1
|
He L, Cohen EB, Edwards APB, Xavier-Ferrucio J, Bugge K, Federman RS, Absher D, Myers RM, Kragelund BB, Krause DS, DiMaio D. Transmembrane Protein Aptamer Induces Cooperative Signaling by the EPO Receptor and the Cytokine Receptor β-Common Subunit. iScience 2019; 17:167-181. [PMID: 31279934 PMCID: PMC6614117 DOI: 10.1016/j.isci.2019.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/10/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
The erythropoietin receptor (EPOR) plays an essential role in erythropoiesis and other cellular processes by forming distinct signaling complexes composed of EPOR homodimers or hetero-oligomers between the EPOR and another receptor, but the mechanism of heteroreceptor assembly and signaling is poorly understood. We report here a 46-residue, artificial transmembrane protein aptamer, designated ELI-3, that binds and activates the EPOR and induces growth factor independence in murine BaF3 cells expressing the EPOR. ELI-3 requires the transmembrane domain and JAK2-binding sites of the EPOR for activity, but not the cytoplasmic tyrosines that mediate canonical EPOR signaling. Instead, ELI-3-induced proliferation and activation of JAK/STAT signaling requires the transmembrane and cytoplasmic domains of the cytokine receptor β-common subunit (βcR) in addition to the EPOR. Moreover, ELI-3 fails to induce erythroid differentiation of primary human hematopoietic progenitor cells but inhibits nonhematopoietic cell death induced by serum withdrawal.
Collapse
Affiliation(s)
- Li He
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | - Emily B Cohen
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | - Anne P B Edwards
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | - Juliana Xavier-Ferrucio
- Department of Laboratory Medicine, Yale School of Medicine, P.O. Box 208073, New Haven, CT 06520-8073, USA
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Integrative Structural Biology at University of Copenhagen (ISBUC), Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Ross S Federman
- Department of Immunobiology, Yale School of Medicine, P.O. Box 208011, New Haven, CT 06520-8011, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Integrative Structural Biology at University of Copenhagen (ISBUC), Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Diane S Krause
- Department of Laboratory Medicine, Yale School of Medicine, P.O. Box 208073, New Haven, CT 06520-8073, USA; Yale Cancer Center, P.O. Box 208028, New Haven, CT 06520-8028, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA; Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, New Haven, CT 06520-8040, USA; Department of Molecular Biophysics & Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520-8114, USA; Yale Cancer Center, P.O. Box 208028, New Haven, CT 06520-8028, USA.
| |
Collapse
|
2
|
Xu P, Chen AY, Ganaie SS, Cheng F, Shen W, Wang X, Kleiboeker S, Li Y, Qiu J. The 11-Kilodalton Nonstructural Protein of Human Parvovirus B19 Facilitates Viral DNA Replication by Interacting with Grb2 through Its Proline-Rich Motifs. J Virol 2019; 93:e01464-18. [PMID: 30282717 PMCID: PMC6288338 DOI: 10.1128/jvi.01464-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/01/2018] [Indexed: 12/27/2022] Open
Abstract
Lytic infection of human parvovirus B19 (B19V) takes place exclusively in human erythroid progenitor cells of bone marrow and fetal liver, which disrupts erythropoiesis. During infection, B19V expresses three nonstructural proteins (NS1, 11-kDa, and 7.5-kDa) and two structural proteins (VP1 and VP2). While NS1 is essential for B19V DNA replication, 11-kDa enhances viral DNA replication significantly. In this study, we confirmed the enhancement role of 11-kDa in viral DNA replication and elucidated the underlying mechanism. We found that 11-kDa specially interacts with cellular growth factor receptor-bound protein 2 (Grb2) during virus infection and in vitro We determined a high affinity interaction between 11-kDa and Grb2 that has an equilibrium dissociation constant (KD ) value of 18.13 nM. In vitro, one proline-rich motif was sufficient for 11-kDa to sustain a strong interaction with Grb2. In consistence, in vivo during infection, one proline-rich motif was enough for 11-kDa to significantly reduce phosphorylation of extracellular signal-regulated kinase (ERK). Mutations of all three proline-rich motifs of 11-kDa abolished its capability to reduce ERK activity and, accordingly, decreased viral DNA replication. Transduction of a lentiviral vector encoding a short hairpin RNA (shRNA) targeting Grb2 decreased the expression of Grb2 as well as the level of ERK phosphorylation, which resulted in an increase of B19V replication. These results, in concert, indicate that the B19V 11-kDa protein interacts with cellular Grb2 to downregulate ERK activity, which upregulates viral DNA replication.IMPORTANCE Human parvovirus B19 (B19V) infection causes hematological disorders and is the leading cause of nonimmunological fetal hydrops during pregnancy. During infection, B19V expresses two structural proteins, VP1 and VP2, and three nonstructural proteins, NS1, 11-kDa, and 7.5-kDa. While NS1 is essential, 11-kDa plays an enhancing role in viral DNA replication. Here, we elucidated a mechanism underlying 11-kDa protein-regulated B19V DNA replication. 11-kDa is tightly associated with cellular growth factor receptor-bound protein 2 (Grb2) during infection. In vitro, 11-kDa interacts with Grb2 with high affinity through three proline-rich motifs, of which at least one is indispensable for the regulation of viral DNA replication. 11-kDa and Grb2 interaction disrupts extracellular signal-regulated kinase (ERK) signaling, which mediates upregulation of B19V replication. Thus, our study reveals a novel mechanism of how a parvoviral small nonstructural protein regulates viral DNA replication by interacting with a host protein that is predominately expressed in the cytoplasm.
