1
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Zhang Y, Wang Y, Zhao Z, Peng W, Wang P, Xu X, Zhao C. Glutaminyl cyclases, the potential targets of cancer and neurodegenerative diseases. Eur J Pharmacol 2022; 931:175178. [DOI: 10.1016/j.ejphar.2022.175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
3
|
Watanabe T. Approaches of the Innate Immune System to Ameliorate Adaptive Immunotherapy for B-Cell Non-Hodgkin Lymphoma in Their Microenvironment. Cancers (Basel) 2021; 14:cancers14010141. [PMID: 35008305 PMCID: PMC8750340 DOI: 10.3390/cancers14010141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
A dominant paradigm being developed in immunotherapy for hematologic malignancies is of adaptive immunotherapy that involves chimeric antigen receptor (CAR) T cells and bispecific T-cell engagers. CAR T-cell therapy has yielded results that surpass those of the existing salvage immunochemotherapy for patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) after first-line immunochemotherapy, while offering a therapeutic option for patients with follicular lymphoma (FL) and mantle cell lymphoma (MCL). However, the role of the innate immune system has been shown to prolong CAR T-cell persistence. Cluster of differentiation (CD) 47-blocking antibodies, which are a promising therapeutic armamentarium for DLBCL, are novel innate immune checkpoint inhibitors that allow macrophages to phagocytose tumor cells. Intratumoral Toll-like receptor 9 agonist CpG oligodeoxynucleotide plays a pivotal role in FL, and vaccination may be required in MCL. Additionally, local stimulator of interferon gene agonists, which induce a systemic anti-lymphoma CD8+ T-cell response, and the costimulatory molecule 4-1BB/CD137 or OX40/CD134 agonistic antibodies represent attractive agents for dendritic cell activations, which subsequently, facilitates initiation of productive T-cell priming and NK cells. This review describes the exploitation of approaches that trigger innate immune activation for adaptive immune cells to operate maximally in the tumor microenvironment of these lymphomas.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu City 514-8507, Japan
| |
Collapse
|
4
|
Suter EC, Schmid EM, Harris AR, Voets E, Francica B, Fletcher DA. Antibody:CD47 ratio regulates macrophage phagocytosis through competitive receptor phosphorylation. Cell Rep 2021; 36:109587. [PMID: 34433055 PMCID: PMC8477956 DOI: 10.1016/j.celrep.2021.109587] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/19/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer immunotherapies often modulate macrophage effector function by introducing either targeting antibodies that activate Fcγ receptors (FcγRs) or blocking antibodies that disrupt inhibitory SIRPα-CD47 engagement. However, how these competing signals are integrated is poorly understood, raising questions about how to effectively titrate immune responses. Here, we find that macrophage phagocytic decisions are regulated by the ratio of activating ligand to inhibitory ligand over a broad range of absolute molecular densities. Using both endogenous and chimeric receptors, we show that activating:inhibitory ligand ratios of at least 10:1 are required to promote phagocytosis of model antibody-opsonized CD47-inhibited targets and that lowering that ratio reduces FcγR phosphorylation because of inhibitory phosphatases recruited to CD47-bound SIRPα. We demonstrate that ratiometric signaling is critical for phagocytosis of tumor cells and can be modified by blocking SIRPα, indicating that balancing targeting and blocking antibodies may be important for controlling macrophage phagocytosis in cancer immunotherapy.
Collapse
Affiliation(s)
- Emily C Suter
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA
| | - Eva M Schmid
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew R Harris
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
| | - Erik Voets
- Aduro Biotech Europe, Oss, the Netherlands
| | | | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, CA, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Kelley SM, Ravichandran KS. Putting the brakes on phagocytosis: "don't-eat-me" signaling in physiology and disease. EMBO Rep 2021; 22:e52564. [PMID: 34041845 DOI: 10.15252/embr.202152564] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Timely removal of dying or pathogenic cells by phagocytes is essential to maintaining host homeostasis. Phagocytes execute the clearance process with high fidelity while sparing healthy neighboring cells, and this process is at least partially regulated by the balance of "eat-me" and "don't-eat-me" signals expressed on the surface of host cells. Upon contact, eat-me signals activate "pro-phagocytic" receptors expressed on the phagocyte membrane and signal to promote phagocytosis. Conversely, don't-eat-me signals engage "anti-phagocytic" receptors to suppress phagocytosis. We review the current knowledge of don't-eat-me signaling in normal physiology and disease contexts where aberrant don't-eat-me signaling contributes to pathology.
Collapse
Affiliation(s)
- Shannon M Kelley
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,VIB-UGent Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Hatterer E, Chauchet X, Richard F, Barba L, Moine V, Chatel L, Broyer L, Pontini G, Bautzova T, Juan F, Calloud S, Bosson N, Charreton M, Masternak K, Buatois V, Shang L. Targeting a membrane-proximal epitope on mesothelin increases the tumoricidal activity of a bispecific antibody blocking CD47 on mesothelin-positive tumors. MAbs 2021; 12:1739408. [PMID: 32191151 PMCID: PMC7153835 DOI: 10.1080/19420862.2020.1739408] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein overexpressed in several solid malignancies, including gastric, lung, mesothelioma, pancreatic and ovarian cancers. While several MSLN-targeting therapeutic approaches are in development, only limited efficacy has been achieved in patients. A potential shortcoming of several described antibody-based approaches is that they target the membrane distal region of MSLN and, additionally, are known to be handicapped by the high levels of circulating soluble MSLN in patients. We show here, using monoclonal antibodies (mAbs) targeting different MSLN-spanning epitopes, that the membrane-proximal region resulted in more efficient killing of MSLN-positive tumor cells in antibody-dependent cell-mediated cytotoxicity (ADCC) assays. Surprisingly, no augmented killing was observed in antibody-dependent cellular phagocytosis (ADCP) by mAbs targeting this membrane-proximal region. To further increase the ADCP potential, we, therefore, generated bispecific antibodies (bsAbs) coupling a high-affinity MSLN binding arm to a blocking CD47 arm. Here, targeting the membrane-proximal domain of MSLN demonstrated enhanced ADCP activity compared to membrane-distal domains when the bsAbs were used in in vitro phagocytosis killing assays. Importantly, the superior anti-tumor activity was also translated in xenograft tumor models. Furthermore, we show that the bsAb approach targeting the membrane-proximal epitope of MSLN optimized ADCC activity by augmenting FcγR-IIIA activation and enhanced ADCP via a more efficient blockade of the CD47/SIRPα axis.
Collapse
Affiliation(s)
- Eric Hatterer
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Xavier Chauchet
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Françoise Richard
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Leticia Barba
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Valéry Moine
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Laurence Chatel
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Lucile Broyer
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | | | - Tereza Bautzova
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Flora Juan
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Sebastien Calloud
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Nicolas Bosson
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Maud Charreton
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | | | - Vanessa Buatois
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Limin Shang
- Light Chain Bioscience, Novimmune S.A., Plan-les-Ouates, Switzerland
| |
Collapse
|
7
|
Wißfeld J, Nozaki I, Mathews M, Raschka T, Ebeling C, Hornung V, Brüstle O, Neumann H. Deletion of Alzheimer's disease-associated CD33 results in an inflammatory human microglia phenotype. Glia 2021; 69:1393-1412. [PMID: 33539598 DOI: 10.1002/glia.23968] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies demonstrated that polymorphisms in the CD33/sialic acid-binding immunoglobulin-like lectin 3 gene are associated with late-onset Alzheimer's disease (AD). CD33 is expressed on myeloid immune cells and mediates inhibitory signaling through protein tyrosine phosphatases, but the exact function of CD33 in microglia is still unknown. Here, we analyzed CD33 knockout human THP1 macrophages and human induced pluripotent stem cell-derived microglia for immunoreceptor tyrosine-based activation motif pathway activation, cytokine transcription, phagocytosis, and phagocytosis-associated oxidative burst. Transcriptome analysis of the macrophage lines showed that knockout of CD33 as well as knockdown of the CD33 signaling-associated protein tyrosine phosphatase, nonreceptor type 6 (PTPN6) led to constitutive activation of inflammation-related pathways. Moreover, deletion of CD33 or expression of Exon 2-deleted CD33 (CD33ΔE2 /CD33m) led to increased phosphorylation of the kinases spleen tyrosine kinase (SYK) and extracellular signal-regulated kinase 1 and 2 (ERK1 and 2). Transcript analysis by quantitative real-time polymerase chain reaction confirmed increased levels of interleukin (IL) 1B, IL8, and IL10 after knockout of CD33 in macrophages and microglia. In addition, upregulation of the gene transcripts of the AD-associated phosphatase INPP5D was observed after knockout of CD33. Functional analysis of macrophages and microglia showed that phagocytosis of aggregated amyloid-β1-42 and bacterial particles were increased after knockout of CD33 or CD33ΔE2 expression and knockdown of PTPN6. Furthermore, the phagocytic oxidative burst during uptake of amyloid-β1-42 or bacterial particles was increased after CD33 knockout but not in CD33ΔE2 -expressing microglia. In summary, deletion of CD33 or expression of CD33ΔE2 in human macrophages and microglia resulted in putative beneficial phagocytosis of amyloid β1-42 , but potentially detrimental oxidative burst and inflammation, which was absent in CD33ΔE2 -expressing microglia.
