our current understanding of the kinetics and dynamics of erythroid differentiation is based almost entirely on the ex vivo expansion of cultured hematopoietic progenitor cells. In this study, we used an erythroid-specific, inducible transgenic mouse line to investigate for the first time, the in vivo erythroid differentiation kinetics under steady-state conditions. We demonstrated that bipotent premegakaroycyte/erythroid (PreMegE) progenitor cells differentiate into erythroid-committed proerythroblast/basophilic erythroblasts (ProBasoE) after 6.6 days under steady-state conditions. During this process, each differentiation phase (from PreMegE to precolony forming unit-erythroid [PreCFU-E], PreCFU-E to CFU-E, and CFU-E to ProBasoE) took ∼2 days in vivo. Upon challenge with 5-flurouracil (5-FU), which leads to the induction of stress erythropoiesis, erythroid maturation time was reduced from 6.6 to 4.7 days. Furthermore, anemia induced in 5-FU-treated mice was shown to be due not only to depleted bone marrow erythroid progenitor stores but also to a block in reticulocyte exit from the bone marrow into the circulation, which differed from the mechanism induced by acute blood loss.
Collapse
Affiliation(s)
- Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Yu Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Qing Wang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Ann Friedman
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | | | - Xiaofang Liu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Singh A. Sharon
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Rami Khoriaty
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
9
|
Lara-Astiaso D, Goñi-Salaverri A, Mendieta-Esteban J, Narayan N, Del Valle C, Gross T, Giotopoulos G, Beinortas T, Navarro-Alonso M, Aguado-Alvaro LP, Zazpe J, Marchese F, Torrea N, Calvo IA, Lopez CK, Alignani D, Lopez A, Saez B, Taylor-King JP, Prosper F, Fortelny N, Huntly BJP. In vivo screening characterizes chromatin factor functions during normal and malignant hematopoiesis. Nat Genet 2023; 55:1542-1554. [PMID: 37580596 PMCID: PMC10484791 DOI: 10.1038/s41588-023-01471-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/11/2023] [Indexed: 08/16/2023]
Abstract
Cellular differentiation requires extensive alterations in chromatin structure and function, which is elicited by the coordinated action of chromatin and transcription factors. By contrast with transcription factors, the roles of chromatin factors in differentiation have not been systematically characterized. Here, we combine bulk ex vivo and single-cell in vivo CRISPR screens to characterize the role of chromatin factor families in hematopoiesis. We uncover marked lineage specificities for 142 chromatin factors, revealing functional diversity among related chromatin factors (i.e. barrier-to-autointegration factor subcomplexes) as well as shared roles for unrelated repressive complexes that restrain excessive myeloid differentiation. Using epigenetic profiling, we identify functional interactions between lineage-determining transcription factors and several chromatin factors that explain their lineage dependencies. Studying chromatin factor functions in leukemia, we show that leukemia cells engage homeostatic chromatin factor functions to block differentiation, generating specific chromatin factor-transcription factor interactions that might be therapeutically targeted. Together, our work elucidates the lineage-determining properties of chromatin factors across normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- David Lara-Astiaso
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| | | | | | - Nisha Narayan
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Cynthia Del Valle
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - George Giotopoulos
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Tumas Beinortas
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Mar Navarro-Alonso
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - Jon Zazpe
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Francesco Marchese
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Natalia Torrea
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Isabel A Calvo
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Cecile K Lopez
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Diego Alignani
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Aitziber Lopez
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Borja Saez
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - Felipe Prosper
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Nikolaus Fortelny
- Department of Biosciences & Medical Biology, University of Salzburg, Salzburg, Austria.
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
10
|
Ibanez V, Vaitkus K, Zhang X, Ramasamy J, Rivers AE, Saunthararajah Y, Molokie R, Lavelle D. Combinatorial targeting of epigenome-modifying enzymes with decitabine and RN-1 synergistically increases HbF. Blood Adv 2023; 7:3891-3902. [PMID: 36884303 PMCID: PMC10405201 DOI: 10.1182/bloodadvances.2022009558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Increased fetal hemoglobin (HbF) levels reduce the symptoms of sickle cell disease (SCD) and increase the lifespan of patients. Because curative strategies for bone marrow transplantation and gene therapy technologies remain unavailable to a large number of patients, the development of a safe and effective pharmacological therapy that increases HbF offers the greatest potential for disease intervention. Although hydroxyurea increases HbF, a substantial proportion of patients fail to demonstrate an adequate response. Pharmacological inhibitors of DNA methyltransferase (DNMT1) and lysine-specific demethylase 1A (LSD1), 2 epigenome-modifying enzymes associated with the multiprotein corepressor complex recruited to the repressed γ-globin gene, are powerful in vivo inducers of HbF. The hematological side effects of these inhibitors limit feasible clinical exposures. We evaluated whether administering these drugs in combination could reduce the dose and/or time of exposure to any single agent to minimize adverse effects, while achieving additive or synergistic increases in HbF. The DNMT1 inhibitor decitabine (0.5 mg/kg per day) and the LSD1 inhibitor RN-1 (0.25 mg/kg per day) administered in combination 2 days per week produced synergistic increases in F-cells, F-reticulocytes, and γ-globin messenger RNA in healthy baboons. Large increases in HbF and F-cells were observed in healthy, nonanemic, and anemic (phlebotomized) baboons. Combinatorial therapy targeting epigenome-modifying enzymes could thus be a useful strategy for producing larger increases in HbF to modify the clinical course of SCD.
