1
|
Penman BS, Gandon S. Adaptive immunity selects against malaria infection blocking mutations. PLoS Comput Biol 2020; 16:e1008181. [PMID: 33031369 PMCID: PMC7544067 DOI: 10.1371/journal.pcbi.1008181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
The mutation responsible for Duffy negativity, which impedes Plasmodium vivax infection, has reached high frequencies in certain human populations. Conversely, mutations capable of blocking the more lethal P. falciparum have not succeeded in malarious zones. Here we present an evolutionary-epidemiological model of malaria which demonstrates that if adaptive immunity against the most virulent effects of malaria is gained rapidly by the host, mutations which prevent infection per se are unlikely to succeed. Our results (i) explain the rarity of strain-transcending P. falciparum infection blocking adaptations in humans; (ii) make the surprising prediction that mutations which block P. falciparum infection are most likely to be found in populations experiencing low or infrequent malaria transmission, and (iii) predict that immunity against some of the virulent effects of P. vivax malaria may be built up over the course of many infections.
Collapse
Affiliation(s)
- Bridget S. Penman
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sylvain Gandon
- CEFE, CNRS, University of Montpellier, Paul Valéry University of Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
2
|
Plasmodium spp. mixed infection leading to severe malaria: a systematic review and meta-analysis. Sci Rep 2020; 10:11068. [PMID: 32632180 PMCID: PMC7338391 DOI: 10.1038/s41598-020-68082-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Mixed Plasmodium malaria infections can lead to severe malaria. This systematic review and meta-analysis aimed to explore the prevalence of severe mixed Plasmodium malaria infection and to compare it with the prevalence of severe P. falciparum malaria mono-infection across the included studies. Original English-language research articles from PubMed, Scopus, and ISI Web of Science were identified and screened. Articles reporting the number of mixed infections and the number of severe mixed infections were used to determine the main outcome of this study, while the number of P. falciparum infections and the number of severe P. falciparum infections were used to determine the secondary outcome of this study. For the main outcome, the pooled prevalence and 95% confidence interval (CI) of severe mixed infections was analysed using STATA software version 15.0 (Stata Corp, College Station, TX, USA). For the secondary outcome, the rate of severe mixed infections compared to severe P. falciparum infections was analysed using the meta-analysis approach, and summary odds ratios (ORs) and 95% CIs were calculated. Random-effects models were used to produce the summary ORs. The Mantel–Haenszel method and calculated I2 were also reported to test whether there was heterogeneity among the included studies. Publication bias was also assessed using funnel plots. The meta-analysis of secondary outcomes was conducted using Review Manager 5.3 software (Cochrane Community). A total of 894,561 malaria patients were reported in all 16 included studies. Overall, a pooled analysis showed that 9% (2,006/35,768, 95% CI 7.0–12.0%) of patients with mixed Plasmodium infection had severe mixed infection. A meta-analysis of 14 studies demonstrated that patients with mixed Plasmodium infection (1,999/35,755) and patients with P. falciparum malaria (9,249/294,397) had an equal risk of developing severe malaria (OR 0.93, 95% CI 0.59–1.44). Both mixed infection and P. falciparum mono-infection showed a similar trend of complications in which severe anaemia, pulmonary failure, and renal impairment were the three most common complications found. However, patients with mixed infection had a higher proportion of severe anaemia and pulmonary complications than those with P. falciparum infection. Moreover, patients with mixed infection had a higher proportion of multiple organ failure than those with P. falciparum mono-infection. Mixed Plasmodium spp. infections were common but often unrecognized or underestimated, leading to severe complications among these malaria patients. Therefore, in routine clinical laboratories, using an accurate combination of diagnostic procedures to identify suspected patients with mixed infections is crucial for therapeutic decisions, prompt treatment, and effective patient management.
Collapse
|
3
|
Chakrabarti M, Garg S, Rajagopal A, Pati S, Singh S. Targeted repression of Plasmodium apicortin by host microRNA impairs malaria parasite growth and invasion. Dis Model Mech 2020; 13:13/6/dmm042820. [PMID: 32493727 PMCID: PMC7286292 DOI: 10.1242/dmm.042820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mature human erythrocytes contain a rich pool of microRNAs (miRNAs), which result from differentiation of the erythrocytes during the course of haematopoiesis. Recent studies have described the effect of erythrocytic miRNAs on the invasion and growth of the malaria parasite Plasmodium falciparum during the asexual blood stage of its life cycle. In this work, we have identified two erythrocytic miRNAs, miR-150-3p and miR-197-5p, that show favourable in silico hybridization with Plasmodium apicortin, a protein with putative microtubule-stabilizing properties. Co-expression of P. falciparum apicortin and these two miRNAs in a cell line model resulted in downregulation of apicortin at both the RNA and protein level. To create a disease model of erythrocytes containing miRNAs, chemically synthesized mimics of miR-150-3p and miR-197-5p were loaded into erythrocytes and subsequently used for invasion by the parasite. Growth of the parasite was hindered in miRNA-loaded erythrocytes, followed by impaired invasion; micronemal secretion was also reduced, especially in the case of miR-197-5p. Apicortin expression was found to be reduced in miRNA-loaded erythrocytes. To interpret the effect of downregulation of apicortin on parasite invasion to host erythrocytes, we investigated the secretion of the invasion-related microneme protein apical membrane antigen 1 (AMA1). AMA1 secretion was found to be reduced in miRNA-treated parasites. Overall, this study identifies apicortin as a novel target within the malaria parasite and establishes miR-197-5p as its miRNA inhibitor. This miRNA represents an unconventional nucleotide-based therapeutic and provides a new host factor-inspired strategy for the design of antimalarial molecular medicine. This article has an associated First Person interview with the first author of the paper. Summary: The role of host erythrocyte microRNA in the downregulation of malaria parasite gene expression is investigated. Two microRNAs are identified, miR-197-5p and miR-150-3p, which affect parasite growth and invasion when enriched in erythrocytes.
Collapse
Affiliation(s)
- Malabika Chakrabarti
- Host Parasite Interactions and Disease Modeling Lab, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swati Garg
- Host Parasite Interactions and Disease Modeling Lab, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ayana Rajagopal
- Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Naamsestraat 59 - Box 2465, Belgium
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Noida, UP 201314, India
| | - Shailja Singh
- Host Parasite Interactions and Disease Modeling Lab, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Ha J, Martinson R, Iwamoto SK, Nishi A. Hemoglobin E, malaria and natural selection. EVOLUTION MEDICINE AND PUBLIC HEALTH 2019; 2019:232-241. [PMID: 31890210 PMCID: PMC6925914 DOI: 10.1093/emph/eoz034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
Abstract
It is known that there has been positive natural selection for hemoglobin S and C in humans despite negative health effects, due to its role in malaria resistance. However, it is not well understood, if there has been natural selection for hemoglobin E (HbE), which is a common variant in Southeast Asia. Therefore, we reviewed previous studies and discussed the potential role of natural selection in the prevalence of HbE. Our review shows that in vitro studies, evolutionary genetics studies and epidemiologic studies largely support an involvement of natural selection in the evolution of HbE and a protective role of HbE against malaria infection. However, the evidence is inconsistent, provided from different regions, and insufficient to perform an aggregated analysis such as a meta-analysis. In addition, few candidate gene, genome-wide association or epistasis studies, which have been made possible with the use of big data in the post-genomic era, have investigated HbE. The biological pathways linking HbE and malaria infection have not yet been fully elucidated. Therefore, further research is necessary before it can be concluded that there was positive natural selection for HbE due to protection against malaria. Lay summary: Our review shows that evidence largely supports an involvement of natural selection in the evolution of HbE and a protective role of HbE against malaria. However, the evidence is not consistent. Further research is necessary before it is concluded.