Collapse
Affiliation(s)
- Jannis Wißfeld
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Ichiro Nozaki
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mona Mathews
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany
| | - Tamara Raschka
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
| | - Christian Ebeling
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Chen YCE, Burgess M, Mapp S, Mollee P, Gill D, Blumenthal A, Saunders NA. SIRPα Suppresses Response to Therapeutic Antibodies by Nurse Like Cells From Chronic Lymphocytic Leukemia Patients. Front Immunol 2021; 11:610523. [PMID: 33552071 PMCID: PMC7859087 DOI: 10.3389/fimmu.2020.610523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/07/2020] [Indexed: 02/04/2023] Open
Abstract
Targeted antibody therapies improve outcomes for chronic lymphocytic leukemia (CLL) patients. However, resistance often develops. We have previously shown that resistance to therapeutic antibodies, by monocyte derived macrophages (referred to as nurse like cells, NLCs), from CLL patients is characterized by suppression of antibody dependent phagocytosis (ADP). The mechanism(s) contributing to the muted ADP responses remain unresolved. In this regard, an innate immune checkpoint was recently described that uses the CD47:SIRPα axis to suppress phagocytic responses by macrophages. In this study we examine whether the SIRPα axis regulates ADP responses to the anti-CD20 antibody, obinutuzumab, by NLCs. Using siRNA depletion strategies we show that SIRPα is a suppressor of ADP responses. Moreover, we show that this innate immune checkpoint contributes to the resistance phenotype in NLCs derived from CLL patients. Finally, we show that SIRPα suppression is mediated via the phosphatase, Shp1, which in turn suppresses SYK-dependent activation of ADP. Thus, we identify a druggable pathway that could be exploited to enhance sensitivity to existing therapeutic antibodies used in CLL. This is the first study to show that activation of the CD47:SIRPα innate immune checkpoint contributes to ADP resistance in NLCs from CLL patients.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/pharmacology
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- CD47 Antigen/genetics
- Cells, Cultured
- Immunity, Innate/drug effects
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Phagocytosis/drug effects
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Syk Kinase/metabolism
Collapse
Affiliation(s)
- Yu-Chen Enya Chen
- Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Melinda Burgess
- Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
- Cancer Services Unit, Department of Haematology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Sally Mapp
- Cancer Services Unit, Department of Haematology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Translational Research Institute, University of Queensland School of Medicine, Woolloongabba, QLD, Australia
| | - Peter Mollee
- Cancer Services Unit, Department of Haematology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Devinder Gill
- Cancer Services Unit, Department of Haematology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Antje Blumenthal
- Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas A. Saunders
- Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
- Translational Research Institute, University of Queensland School of Medicine, Woolloongabba, QLD, Australia
| |
Collapse
|
9
|
Sierra-López F, Baylón-Pacheco L, Vanegas-Villa SC, Rosales-Encina JL. Characterization of low molecular weight protein tyrosine phosphatases of Entamoeba histolytica. Biochimie 2021; 180:43-53. [PMID: 33122104 DOI: 10.1016/j.biochi.2020.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Entamoeba histolytica is an intestinal protozoan parasite of humans and is endemic in developing countries. E. histolytica has two low molecular weight protein tyrosine phosphatase (LMW-PTP) genes, EhLMW-PTP1 and EhLMW-PTP2, which are expressed in cultured trophozoites, clinical isolates, and cysts. The amino acid sequences of proteins EhLMW-PTP1 and EhLMW-PTP2 showed only one amino acid difference between them at position A85V, respectively. Both genes are expressed in cultured trophozoites, mainly EhLMW-PTP2, and in trophozoites recovered from amoebic liver abscess, the expression of EhLMW-PTP1 is downregulated. We cloned the two genes and purified the corresponding recombinant (rEhLMW-PTPs) proteins. Antibodies anti-rEhLMW-PTP2 showed that during red blood cells uptake by E. histolytica, the EhLMW-PTPs were found in the phagocytic cups based on analysis of fluorescence signals. On the other hand, rEhLMW-PTPs showed an optimum phosphatase activity at pH 6.0 with p-nitrophenyl phosphate as the substrate. They dephosphorylate phosphotyrosine and 3-O-methylfluorescein phosphate, but not phosphoserine or phosphothreonine, and the enzymatic activity is inhibited by orthovanadate. rEhLMW-PTP1 and rEhLMW-PTP2 exhibited optimum temperatures of activities at 60 °C and 58 °C, respectively, with high thermal stability at 50 °C. Also, the rEhLMW-PTPs showed high specific activities and specific km value with pNPP or OMFP as the substrates at the physiological temperature (37 °C).
Collapse
Affiliation(s)
- Francisco Sierra-López
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| | - Lidia Baylón-Pacheco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| | - Sonia Cynthia Vanegas-Villa
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de, Mexico.
| | - José Luis Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| |
Collapse
|
10
|
Jalil AR, Hayes BH, Andrechak JC, Xia Y, Chenoweth DM, Discher DE. Multivalent, Soluble Nano-Self Peptides Increase Phagocytosis of Antibody-Opsonized Targets while Suppressing "Self" Signaling. ACS NANO 2020; 14:15083-15093. [PMID: 33186026 PMCID: PMC8489566 DOI: 10.1021/acsnano.0c05091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Macrophages engulf "foreign" cells and particles, but phagocytosis of healthy cells and cancer cells is inhibited by expression of the ubiquitous membrane protein CD47 which binds SIRPα on macrophages to signal "self". Motivated by some clinical efficacy of anti-CD47 against liquid tumors and based on past studies of CD47-derived polypeptides on particles that inhibited phagocytosis of the particles, here we design soluble, multivalent peptides to bind and block SIRPα. Bivalent and tetravalent nano-Self peptides prove more potent (Keff ∼ 10 nM) than monovalent 8-mers as agonists for phagocytosis of antibody opsonized cells, including cancer cells. Multivalent peptides also outcompete soluble CD47 binding to human macrophages, consistent with SIRPα binding, and the peptides suppress phosphotyrosine in macrophages, consistent with inhibition of SIRPα's "self" signaling. Peptides exhibit minimal folding, but functionality suggests an induced fit into SIRPα's binding pocket. Pre-clinical studies in mice indicate safety, with no anemia that typifies clinical infusions of anti-CD47. Multivalent nano-Self peptides thus constitute an alternative approach to promoting phagocytosis of "self", including cancer cells targeted clinically.
Collapse
|
11
|
Nagata S, Segawa K. Sensing and clearance of apoptotic cells. Curr Opin Immunol 2020; 68:1-8. [PMID: 32853880 DOI: 10.1016/j.coi.2020.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Macrophages specifically engulf apoptotic cells but not healthy cells. Phosphatidylserine (PtdSer) is localized at the inner leaflet of plasma membranes as a result of the action of flippases (ATP11A and 11C). When cells undergo apoptosis, caspase 3 cleaves and inactivates the flippases, while simultaneously cleaving XKR8 to activate its phospholipid scramblase activity. PtdSer is thus swiftly and irreversibly exposed to the cell surface as an 'eat me' signal. Tissue resident macrophages recognize the apoptotic cells using a PtdSer-receptor TIM4 and engulf them with TAM tyrosine-kinase receptors, and integrins. The PtdSer 'eat me' signal appears to override 'don't eat me' signals in most cases.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Katsumori Segawa
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Targeting an adenosine-mediated "don't eat me signal" augments anti-lymphoma immunity by anti-CD20 monoclonal antibody. Leukemia 2020; 34:2708-2721. [PMID: 32269319 DOI: 10.1038/s41375-020-0811-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
A growing body of evidence suggests that macrophage immune checkpoint molecules are potential targets in the era of cancer immunotherapy. Here we showed that extracellular adenosine, an abundant metabolite in the tumor microenvironment, critically impedes the therapeutic efficacy of anti-CD20 monoclonal antibodies (mAbs) against B-cell lymphoma. Using a syngeneic B-cell lymphoma model, we showed that host deficiency of adenosine 2A receptor (A2AR), but not A2BR, remarkably improved lymphoma control by anti-CD20 mAb therapy. Conditional deletion of A2AR in myeloid cells, and to a lesser extent in NK cells, augmented therapeutic efficacy of anti-CD20 mAb. Indeed, adenosine signaling impaired antibody-mediated cellular phagocytosis (ADCP) by macrophages and limited the generation of anti-lymphoma CD8+ T cells. Pharmacological inhibition of A2AR overcame the adenosine-mediated negative regulation of ADCP by rituximab in a xeno-transplanted lymphoma model. Moreover, aberrant overexpression of CD39, an apical ecto-enzyme for adenosine generation, showed a negative impact on prognosis in patients with diffuse large B-cell lymphoma, as well as on preclinical efficacy of rituximab. Together, adenosine acts as a "don't eat me signal", and may be a potential target to harness anti-lymphoma immunity.
