1
|
Terglane J, Mertes N, Weischer S, Zobel T, Johnsson K, Gerke V. Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies. PLoS One 2025; 20:e0316854. [PMID: 39869616 PMCID: PMC11771901 DOI: 10.1371/journal.pone.0316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER. ER, Golgi and WPB themselves provide a unique milieu for the maturation of VWF, which at the level of the Golgi consists of a low pH and elevated Ca2+ concentrations. WPB are also characterized by low luminal pH, but their Ca2+ content has not been addressed so far. Here, we employed a chemigenetic approach to circumvent the problems of Ca2+ imaging in an acidic environment and show that WPB indeed also harbor elevated Ca2+ concentrations. We also show that depletion of the Golgi resident Ca2+ pump ATP2C1 resulted in only a minor decrease of luminal Ca2+ in WPB suggesting additional mechanisms for Ca2+ uptake into the organelle.
Collapse
Affiliation(s)
- Julian Terglane
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Nicole Mertes
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Sarah Weischer
- Münster Imaging Network, Cells in Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Thomas Zobel
- Münster Imaging Network, Cells in Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| |
Collapse
|
2
|
Laan SNJ, Lenderink BG, Eikenboom JCJ, Bierings R. Endothelial colony-forming cells in the spotlight: insights into the pathophysiology of von Willebrand disease and rare bleeding disorders. J Thromb Haemost 2024; 22:3355-3365. [PMID: 39243860 DOI: 10.1016/j.jtha.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Endothelial cells deliver a vital contribution to the maintenance of hemostasis by constituting an anatomical as well as functional barrier between the blood and the rest of the body. Apart from the physical barrier function, endothelial cells maintain the hemostatic equilibrium by their pro- and anticoagulant functions. An important part of their procoagulant contribution is the production of von Willebrand factor (VWF), which is a carrier protein for coagulation factor VIII and facilitates the formation of a platelet plug. Thus, VWF is indispensable for both primary and secondary hemostasis, which is exemplified by the bleeding disorder von Willebrand disease that results from qualitative or quantitative deficiencies in VWF. A cellular model that was found to accurately reflect the endothelium and its secretory organelles are endothelial colony-forming cells, which can be readily isolated from peripheral blood and constitute a robust ex vivo model to investigate the donor's endothelial cell function. This review summarizes some of the valuable insights on biology of VWF and pathogenic mechanisms of von Willebrand disease that have been made possible using studies with endothelial colony-forming cells derived from patients with bleeding disorders.
Collapse
Affiliation(s)
- Sebastiaan N J Laan
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands; Department of Hematology, Erasmus University Medical Centre, Rotterdam, the Netherlands. https://twitter.com/laan_bas
| | - Britte G Lenderink
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jeroen C J Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands
| | - Ruben Bierings
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Krahforst A, Yadegari H, Pavlova A, Pezeshkpoor B, Müller J, Pötzsch B, Scholz U, Richter H, Trobisch H, Liebscher K, Olivieri M, Trautmann-Grill K, Knöfler R, Halimeh S, Oldenburg J. Unravelling the spectrum of von Willebrand factor variants in quantitative von Willebrand disease: results from a German cohort study. J Thromb Haemost 2024; 22:3010-3034. [PMID: 39002731 DOI: 10.1016/j.jtha.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Von Willebrand disease (VWD), the most prevalent hereditary bleeding disorder, results from deficiency of von Willebrand factor (VWF). OBJECTIVES This large cohort study aims to offer a comprehensive exploration of mutation spectra and laboratory features in quantitative VWF deficiencies, shedding light on genetic underpinnings and genotype-phenotype associations. METHODS Our cohort consisted of 221 Caucasian index patients with quantitative VWD, along with 47 individuals whose plasma VWF levels fell within the lower normal boundaries (50-70 IU/dL). We conducted comprehensive VWF assays and genetic analyses, encompassing VWF gene sequencing, copy number variation investigations, and bioinformatic assessments. RESULTS Following International Society on Thrombosis and Haemostasis-Scientific and Standardization Committee VWF guidelines, 77 index patients were characterized as having type 1 VWD (VWF antigen [VWF:Ag] < 30 IU/dL), 111 as having type 1 VWD (VWF:Ag, 30-50 IU/dL), and 33 as having type 3 VWD. Mutation detection rates were 88%, 65%, and 92%, respectively. Notably, blood group O overrepresentation was evident in type 1 with VWF:Ag of 30 to 50 IU/dL, particularly among mutation-negative patients, suggesting a potential causal role of blood group O. A total of 223 VWF variants, comprising 147 distinct variations, were identified in quantitative VWD patients, of which 57 were novel variants (39%). Additionally, approximately 70% of individuals with VWF levels within the lower normal boundaries (50-70 IU/dL) displayed VWF variants. CONCLUSION Our data advance our understanding of the molecular mechanisms underlying quantitative VWD, offering valuable insights for future research and clinical management. Distinct mutation patterns were observed among subgroups, particularly the contrast between type 1 VWD (VWF:Ag < 30 IU/dL) and type 1 VWD (VWF:Ag, 30-50 IU/dL), an area with limited prior investigation.