Collapse
Affiliation(s)
- Jiwoo Ha
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Ryan Martinson
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90025, USA
| | - Sage K Iwamoto
- College of Letters & Science, University of California Berkeley, Berkeley, CA 94720-2930, USA
| | - Akihiro Nishi
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
- Corresponding author. Department of Epidemiology, UCLA Fielding School of Public Health, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA. Tel: +1-310-206-7164; Fax: +1-310-206-6039; E-mail:
| |
Collapse
|
5
|
Narula AK, Azad CS, Nainwal LM. New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 2019; 181:111353. [DOI: 10.1016/j.ejmech.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
6
|
Barrera-Reyes PK, Tejero ME. Genetic variation influencing hemoglobin levels and risk for anemia across populations. Ann N Y Acad Sci 2019; 1450:32-46. [PMID: 31385320 DOI: 10.1111/nyas.14200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/30/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023]
Abstract
Hemoglobin (Hb) concentration is the outcome of the interaction between genetic variation and environmental factors, including nutritional status, sex, age, and altitude. Genetic diversity influencing this protein is complex and varies widely across populations. Variants related to abnormal Hb or altered characteristics of the erythrocytes increase the risk for anemia. The most prevalent are related to the inherited globin abnormalities affecting Hb production and structure. Malaria-endemic regions harbor the highest frequencies of variants associated with the most frequent monogenic diseases and the risk for nonnutritional anemia and are considered as public health problems. Variation in genes encoding for enzymes and membrane proteins in red blood cells also influence erythrocyte life span and risk for anemia. Most of these variants are rare. Interindividual variability of hematological parameters is also influenced by common genetic variation across the whole genome. Some of the identified variants are associated with Hb production, erythropoiesis, and iron metabolism. Specialized databases have been developed to organize and update the large body of available information on genetic variation related to Hb variation, their frequency, geographical distribution, and clinical significance. Our present review analyzed the underlying genetic factors that affect Hb concentrations, their clinical relevance, and geographical distribution across populations.
Collapse
Affiliation(s)
- Paloma K Barrera-Reyes
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Ciudad de, México, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de, México, Mexico
| | - M Elizabeth Tejero
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Ciudad de, México, Mexico
| |
Collapse
|
7
|
Steinberg MH. "Sickling" in vertebrates: Animal studies vs. sickle cell disease. Blood Rev 2019; 36:88-94. [PMID: 31084943 DOI: 10.1016/j.blre.2019.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Before the description of sickled cells in humans, erythrocytes of normal deer were found to deform, or sickle in vitro. Sickling required oxygenation and alkalization; human erythrocytes sickle because their abnormal sickle hemoglobin (HbS) polymerizes following deoxygenation in vivo and in vitro. HbS and some deer hemoglobins polymerize because of specific amino acid contacts between hemoglobin beta-globin chains, although different amino acid residues form the contact points of the polymer. Hemoglobin precipitation is found in other vertebrates. Most often it is a benign in vitro phenomenon. Natural selection established the balanced polymorphism accounting for the high prevalence of HbS where malaria is endemic. A similar selective advantage for "sickling" animal hemoglobins is unproven. The mean corpuscular hemoglobin concentration is about 30 to 35 g/dL. Perhaps during in vitro studies of susceptible animal hemoglobins, minor changes in buffer pH, osmolality and the ligand state of the molecule increases mean cell hemoglobin concentration beyond its solubility limit allowing precipitation.
Collapse
Affiliation(s)
- Martin H Steinberg
- Department of Medicine, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA.
| |
Collapse
|
8
|
Deng Z, Li Q, Yi H, Zhang Y, Yang F, Li H, Luo L, Ma L, Yang Z, He Y, Cui L. Hemoglobin E protects against acute Plasmodium vivax infections in a Kachin population at the China-Myanmar border. J Infect 2018; 77:435-439. [PMID: 29964138 DOI: 10.1016/j.jinf.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Hemoglobin E (HbE, β26 Glu-Lys) is the most prevalent hemoglobinopathy in Southeast Asia. This study aimed to determine whether HbE protects against clinical Plasmodium vivax malaria in Southeast Asia. METHODS In a case-control study performed in villages along the China-Myanmar border, we determined the prevalence of HbE in 257 villagers who had acute P. vivax infections and in 157 control healthy villagers. RESULTS HbE in P. vivax patients (17.4%) was significantly less prevalent than in the healthy villager population (36.3%). Moreover, there was a complete lack of HbEE homozygotes in the vivax patients as compared to 9.5% prevalence in the healthy villagers. Using the HbAA group as the reference, both the HbEA heterozygotes and HbEE homozygotes had significantly lower odds of presenting with acute P. vivax infections. Furthermore, HbEA heterozygotes also had significantly lower P. vivax asexual parasite densities. HbEA did not affect the proportion of P. vivax patients with gametocytemia nor the gametocyte densities. CONCLUSIONS HbE offers significant protection against the occurrence and parasite density of acute P. vivax infections and provides a renewed perspective on P. vivax malaria as a potentially strong driving force behind the high frequencies of HbE in the Kachin population.
Collapse
Affiliation(s)
- Zeshuai Deng
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qing Li
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Haoan Yi
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yanjie Zhang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Fang Yang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hong Li
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Lan Luo
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Limei Ma
- Department of Histology and Embryology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yongshu He
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China.
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America.
| |
Collapse
|
9
|
Sugiarto SR, Moore BR, Makani J, Davis TME. Artemisinin Therapy for Malaria in Hemoglobinopathies: A Systematic Review. Clin Infect Dis 2018; 66:799-804. [PMID: 29370347 DOI: 10.1093/cid/cix785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/20/2017] [Indexed: 01/07/2023] Open
Abstract
Artemisinin derivatives are widely used antimalarial drugs. There is some evidence from in vitro, animal and clinical studies that hemoglobinopathies may alter their disposition and antimalarial activity. This review assesses relevant data in α-thalassemia, sickle cell disease (SCD), β-thalassemia and hemoglobin E. There is no convincing evidence that the disposition of artemisinin drugs is affected by hemoglobinopathies. Although in vitro studies indicate that Plasmodium falciparum cultured in thalassemic erythrocytes is relatively resistant to the artemisinin derivatives, mean 50% inhibitory concentrations (IC50s) are much lower than in vivo plasma concentrations after recommended treatment doses. Since IC50s are not increased in P. falciparum cultures using SCD erythrocytes, delayed post-treatment parasite clearance in SCD may reflect hyposplenism. As there have been no clinical studies suggesting that hemoglobinopathies significantly attenuate the efficacy of artemisinin combination therapy (ACT) in uncomplicated malaria, recommended artemisinin doses as part of ACT remain appropriate in this patient group.
Collapse
Affiliation(s)
- Sri Riyati Sugiarto
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Brioni R Moore
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia.,School of Pharmacy, Curtin University, Perth, Western Australia, Australia
| | - Julie Makani
- School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Timothy M E Davis
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Plasmodium falciparum malaria skews globin gene expression balance in in-vitro haematopoietic stem cell culture system: Its implications in malaria associated anemia. Exp Parasitol 2018; 185:29-38. [DOI: 10.1016/j.exppara.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/01/2017] [Accepted: 01/02/2018] [Indexed: 01/02/2023]
|
11
|
Jajosky RP, Jajosky AN, Jajosky PG. Can Exchange Transfusions Using Red Blood Cells from Donors with Hemoglobin E Trait Prevent or Ameliorate Severe Malaria in Patients with Multi-drug Resistant Plasmodium falciparum? Indian J Hematol Blood Transfus 2018; 34:591-592. [PMID: 30127587 DOI: 10.1007/s12288-018-0923-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/15/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Ryan P Jajosky
- Biconcavity Inc, 1106 Spring Mill Dr. SW, Lilburn, GA 30047 USA
| | - Audrey N Jajosky
- 2Pathology Department, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106 USA
| | | |
Collapse
|
12
|
Goheen MM, Campino S, Cerami C. The role of the red blood cell in host defence against falciparum malaria: an expanding repertoire of evolutionary alterations. Br J Haematol 2017; 179:543-556. [PMID: 28832963 DOI: 10.1111/bjh.14886] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The malaria parasite has co-evolved with its human host as each organism struggles for resources and survival. The scars of this war are carried in the human genome in the form of polymorphisms that confer innate resistance to malaria. Clinical, epidemiological and genome-wide association studies have identified multiple polymorphisms in red blood cell (RBC) proteins that attenuate malaria pathogenesis. These include well-known polymorphisms in haemoglobin, intracellular enzymes, RBC channels, RBC surface markers, and proteins impacting the RBC cytoskeleton and RBC morphology. A better understanding of how changes in RBC physiology impact malaria pathogenesis may uncover new strategies to combat the disease.