Collapse
|
13
|
Wieland A, Ahmed R. Fc Receptors in Antimicrobial Protection. Curr Top Microbiol Immunol 2019; 423:119-150. [DOI: 10.1007/82_2019_154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Iizuka A, Segawa S, Kondo Y, Kaneko S, Yokosawa M, Furuyama K, Miki H, Tahara-Hanaoka S, Shibuya A, Tsuboi H, Goto D, Matsumoto I, Shibayama S, Sumida T. Allergy inhibitory receptor-1 inhibits autoantibody production via upregulation of apoptotic debris clearance by macrophages. Int J Rheum Dis 2018; 21:2071-2078. [PMID: 30556363 DOI: 10.1111/1756-185x.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 11/26/2022]
Abstract
AIM Allergy inhibitory receptor-1 (Allergin-1) is a newly identified immune regulatory molecule thought to influence autoantibody production. Autoantibody production, like that observed in Allergin-1-deficient mice, is crucial in the pathogenesis of several autoimmune diseases such as systemic lupus erythematosus. The purpose of this study is to clarify the regulatory role of Allergin-1-mediated autoantibody production using a murine model of thymocytic anaphylaxis. METHODS C57BL/6 (WT) and Allergin-1-deficient mice were treated with apoptotic cells from naive thymocytes stimulated by dexamethasone. Antibody titers of total or immunoglobulin G (IgG) subclass of anti-double-stranded DNA (anti-dsDNA) and anti-histone antibody from serum were measured using an enzyme-linked immunosorbent assay. Macrophages from wild-type (WT) or Allergin-1-deficient mice were co-cultured with fluorescence-labeled apoptotic thymocytes or fluorogenic reagent and resultant phagocytic activity was quantified by with flow cytometry. RESULTS After apoptotic cells injection, antibody titers of total and IgG3 anti-dsDNA and total anti-histone from serum were significantly increased in Allergin-1-deficient versus WT mice. Phagocytic activity was significantly lower in macrophages from Allergin-1-deficient mice versus WT mice. CONCLUSION Allergin-1 might play an inhibitory role in autoantibody production via upregulation of macrophage phagocytosis.
Collapse
Affiliation(s)
- Akira Iizuka
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiji Segawa
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shunta Kaneko
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Yokosawa
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kotona Furuyama
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruka Miki
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoko Tahara-Hanaoka
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Goto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shiro Shibayama
- Research Center of Immunology, ONO Pharmaceutical Co. Ltd., Osaka, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
15
|
Graunaite I, Lodiene G, Arandarcikaite O, Pukalskas A, Machiulskiene V. Leachables and cytotoxicity of root canal sealers. J Oral Sci 2018; 60:381-387. [PMID: 30101818 DOI: 10.2334/josnusd.17-0173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This in vitro study aimed to detect leaching components from an epoxy resin- and a methacrylate-based endodontic sealer and correlate them to cytotoxicity induced by material extracts for up to 36 weeks. We qualitatively determined the substances released by aged AH Plus and RealSeal SE specimens at seven intervals between 0 and 36 weeks. Quantification was performed by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS). We determined the viability of murine macrophage J774 cells after 24 h exposure to material extracts, at each interval, using a fluorescence staining/microscopy method. The leachables detected were 1-adamantylamine and bisphenol A diglycidyl ether from AH Plus and N-(p-tolyl) diethanolamine and caprolactone-2-(methacryloyloxy) ethyl ester from RealSeal SE. The largest UPLC/MS chromatogram peak areas of the leachables were detected within 72 h. Induction of cytotoxicity after exposure to AH Plus and RealSeal SE extracts coincided with leachant detected within the first 72 and 24 h, respectively. The clinical impact of the cytotoxicity due to resin-based endodontic sealers is unknown.
Collapse
Affiliation(s)
- Indre Graunaite
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences
| | - Greta Lodiene
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences
| | - Odeta Arandarcikaite
- Institute of Neurosciences, Laboratory of Biochemistry, Lithuanian University of Health Sciences
| | - Audrius Pukalskas
- Department of Food Science and Technology, Kaunas University of Technologies
| | - Vita Machiulskiene
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences
| |
Collapse
|
16
|
Lai HY, Hsu LW, Tsai HH, Lo YC, Yang SH, Liu PY, Wang JM. CCAAT/enhancer-binding protein delta promotes intracellular lipid accumulation in M1 macrophages of vascular lesions. Cardiovasc Res 2018; 113:1376-1388. [PMID: 28859294 DOI: 10.1093/cvr/cvx134] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/09/2017] [Indexed: 12/15/2022] Open
Abstract
Aims Lipid homeostasis is reprogrammed in the presence of inflammation, which results in excessive lipid accumulation in macrophages, and leads to the formation of lipid-laden foam cells. We aimed to link an inflammation-responsive transcription factor CCAAT/enhancer-binding protein delta (CEBPD) with polarized macrophages and dissect its contribution to lipid accumulation. Methods and results We found that CEBPD protein colocalized with macrophages in human and mouse (C57BL/6, Apoe-/-) atherosclerotic plaques and that Cebpd deficiency in bone marrow cells suppressed atherosclerotic lesions in hyperlipidemic Apoe-/- mice. CEBPD was responsive to modified low-density lipoprotein (LDL) via the p38MAPK/CREB pathway, and it promoted lipid accumulation in M1 macrophages but not in M2 macrophages. CEBPD up-regulated pentraxin 3 (PTX3), which promoted the macropinocytosis of LDL, and down-regulated ATP-binding cassette subfamily A member 1 (ABCA1), which impaired the intracellular cholesterol efflux in M1 macrophages. We further found that simvastatin (a HMG-CoA reductase inhibitor) could target CEBPD to block lipid accumulation in a manner not directly related to its cholesterol-lowering effect in M1 macrophages. Conclusion This study underscores how CEBPD functions at the junction of inflammation and lipid accumulation in M1 macrophages. Therefore, CEBPD-mediated lipid accumulation in M1 macrophages could represent a new therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Hong-Yue Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Wei Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Hwa Tsai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ju-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Molecular Inflammation Research, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Pahari S, Kaur G, Negi S, Aqdas M, Das DK, Bashir H, Singh S, Nagare M, Khan J, Agrewala JN. Reinforcing the Functionality of Mononuclear Phagocyte System to Control Tuberculosis. Front Immunol 2018; 9:193. [PMID: 29479353 PMCID: PMC5811511 DOI: 10.3389/fimmu.2018.00193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
The mononuclear phagocyte system (MPS) constitutes dendritic cells, monocytes, and macrophages. This system contributes to various functions that are essential for maintaining homeostasis, activation of innate immunity, and bridging it with the adaptive immunity. Consequently, MPS is highly important in bolstering immunity against the pathogens. However, MPS is the frontline cells in destroying Mycobacterium tuberculosis (Mtb), yet the bacterium prefers to reside in the hostile environment of macrophages. Therefore, it may be very interesting to study the struggle between Mtb and MPS to understand the outcome of the disease. In an event when MPS predominates Mtb, the host remains protected. By contrast, the situation becomes devastating when the pathogen tames and tunes the host MPS, which ultimately culminates into tuberculosis (TB). Hence, it becomes extremely crucial to reinvigorate MPS functionality to overwhelm Mtb and eliminate it. In this article, we discuss the strategies to bolster the function of MPS by exploiting the molecules associated with the innate immunity and highlight the mechanisms involved to overcome the Mtb-induced suppression of host immunity. In future, such approaches may provide an insight to develop immunotherapeutics to treat TB.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gurpreet Kaur
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepjyoti K Das
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mukta Nagare
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Junaid Khan
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
18
|
Dexamethasone induced inhibition of Dectin-1 activation of antigen presenting cells is mediated via STAT-3 and NF-κB signaling pathways. Sci Rep 2017; 7:4522. [PMID: 28674449 PMCID: PMC5495798 DOI: 10.1038/s41598-017-04558-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Treatment of patients with glucocorticoids can result in an increased risk of infection with pathogens such as fungi. Dectin-1 is a member of the C-type lectin receptor superfamily and was shown to be one of the major receptors for fungal beta-glucans. Activation of Dectin-1 increases the production of cytokines and chemokines and T-cell stimulatory capacity of DC and mediates resolution of fungal infections. Here we show that antigen-presenting cells generated in the presence of dexamethasone (Dex-DC) have a reduced capacity to stimulate T-cell proliferation and decreased expression of costimulatory molecules, that can not be enhanced upon stimulation with Dectin-1 ligands. Stimulation of Dex-DC with beta-glucans induced a strong upregulation of Syk phosphorylation and increased secretion of IL-10, while the production of IL-12, IL-23 and TNF-alpha was reduced. Downstream of Syk stimulation of Dectin-1 on Dex-DC resulted in phosphorylation of STAT3 and reduced nuclear localization of transcription factors involved in DC activation and function.