Collapse
Affiliation(s)
- Alexander Krahforst
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Hamideh Yadegari
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany.
| | - Anna Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Behnaz Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Jens Müller
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Bernd Pötzsch
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Ute Scholz
- Center of Hemostasis, Medizinisches Versorgungszentrum Labor Leipzig, Leipzig, Germany
| | | | - Heiner Trobisch
- Laboratory and Ambulance for Coagulation Disorders, Duisburg, Germany
| | - Karin Liebscher
- Institute of Transfusion Medicine and Clinical Hemostaseology, Klinikum St. Georg GmbH, Leipzig, Germany
| | - Martin Olivieri
- Pediatric Thrombosis and Hemostasis Unit, Dr Von Hauner Children's Hospital, LMU Klinikum, Munich, Germany
| | | | - Ralf Knöfler
- Department of Pediatric Hemostaseology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Children's Hospital, Dresden, Sachsen, Germany
| | | | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Lu CY, Wu JZ, Yao HHY, Liu RJY, Li L, Pluthero FG, Freeman SA, Kahr WHA. Acidification of α-granules in megakaryocytes by vacuolar-type adenosine triphosphatase is essential for organelle biogenesis. J Thromb Haemost 2024; 22:2294-2305. [PMID: 38718926 DOI: 10.1016/j.jtha.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Platelets coordinate blood coagulation at sites of vascular injury and play fundamental roles in a wide variety of (patho)physiological processes. Key to many platelet functions is the transport and secretion of proteins packaged within α-granules, organelles produced by platelet precursor megakaryocytes. Prominent among α-granule cargo are fibrinogen endocytosed from plasma and endogenously synthesized von Willebrand factor. These and other proteins are known to require acidic pH for stable packaging. Luminal acidity has been confirmed for mature α-granules isolated from platelets, but direct measurement of megakaryocyte granule acidity has not been reported. OBJECTIVES To determine the luminal pH of α-granules and their precursors in megakaryocytes and assess the requirement of vacuolar-type adenosine triphosphatase (V-ATPase) activity to establish and maintain the luminal acidity and integrity of these organelles. METHODS Cresyl violet staining was used to detect acidic granules in megakaryocytes. Endocytosis of fibrinogen tagged with the pH-sensitive fluorescent dye fluorescein isothiocyanate was used to load a subset of these organelles. Ratiometric fluorescence analysis was used to determine their luminal pH. RESULTS We show that most of the acidic granules detected in megakaryocytes appear to be α-granules/precursors, for which we established a median luminal pH of 5.2 (IQR, 5.0-5.5). Inhibition of megakaryocyte V-ATPase activity led to enlargement of cargo-containing compartments detected by fluorescence microscopy and electron microscopy. CONCLUSION These observations reveal that V-ATPase activity is required to establish and maintain a luminal acidic pH in megakaryocyte α-granules/precursors, confirming its importance for stable packaging of cargo proteins such as von Willebrand factor.