Collapse
Affiliation(s)
- Morgan M Goheen
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Susana Campino
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, The London School of Hygiene & Tropical Medicine, London, UK
| | - Carla Cerami
- MRC International Nutrition Group at Keneba, MRC Unit The Gambia, Banjul, The Gambia
| |
Collapse
|
13
|
Deng Z, Yang F, Bai Y, He L, Li Q, Wu Y, Luo L, Li H, Ma L, Yang Z, He Y, Cui L. Co-inheritance of glucose-6-phosphate dehydrogenase deficiency mutations and hemoglobin E in a Kachin population in a malaria-endemic region of Southeast Asia. PLoS One 2017; 12:e0177917. [PMID: 28531196 PMCID: PMC5439682 DOI: 10.1371/journal.pone.0177917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobin E (HbE, β26 Glu-Lys) are two common red cell disorders in Southeast Asia. G6PD deficiency produces hemolytic anemia, which can be triggered by certain drugs or infections. HbE is asymptomatic or is manifested as microcytic, minimally hemolytic anemia. The association between G6PD deficiency and HbE is little understood. This study aimed to investigate G6PD deficiency and HbE in a Kachin ethnic group in the China-Myanmar border area. G6PD enzyme activity was measured using a quantitative G6PD assay, G6PD variants genotyped by the SNaPshot assay, and an HbE gene mutation identified by an amplification refractory mutation system and subsequently confirmed by using a reverse dot blot hybridization assay from 100 unrelated individuals in the study area. G6PD enzyme activity ranged from 0.4 to 24.7 U/g Hb, and six males had severe G6PD deficiency (<0.12-1.2 U/g Hb), while six males and 12 females had mild G6PD deficiency (>1.2-4.5 U/g Hb). Among the 24 G6PD-deficient subjects, 22 (92%) had the Mahidol 487G>A mutation (12 male hemizygotes, one female homozygote, and nine female heterozygotes), while the G6PD genotypes in two female subjects were unknown. HbE was identified in 39 subjects (20 males and 19 females), including 15 HbEE (seven males and eight females) and 24 HbAE (13 males and 11 females). Twenty-three subjects co-inherited both G6PD deficiency and HbE (22 with HbAE and one with HbEE). Whereas mean Hb levels were not significantly different between the HbA and HbE groups, G6PD-deficient males had significantly lower Hb levels than G6PD-normal males (P < 0.05, t-test). However, it is noteworthy that two G6PD-deficient hemizygous males with HbAE were severely anemic with Hb levels below 50 g/L. This study revealed high prevalence of co-inheritance of G6PD deficiency with HbAE in the Kachin ethnicity, and a potential interaction of the G6PD Mahidol 487G>A and HbAE in males leading to severe anemia. The presence of 6% males with severe G6PD deficiency raised a major concern in the use of primaquine for radical cure of vivax malaria.
Collapse
Affiliation(s)
- Zeshuai Deng
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Fang Yang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yao Bai
- Department of Pathogen Biology and Immunology, Kunming Medical University, Yunnan Province, China
| | - Lijun He
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qing Li
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yanrui Wu
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Lan Luo
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hong Li
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Limei Ma
- Department of Histology and Embryology, Kunming Medical University, Yunnan Province, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Yunnan Province, China
| | - Yongshu He
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
- * E-mail: (YH); (LC)
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
- * E-mail: (YH); (LC)
| |
Collapse
|
14
|
Fernandes Q. Therapeutic strategies in Sickle Cell Anemia: The past present and future. Life Sci 2017; 178:100-108. [PMID: 28435037 DOI: 10.1016/j.lfs.2017.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 01/15/2023]
Abstract
Sickle Cell Anemia (SCA) was one of the first hemoglobinopathies to be discovered. It is distinguished by the mutation-induced expression of a sickle cell variant of hemoglobin (HbS) that triggers erythrocytes to take a characteristic sickled conformation. The complex physiopathology of the disease and its associated clinical complications has initiated multi-disciplinary research within its field. This review attempts to lay emphasis on the evolution, current standpoint and future scope of therapeutic strategies in SCA.
Collapse
|
15
|
McGann PT, Nero AC, Ware RE. Clinical Features of β-Thalassemia and Sickle Cell Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1013:1-26. [PMID: 29127675 DOI: 10.1007/978-1-4939-7299-9_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sickle cell disease (SCD) and β-thalassemia are among the most common inherited diseases, affecting millions of persons globally. It is estimated that 5-7% of the world's population is a carrier of a significant hemoglobin variant. Without early diagnosis followed by initiation of preventative and therapeutic care, both SCD and β-thalassemia result in significant morbidity and early mortality. Despite great strides in the understanding of the molecular basis and pathophysiology of these conditions, the burden of disease remains high, particularly in limited resource settings. Current therapy relies heavily upon the availability and safety of erythrocyte transfusions to treat acute and chronic complications of these conditions, but frequent transfusions results in significant iron overload, as well as challenges from acquired infections and alloimmunization. Hydroxyurea is a highly effective treatment for SCD but less so for β-thalassemia, and does not represent curative therapy. As technology and use of cellular and gene therapies expand, SCD and thalassemia should be among the highest disease priorities.
Collapse
Affiliation(s)
- Patrick T McGann
- Division of Hematology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 11027, Cincinnati, OH, 45229, USA
| | - Alecia C Nero
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75063, USA
| | - Russell E Ware
- Division of Hematology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 11027, Cincinnati, OH, 45229, USA.
| |
Collapse
|
16
|
Molina-Cruz A, Zilversmit MM, Neafsey DE, Hartl DL, Barillas-Mury C. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria. Annu Rev Genet 2016; 50:447-465. [PMID: 27732796 DOI: 10.1146/annurev-genet-120215-035211] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.
Collapse
Affiliation(s)
- Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852;
| | - Martine M Zilversmit
- Richard Guilder Graduate School and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024
| | - Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852;
| |
Collapse
|
17
|
Sikdar M. Hemoglobin E in Northeast India: A review on its origin, distribution, migration and health implication. ANTHROPOLOGICAL REVIEW 2016. [DOI: 10.1515/anre-2016-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A systematic review of the studies on hemoglobin E in Northeast India has been carried out to understand the magnitude of research undertaken on this aspect during the last seven decades. Owing to the high prevalence of hemoglobin E in this part of India different authors have studied this hemoglobin from different perspectives and found conflicting results. However a systematic review of such studies is lacking from a holistic point of view. Most of the epidemiological, in vitro as well as in vivo studies show signatures of selection with this hemoglobin locus. However, how this polymorphism is maintained at different rates at different geographical region is still a matter of contention. This review will fill the gap from all perspectives starting from the frequency distribution of hemoglobin E and its spread in different parts of Northeast India, its relationship with malaria hypothesis, the population migration, population affinity and most importantly the health implication arising out of it. A probable origin of hemoglobin E among an Austroasiatic population of Northeast India has been postulated with the help of advance molecular anthropological knowledge like the deep rooted markers of mt DNA and Y-chromosome haplotypes.
Collapse
|
18
|
Smith A, Cooper B, Guileyardo J, Mora A. Unrecognized hemoglobin SE disease as microcytosis. Proc (Bayl Univ Med Cent) 2016; 29:309-10. [PMID: 27365881 DOI: 10.1080/08998280.2016.11929447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Hemoglobin SE disease was first described during the 1950s as a relatively benign microcytosis, but increasing prevalence has revealed a predisposition towards vasoocclusive sickling. Recognition of SE hemoglobinopathies' potential complications is crucial so medical measures can be utilized to avoid multiorgan injury.
Collapse
Affiliation(s)
- Avery Smith
- Department of Internal Medicine (Smith), Department of Hematology and Oncology (Cooper), Department of Forensic Pathology (Guileyardo), and Division of Pulmonology and Critical Care (Mora), Baylor University Medical Center at Dallas
| | - Barry Cooper
- Department of Internal Medicine (Smith), Department of Hematology and Oncology (Cooper), Department of Forensic Pathology (Guileyardo), and Division of Pulmonology and Critical Care (Mora), Baylor University Medical Center at Dallas
| | - Joseph Guileyardo
- Department of Internal Medicine (Smith), Department of Hematology and Oncology (Cooper), Department of Forensic Pathology (Guileyardo), and Division of Pulmonology and Critical Care (Mora), Baylor University Medical Center at Dallas
| | - Adan Mora
- Department of Internal Medicine (Smith), Department of Hematology and Oncology (Cooper), Department of Forensic Pathology (Guileyardo), and Division of Pulmonology and Critical Care (Mora), Baylor University Medical Center at Dallas
| |
Collapse
|
19
|
Gunawardena S, Karunaweera ND. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals. Pathog Glob Health 2016; 109:123-41. [PMID: 25943157 DOI: 10.1179/2047773215y.0000000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.