Collapse
|
19
|
Patin EC, Geffken AC, Willcocks S, Leschczyk C, Haas A, Nimmerjahn F, Lang R, Ward TH, Schaible UE. Trehalose dimycolate interferes with FcγR-mediated phagosome maturation through Mincle, SHP-1 and FcγRIIB signalling. PLoS One 2017; 12:e0174973. [PMID: 28384255 PMCID: PMC5383150 DOI: 10.1371/journal.pone.0174973] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
The causative agent of tuberculosis, Mycobacterium tuberculosis (M. tuberculosis), contains an abundant cell wall glycolipid and a crucial virulence factor, trehalose-6,6’-dimycolate (TDM). TDM causes delay of phagosome maturation and thus promotes survival of mycobacteria inside host macrophages by a not fully understood mechanism. TDM signals through the Monocyte-INducible C-type LEctin (Mincle), a recently identified pattern recognition receptor. Here we show that recruitment of Mincle by TDM coupled to immunoglobulin (Ig)G-opsonised beads during Fcγ receptor (FcγR)-mediated phagocytosis interferes with phagosome maturation. In addition, modulation of phagosome maturation by TDM requires SH2-domain-containing inositol polyphosphate 5’ phosphatase (SHP-1) and the FcγRIIB, which strongly suggests inhibitory downstream signalling of Mincle during phagosome formation. Overall, our study reveals important mechanisms contributing to the virulence of TDM.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Department of Immunology and Infection, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Molecular Infection Biology, Research Center Borstel, Borstel, Germany
| | - Anna C Geffken
- Department of Molecular Infection Biology, Research Center Borstel, Borstel, Germany
| | - Sam Willcocks
- Department of Immunology and Infection, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christoph Leschczyk
- Department of Molecular Infection Biology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Borstel, Germany
| | - Albert Haas
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin- Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Theresa H Ward
- Department of Immunology and Infection, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ulrich E Schaible
- Department of Immunology and Infection, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Molecular Infection Biology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Borstel, Germany
| |
Collapse
|
20
|
van Rees DJ, Szilagyi K, Kuijpers TW, Matlung HL, van den Berg TK. Immunoreceptors on neutrophils. Semin Immunol 2016; 28:94-108. [PMID: 26976825 PMCID: PMC7129252 DOI: 10.1016/j.smim.2016.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Neutrophil activities must be tightly controlled to maintain immune homeostasis. Activating and inhibitory receptors balance the outcome of immune cell activation. Immunoreceptors contain Ig-like extracellular domains and signal via ITAMs or ITIMs. Syk or SHP/SHIP mediate downstream signaling after immunoreceptor activation. Targeting immunoreceptors provides opportunities for therapeutic interventions.
Neutrophils play a critical role in the host defense against infection, and they are able to perform a variety of effector mechanisms for this purpose. However, there are also a number of pathological conditions, including autoimmunity and cancer, in which the activities of neutrophils can be harmful to the host. Thus the activities of neutrophils need to be tightly controlled. As in the case of other immune cells, many of the neutrophil effector functions are regulated by a series of immunoreceptors on the plasma membrane. Here, we review what is currently known about the functions of the various individual immunoreceptors and their signaling in neutrophils. While these immunoreceptors allow for the recognition of a diverse range of extracellular ligands, such as cell surface structures (like proteins, glycans and lipids) and extracellular matrix components, they commonly signal via conserved ITAM or ITIM motifs and their associated downstream pathways that depend on the phosphorylation of tyrosine residues in proteins and/or inositol lipids. This allows for a balanced homeostatic regulation of neutrophil effector functions. Given the number of available immunoreceptors and their fundamental importance for neutrophil behavior, it is perhaps not surprising that pathogens have evolved means to evade immune responses through some of these pathways. Inversely, some of these receptors evolved to specifically recognize these pathogens. Finally, some interactions mediated by immunoreceptors in neutrophils have been identified as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Dieke J van Rees
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Tian L, Choi SC, Murakami Y, Allen J, Morse HC, Qi CF, Krzewski K, Coligan JE. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression. Nat Commun 2016; 5:3146. [PMID: 24477292 DOI: 10.1038/ncomms4146] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023] Open
Abstract
Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Linjie Tian
- 1] Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA [2]
| | - Seung-Chul Choi
- 1] Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA [2]
| | - Yousuke Murakami
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Joselyn Allen
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Chen-Feng Qi
- Pathology core, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - John E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| |
Collapse
|
22
|
Osicka R, Osickova A, Hasan S, Bumba L, Cerny J, Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife 2015; 4:e10766. [PMID: 26650353 PMCID: PMC4755762 DOI: 10.7554/elife.10766] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022] Open
Abstract
Integrins are heterodimeric cell surface adhesion and signaling receptors that are essential for metazoan existence. Some integrins contain an I-domain that is a major ligand binding site. The ligands preferentially engage the active forms of the integrins and trigger signaling cascades that alter numerous cell functions. Here we found that the adenylate cyclase toxin (CyaA), a key virulence factor of the whooping cough agent Bordetella pertussis, preferentially binds an inactive form of the integrin complement receptor 3 (CR3), using a site outside of its I-domain. CyaA binding did not trigger downstream signaling of CR3 in human monocytes and CyaA-catalyzed elevation of cAMP effectively blocked CR3 signaling initiated by a natural ligand. This unprecedented type of integrin-ligand interaction distinguishes CyaA from all other known ligands of the I-domain-containing integrins and provides a mechanistic insight into the previously observed central role of CyaA in the pathogenesis of B. pertussis.
Collapse
Affiliation(s)
- Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Shakir Hasan
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Cerny
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
23
|
Chan KR, Ong EZ, Mok DZL, Ooi EE. Fc receptors and their influence on efficacy of therapeutic antibodies for treatment of viral diseases. Expert Rev Anti Infect Ther 2015; 13:1351-60. [PMID: 26466016 PMCID: PMC4673539 DOI: 10.1586/14787210.2015.1079127] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lack of vaccines against several important viral diseases necessitates the development of therapeutics to save lives and control epidemics. In recent years, therapeutic antibodies have received considerable attention due to their good safety profiles and clinical success when used against viruses such as respiratory syncytial virus, Ebola virus and Hendra virus. The binding affinity of these antibodies can directly impact their therapeutic efficacy. However, we and others have also demonstrated that the subtype of Fc-gamma receptors (FcγRs) engaged influences the stoichiometric requirement for virus neutralization. Hence, the development of therapeutic antibodies against infectious diseases should consider the FcγRs engaged and Fc-effector functions involved. This review highlights the current state of knowledge about FcγRs and FcγR effector functions involved in virus neutralization, with emphasis on factors that can affect FcγR engagement. A better understanding of Fc-FcγR interactions during virus neutralization will allow development of therapeutic antibodies that are efficacious and can be administered with minimal side effects.