Collapse
Affiliation(s)
- Vinzon Ibanez
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
| | - Kestis Vaitkus
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
| | - Xu Zhang
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jagadeesh Ramasamy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL
| | - Angela E. Rivers
- Department of Pediatrics, School of Medicine, University of California at San Francisco Benioff Children’s Hospital Oakland, Oakland, CA
| | - Yogen Saunthararajah
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Robert Molokie
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
- Department of Pharmaceutical Science, University of Illinois at Chicago, Chicago, IL
| | - Donald Lavelle
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
11
|
Fevereiro-Martins M, Santos AC, Marques-Neves C, Guimarães H, Bicho M, On Behalf Of The GenE-Rop Study Group. Genetic Modulation of the Erythrocyte Phenotype Associated with Retinopathy of Prematurity-A Multicenter Portuguese Cohort Study. Int J Mol Sci 2023; 24:11817. [PMID: 37511576 PMCID: PMC10380881 DOI: 10.3390/ijms241411817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The development of retinopathy of prematurity (ROP) may be influenced by anemia or a low fetal/adult hemoglobin ratio. We aimed to analyze the association between DNA methyltransferase 3 β (DNMT3B) (rs2424913), methylenetetrahydrofolate reductase (MTHFR) (rs1801133), and lysine-specific histone demethylase 1A (KDM1A) (rs7548692) polymorphisms, erythrocyte parameters during the first week of life, and ROP. In total, 396 infants (gestational age < 32 weeks or birth weight < 1500 g) were evaluated clinically and hematologically. Genotyping was performed using a MicroChip DNA on a platform employing iPlex MassARRAY®. Multivariate regression was performed after determining risk factors for ROP using univariate regression. In the group of infants who developed ROP red blood cell distribution width (RDW), erythroblasts, and mean corpuscular volume (MCV) were higher, while mean hemoglobin and mean corpuscular hemoglobin concentration (MCHC) were lower; higher RDW was associated with KDM1A (AA), MTHFR (CC and CC + TT), KDM1A (AA) + MTHFR (CC), and KDM1A (AA) + DNMT3B (allele C); KDM1A (AA) + MTHFR (CC) were associated with higher RDW, erythroblasts, MCV, and mean corpuscular hemoglobin (MCH); higher MCV and MCH were also associated with KDM1A (AA) + MTHFR (CC) + DNMT3B (allele C). We concluded that the polymorphisms studied may influence susceptibility to ROP by modulating erythropoiesis and gene expression of the fetal/adult hemoglobin ratio.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Institute for Scientific Research Bento Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisboa, Portugal
- Department of Ophthalmology, Cuf Descobertas Hospital, Rua Mário Botas, 1998-018 Lisboa, Portugal
| | - Ana Carolina Santos
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Carlos Marques-Neves
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Center for the Study of Vision Sciences, Ophthalmology Clinic, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisboa, Portugal
| | - Hercília Guimarães
- Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel Bicho
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Institute for Scientific Research Bento Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisboa, Portugal
| | | |
Collapse
|
12
|
Salma M, Andrieu-Soler C, Deleuze V, Soler E. High-throughput methods for the analysis of transcription factors and chromatin modifications: Low input, single cell and spatial genomic technologies. Blood Cells Mol Dis 2023; 101:102745. [PMID: 37121019 DOI: 10.1016/j.bcmd.2023.102745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Genome-wide analysis of transcription factors and epigenomic features is instrumental to shed light on DNA-templated regulatory processes such as transcription, cellular differentiation or to monitor cellular responses to environmental cues. Two decades of technological developments have led to a rich set of approaches progressively pushing the limits of epigenetic profiling towards single cells. More recently, disruptive technologies using innovative biochemistry came into play. Assays such as CUT&RUN, CUT&Tag and variations thereof show considerable potential to survey multiple TFs or histone modifications in parallel from a single experiment and in native conditions. These are in the path to become the dominant assays for genome-wide analysis of TFs and chromatin modifications in bulk, single-cell, and spatial genomic applications. The principles together with pros and cons are discussed.