Collapse
|
20
|
Lima-Junior JDC, Pratt-Riccio LR. Major Histocompatibility Complex and Malaria: Focus on Plasmodium vivax Infection. Front Immunol 2016; 7:13. [PMID: 26858717 PMCID: PMC4728299 DOI: 10.3389/fimmu.2016.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/12/2016] [Indexed: 01/13/2023] Open
Abstract
The importance of host and parasite genetic factors in malaria resistance or susceptibility has been investigated since the middle of the last century. Nowadays, of all diseases that affect man, malaria still plays one of the highest levels of selective pressure on human genome. Susceptibility to malaria depends on exposure profile, epidemiological characteristics, and several components of the innate and adaptive immune system that influences the quality of the immune response generated during the Plasmodium lifecycle in the vertebrate host. But it is well known that the parasite's enormous capacity of genetic variation in conjunction with the host genetics polymorphism is also associated with a wide spectrum of susceptibility degrees to complicated or severe forms of the disease. In this scenario, variations in genes of the major histocompatibility complex (MHC) associated with host resistance or susceptibility to malaria have been identified and used as markers in host-pathogen interaction studies, mainly those evaluating the impact on the immune response, acquisition of resistance, or increased susceptibility to infection or vulnerability to disease. However, due to the intense selective pressure, number of cases, and mortality rates, the majority of the reported associations reported concerned Plasmodium falciparum malaria. Studies on the MHC polymorphism and its association with Plasmodium vivax, which is the most widespread Plasmodium and the most prevalent species outside the African continent, are less frequent but equally important. Despite punctual contributions, there are accumulated evidences of human genetic control in P. vivax infection and disease. Herein, we review the current knowledge in the field of MHC and derived molecules (HLA Class I, Class II, TNF-α, LTA, BAT1, and CTL4) regarding P. vivax malaria. We discuss particularly the results of P. vivax studies on HLA class I and II polymorphisms in relation to host susceptibility, naturally acquired immune response against specific antigens and the implication of this knowledge to overcome the parasite immune evasion. Finally, the potential impact of such polymorphisms on the development of vaccine candidate antigens against P. vivax will be studied.
Collapse
|
21
|
Lithanatudom P, Wipasa J, Inti P, Chawansuntati K, Svasti S, Fucharoen S, Kangwanpong D, Kampuansai J. Hemoglobin E Prevalence among Ethnic Groups Residing in Malaria-Endemic Areas of Northern Thailand and Its Lack of Association with Plasmodium falciparum Invasion In Vitro. PLoS One 2016; 11:e0148079. [PMID: 26808200 PMCID: PMC4726726 DOI: 10.1371/journal.pone.0148079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/12/2016] [Indexed: 11/18/2022] Open
Abstract
Hemoglobin E (HbE) is one of the most common hemoglobin variants caused by a mutation in the β-globin gene, and found at high frequencies in various Southeast Asian groups. We surveyed HbE prevalence among 8 ethnic groups residing in 5 villages selected for their high period malaria endemicity, and 5 for low endemicity in northern Thailand, in order to uncover factors which may affect genetic persistence of HbE in these groups. We found the overall HbE prevalence 6.7%, with differing frequencies from 0% in the Pwo Karen, the Lawa, and the Skaw Karen to 24% in the Mon. All HbE genes were heterozygous (AE). Differences in HbE prevalence among the studied ethnic groups indirectly documents that ancestries and evolutionary forces, such as drift and admixture, are the important factors in the persistence of HbE distribution in northern Thailand. Furthermore, the presence of HbE in groups of northern Thailand had no effect on the in vitro infectivity and proliferation of Plasmodium falciparum, nor the production of hemozoin, a heme crystal produced by malaria parasites, when compared to normal red-blood-cell controls. Our data may contribute to a better understanding on the persistence of HbE among ethnic groups and its association with malaria.
Collapse
Affiliation(s)
| | - Jiraprapa Wipasa
- Research Institutes for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Pitsinee Inti
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Daoroong Kangwanpong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
22
|
Gaudreault V, Wirbel J, Jardim A, Rohrbach P, Scorza T. Red Blood Cells Preconditioned with Hemin Are Less Permissive to Plasmodium Invasion In Vivo and In Vitro. PLoS One 2015; 10:e0140805. [PMID: 26465787 PMCID: PMC4605744 DOI: 10.1371/journal.pone.0140805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Malaria is a parasitic disease that causes severe hemolytic anemia in Plasmodium-infected hosts, which results in the release and accumulation of oxidized heme (hemin). Although hemin impairs the establishment of Plasmodium immunity in vitro and in vivo, mice preconditioned with hemin develop lower parasitemia when challenged with Plasmodium chabaudi adami blood stage parasites. In order to understand the mechanism accounting for this resistance as well as the impact of hemin on eryptosis and plasma levels of scavenging hemopexin, red blood cells were labeled with biotin prior to hemin treatment and P. c. adami infection. This strategy allowed discriminating hemin-treated from de novo generated red blood cells and to follow the infection within these two populations of cells. Fluorescence microscopy analysis of biotinylated-red blood cells revealed increased P. c. adami red blood cells selectivity and a decreased permissibility of hemin-conditioned red blood cells for parasite invasion. These effects were also apparent in in vitro P. falciparum cultures using hemin-preconditioned human red blood cells. Interestingly, hemin did not alter the turnover of red blood cells nor their replenishment during in vivo infection. Our results assign a function for hemin as a protective agent against high parasitemia, and suggest that the hemolytic nature of blood stage human malaria may be beneficial for the infected host.
Collapse
Affiliation(s)
- Véronique Gaudreault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Jakob Wirbel
- Institute of parasitology, McGill University, Montréal, Québec, Canada
| | - Armando Jardim
- Institute of parasitology, McGill University, Montréal, Québec, Canada
| | - Petra Rohrbach
- Institute of parasitology, McGill University, Montréal, Québec, Canada
| | - Tatiana Scorza
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
23
|
Lelliott PM, McMorran BJ, Foote SJ, Burgio G. The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential? Malar J 2015. [PMID: 26215182 PMCID: PMC4517643 DOI: 10.1186/s12936-015-0809-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As parasites, Plasmodium species depend upon their host for survival. During the blood stage of their life-cycle parasites invade and reside within erythrocytes, commandeering host proteins and resources towards their own ends, and dramatically transforming the host cell. Parasites aptly avoid immune detection by minimizing the exposure of parasite proteins and removing themselves from circulation through cytoadherence. Erythrocytic disorders brought on by host genetic mutations can interfere with one or more of these processes, thereby providing a measure of protection against malaria to the host. This review summarizes recent findings regarding the mechanistic aspects of this protection, as mediated through the parasites interaction with abnormal erythrocytes. These novel findings include the reliance of the parasite on the host enzyme ferrochelatase, and the discovery of basigin and CD55 as obligate erythrocyte receptors for parasite invasion. The elucidation of these naturally occurring malaria resistance mechanisms is increasing the understanding of the host-parasite interaction, and as discussed below, is providing new insights into the development of therapies to prevent this disease.
Collapse
Affiliation(s)
- Patrick M Lelliott
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Brendan J McMorran
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Simon J Foote
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
24
|
Nguyen VH, Sanchaisuriya K, Wongprachum K, Nguyen MD, Phan TTH, Vo VT, Sanchaisuriya P, Fucharoen S, Schelp FP. Hemoglobin Constant Spring is markedly high in women of an ethnic minority group in Vietnam: A community-based survey and hematologic features. Blood Cells Mol Dis 2014; 52:161-5. [DOI: 10.1016/j.bcmd.2013.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
|
25
|
Glushakova S, Balaban A, McQueen PG, Coutinho R, Miller JL, Nossal R, Fairhurst RM, Zimmerberg J. Hemoglobinopathic erythrocytes affect the intraerythrocytic multiplication of Plasmodium falciparum in vitro. J Infect Dis 2014; 210:1100-9. [PMID: 24688070 DOI: 10.1093/infdis/jiu203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The mechanisms by which α-thalassemia and sickle cell traits confer protection from severe Plasmodium falciparum malaria are not yet fully elucidated. We hypothesized that hemoglobinopathic erythrocytes reduce the intraerythrocytic multiplication of P. falciparum, potentially delaying the development of life-threatening parasite densities until parasite clearing immunity is achieved. METHODS We developed a novel in vitro assay to quantify the number of merozoites released from an individual schizont, termed the "intraerythrocytic multiplication factor" (IMF). RESULTS P. falciparum (3D7 line) schizonts produce variable numbers of merozoites in all erythrocyte types tested, with median IMFs of 27, 27, 29, 23, and 23 in control, HbAS, HbSS, and α- and β-thalassemia trait erythrocytes, respectively. IMF correlated strongly (r(2) = 0.97; P < .001) with mean corpuscular hemoglobin concentration, and varied significantly with mean corpuscular volume and hemoglobin content. Reduction of IMFs in thalassemia trait erythrocytes was confirmed using clinical parasite isolates with different IMFs. Mathematical modeling of the effect of IMF on malaria progression indicates that the lower IMF in thalassemia trait erythrocytes limits parasite density and anemia severity over the first 2 weeks of parasite replication. CONCLUSIONS P. falciparum IMF, a parasite heritable virulence trait, correlates with erythrocyte indices and is reduced in thalassemia trait erythrocytes. Parasite IMF should be examined in other low-indices erythrocytes.