Collapse
Affiliation(s)
- Kuan Rong Chan
- a 1 Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Eugenia Z Ong
- b 2 Experimental Therapeutics Centre, Agency for Science Technology and Research, 31 Biopolis Way, Singapore 138669, Singapore
| | - Darren Z L Mok
- c 3 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Eng Eong Ooi
- a 1 Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
24
|
Cerny O, Kamanova J, Masin J, Bibova I, Skopova K, Sebo P. Bordetella pertussis Adenylate Cyclase Toxin Blocks Induction of Bactericidal Nitric Oxide in Macrophages through cAMP-Dependent Activation of the SHP-1 Phosphatase. THE JOURNAL OF IMMUNOLOGY 2015; 194:4901-13. [PMID: 25876760 DOI: 10.4049/jimmunol.1402941] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/10/2015] [Indexed: 12/23/2022]
Abstract
The adenylate cyclase toxin-hemolysin (CyaA) plays a key role in the virulence of Bordetella pertussis. CyaA penetrates complement receptor 3-expressing phagocytes and catalyzes uncontrolled conversion of cytosolic ATP to the key second messenger molecule cAMP. This paralyzes the capacity of neutrophils and macrophages to kill bacteria by complement-dependent oxidative burst and opsonophagocytic mechanisms. We show that cAMP signaling through the protein kinase A (PKA) pathway activates Src homology domain 2 containing protein tyrosine phosphatase (SHP) 1 and suppresses production of bactericidal NO in macrophage cells. Selective activation of PKA by the cell-permeable analog N(6)-benzoyladenosine-3',5'-cyclic monophosphate interfered with LPS-induced inducible NO synthase (iNOS) expression in RAW264.7 macrophages, whereas inhibition of PKA by H-89 largely restored the production of iNOS in CyaA-treated murine macrophages. CyaA/cAMP signaling induced SHP phosphatase-dependent dephosphorylation of the c-Fos subunit of the transcription factor AP-1 and thereby inhibited TLR4-triggered induction of iNOS gene expression. Selective small interfering RNA knockdown of SHP-1, but not of the SHP-2 phosphatase, rescued production of TLR-inducible NO in toxin-treated cells. Finally, inhibition of SHP phosphatase activity by NSC87877 abrogated B. pertussis survival inside murine macrophages. These results reveal that an as yet unknown cAMP-activated signaling pathway controls SHP-1 phosphatase activity and may regulate numerous receptor signaling pathways in leukocytes. Hijacking of SHP-1 by CyaA action then enables B. pertussis to evade NO-mediated killing in sentinel cells of innate immunity.
Collapse
Affiliation(s)
- Ondrej Cerny
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Jana Kamanova
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Jiri Masin
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Ilona Bibova
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Karolina Skopova
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| |
Collapse
|
25
|
Abstract
Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics.
Collapse
Affiliation(s)
- Günter Weiss
- Department of Internal Medicine VI, Infectious Disease, Immunology, Rheumatology, Pneumology, Medical University of InnsbruckInnsbruck, Austria
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Area Infections, Research Center BorstelBorstel, Germany
- Department of Immunology, London School of Hygiene and Tropical MedicineLondon, UK
- German Centre of Infection Research, TTU-TBBorstel, Germany
| |
Collapse
|
26
|
Immunomodulatory effects of Lactobacillus rhamnosus GG on dendritic cells, macrophages and monocytes from healthy donors. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
27
|
Joshi S, Singh AR, Zulcic M, Durden DL. A PKC-SHP1 signaling axis desensitizes Fcγ receptor signaling by reducing the tyrosine phosphorylation of CBL and regulates FcγR mediated phagocytosis. BMC Immunol 2014; 15:18. [PMID: 24886428 PMCID: PMC4017086 DOI: 10.1186/1471-2172-15-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fcγ receptors mediate important biological signals in myeloid cells including the ingestion of microorganisms through a process of phagocytosis. It is well-known that Fcγ receptor (FcγR) crosslinking induces the tyrosine phosphorylation of CBL which is associated with FcγR mediated phagocytosis, however how signaling molecules coordinate to desensitize these receptors is unclear. An investigation of the mechanisms involved in receptor desensitization will provide new insight into potential mechanisms by which signaling molecules may downregulate tyrosine phosphorylation dependent signaling events to terminate important signaling processes. RESULTS Using the U937IF cell line, we observed that FcγR1 crosslinking induces the tyrosine phosphorylation of CBL, which is maximal at 5 min. followed by a kinetic pattern of dephosphorylation. An investigation of the mechanisms involved in receptor desensitization revealed that pretreatment of U937IF or J774 cells with PMA followed by Fcγ receptor crosslinking results in the reduced tyrosine phosphorylation of CBL and the abrogation of downstream signals, such as CBL-CRKL binding, Rac-GTP activation and the phagocytic response. Pretreatment of J774 cells with GF109203X, a PKC inhibitor was observed to block dephosphorylation of CBL and rescued the phagocytic response. We demonstrate that the PKC induced desensitization of FcγR/ phagocytosis is associated with the inactivation of Rac-GTP, which is deactivated in a hematopoietic specific phosphatase SHP1 dependent manner following ITAM stimulation. The effect of PKC on FcγR signaling is augmented by the transfection of catalytically active SHP1 and not by the transfection of catalytic dead SHP1 (C124S). CONCLUSIONS Our results suggest a functional model by which PKC interacts with SHP1 to affect the phosphorylation state of CBL, the activation state of Rac and the negative regulation of ITAM signaling i.e. Fcγ receptor mediated phagocytosis. These findings suggest a mechanism for Fcγ receptor desensitization by which a serine-threonine kinase e.g. PKC downregulates tyrosine phosphorylation dependent signaling events via the reduced tyrosine phosphorylation of the complex adapter protein, CBL.
Collapse
Affiliation(s)
| | | | | | - Donald L Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093, USA.
| |
Collapse
|
28
|
Williams EL, Tutt AL, Beers SA, French RR, Chan CHT, Cox KL, Roghanian A, Penfold CA, Butts CL, Boross P, Verbeek JS, Cragg MS, Glennie MJ. Immunotherapy Targeting Inhibitory Fcγ Receptor IIB (CD32b) in the Mouse Is Limited by Monoclonal Antibody Consumption and Receptor Internalization. THE JOURNAL OF IMMUNOLOGY 2013; 191:4130-40. [DOI: 10.4049/jimmunol.1301430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Gómez CP, Tiemi Shio M, Duplay P, Olivier M, Descoteaux A. The protein tyrosine phosphatase SHP-1 regulates phagolysosome biogenesis. THE JOURNAL OF IMMUNOLOGY 2012; 189:2203-10. [PMID: 22826316 DOI: 10.4049/jimmunol.1103021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The process of phagocytosis and phagosome maturation involves the recruitment of effector proteins that participate in phagosome formation and in the acidification and/or fusion with various endocytic vesicles. In the current study, we investigated the role of the Src homology region 2 domain-containing phosphatase 1 (SHP-1) in phagolysosome biogenesis. To this end, we used immortalized bone marrow macrophages derived from SHP-1-deficient motheaten mice and their wild-type littermates. We found that SHP-1 is recruited early and remains present on phagosomes for up to 4 h postphagocytosis. Using confocal immunofluorescence microscopy and Western blot analyses on purified phagosome extracts, we observed an impaired recruitment of lysosomal-associated membrane protein 1 in SHP-1-deficient macrophages. Moreover, Western blot analyses revealed that whereas the 51-kDa procathepsin D is recruited to phagosomes, it is not processed into the 46-kDa cathepsin D in the absence of SHP-1, suggesting a defect in acidification. Using the lysosomotropic agent LysoTracker as an indicator of phagosomal pH, we obtained evidence that in the absence of SHP-1, phagosome acidification was impaired. Taken together, these results are consistent with a role for SHP-1 in the regulation of signaling or membrane fusion events involved in phagolysosome biogenesis.
Collapse
Affiliation(s)
- Carolina P Gómez
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada
| | | | | | | | | |
Collapse
|
30
|
Flannagan RS, Jaumouillé V, Grinstein S. The Cell Biology of Phagocytosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 7:61-98. [PMID: 21910624 DOI: 10.1146/annurev-pathol-011811-132445] [Citation(s) in RCA: 660] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronald S. Flannagan
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| | - Valentin Jaumouillé
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| |
Collapse
|
31
|
Karavitis J, Kovacs EJ. Macrophage phagocytosis: effects of environmental pollutants, alcohol, cigarette smoke, and other external factors. J Leukoc Biol 2011; 90:1065-78. [PMID: 21878544 DOI: 10.1189/jlb.0311114] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ability of a pathogen to evade host immunity successfully, in contrast to the host's capacity to defend itself against a foreign invader, is a complex struggle, in which eradication of infection is dictated by a robust immunologic response. Often, there are external factors that can alter the outcome by tipping the scale to benefit pathogen establishment rather than resolution by the host's defense system. These external sources, such a cigarettes, alcohol, or environmental pollutants, can negatively influence the effectiveness of the immune system's response to a pathogen. The observed suppression of immune function can be attributed to dysregulated cytokine and chemokine production, the loss of migratory potential, or the inability to phagocytose pathogens by immune cells. This review will focus on the mechanisms involved during the toxin-induced suppression of phagocytosis. The accumulated data support the importance of studying the mechanisms of phagocytosis following exposure to these factors, in that this effect alone cannot only leave the host susceptible to infection but also promote alterations in many other macrophage functions necessary for pathogen clearance and restoration of homeostasis.