Collapse
Affiliation(s)
- Chien-Yi Lu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jing Ze Wu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Helen H Y Yao
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Y Liu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Hordijk S, Carter T, Bierings R. A new look at an old body: molecular determinants of Weibel-Palade body composition and von Willebrand factor exocytosis. J Thromb Haemost 2024; 22:1290-1303. [PMID: 38307391 DOI: 10.1016/j.jtha.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Endothelial cells, forming a monolayer along blood vessels, intricately regulate vascular hemostasis, inflammatory responses, and angiogenesis. A key determinant of these functions is the controlled secretion of Weibel-Palade bodies (WPBs), which are specialized endothelial storage organelles housing a presynthesized pool of the hemostatic protein von Willebrand factor and various other hemostatic, inflammatory, angiogenic, and vasoactive mediators. This review delves into recent mechanistic insights into WPB biology, including the biogenesis that results in their unique morphology, the acquisition of intraluminal vesicles and other cargo, and the contribution of proton pumps to organelle acidification. Additionally, in light of a number of proteomic approaches to unravel the regulatory networks that control WPB formation and secretion, we provide a comprehensive overview of the WPB exocytotic machinery, including their molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Sophie Hordijk
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. https://twitter.com/SophieHordijk
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Ruben Bierings
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Ferreira G, Taylor A, Mensah SA. Deciphering the triad of endothelial glycocalyx, von Willebrand Factor, and P-selectin in inflammation-induced coagulation. Front Cell Dev Biol 2024; 12:1372355. [PMID: 38745860 PMCID: PMC11091309 DOI: 10.3389/fcell.2024.1372355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the endothelial glycocalyx's role in inflammation and explores its involvement in coagulation. The glycocalyx, composed of proteins and glycosaminoglycans, interacts with von Willebrand Factor and could play a crucial role in anchoring it to the endothelium. In inflammatory conditions, glycocalyx degradation may leave P-selectin as the only attachment point for von Willebrand Factor, potentially leading to uncontrolled release of ultralong von Willebrand Factor in the bulk flow in a shear stress-dependent manner. Identifying specific glycocalyx glycosaminoglycan interactions with von Willebrand Factor and P-selectin can offer insights into unexplored coagulation mechanisms.
Collapse
Affiliation(s)
- Guinevere Ferreira
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
- Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Alexandra Taylor
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Solomon A. Mensah
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
- Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
7
|
Liang Q, Zhang Z, Ding B, Shao Y, Ding Q, Dai J, Hu X, Wu W, Wang X. A noncanonical splicing variant c.875-5 T > G in von Willebrand factor causes in-frame exon skipping and type 2A von Willebrand disease. Thromb Res 2024; 236:51-60. [PMID: 38387303 DOI: 10.1016/j.thromres.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
INTRODUCTION A novel variant involving noncanonical splicing acceptor site (c.875-5 T > G) in propeptide coding region of von Willebrand factor (VWF) was identified in a patient with type 2A von Willebrand disease (VWD), who co-inherited with a null variant (p.Tyr271*) and presented characteristic discrepancy of plasma level of VWF antigen and activity, and a selective reduction of both intermediate-molecular-weight (IMWMs) and high-molecular-weight VWF multimers (HMWMs). MATERIALS AND METHODS VWF mRNA transcripts obtained from peripheral leukocytes and platelets of the patients were investigated to analyze the consequence of c.875-5 T > G on splicing. The impact of the variant on expression and multimer assembly was further analyzed by in vitro expression studies in AtT-20 cells. The intracellular processing of VWF mutant and the Weibel-Palade bodies (WPBs) formation was evaluated by immunofluorescence staining and electron microscopy. RESULTS The mRNA transcript analysis revealed that c.875-5 T > G variant led to exon 8 skipping and an in-frame deletion of 41 amino acids in the D1 domain of VWF (p.Ser292_Glu333delinsLys), yielding a truncated propeptide. Consistent with the patient's laboratory manifestations, the AtT-20 cells transfected with mutant secreted less VWF, with the VWF antigen level in conditioned medium 47 % of wild-type. A slight retention in the endoplasmic reticulum was observed for the mutant. Almost complete loss of IMWMs and HMWMs in the medium and impaired WPBs formation in the cell, indicating truncated VWF propeptide lost its chaperon-like function for VWF multimerization and tubular storage. CONCLUSIONS The VWF splicing site variant (c.875-5 T > G) causes propeptide truncation, severely compromising VWF multimer assembly and tubular storage.