Collapse
Affiliation(s)
- Svetlana Glushakova
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health
| | - Amanda Balaban
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health
| | - Philip G McQueen
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health
| | - Rosane Coutinho
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | - Jeffery L Miller
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
| | - Ralph Nossal
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joshua Zimmerberg
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health
| |
Collapse
|
26
|
Gong L, Parikh S, Rosenthal PJ, Greenhouse B. Biochemical and immunological mechanisms by which sickle cell trait protects against malaria. Malar J 2013; 12:317. [PMID: 24025776 PMCID: PMC3847285 DOI: 10.1186/1475-2875-12-317] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/31/2013] [Indexed: 12/18/2022] Open
Abstract
Sickle cell trait (HbAS) is the best-characterized genetic polymorphism known to protect against falciparum malaria. Although the protective effect of HbAS against malaria is well known, the mechanism(s) of protection remain unclear. A number of biochemical and immune-mediated mechanisms have been proposed, and it is likely that multiple complex mechanisms are responsible for the observed protection. Increased evidence for an immune component of protection as well as novel mechanisms, such as enhanced tolerance to disease mediated by HO-1 and reduced parasitic growth due to translocation of host micro-RNA into the parasite, have recently been described. A better understanding of relevant mechanisms will provide valuable insight into the host-parasite relationship, including the role of the host immune system in protection against malaria.
Collapse
Affiliation(s)
- Lauren Gong
- University of California, Box 1234, San Francisco 94143, CA, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits—including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia—are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a “natural experiment” to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the “Gordian knot” of host and parasite interactions to confer malaria protection, and offer a translational model to identify the most critical mechanisms of P. falciparum pathogenesis.
Collapse
|
28
|
Alvarez-Dominguez JR, Amosova O, Fresco JR. Self-catalytic DNA depurination underlies human β-globin gene mutations at codon 6 that cause anemias and thalassemias. J Biol Chem 2013; 288:11581-9. [PMID: 23457306 DOI: 10.1074/jbc.m113.454744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human β-globin gene contains an 18-nucleotide coding strand sequence centered at codon 6 and capable of forming a stem-loop structure that can self-catalyze depurination of the 5'G residue of that codon. The resultant apurinic lesion is subject to error-prone repair, consistent with the occurrence about this codon of mutations responsible for 6 anemias and β-thalassemias and additional substitutions without clinical consequences. The 4-residue loop of this stem-loop-forming sequence shows the highest incidence of mutation across the gene. The loop and first stem base pair-forming residues appeared early in the mammalian clade. The other stem-forming segments evolved more recently among primates, thereby conferring self-depurination capacity at codon 6. These observations indicate a conserved molecular mechanism leading to β-globin variants underlying phenotypic diversity and disease.
Collapse
|
29
|
Balaji SN, Trivedi V. Extracellular methemoglobin primes red blood cell aggregation in malaria: an in vitro mechanistic study. FEBS Lett 2013; 587:350-7. [PMID: 23313944 DOI: 10.1016/j.febslet.2012.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/02/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
Abstract
Toxic byproducts from infected RBC cause rheological alteration and RBC aggregation. Malaria culture supernatant has the ability to exhibit RBC aggregation. Ammonium sulfate fractionation and immunodepletion of methemoglobin from culture supernatant confirms methemoglobin as a major aggregant. In vitro treatment of RBC with methemoglobin induces irreversible high order RBC aggregates, resistant to shear stress and physical forces. Methemoglobin-mediated ROS generation in the external micro-environment to develop oxidative stress close to RBC membrane seems to be responsible for initiating and forming high order RBC aggregates through phosphatidyl-serine externalization. Removal of oxidative stress through antioxidant treatment abolishes high order RBC aggregate formation. In conclusion, we discovered a novel pathway of methemoglobin-mediated RBC aggregation and its potential role in patho-physiological effects during malaria.
Collapse
Affiliation(s)
- S N Balaji
- Malaria Research Group, Department of Biotechnology, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | | |
Collapse
|
30
|
The host genetic diversity in malaria infection. J Trop Med 2012; 2012:940616. [PMID: 23316245 PMCID: PMC3532872 DOI: 10.1155/2012/940616] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/06/2012] [Accepted: 11/19/2012] [Indexed: 02/06/2023] Open
Abstract
Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment.
Collapse
|
31
|
Micale N. Recent advances and perspectives on tropical diseases: Malaria. World J Transl Med 2012; 1:4-19. [DOI: 10.5528/wjtm.v1.i2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Malaria remains a major health problem in the world. It is a neglected disease because it occurs almost exclusively in poor developing countries, which offer negligible marketable and profitable opportunities. Malaria (together with Tuberculosis), is responsible for an unprecedented global health crisis with devastating effects in developing countries. The 2011 Word Malaria Report indicated that 106 countries showed endemic malaria. Malaria control depends mainly on drug treatment, which is increasingly difficult due to the spread of drug resistant parasites and requires expensive drug combinations. Part of the inability to combat this disease is attributed to an incomplete understanding of its pathogenesis and pathophysiology. Improving the knowledge of the underlying pathogenic mechanisms of malaria transmission and of the exclusive metabolic pathways of the parasites (protozoa of the genus Plasmodium), should promote efficient treatment of disease and help the identification of novel targets for potential therapeutic interventions. Moreover, the elucidation of determinants involved in the spread of malaria will provide important information for efficient planning of strategies for targeted control.
Collapse
|
32
|
The emergence and maintenance of sickle cell hotspots in the Mediterranean. INFECTION GENETICS AND EVOLUTION 2012; 12:1543-50. [PMID: 22704979 PMCID: PMC3438445 DOI: 10.1016/j.meegid.2012.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022]
Abstract
Genetic disorders of haemoglobin (haemoglobinopathies), including the thalassaemias and sickle cell anaemia, abound in historically malarious regions, due to the protection they provide against death from severe malaria. Despite the overall spatial correlation between malaria and these disorders, inter-population differences exist in the precise combinations of haemoglobinopathies observed. Greece and Italy present a particularly interesting case study: their high frequencies of beta thalassaemia speak to a history of intense malaria selection, yet they possess very little of the strongly malaria protective mutation responsible for sickle cell anaemia, despite historical migrational links with Africa where high frequencies of sickle cell occur. Twentieth century surveys of beta thalassaemia and sickle cell in Greece, Sicily and Sardinia have revealed striking sickle cell ‘hotspots’ – places where the frequency of sickle cell approaches that seen in Africa while neighbouring populations remain relatively sickle cell free. It remains unclear how these hotspots have been maintained over time without sickle cell spreading throughout the region. Here we use a metapopulation model to show that (i) epistasis between the alpha and beta forms of thalassaemia can restrict the spread of sickle cell through a network of linked subpopulations and (ii) the emergence of sickle cell hotspots requires relatively low levels of gene flow, but the aforementioned epistasis increases the chances of hotspots forming.
Collapse
|
33
|
Moiz B, Hashmi MR, Nasir A, Rashid A, Moatter T. Hemoglobin E syndromes in Pakistani population. BMC BLOOD DISORDERS 2012; 12:3. [PMID: 22443415 PMCID: PMC3329421 DOI: 10.1186/1471-2326-12-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 03/25/2012] [Indexed: 11/19/2022]
Abstract
Background Hemoglobin E is an important hemoglobin variant with a worldwide distribution. A number of hemoglobinopathies have been reported from Pakistan. However a comprehensive description of hemoglobin E syndromes for the country was never made. This study aimed to describe various hemoglobin E disorders based on hematological parameters and chromatography. The sub-aim was to characterize hemoglobin E at molecular level. Methods This was a hospital based study conducted prospectively for a period of one year extending from January 1 to December 31, 2008. EDTA blood samples were analyzed for completed blood counts and hemoglobin variants through automated hematology analyzer and Bio-Rad beta thalassaemia short program respectively. Six samples were randomly selected to characterize HbE at molecular level through RFLP-PCR utilizing MnlI restriction enzyme. Results During the study period, 11403 chromatograms were analyzed and Hb E was detected in 41 (or 0.36%) samples. Different hemoglobin E syndromes identified were HbEA (n = 20 or 49%), HbE/β-thalassemia (n = 14 or 34%), HbEE (n = 6 or 15%) and HbE/HbS (n = 1 or 2%). Compound heterozygosity for HbE and beta thalassaemia was found to be the most severely affected phenotype. RFLP-PCR utilizing MnlI successfully characterized HbE at molecular level in six randomly selected samples. Conclusions Various HbE phenotypes are prevalent in Pakistan with HbEA and HbE/β thalassaemia representing the most common syndromes. Chromatography cannot only successfully identify hemoglobin E but also assist in further characterization into its phenotype including compound heterozygosity. Definitive diagnosis of HbE can easily be achieved through RFLP-PCR.