Collapse
Affiliation(s)
- John Karavitis
- Program of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, Maywood, Illinois, USA
| | | |
Collapse
|
32
|
Lawrence DW, Koenig JM. Enhanced Phagocytosis in Neonatal Monocyte-Derived Macrophages is Associated with Impaired SHP-1 Signaling. Immunol Invest 2011; 41:129-43. [DOI: 10.3109/08820139.2011.595471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Valerio M, Awad AB. β-Sitosterol down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in J774A.1 murine macrophages. Int Immunopharmacol 2011; 11:1012-7. [DOI: 10.1016/j.intimp.2011.02.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 12/27/2022]
|
34
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
35
|
Christophi GP, Massa PT. Central neuroinvasion and demyelination by inflammatory macrophages after peripheral virus infection is controlled by SHP-1. Viral Immunol 2010; 22:371-87. [PMID: 19951174 DOI: 10.1089/vim.2009.0052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SHP-1 is a protein tyrosine phosphatase that negatively regulates cytokine signaling and inflammatory gene expression. Mice genetically lacking SHP-1 (me/me) display severe inflammatory demyelinating disease following intracranial inoculation with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) compared to infected wild-type mice. Furthermore, SHP-1-deficient mice show a profound and predominant infiltration of blood-derived macrophages into the CNS following intracerebral injection of TMEV, and these macrophages are concentrated in areas of demyelination in brain and spinal cord. In the present study we investigated the role of SHP-1 in controlling CNS inflammatory demyelination following a peripheral instead of an intracerebral inoculation of TMEV. Surprisingly, we found that while wild-type mice were entirely refractory to intraperitoneal (IP) infection by TMEV, in agreement with previous studies, all SHP-1-deficient mice displayed profound macrophage neuroinvasion and macrophage-mediated inflammatory demyelination. Moreover, SHP-1 deficiency led to increased expression of inflammatory molecules in macrophages, serum, and CNS following IP infection with TMEV. Importantly, pharmacological depletion of peripheral macrophages significantly decreased both paralysis and CNS viral loads in SHP-1-deficient mice. In addition, peripheral MCP-1 neutralization attenuated disease severity, decreased macrophage infiltration into the CNS, and decreased monocyte numbers in the blood of SHP-1-deficient mice, implicating MCP-1 as an important mediator of monocyte migration between multiple tissues. These results demonstrate that peripheral TMEV infection results in a unique evolution of macrophage-mediated demyelination in SHP-1-deficient mice, implicating SHP-1 in the control of neuroinvasion of inflammatory macrophages and neurotropic viruses into the CNS.
Collapse
Affiliation(s)
- George P Christophi
- Department of Neurology, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA
| | | |
Collapse
|
36
|
Baseline mechanical characterization of J774 macrophages. Biophys J 2010; 96:248-54. [PMID: 18835898 DOI: 10.1529/biophysj.108.139154] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 09/10/2008] [Indexed: 11/18/2022] Open
Abstract
Macrophage cell lines like J774 cells are ideal model systems for establishing the biophysical foundations of autonomous deformation and motility of immune cells. To aid comparative studies on these and other types of motile cells, we report measurements of the cortical tension and cytoplasmic viscosity of J774 macrophages using micropipette aspiration. Passive J774 cells cultured in suspension exhibited a cortical resting tension of approximately 0.14 mN/m and a viscosity (at room temperature) of 0.93 kPa.s. Both values are about one order of magnitude higher than the respective values obtained for human neutrophils, lending support to the hypothesis that a tight balance between cortical tension and cytoplasmic viscosity is a physical prerequisite for eukaryotic cell motility. The relatively large stiffness of passive J774 cells contrasts with their capacity for a more than fivefold increase in apparent surface area during active deformation in phagocytosis. Scanning electron micrographs show how microscopic membrane wrinkles are smoothed out and recruited into the apparent surface area during phagocytosis of large targets.
Collapse
|
37
|
Carlin AF, Chang YC, Areschoug T, Lindahl G, Hurtado-Ziola N, King CC, Varki A, Nizet V. Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. ACTA ACUST UNITED AC 2009; 206:1691-9. [PMID: 19596804 PMCID: PMC2722167 DOI: 10.1084/jem.20090691] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Group B Streptococcus (GBS) is a leading cause of invasive bacterial infections in human newborns. A key GBS virulence factor is its capsular polysaccharide (CPS), displaying terminal sialic acid (Sia) residues which block deposition and activation of complement on the bacterial surface. We recently demonstrated that GBS Sia can bind human CD33-related Sia-recognizing immunoglobulin (Ig) superfamily lectins (hCD33rSiglecs), a family of inhibitory receptors expressed on the surface of leukocytes. We report the unexpected discovery that certain GBS strains may bind one such receptor, hSiglec-5, in a Sia-independent manner, via the cell wall-anchored beta protein, resulting in recruitment of SHP protein tyrosine phosphatases. Using a panel of WT and mutant GBS strains together with Siglec-expressing cells and soluble Siglec-Fc chimeras, we show that GBS beta protein binding to Siglec-5 functions to impair human leukocyte phagocytosis, oxidative burst, and extracellular trap production, promoting bacterial survival. We conclude that protein-mediated functional engagement of an inhibitory host lectin receptor promotes bacterial innate immune evasion.
Collapse
Affiliation(s)
- Aaron F Carlin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype. J Transl Med 2009; 89:742-59. [PMID: 19398961 PMCID: PMC2725397 DOI: 10.1038/labinvest.2009.32] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of proinflammatory cytokine signaling, TLR signaling, and inflammatory gene expression. Furthermore, mice genetically lacking SHP-1 (me/me) display a profound susceptibility to inflammatory CNS demyelination relative to wild-type mice. In particular, SHP-1 deficiency may act predominantly in inflammatory macrophages to increase CNS demyelination as SHP-1-deficient macrophages display coexpression of inflammatory effector molecules and increased demyelinating activity in me/me mice. Recently, we reported that PBMCs of multiple sclerosis (MS) patients have a deficiency in SHP-1 expression relative to normal control subjects indicating that SHP-1 deficiency may play a similar role in MS as to that seen in mice. Therefore, it became essential to examine the specific expression and function of SHP-1 in macrophages from MS patients. Herein, we document that macrophages of MS patients have deficient SHP-1 protein and mRNA expression relative to those of normal control subjects. To examine functional consequences of the lower SHP-1, the activation of STAT6, STAT1, and NF-kappaB was quantified and macrophages of MS patients showed increased activation of these transcription factors. In accordance with this observation, several STAT6-, STAT1-, and NF-kappaB-responsive genes that mediate inflammatory demyelination were increased in macrophages of MS patients following cytokine and TLR agonist stimulation. Supporting a direct role of SHP-1 deficiency in altered macrophage function, experimental depletion of SHP-1 in normal subject macrophages resulted in an increased STAT/NF-kappaB activation and increased inflammatory gene expression to levels seen in macrophages of MS patients. In conclusion, macrophages of MS patients display a deficiency of SHP-1 expression, heightened activation of STAT6, STAT1, and NF-kappaB and a corresponding inflammatory profile that may be important in controlling macrophage-mediated demyelination in MS.
Collapse
|
39
|
Dale BM, Traum D, Erdjument-Bromage H, Tempst P, Greenberg S. Phagocytosis in macrophages lacking Cbl reveals an unsuspected role for Fc gamma receptor signaling and actin assembly in target binding. THE JOURNAL OF IMMUNOLOGY 2009; 182:5654-62. [PMID: 19380812 DOI: 10.4049/jimmunol.0803942] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fc gamma receptor (Fc gammaR)-mediated phagocytosis is known to require tyrosine kinases (TKs). We identified c-Cbl and Cbl-b as proteins that undergo tyrosine phosphorylation during phagocytosis. Cbl-deficient macrophages displayed enhanced Fc gammaR-mediated signaling and phagocytosis. Surprisingly, binding of IgG-coated targets (EIgG) was also enhanced. c-Cbl-deficient macrophages expressed less Fc gammaRIIb, the inhibitory Fc gamma receptor; however, this did not account for enhanced target binding. We isolated the function of one Fc receptor isoform, Fc gammaRI, using IgG2a-coated targets (EIgG2a). Cbl-deficient macrophages demonstrated a disproportionate increase in binding EIgG2a, suggesting that signal strength regulates binding efficiency toward opsonized targets. In resting cells, Fc gammaRI colocalized with the Src family TK Hck in F-actin-rich structures, which was enhanced in Cbl-deficient macrophages. Target binding was sensitive to TK inhibitors, profoundly inhibited following depletion of cholesterol, and ablated at 4 degrees C or in the presence of inhibitors of actin polymerization. Sensitivity of EIgG binding to cytoskeletal disruption was inversely proportional to opsonin density. These findings challenge the view that Fc gammaR-mediated binding is a passive event. They suggest that dynamic engagement of TKs and the cytoskeleton enables macrophages to serve as cellular "Venus fly traps", with the capacity to capture phagocytic targets under conditions of limiting opsonin density.