Collapse
Affiliation(s)
- Mohammad Salma
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Charlotte Andrieu-Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Virginie Deleuze
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France
| | - Eric Soler
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Université de Paris, Laboratory of Excellence GR-Ex, France.
| |
Collapse
|
13
|
Replogle JM, Saunders RA, Pogson AN, Hussmann JA, Lenail A, Guna A, Mascibroda L, Wagner EJ, Adelman K, Lithwick-Yanai G, Iremadze N, Oberstrass F, Lipson D, Bonnar JL, Jost M, Norman TM, Weissman JS. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 2022; 185:2559-2575.e28. [PMID: 35688146 PMCID: PMC9380471 DOI: 10.1016/j.cell.2022.05.013] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells. We use transcriptional phenotypes to predict the function of poorly characterized genes, uncovering new regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription (C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena-from RNA processing to differentiation. We leverage this ability to systematically identify genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map reveals a multidimensional portrait of gene and cellular function.
Collapse
Affiliation(s)
- Joseph M Replogle
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Reuben A Saunders
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Angela N Pogson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alexander Lenail
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lauren Mascibroda
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Eric J Wagner
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Department of Biochemistry & Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | - Jessica L Bonnar
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Marco Jost
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas M Norman
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
14
|
Identification of novel γ-globin inducers among all potential erythroid druggable targets. Blood Adv 2022; 6:3280-3285. [PMID: 35240686 PMCID: PMC9198928 DOI: 10.1182/bloodadvances.2021006802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 01/28/2023] Open
Abstract
Human γ-globin is predominantly expressed in fetal liver erythroid cells during gestation from 2 nearly identical genes, HBG1 and HBG2, that are both perinatally silenced. Reactivation of these fetal genes in adult red blood cells can ameliorate many symptoms associated with the inherited β-globinopathies, sickle cell disease, and Cooley anemia. Although promising genetic strategies to reactivate the γ-globin genes to treat these diseases have been explored, there are significant barriers to their effective implementation worldwide; alternatively, pharmacological induction of γ-globin synthesis could readily reach the majority of affected individuals. In this study, we generated a CRISPR knockout library that targeted all erythroid genes for which prospective or actual therapeutic compounds already exist. By probing this library for genes that repress fetal hemoglobin (HbF), we identified several novel, potentially druggable, γ-globin repressors, including VHL and PTEN. We demonstrate that deletion of VHL induces HbF through activation of the HIF1α pathway and that deletion of PTEN induces HbF through AKT pathway stimulation. Finally, we show that small-molecule inhibitors of PTEN and EZH induce HbF in both healthy and β-thalassemic human primary erythroid cells.
Collapse
|
15
|
Andrieu-Soler C, Soler E. Erythroid Cell Research: 3D Chromatin, Transcription Factors and Beyond. Int J Mol Sci 2022; 23:6149. [PMID: 35682828 PMCID: PMC9181152 DOI: 10.3390/ijms23116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Studies of the regulatory networks and signals controlling erythropoiesis have brought important insights in several research fields of biology and have been a rich source of discoveries with far-reaching implications beyond erythroid cells biology. The aim of this review is to highlight key recent discoveries and show how studies of erythroid cells bring forward novel concepts and refine current models related to genome and 3D chromatin organization, signaling and disease, with broad interest in life sciences.
Collapse
Affiliation(s)
| | - Eric Soler
- IGMM, Université Montpellier, CNRS, 34093 Montpellier, France;
- Laboratory of Excellence GR-Ex, Université de Paris, 75015 Paris, France
| |
Collapse
|
16
|
Wells M, Steiner L. Epigenetic and Transcriptional Control of Erythropoiesis. Front Genet 2022; 13:805265. [PMID: 35330735 PMCID: PMC8940284 DOI: 10.3389/fgene.2022.805265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Erythropoiesis is a process of enormous magnitude, with the average person generating two to three million red cells every second. Erythroid progenitors start as large cells with large nuclei, and over the course of three to four cell divisions they undergo a dramatic decrease in cell size accompanied by profound nuclear condensation, which culminates in enucleation. As maturing erythroblasts are undergoing these dramatic phenotypic changes, they accumulate hemoglobin and express high levels of other erythroid-specific genes, while silencing much of the non-erythroid transcriptome. These phenotypic and gene expression changes are associated with distinct changes in the chromatin landscape, and require close coordination between transcription factors and epigenetic regulators, as well as precise regulation of RNA polymerase II activity. Disruption of these processes are associated with inherited anemias and myelodysplastic syndromes. Here, we review the epigenetic mechanisms that govern terminal erythroid maturation, and their role in human disease.
Collapse
Affiliation(s)
- Maeve Wells
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Laurie Steiner
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| |
Collapse
|
17
|
Brand M. Epigenetic plasticity of erythroid progenitors. Blood 2021; 138:1646-1648. [PMID: 34735002 PMCID: PMC8569413 DOI: 10.1182/blood.2021013087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
|