Collapse
Affiliation(s)
- Bushra Moiz
- Department of Pathology and Microbiology, The Aga Khan University Hospital, Stadium road, Karachi 74800, Pakistan.
| | | | | | | | | |
Collapse
|
34
|
Chen Q, Fabry ME, Rybicki AC, Suzuka SM, Balazs TC, Etzion Z, de Jong K, Akoto EK, Canterino JE, Kaul DK, Kuypers FA, Lefer D, Bouhassira EE, Hirsch RE. A transgenic mouse model expressing exclusively human hemoglobin E: indications of a mild oxidative stress. Blood Cells Mol Dis 2012; 48:91-101. [PMID: 22260787 PMCID: PMC3310900 DOI: 10.1016/j.bcmd.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/04/2011] [Accepted: 11/22/2011] [Indexed: 11/19/2022]
Abstract
Hemoglobin (Hb) E (β26 Glu→Lys) is the most common abnormal hemoglobin (Hb) variant in the world. Homozygotes for HbE are mildly thalassemic as a result of the alternate splice mutation and present with a benign clinical picture (microcytic and mildly anemic) with rare clinical symptoms. Given that the human red blood cell (RBC) contains both HbE and excess α-chains along with minor hemoglobins, the consequence of HbE alone on RBC pathophysiology has not been elucidated. This becomes critical for the highly morbid β(E)-thalassemia disease. We have generated transgenic mice exclusively expressing human HbE (HbEKO) that exhibit the known aberrant splicing of β(E) globin mRNA, but are essentially non-thalassemic as demonstrated by RBC α/β (human) globin chain synthesis. These mice exhibit hematological characteristics similar to presentations in human EE individuals: microcytic RBC with low MCV and MCH but normal MCHC; target RBC; mild anemia with low Hb, HCT and mildly elevated reticulocyte levels and decreased osmotic fragility, indicating altered RBC surface area to volume ratio. These alterations are correlated with a mild RBC oxidative stress indicated by enhanced membrane lipid peroxidation, elevated zinc protoporphyrin levels, and by small but significant changes in cardiac function. The C57 (background) mouse and full KO mouse models expressing HbE with the presence of HbS or HbA are used as controls. In select cases, the HbA full KO mouse model is compared but found to be limited due to its RBC thalassemic characteristics. Since the HbEKO mouse RBC lacks an abundance of excess α-chains that would approximate a mouse thalassemia (or a human thalassemia), the results indicate that the observed in vivo RBC mild oxidative stress arises, at least in part, from the molecular consequences of the HbE mutation.
Collapse
Affiliation(s)
- Qiuying Chen
- Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Mary E. Fabry
- Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Anne C. Rybicki
- Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Medical Center, Bronx, NY
| | - Sandra M. Suzuka
- Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Tatiana C. Balazs
- Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Zipora Etzion
- Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Kitty de Jong
- Children’s Hospital of Oakland, Research Institute, CA
| | - Edna K. Akoto
- Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Joseph E. Canterino
- Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | - Dhananjay K. Kaul
- Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
| | | | - David Lefer
- Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Eric E. Bouhassira
- Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Rhoda Elison Hirsch
- Department of Medicine/Hematology, Albert Einstein College of Medicine, Bronx, NY
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
35
|
Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, Joshi H. The complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar J 2012; 11:29. [PMID: 22289302 PMCID: PMC3342920 DOI: 10.1186/1475-2875-11-29] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/31/2012] [Indexed: 12/02/2022] Open
Abstract
Malaria is a serious parasitic disease in the developing world, causing high morbidity and mortality. The pathogenesis of malaria is complex, and the clinical presentation of disease ranges from severe and complicated, to mild and uncomplicated, to asymptomatic malaria. Despite a wealth of studies on the clinical severity of disease, asymptomatic malaria infections are still poorly understood. Asymptomatic malaria remains a challenge for malaria control programs as it significantly influences transmission dynamics. A thorough understanding of the interaction between hosts and parasites in the development of different clinical outcomes is required. In this review, the problems and obstacles to the study and control of asymptomatic malaria are discussed. The human and parasite factors associated with differential clinical outcomes are described and the management and treatment strategies for the control of the disease are outlined. Further, the crucial gaps in the knowledge of asymptomatic malaria that should be the focus of future research towards development of more effective malaria control strategies are highlighted.
Collapse
Affiliation(s)
- Dolie D Laishram
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Driss A, Hibbert JM, Wilson NO, Iqbal SA, Adamkiewicz TV, Stiles JK. Genetic polymorphisms linked to susceptibility to malaria. Malar J 2011; 10:271. [PMID: 21929748 PMCID: PMC3184115 DOI: 10.1186/1475-2875-10-271] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/19/2011] [Indexed: 12/26/2022] Open
Abstract
The influence of host genetics on susceptibility to Plasmodium falciparum malaria has been extensively studied over the past twenty years. It is now clear that malaria parasites have imposed strong selective forces on the human genome in endemic regions. Different genes have been identified that are associated with different malaria related phenotypes. Factors that promote severity of malaria include parasitaemia, parasite induced inflammation, anaemia and sequestration of parasitized erythrocytes in brain microvasculature. Recent advances in human genome research technologies such as genome-wide association studies (GWAS) and fine genotyping tools have enabled the discovery of several genetic polymorphisms and biomarkers that warrant further study in host-parasite interactions. This review describes and discusses human gene polymorphisms identified thus far that have been shown to be associated with susceptibility or resistance to P. falciparum malaria. Although some polymorphisms play significant roles in susceptibility to malaria, several findings are inconclusive and contradictory and must be considered with caution. The discovery of genetic markers associated with different malaria phenotypes will help elucidate the pathophysiology of malaria and enable development of interventions or cures. Diversity in human populations as well as environmental effects can influence the clinical heterogeneity of malaria, thus warranting further investigations with a goal of developing new interventions, therapies and better management against malaria.
Collapse
Affiliation(s)
- Adel Driss
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Cation Modulation of Hemoglobin Interaction with Sodium n-Dodecyl Sulfate (SDS). II: Calcium Modulation at pH 5.0. Cell Biochem Biophys 2011; 61:573-84. [DOI: 10.1007/s12013-011-9239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Roche CJ, Malashkevich V, Balazs TC, Dantsker D, Chen Q, Moreira J, Almo SC, Friedman JM, Hirsch RE. Structural and functional studies indicating altered redox properties of hemoglobin E: implications for production of bioactive nitric oxide. J Biol Chem 2011; 286:23452-66. [PMID: 21531715 PMCID: PMC3123109 DOI: 10.1074/jbc.m110.183186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 04/28/2011] [Indexed: 12/22/2022] Open
Abstract
Hemoglobin (Hb) E (β-Glu26Lys) remains an enigma in terms of its contributions to red blood cell (RBC) pathophysiological mechanisms; for example, EE individuals exhibit a mild chronic anemia, and HbE/β-thalassemia individuals show a range of clinical manifestations, including high morbidity and death, often resulting from cardiac dysfunction. The purpose of this study was to determine and evaluate structural and functional consequences of the HbE mutation that might account for the pathophysiology. Functional studies indicate minimal allosteric consequence to both oxygen and carbon monoxide binding properties of the ferrous derivatives of HbE. In contrast, redox-sensitive reactions are clearly impacted as seen in the following: 1) the ∼2.5 times decrease in the rate at which HbE catalyzes nitrite reduction to nitric oxide (NO) relative to HbA, and 2) the accelerated rate of reduction of aquometHbE by L-cysteine (L-Cys). Sol-gel encapsulation studies imply a shift toward a higher redox potential for both the T and R HbE structures that can explain the origin of the reduced nitrite reductase activity of deoxyHbE and the accelerated rate of reduction of aquometHbE by cysteine. Deoxy- and CO HbE crystal structures (derived from crystals grown at or near physiological pH) show loss of hydrogen bonds in the microenvironment of βLys-26 and no significant tertiary conformational perturbations at the allosteric transition sites in the R and T states. Together, these data suggest a model in which the HbE mutation, as a consequence of a relative change in redox properties, decreases the overall rate of Hb-mediated production of bioactive NO.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Moreira
- From the Departments of Physiology and Biophysics
| | | | | | - Rhoda Elison Hirsch
- Medicine (Division of Hematology), and
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
39
|
Das B, Sengupta S. Withdrawn: HbE Genotypes and Fertility: A Study on a Tibeto-Burmese Population in Upper Assam, India. Ann Hum Biol 2011; 38:382. [DOI: 10.3109/03014460.2011.559378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Colah R, Gorakshakar A, Nadkarni A. Global burden, distribution and prevention of β-thalassemias and hemoglobin E disorders. Expert Rev Hematol 2011; 3:103-17. [PMID: 21082937 DOI: 10.1586/ehm.09.74] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The β-thalassemias, including the hemoglobin E disorders, are not only common in the Mediterranean region, South-East Asia, the Indian subcontinent and the Middle East but have now become a global problem, spreading to much of Europe, the Americas and Australia owing to migration of people from these regions. Approximately 1.5% of the global population are heterozygotes or carriers of the β-thalassemias. While the overall frequencies of carriers of these disorders are known in most countries, there have been few attempts at micromapping and wherever this has been done, significant variations are seen even within small geographic regions. Thus, the figures for the estimated numbers of births each year of homozygous β-thalassemia and the severe compound states involving other hemoglobin disorders may be an underestimate. Screening strategies have varied from premarital to antenatal in different countries depending on socio-cultural and religious customs in different populations. Prenatal diagnosis programs are ongoing in many countries and the knowledge of the distribution of mutations has facilitated the establishment of successful control programs. Many of these were through North-South partnerships and networking. Yet, there are many countries in Asia where they are lacking, and South-South partnerships are now being developed in South-East Asia and the Indian subcontinent to link centers with expertise to centers where expertise needs to be developed. Although the carrier frequencies will remain unaltered, this will eventually help to bring down the burden of the birth of affected children with β-thalassemias and hemoglobin E disorders in Asia.