Collapse
Affiliation(s)
- Benjamin M Dale
- Department of Pharmacology, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
40
|
Jacob M, Todd LA, Majumdar RS, Li Y, Yamamoto KI, Puré E. Endogenous cAbl regulates receptor endocytosis. Cell Signal 2009; 21:1308-16. [PMID: 19344757 DOI: 10.1016/j.cellsig.2009.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/13/2009] [Accepted: 03/15/2009] [Indexed: 01/17/2023]
Abstract
There are two key processes underlying ligand-induced receptor endocytosis: receptor ubiquitylation and remodeling of the actin cytoskeleton. Tyrosine kinases play critical roles in both receptor endocytosis and actin reorganization. Interestingly, members of the Abl family are the only known tyrosine kinases that possess an actin-binding domain and thus have the potential to directly regulate the actin cytoskeleton. However, the role of non-transforming cAbl in receptor endocytosis remains undefined. We report that cAbl promotes ligand-induced antigen receptor endocytosis in B lymphocytes. We show that pharmacologic inhibition or genetic deletion of cAbl causes a defect in tyrosine phosphorylation of the cytoskeletal adapter CrkII. cAbl inhibition or ablation also impairs Rac activation downstream of CrkII, as well as antigen receptor capping and endocytosis. Although phosphorylation of CrkII has been suggested to maintain it in a closed inactive conformation, we demonstrate that it is in fact essential for the activation of Rac. On the other hand, association of CrkII with cCbl, a key mediator of receptor ubiquitylation, does not require CrkII phosphorylation and is cAbl-independent. Phosphorylation of cCbl itself is also cAbl-independent. Our results thus indicate that CrkII links receptor engagement to cytoskeletal remodeling by coupling cCbl- and cAbl-mediated signaling pathways that cooperatively regulate ligand-induced receptor endocytosis.
Collapse
Affiliation(s)
- Michele Jacob
- The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104-4268, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Leidi M, Gotti E, Bologna L, Miranda E, Rimoldi M, Sica A, Roncalli M, Palumbo GA, Introna M, Golay J. M2 Macrophages Phagocytose Rituximab-Opsonized Leukemic Targets More Efficiently than M1 Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 2009; 182:4415-22. [DOI: 10.4049/jimmunol.0713732] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Wang J, Fong CC, Tzang CH, Xiao P, Han R, Yang M. Gene expression analysis of human promyelocytic leukemia HL-60 cell differentiation and cytotoxicity induced by natural and synthetic retinoids. Life Sci 2009; 84:576-83. [PMID: 19302803 DOI: 10.1016/j.lfs.2009.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 01/02/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
AIMS This study analyzed gene expression profiles of human promyelocytic leukemia HL-60 cells treated with natural and synthetic retinoids (ATRA, RII and R9158), in an attempt to investigate the structure-function relationship of the retinoids in inducing cell differentiation and cytotoxicity. MAIN METHODS Flow cytometry was used to determine cell cycle changes in HL-60 cells following treatment (1.0 muM) with natural and synthetic retinoids (ATRA, RII and R9158), and cDNA microarrays were used to monitor the gene expression profiles of HL-60 cells treated with the various retinoids. KEY FINDINGS Consistent with retinoid-induced cell differentiation, treatment with these three retinoids correlated with an increase in the percentage of cells arrested in the G1/G0 phase of the cell cycle. Microarray analysis showed upregulation of known differentiation genes, adhesion molecules, and the oxidase activation pathway following retinoid treatment. Differential expression of several genes was observed in HL-60 cells treated with the three retinoids. For example, tissue remodeling protein genes, ubiquitin genes, and signal transduction genes were highly expressed in ATRA- and R9158-treated HL-60 cells, but remained unchanged in HL-60 cells treated with RII. SIGNIFICANCE The above findings suggest that the differentiation of HL-60 cells induced by the three retinoids occurs through similar pathways, and that there exists a structure-function relationship regarding retinoids and the induction of cell differentiation and cytotoxicity.
Collapse
Affiliation(s)
- Jin Wang
- Department of Biology and Chemistry, and Applied Research Centre for Genomics Technology, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
43
|
Tsai RK, Discher DE. Inhibition of "self" engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. ACTA ACUST UNITED AC 2008; 180:989-1003. [PMID: 18332220 PMCID: PMC2265407 DOI: 10.1083/jcb.200708043] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phagocytosis of foreign cells or particles by macrophages is a rapid process that is inefficient when faced with “self” cells that display CD47—although signaling mechanisms in self-recognition have remained largely unknown. With human macrophages, we show the phagocytic synapse at cell contacts involves a basal level of actin-driven phagocytosis that, in the absence of species-specific CD47 signaling, is made more efficient by phospho-activated myosin. We use “foreign” sheep red blood cells (RBCs) together with CD47-blocked, antibody-opsonized human RBCs in order to visualize synaptic accumulation of phosphotyrosine, paxillin, F-actin, and the major motor isoform, nonmuscle myosin-IIA. When CD47 is functional, the macrophage counter-receptor and phosphatase-activator SIRPα localizes to the synapse, suppressing accumulation of phosphotyrosine and myosin without affecting F-actin. On both RBCs and microbeads, human CD47 potently inhibits phagocytosis as does direct inhibition of myosin. CD47–SIRPα interaction initiates a dephosphorylation cascade directed in part at phosphotyrosine in myosin. A point mutation turns off this motor's contribution to phagocytosis, suggesting that self-recognition inhibits contractile engulfment.
Collapse
Affiliation(s)
- Richard K Tsai
- Biophysical Engineering Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
44
|
Janssen WJ, McPhillips KA, Dickinson MG, Linderman DJ, Morimoto K, Xiao YQ, Oldham KM, Vandivier RW, Henson PM, Gardai SJ. Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRP alpha. Am J Respir Crit Care Med 2008; 178:158-67. [PMID: 18420961 DOI: 10.1164/rccm.200711-1661oc] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Efficient removal of apoptotic cells is essential for the resolution of acute pulmonary inflammation. Alveolar macrophages ingest apoptotic cells less avidly than other professional phagocytes at rest but overcome this defect during acute inflammation. Surfactant protein (SP)-A and SP-D are potent modulators of macrophage function and may suppress clearance of apoptotic cells through activation of the transmembrane receptor signal inhibitory regulatory protein alpha (SIRP alpha). OBJECTIVES To investigate whether binding of SP-A and SP-D to SIRP alpha on alveolar macrophages suppresses apoptotic cell clearance. METHODS Phagocytosis of apoptotic cells was assessed using macrophages pretreated with SP-A, SP-D, or the collectin-like molecule C1q. Binding of SP-A and SP-D to SIRP alpha was confirmed in vitro using blocking antibodies and fibroblasts transfected with active and mutant SIRP alpha. The effects of downstream molecules SHP-1 and RhoA on phagocytosis were studied using SHP-1-deficient mice, sodium stibogluconate, and a Rho kinase inhibitor. Lipopolysaccharide was given to chimeric mice to study the effects of SP-A and SP-D binding on inflammatory macrophages. MEASUREMENTS AND MAIN RESULTS Preincubation of macrophages with SP-A or SP-D suppressed apoptotic cell clearance. Surfactant suppression of macrophage phagocytosis was reversed by blocking SIRP alpha and inhibiting downstream molecules SHP-1 and RhoA. Macrophages from inflamed lungs ingested apoptotic cells more efficiently than resting alveolar macrophages. Recruited mononuclear phagocytes with low levels of SP-A and SP-D mediated this effect. CONCLUSIONS SP-A and SP-D tonically inhibit alveolar macrophage phagocytosis by binding SIRP alpha. During acute pulmonary inflammation, defects in apoptotic cell clearance are overcome by recruited mononuclear phagocytes.
Collapse
Affiliation(s)
- William J Janssen
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Medical and Research Center, K729, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Canetti C, Serezani CH, Atrasz RG, White ES, Aronoff DM, Peters-Golden M. Activation of phosphatase and tensin homolog on chromosome 10 mediates the inhibition of FcgammaR phagocytosis by prostaglandin E2 in alveolar macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 179:8350-6. [PMID: 18056380 DOI: 10.4049/jimmunol.179.12.8350] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGE2 has important inhibitory effects on the macrophage host defense functions of phagocytosis and killing, yet the molecular mechanisms involved remain to be fully elucidated. PGE2 causes an elevation of cAMP in alveolar macrophages (AMs), which in turn activates the cAMP effector targets, protein kinase A and the exchange protein activated by cAMP (Epac)-1. We now report that FcgammaR-induced PI3K/Akt and ERK-1/2 activation are inhibited by PGE2 in AMs. By specifically inhibiting the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in AMs, we attenuated the inhibitory effects of both PGE2 and a specific Epac-1 agonist (8-pCPT-2'-O-Me-cAMP) on FcgammaR-mediated phagocytosis and Akt/ERK-1/2 activation; PTEN inhibition also decreased PGE2-induced suppression of bacterial killing by AMs. Moreover, PGE2 and the Epac-1 agonist induced an increase in PTEN lipid phosphatase activity, and this was associated with decreased tyrosine phosphorylation on PTEN-a mechanism known to regulate PTEN activity. Using a pharmacological approach, we demonstrated a role for Src homology 2-containing protein tyrosine phosphatase-1 in the PGE2-induced tyrosine dephosphorylation of PTEN. Collectively, these data reveal that PGE2, via Epac-1 activation, enhances SHP-1 activity, resulting in increased PTEN activity. We suggest that this mechanism contributes to the ability of PGE2 to inhibit PI3K-dependent innate immune signaling in primary macrophages.