Collapse
Affiliation(s)
- Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ziqi Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Biying Ding
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Shao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaobo Hu
- Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, China.
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Amaya-Espinosa H, Alexander-Katz A, Aponte-Santamaría C. The interplay between adsorption and aggregation of von Willebrand factor chains in shear flows. Biophys J 2023; 122:3831-3842. [PMID: 37537863 PMCID: PMC10560680 DOI: 10.1016/j.bpj.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Von Willebrand factor (VWF) is a giant extracellular glycoprotein that carries out a key adhesive function during primary hemostasis. Upon vascular injury and triggered by the shear of flowing blood, VWF establishes specific interactions with several molecular partners in order to anchor platelets to collagen on the exposed subendothelial surface. VWF also interacts with itself to form aggregates that, adsorbed on the surface, provide more anchor sites for the platelets. However, the interplay between elongation and subsequent exposure of cryptic binding sites, self-association, and adsorption on the surface remained unclear for VWF. In particular, the role of shear flow in these three processes is not well understood. In this study, we address these questions by using Brownian dynamics simulations at a coarse-grained level of resolution. We considered a system consisting of multiple VWF-like self-interacting chains that also interact with a surface under a shear flow. By a systematic analysis, we reveal that chain-chain and chain-surface interactions coexist nontrivially to modulate the spontaneous adsorption of VWF and the posterior immobilization of secondary tethered chains. Accordingly, these interactions tune VWF's extension and its propensity to form shear-assisted functional adsorbed aggregates. Our data highlight the collective behavior VWF self-interacting chains have when bound to the surface, distinct from that of isolated or flowing chains. Furthermore, we show that the extension and the exposure to solvent have a similar dependence on shear flow, at a VWF-monomer level of resolution. Overall, our results highlight the complex interplay that exists between adsorption, cohesion, and shear forces and their relevance for the adhesive hemostatic function of VWF.
Collapse
Affiliation(s)
- Helman Amaya-Espinosa
- Max Planck Tandem Group in Computational Biophysics, Universidad de los Andes, Bogotá, Colombia; Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Camilo Aponte-Santamaría
- Max Planck Tandem Group in Computational Biophysics, Universidad de los Andes, Bogotá, Colombia; Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
9
|
Lin J, Ding X, Yang P, Liu S, Li Q, Cruz MA, Dong JF, Fang Y, Wu J. Force-induced biphasic regulation of VWF cleavage by ADAMTS13. Thromb Res 2023; 229:99-106. [PMID: 37421684 DOI: 10.1016/j.thromres.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
It is crucial for hemostasis that platelets are rapidly recruited to the site of vascular injury by the adhesive ligand von Willebrand factor (VWF) multimers. The metalloproteinase ADAMTS13 regulates this hemostatic activity by proteolytically reducing the size of VWF and its proteolytic kinetics has been investigated by biochemical and single-molecule biophysical methods. However, how ADAMTS13 cleaves VWF in flowing blood remains poorly defined. To investigate the force-induced VWF cleavage, VWF A1A2A3 tridomains were immobilized and subjected to hydrodynamic forces in the presence of ADAMTS13. We demonstrated that the cleavage of VWF A1A2A3 by ADAMTS13 exhibited biphasic kinetics governed by shear stress, but not shear rate. By fitting data to the single-molecule Michaelis-Menten equation, the proteolytic constant kcat of ADAMTS13 had two distinct states. The mean proteolytic constant of the fast state (kcat-fast) was 0.005 ± 0.001 s-1, which is >10-fold faster than the slow state (kcat-slow = 0.0005 ± 0.0001 s-1). Furthermore, proteolytic constants of both states were regulated by shear stress in a biphasic manner, independent of the solution viscosity, indicating that the proteolytic activity of ADAMTS13 was regulated by hydrodynamic force. The findings provide new insights into the mechanism underlying ADAMTS13 cleaving VWF under flowing blood.