Collapse
Affiliation(s)
- Roshan Colah
- National Institute of Immunohaematology, Indian Council of Medical Research ,KEM Hospital Campus, Parel, Mumbai, India.
| | | | | |
Collapse
|
41
|
Quintana-Murci L, Barreiro LB. The role played by natural selection on Mendelian traits in humans. Ann N Y Acad Sci 2011; 1214:1-17. [PMID: 21175682 DOI: 10.1111/j.1749-6632.2010.05856.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detecting whether and how natural selection has targeted regions of the human genome represents a complementary strategy for identifying functionally important loci and variants involved in disease resistance and adaptation to the environment. In contrast with most complex diseases or traits, the genetic architecture of most Mendelian traits is relatively well established. Most mutations associated with Mendelian disease-related traits are highly penetrant and kept at low population frequencies because of the effects of purifying selection. However, this is not always the case. Here, we review several examples of Mendelian mutations-associated with various disease conditions or other traits of anthropological interest-that have increased in frequency in the human population as a result of past positive selection. These examples clearly illustrate the value of a population genetics approach to unravel the biological mechanisms that have been central to our past and present survival against the selective pressures imposed by diseases and other environmental factors.
Collapse
Affiliation(s)
- Lluis Quintana-Murci
- Institut Pasteur, Human Evolutionary Genetics, Department of Genomes and Genetics, Paris, France.
| | | |
Collapse
|
42
|
Cation Modulation of Hemoglobin Interaction with Sodium n-Dodecyl Sulfate (SDS). I: Calcium Modulation at pH 7.20. Cell Biochem Biophys 2010; 60:187-97. [DOI: 10.1007/s12013-010-9139-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Weatherall D, Williams T, Allen S, O’Donnell A. The Population Genetics and Dynamics of the Thalassemias. Hematol Oncol Clin North Am 2010; 24:1021-31. [DOI: 10.1016/j.hoc.2010.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Fischer H, Lutay N, Ragnarsdóttir B, Yadav M, Jönsson K, Urbano A, Al Hadad A, Rämisch S, Storm P, Dobrindt U, Salvador E, Karpman D, Jodal U, Svanborg C. Pathogen specific, IRF3-dependent signaling and innate resistance to human kidney infection. PLoS Pathog 2010; 6:e1001109. [PMID: 20886096 PMCID: PMC2944801 DOI: 10.1371/journal.ppat.1001109] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/17/2010] [Indexed: 11/18/2022] Open
Abstract
The mucosal immune system identifies and fights invading pathogens, while allowing non-pathogenic organisms to persist. Mechanisms of pathogen/non-pathogen discrimination are poorly understood, as is the contribution of human genetic variation in disease susceptibility. We describe here a new, IRF3-dependent signaling pathway that is critical for distinguishing pathogens from normal flora at the mucosal barrier. Following uropathogenic E. coli infection, Irf3(-/-) mice showed a pathogen-specific increase in acute mortality, bacterial burden, abscess formation and renal damage compared to wild type mice. TLR4 signaling was initiated after ceramide release from glycosphingolipid receptors, through TRAM, CREB, Fos and Jun phosphorylation and p38 MAPK-dependent mechanisms, resulting in nuclear translocation of IRF3 and activation of IRF3/IFNβ-dependent antibacterial effector mechanisms. This TLR4/IRF3 pathway of pathogen discrimination was activated by ceramide and by P-fimbriated E. coli, which use ceramide-anchored glycosphingolipid receptors. Relevance of this pathway for human disease was supported by polymorphic IRF3 promoter sequences, differing between children with severe, symptomatic kidney infection and children who were asymptomatic bacterial carriers. IRF3 promoter activity was reduced by the disease-associated genotype, consistent with the pathology in Irf3(-/-) mice. Host susceptibility to common infections like UTI may thus be strongly influenced by single gene modifications affecting the innate immune response.
Collapse
MESH Headings
- Adult
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Case-Control Studies
- Cell Nucleus/metabolism
- Ceramides/metabolism
- Child
- Escherichia coli/pathogenicity
- Escherichia coli Infections/etiology
- Escherichia coli Infections/mortality
- Escherichia coli Infections/prevention & control
- Fimbriae, Bacterial
- Gene Expression Profiling
- Humans
- Immunity, Innate/physiology
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/metabolism
- Interferon Regulatory Factor-3/physiology
- Kidney/metabolism
- Kidney/pathology
- Kidney/virology
- Kidney Neoplasms/etiology
- Kidney Neoplasms/mortality
- Kidney Neoplasms/prevention & control
- Lung Neoplasms/etiology
- Lung Neoplasms/mortality
- Lung Neoplasms/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Phosphorylation
- Polymorphism, Genetic/genetics
- Promoter Regions, Genetic/genetics
- Prospective Studies
- Protein Transport
- Pyelonephritis/etiology
- Pyelonephritis/mortality
- Pyelonephritis/pathology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/metabolism
- Tumor Cells, Cultured
- Urinary Tract Infections/etiology
- Urinary Tract Infections/mortality
- Urinary Tract Infections/prevention & control
Collapse
Affiliation(s)
- Hans Fischer
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Nataliya Lutay
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bryndís Ragnarsdóttir
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Manisha Yadav
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Klas Jönsson
- Singapore Immunology Network (SIgN), Biomedical Sciences Institutes, Agency for Science, Technology, and Research (A*STAR), Immunos, BIOPOLIS, Singapore, Singapore
| | - Alexander Urbano
- Singapore Immunology Network (SIgN), Biomedical Sciences Institutes, Agency for Science, Technology, and Research (A*STAR), Immunos, BIOPOLIS, Singapore, Singapore
| | - Ahmed Al Hadad
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sebastian Rämisch
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Petter Storm
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ulrich Dobrindt
- Institute for Molecular Biology of Infectious Diseases, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Ellaine Salvador
- Institute for Molecular Biology of Infectious Diseases, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, and Lund University Hospital, Lund, Sweden
| | - Ulf Jodal
- Pediatric-Uronephrology Center, Queen Silvia Children's Hospital, University of Gothenburg, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
- Singapore Immunology Network (SIgN), Biomedical Sciences Institutes, Agency for Science, Technology, and Research (A*STAR), Immunos, BIOPOLIS, Singapore, Singapore
- * E-mail:
| |
Collapse
|
45
|
López C, Saravia C, Gomez A, Hoebeke J, Patarroyo MA. Mechanisms of genetically-based resistance to malaria. Gene 2010; 467:1-12. [PMID: 20655368 DOI: 10.1016/j.gene.2010.07.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 07/13/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
Malaria remains one of the most prevalent parasitoses worldwide. About 350 to 500 million febrile episodes are observed yearly in African children alone and more than 1 million people die because of malaria each year. Multiple factors have hampered the effective control of this disease, some of which include the complex biology of the Plasmodium parasites, their high polymorphism and their increasingly high resistance to antimalarial drugs, mainly in endemic regions. The ancient interaction between malarial parasites and humans has led to the fixation in the population of several inherited alterations conferring protection against malaria. Some of the mechanisms underlying protection against this disease are described in this review for hemoglobin-inherited disorders (thalassemia, sickle-cell trait, HbC and HbE), erythrocyte polymorphisms (ovalocytosis and Duffy blood group), enzymopathies (G6PD deficiency and PK deficiency) and immunogenetic variants (HLA alleles, complement receptor 1, NOS2, tumor necrosis factor-α promoter and chromosome 5q31-q33 polymorphisms).