Collapse
Affiliation(s)
- Claudio Canetti
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor 48109, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rinna A, Forman HJ. SHP-1 inhibition by 4-hydroxynonenal activates Jun N-terminal kinase and glutamate cysteine ligase. Am J Respir Cell Mol Biol 2008; 39:97-104. [PMID: 18276794 DOI: 10.1165/rcmb.2007-0371oc] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
4-Hydroxy-2-nonenal (HNE), a major lipid peroxidation product, is toxic at high concentrations, but at near-physiological concentrations it induces detoxifying enzymes. Previous data established that in human bronchial epithelial (HBE1) cells, both genes for glutamate cysteine ligase (GCL) are induced by HNE through the c-Jun N-terminal kinase (JNK) pathway. The protein-tyrosine phosphatase SH2 domain containing phosphatase-1 (SHP-1) is thought to play a role as a negative regulator of cell signaling, and has been implicated as such in the JNK pathway. In the present study, SHP-1 was demonstrated to contribute to HNE-induced-gclc expression via regulation of the JNK pathway in HBE1 cells. Treatment of HBE1 cells with HNE induced phosphorylation of mitogen-activated protein kinase kinase 4 (MKK4), JNK, and c-Jun. HNE was able to inhibit protein tyrosine phosphatase activity of SHP-1 through increased degradation of the protein. Furthermore, transfection with small interference RNA SHP-1 showed an enhancement of JNK and c-Jun phosphorylation, but not of MKK4, leading to increased gclc expression. These results demonstrate that SHP-1 plays a role as a negative regulator of the JNK pathway and that HNE activated the JNK pathway by inhibiting SHP-1. Thus, SHP-1 acts as a sensor for HNE and is responsible for an important adaptive response to oxidative stress.
Collapse
Affiliation(s)
- Alessandra Rinna
- School of Natural Sciences, University of California Merced, Merced, CA 95344, USA
| | | |
Collapse
|
47
|
Walter RB, Raden BW, Zeng R, Häusermann P, Bernstein ID, Cooper JA. ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2. J Leukoc Biol 2007; 83:200-11. [PMID: 17947393 DOI: 10.1189/jlb.0607388] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The leukocyte CD33-related sialic acid-binding Ig-like lectins (Siglecs) are implicated in glycan recognition and host defense against and pathogenicity of sialylated pathogens. Recent studies have shown endocytosis by CD33-related Siglecs, which is implicated in clearance of sialylated antigens and antigen presentation and makes targeted immunotherapy possible. Using CD33 as a paradigm, we have now investigated the reasons underlying the comparatively slow rate of endocytosis of these receptors. We show that endocytosis is largely limited and determined by the intracellular domain while the extracellular and transmembrane domains play a minor role. Tyrosine phosphorylation, most likely through Src family kinases, increases uptake of CD33 depending on the integrity of the two cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Simultaneous depletion of the protein tyrosine phosphatases, Src homology-2-containing tyrosine phosphatase 1 (Shp1) and Shp2, which bind to phosphorylated CD33, increases internalization of CD33 slightly in some cell lines, whereas depletion of spleen tyrosine kinase (Syk) has no effect, implying that Shp1 and Shp2 can dephosphorylate the ITIMs or mask binding of the phosphorylated ITIMs to an endocytic adaptor. Our studies show that restraint of CD33 internalization through the intracellular domain is relieved partly when the ITIMs are phosphorylated and show that Shp1 and Shp2 can modulate this process.
Collapse
Affiliation(s)
- Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., D2-373, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Swaminathan G, Tsygankov AY. The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 2006; 209:21-43. [PMID: 16741904 DOI: 10.1002/jcp.20694] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The proto-oncogenic protein c-Cbl was discovered as the cellular form of v-Cbl, a retroviral transforming protein. This was followed over the years by important discoveries, which identified c-Cbl and other Cbl-family proteins as key players in several signaling pathways. c-Cbl has donned the role of a multivalent adaptor protein, capable of interacting with a plethora of proteins, and has been shown to positively influence certain biological processes. The identity of c-Cbl as an E3 ubiquitin ligase unveiled the existence of an important negative regulatory pathway involved in maintaining homeostasis in protein tyrosine kinase (PTK) signaling. Recent years have also seen the emergence of novel regulators of Cbl, which have provided further insights into the complexity of Cbl-influenced pathways. This review will endeavor to provide a summary of current studies focused on the effects of Cbl proteins on various biological processes and the mechanism of these effects. The major sections of the review are as follows: Structure and genomic organization of Cbl proteins; Phosphorylation of Cbl; Interactions of Cbl; Localization of Cbl; Mechanism of effects of Cbl: (a) Ubiquitylation-dependent events: This section elucidates the mechanism of Cbl-mediated downregulation of EGFR and details the PTK and non-PTKs targeted by Cbl. In addition, it addresses the functional requirements for E3 Ubiquitin ligase activity of Cbl and negative regulation of Cbl-mediated downregulation of PTKs, (b) Adaptor functions: This section discusses the mechanisms of adaptor functions of Cbl in mitogen-activated protein kinase (MAPK) activation, insulin signaling, regulation of Ras-related protein 1 (Rap1), PI-3' kinase signaling, and regulation of Rho-family GTPases and cytoskeleton; Biological functions: This section gives an account of the diverse biological functions of Cbl and includes the role of Cbl in transformation, T-cell signaling and thymus development, B-cell signaling, mast-cell degranulation, macrophage functions, bone development, neurite growth, platelet activation, muscle degeneration, and bacterial invasion; Conclusions and perspectives.
Collapse
Affiliation(s)
- Gayathri Swaminathan
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
49
|
Krebs B, Dorner-Ciossek C, Schmalzbauer R, Vassallo N, Herms J, Kretzschmar HA. Prion protein induced signaling cascades in monocytes. Biochem Biophys Res Commun 2006; 340:13-22. [PMID: 16343423 DOI: 10.1016/j.bbrc.2005.11.158] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 11/25/2005] [Indexed: 11/19/2022]
Abstract
Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP(C)), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP(C) fusion proteins synthesized with a human Fc-tag. PrP(C) fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK(1,2) and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP(C) in monocytes and macrophages.
Collapse
Affiliation(s)
- Bjarne Krebs
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, München, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Horne WC, Sanjay A, Bruzzaniti A, Baron R. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 2006; 208:106-25. [PMID: 16313344 DOI: 10.1111/j.0105-2896.2005.00335.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The osteoclast resorbs mineralized bone during bone development, homeostasis, and repair. The deletion of the gene encoding the nonreceptor tyrosine kinase c-Src produces an osteopetrotic skeletal phenotype that is the consequence of the inability of the mature osteoclast to efficiently resorb bone. Src-/- osteoclasts exhibit reduced motility and abnormal organization of the apical secretory domain (the ruffled border) and attachment-related cytoskeletal elements that are necessary for bone resorption. A key function of Src in osteoclasts is to promote the rapid assembly and disassembly of the podosomes, the specialized integrin-based attachment structures of osteoclasts and other highly motile cells. Once recruited to the activated integrins, especially alphavbeta3), by the adhesion tyrosine kinase Pyk2, Src binds and phosphorylates Cbl and Cbl-b, homologous multisite adapter proteins with ubiquitin ligase activity. The Cbl proteins in turn recruit and activate additional signaling effectors, including phosphatidylinositol 3-kinase and dynamin, which play key roles in the development of cell polarity and the regulation of cell attachment and motility. In addition, Src and the Cbl proteins contribute to signaling cascades that are activated by several important receptors, including receptor activator of nuclear factor kappaB and the macrophage colony-stimulating factor receptor, and also downregulate the signaling from many of these receptors.
Collapse
Affiliation(s)
- William C Horne
- Department of Orthopaedics and Rehabilitation and Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8044, USA
| | | | | | | |
Collapse
|