Collapse
Affiliation(s)
- Jiangguo Lin
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiaoru Ding
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Pu Yang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Silu Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Quhuan Li
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Miguel A Cruz
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine/Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Jing-Fei Dong
- Bloodworks Research Institute and Hematology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Ying Fang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Jianhua Wu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
10
|
Meli A, McCormack A, Conte I, Chen Q, Streetley J, Rose ML, Bierings R, Hannah MJ, Molloy JE, Rosenthal PB, Carter T. Altered Storage and Function of von Willebrand Factor in Human Cardiac Microvascular Endothelial Cells Isolated from Recipient Transplant Hearts. Int J Mol Sci 2023; 24:ijms24054553. [PMID: 36901985 PMCID: PMC10003102 DOI: 10.3390/ijms24054553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The assembly of von Willebrand factor (VWF) into ordered helical tubules within endothelial Weibel-Palade bodies (WPBs) is required for the efficient deployment of the protein at sites of vascular injury. VWF trafficking and storage are sensitive to cellular and environmental stresses that are associated with heart disease and heart failure. Altered storage of VWF manifests as a change in WPB morphology from a rod shape to a rounded shape and is associated with impaired VWF deployment during secretion. In this study, we examined the morphology, ultrastructure, molecular composition and kinetics of exocytosis of WPBs in cardiac microvascular endothelial cells isolated from explanted hearts of patients with a common form of heart failure, dilated cardiomyopathy (DCM; HCMECD), or from nominally healthy donors (controls; HCMECC). Using fluorescence microscopy, WPBs in HCMECC (n = 3 donors) showed the typical rod-shaped morphology containing VWF, P-selectin and tPA. In contrast, WPBs in primary cultures of HCMECD (n = 6 donors) were predominantly rounded in shape and lacked tissue plasminogen activator (t-PA). Ultrastructural analysis of HCMECD revealed a disordered arrangement of VWF tubules in nascent WPBs emerging from the trans-Golgi network. HCMECD WPBs still recruited Rab27A, Rab3B, Myosin-Rab Interacting Protein (MyRIP) and Synaptotagmin-like protein 4a (Slp4-a) and underwent regulated exocytosis with kinetics similar to that seen in HCMECc. However, secreted extracellular VWF strings from HCMECD were significantly shorter than for endothelial cells with rod-shaped WPBs, although VWF platelet binding was similar. Our observations suggest that VWF trafficking, storage and haemostatic potential are perturbed in HCMEC from DCM hearts.
Collapse
Affiliation(s)
- Athinoula Meli
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ann McCormack
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ianina Conte
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London SW17 0RE, UK
| | - Qu Chen
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - James Streetley
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marlene L. Rose
- Transplant Immunology, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Ruben Bierings
- Hematology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Matthew J. Hannah
- High Containment Microbiology, UK Health Security Agency, London NW9 5EQ, UK
| | - Justin E. Molloy
- Single Molecule Enzymology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London SW17 0RE, UK
- Correspondence: ; Tel.: +44-(208)-7255961
| |
Collapse
|
11
|
Javitt G, Yeshaya N, Khmelnitsky L, Fass D. Assembly of von Willebrand factor tubules with in vivo helical parameters requires A1 domain insertion. Blood 2022; 140:2835-2843. [PMID: 36179246 PMCID: PMC10653096 DOI: 10.1182/blood.2022017153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
The von Willebrand factor (VWF) glycoprotein is stored in tubular form in Weibel-Palade bodies (WPBs) before secretion from endothelial cells into the bloodstream. The organization of VWF in the tubules promotes formation of covalently linked VWF polymers and enables orderly secretion without polymer tangling. Recent studies have described the high-resolution structure of helical tubular cores formed in vitro by the D1D2 and D'D3 amino-terminal protein segments of VWF. Here we show that formation of tubules with the helical geometry observed for VWF in intracellular WPBs requires also the VWA1 (A1) domain. We reconstituted VWF tubules from segments containing the A1 domain and discovered it to be inserted between helical turns of the tubule, altering helical parameters and explaining the increased robustness of tubule formation when A1 is present. The conclusion from this observation is that the A1 domain has a direct role in VWF assembly, along with its known activity in hemostasis after secretion.