Collapse
Affiliation(s)
- Carolina López
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No 26-20, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
46
|
Abstract
The relative contribution of founder effects and natural selection to the observed distribution of human blood groups has been debated since blood group frequencies were shown to differ between populations almost a century ago. Advances in our understanding of the migration patterns of early humans from Africa to populate the rest of the world obtained through the use of Y chromosome and mtDNA markers do much to inform this debate. There are clear examples of protection against infectious diseases from inheritance of polymorphisms in genes encoding and regulating the expression of ABH and Lewis antigens in bodily secretions particularly in respect of Helicobacter pylori, norovirus, and cholera infections. However, available evidence suggests surviving malaria is the most significant selective force affecting the expression of blood groups. Red cells lacking or having altered forms of blood group-active molecules are commonly found in regions of the world in which malaria is endemic, notably the Fy(a-b-) phenotype and the S-s- phenotype in Africa and the Ge- and SAO phenotypes in South East Asia. Founder effects provide a more convincing explanation for the distribution of the D- phenotype and the occurrence of hemolytic disease of the fetus and newborn in Europe and Central Asia.
Collapse
|
47
|
Lederer CW, Basak AN, Aydinok Y, Christou S, El-Beshlawy A, Eleftheriou A, Fattoum S, Felice AE, Fibach E, Galanello R, Gambari R, Gavrila L, Giordano PC, Grosveld F, Hassapopoulou H, Hladka E, Kanavakis E, Locatelli F, Old J, Patrinos GP, Romeo G, Taher A, Traeger-Synodinos J, Vassiliou P, Villegas A, Voskaridou E, Wajcman H, Zafeiropoulos A, Kleanthous M. An electronic infrastructure for research and treatment of the thalassemias and other hemoglobinopathies: the Euro-mediterranean ITHANET project. Hemoglobin 2010; 33:163-76. [PMID: 19657830 DOI: 10.1080/03630260903089177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hemoglobin (Hb) disorders are common, potentially lethal monogenic diseases, posing a global health challenge. With worldwide migration and intermixing of carriers, demanding flexible health planning and patient care, hemoglobinopathies may serve as a paradigm for the use of electronic infrastructure tools in the collection of data, the dissemination of knowledge, the harmonization of treatment, and the coordination of research and preventive programs. ITHANET, a network covering thalassemias and other hemoglobinopathies, comprises 26 organizations from 16 countries, including non-European countries of origin for these diseases (Egypt, Israel, Lebanon, Tunisia and Turkey). Using electronic infrastructure tools, ITHANET aims to strengthen cross-border communication and data transfer, cooperative research and treatment of thalassemia, and to improve support and information of those affected by hemoglobinopathies. Moreover, the consortium has established the ITHANET Portal, a novel web-based instrument for the dissemination of information on hemoglobinopathies to researchers, clinicians and patients. The ITHANET Portal is a growing public resource, providing forums for discussion and research coordination, and giving access to courses and databases organized by ITHANET partners. Already a popular repository for diagnostic protocols and news related to hemoglobinopathies, the ITHANET Portal also provides a searchable, extendable database of thalassemia mutations and associated background information. The experience of ITHANET is exemplary for a consortium bringing together disparate organizations from heterogeneous partner countries to face a common health challenge. The ITHANET Portal as a web-based tool born out of this experience amends some of the problems encountered and facilitates education and international exchange of data and expertise for hemoglobinopathies.
Collapse
Affiliation(s)
- Carsten W Lederer
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Barreiro LB, Quintana-Murci L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 2009; 11:17-30. [PMID: 19953080 DOI: 10.1038/nrg2698] [Citation(s) in RCA: 364] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pathogens have always been a major cause of human mortality, so they impose strong selective pressure on the human genome. Data from population genetic studies, including genome-wide scans for selection, are providing important insights into how natural selection has shaped immunity and host defence genes in specific human populations and in the human species as a whole. These findings are helping to delineate genes that are important for host defence and to increase our understanding of how past selection has had an impact on disease susceptibility in modern populations. A tighter integration between population genetic studies and immunological phenotype studies is now necessary to reveal the mechanisms that have been crucial for our past and present survival against infection.
Collapse
Affiliation(s)
- Luis B Barreiro
- Human Evolutionary Genetics, Institut Pasteur, Centre National de la Recherche Scientifique URA3012, Paris 75015, France
| | | |
Collapse
|
49
|
Gallo V, Schwarzer E, Rahlfs S, Schirmer RH, van Zwieten R, Roos D, Arese P, Becker K. Inherited glutathione reductase deficiency and Plasmodium falciparum malaria--a case study. PLoS One 2009; 4:e7303. [PMID: 19806191 PMCID: PMC2751828 DOI: 10.1371/journal.pone.0007303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 09/10/2009] [Indexed: 12/03/2022] Open
Abstract
In Plasmodium falciparum-infected red blood cells (RBCs), the flavoenzyme glutathione reductase (GR) regenerates reduced glutathione, which is essential for antioxidant defense. GR utilizes NADPH produced in the pentose phosphate shunt by glucose-6-phosphate dehydrogenase (G6PD). Thus, conditions affecting host G6PD or GR induce increased sensitivity to oxidants. Hereditary G6PD deficiency is frequent in malaria endemic areas and provides protection against severe malaria. Furthermore, GR deficiency resulting from insufficient saturation of the enzyme with its prosthetic group FAD is common. Based on these naturally occurring phenomena, GR of malaria parasites and their host cells represent attractive antimalarial drug targets. Recently we were given the opportunity to examine invasion, growth, and drug sensitivity of three P. falciparum strains (3D7, K1, and Palo Alto) in the RBCs from three homozygous individuals with total GR deficiency resulting from mutations in the apoprotein. Invasion or growth in the GR-deficient RBCs was not impaired for any of the parasite strains tested. Drug sensitivity to chloroquine, artemisinin, and methylene blue was comparable to parasites grown in GR-sufficient RBCs and sensitivity towards paraquat and sodium nitroprusside was only slightly enhanced. In contrast, membrane deposition of hemichromes as well as the opsonizing complement C3b fragments and phagocytosis were strongly increased in ring-infected RBCs of the GR-deficient individuals compared to ring-infected normal RBCs. Also, in one of the individuals, membrane-bound autologous IgGs were significantly enhanced. Thus, based on our in vitro data, GR deficiency and drug-induced GR inhibition may protect from malaria by inducing enhanced ring stage phagocytosis rather than by impairing parasite growth directly.
Collapse
Affiliation(s)
- Valentina Gallo
- Dipartimento di Genetica, Biologia e Biochimica, University of Turin, Turin, Italy
| | - Evelin Schwarzer
- Dipartimento di Genetica, Biologia e Biochimica, University of Turin, Turin, Italy
| | - Stefan Rahlfs
- Interdisziplinäres Forschungszentrum, Gießen University, Gießen, Germany
| | - R. Heiner Schirmer
- Biochemie-Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Rob van Zwieten
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Paolo Arese
- Dipartimento di Genetica, Biologia e Biochimica, University of Turin, Turin, Italy
| | - Katja Becker
- Interdisziplinäres Forschungszentrum, Gießen University, Gießen, Germany
- * E-mail:
| |
Collapse
|
50
|
Wellems TE, Hayton K, Fairhurst RM. The impact of malaria parasitism: from corpuscles to communities. J Clin Invest 2009; 119:2496-505. [PMID: 19729847 DOI: 10.1172/jci38307] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malaria continues to exert a tremendous health burden on human populations, reflecting astonishingly successful adaptations of the causative Plasmodium parasites. We discuss here how this burden has driven the natural selection of numerous polymorphisms in the genes encoding hemoglobin and other erythrocyte proteins and some effectors of immunity. Plasmodium falciparum, the most deadly parasite species in humans, displays a vigorous system of antigen variation to counter host defenses and families of functionally redundant ligands to invade human cells. Advances in genetics and genomics are providing fresh insights into the nature of these evolutionary adaptations, processes of parasite transmission and infection, and the difficult challenges of malaria control.
Collapse
Affiliation(s)
- Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892-8132, USA.
| | | | | |
Collapse
|