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Yeshaya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lev Khmelnitsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Manz XD, Bogaard HJ, Aman J. Regulation of VWF (Von Willebrand Factor) in Inflammatory Thrombosis. Arterioscler Thromb Vasc Biol 2022; 42:1307-1320. [PMID: 36172866 DOI: 10.1161/atvbaha.122.318179] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing evidence indicates that inflammation promotes thrombosis via a VWF (von Willebrand factor)-mediated mechanism. VWF plays an essential role in maintaining the balance between blood coagulation and bleeding, and inflammation can lead to aberrant regulation. VWF is regulated on a transcriptional and (post-)translational level, and its secretion into the circulation captures platelets upon endothelial activation. The significant progress that has been made in understanding transcriptional and translational regulation of VWF is described in this review. First, we describe how VWF is regulated at the transcriptional and post-translational level with a specific focus on the influence of inflammatory and immune responses. Next, we describe how changes in regulation are linked with various cardiovascular diseases. Recent insights from clinical diseases provide evidence for direct molecular links between inflammation and thrombosis, including atherosclerosis, chronic thromboembolic pulmonary hypertension, and COVID-19. Finally, we will briefly describe clinical implications for antithrombotic treatment.
Collapse
Affiliation(s)
- Xue D Manz
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), the Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), the Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), the Netherlands
| |
Collapse
|
13
|
Anderson JR, Li J, Springer TA, Brown A. Structures of VWF tubules before and after concatemerization reveal a mechanism of disulfide bond exchange. Blood 2022; 140:1419-1430. [PMID: 35776905 PMCID: PMC9507011 DOI: 10.1182/blood.2022016467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) is an adhesive glycoprotein that circulates in the blood as disulfide-linked concatemers and functions in primary hemostasis. The loss of long VWF concatemers is associated with the excessive bleeding of type 2A von Willebrand disease (VWD). Formation of the disulfide bonds that concatemerize VWF requires VWF to self-associate into helical tubules, yet how the helical tubules template intermolecular disulfide bonds is not known. Here, we report electron cryomicroscopy (cryo-EM) structures of VWF tubules before and after intermolecular disulfide bond formation. The structures provide evidence that VWF tubulates through a charge-neutralization mechanism and that the A1 domain enhances tubule length by crosslinking successive helical turns. In addition, the structures reveal disulfide states before and after disulfide bond-mediated concatemerization. The structures and proposed assembly mechanism provide a foundation to rationalize VWD-causing mutations.
Collapse
Affiliation(s)
- Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jing Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA; and
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
A conformational transition of the D'D3 domain primes von Willebrand factor for multimerization. Blood Adv 2022; 6:5198-5209. [PMID: 36069828 PMCID: PMC9631632 DOI: 10.1182/bloodadvances.2022006978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
Magnetic tweezers reveal a pH-dependent destabilization of the D3 interface priming VWF for multimerization by exposing Cys1099 and Cys1142. The stability of the D3 interface is increased by FVIII, suggesting a binding site within the D3 submodules.
Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the trans-Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D′D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose 2 buried cysteines, Cys1099 and Cys1142, that are vital for multimerization. By characterizing the conformational change at varying levels of force, we can quantify the kinetics of the transition and stability of the interface. We find a pronounced destabilization of the interface on lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D′D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII, providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D′D3 domain in VWF biosynthesis and function, and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond.
Collapse
|
15
|
Li X, Lu Z. Role of von Willebrand factor in the angiogenesis of lung adenocarcinoma (Review). Oncol Lett 2022; 23:198. [PMID: 35572495 PMCID: PMC9100484 DOI: 10.3892/ol.2022.13319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xin Li
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261053, P.R. China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261053, P.R. China
| |
Collapse
|