Collapse
Affiliation(s)
- Peng Xu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aaron Yun Chen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Safder S Ganaie
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Weiran Shen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaomei Wang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Biological Science and Technology, Wuhan University of Bioengineering, Wuhan, China
| | - Steve Kleiboeker
- Department of Research and Development, Viracor Eurofins Laboratories, Lee's Summit, Missouri, USA
| | - Yi Li
- Department of Biological Science and Technology, Wuhan University of Bioengineering, Wuhan, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
|
4
|
The inositol phosphatase SHIP-1 is negatively regulated by Fli-1 and its loss accelerates leukemogenesis. Blood 2010; 116:428-36. [PMID: 20445019 DOI: 10.1182/blood-2009-10-250217] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The activation of Fli-1, an Ets transcription factor, is the critical genetic event in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia. Fli-1 overexpression leads to erythropoietin-dependent erythroblast proliferation, enhanced survival, and inhibition of terminal differentiation, through activation of the Ras pathway. However, the mechanism by which Fli-1 activates this signal transduction pathway has yet to be identified. Down-regulation of the Src homology 2 (SH2) domain-containing inositol-5-phosphatase-1 (SHIP-1) is associated with erythropoietin-stimulated erythroleukemic cells and correlates with increased proliferation of transformed cells. In this study, we have shown that F-MuLV-infected SHIP-1 knockout mice display accelerated erythroleukemia progression. In addition, RNA interference (RNAi)-mediated suppression of SHIP-1 in erythroleukemia cells activates the phosphatidylinositol 3-kinase (PI 3-K) and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathways, blocks erythroid differentiation, accelerates erythropoietin-induced proliferation, and leads to PI 3-K-dependent Fli-1 up-regulation. Chromatin immunoprecipitation and luciferase assays confirmed that Fli-1 binds directly to an Ets DNA binding site within the SHIP-1 promoter and suppresses SHIP-1 transcription. These data provide evidence to suggest that SHIP-1 is a direct Fli-1 target, SHIP-1 and Fli-1 regulate each other in a negative feedback loop, and the suppression of SHIP-1 by Fli-1 plays an important role in the transformation of erythroid progenitors by F-MuLV.
Collapse
|
5
|
Huang LJ, Shen YM, Bulut GB. Advances in understanding the pathogenesis of primary familial and congenital polycythaemia. Br J Haematol 2010; 148:844-52. [PMID: 20096014 DOI: 10.1111/j.1365-2141.2009.08069.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Primary familial and congenital polycythemia (PFCP) is an autosomal-dominant proliferative disorder characterized by erythrocytosis and hypersensitivity of erythroid progenitors to erythropoietin (Epo). Several lines of evidence suggest a causal role of truncated erythropoietin receptor (EpoR) in this disease. In this review, we discuss PFCP in the context of erythrocytosis and EpoR signalling. We focus on recent studies describing mechanisms underlying Epo-dependent EpoR down-regulation. One mechanism depends on internalization mediated through the p85 regulatory subunit of the Phosphoinositide 3-Kinase, and the other utilizes ubiquitin-based proteasomal degradation. Truncated PFCP EpoRs are not properly down-regulated upon stimulation, underscoring the importance of these mechanisms in the pathogenesis of PFCP.
Collapse
Affiliation(s)
- Lily J Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9039, USA.
| | | | | |
Collapse
|
6
|
Richmond TD, Chohan M, Barber DL. Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol 2005; 15:146-55. [PMID: 15752978 DOI: 10.1016/j.tcb.2005.01.007] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Erythropoietin (EPO) is the crucial cytokine regulator of red blood-cell production. Since the discovery of EPO in 1985 and the isolation of its cognate receptor four years later, there has been significant interest in understanding the unique ability of this ligand-receptor pair to promote erythroid mitogenesis, survival and differentiation. The development of knockout mice has elucidated the precise role of the ligand, receptor and downstream players in murine erythroid development. In this review, we summarize EPO-mediated signaling pathways and examine their significance in vivo.
Collapse
Affiliation(s)
- Terri D Richmond
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | | | | |
Collapse
|
7
|
Van Maerken T, Hunninck K, Callewaert L, Benoit Y, Laureys G, Verlooy J. Familial and congenital polycythemias: a diagnostic approach. J Pediatr Hematol Oncol 2004; 26:407-16. [PMID: 15218413 DOI: 10.1097/00043426-200407000-00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The rare absolute polycythemias with an innate and hereditary character can be grouped together under the heading "familial and congenital polycythemias" (FCPs). Primary forms, due to an intrinsic defect in the erythroid progenitor cells, and secondary forms, resulting from extrinsic factors such as an elevated erythropoietin level, have both been reported. Despite the widely divergent characteristics of the different FCPs, the range of possible diagnoses is much more restricted and the distribution of disorders markedly different compared with polycythemias in general. Therefore, in FCP, one can argue against following the algorithm of the Polycythemia Vera Study Group for the evaluation of an elevated hematocrit level, following instead a more specific algorithm. In this article the authors describe a child with primary FCP, review the different FCPs, and propose an adapted work-up scheme.
Collapse
Affiliation(s)
- Tom Van Maerken
- Department of Pediatric Hematology-Oncology, University Hospital Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Jacobs-Helber SM, Sawyer ST. Jun N-terminal kinase promotes proliferation of immature erythroid cells and erythropoietin-dependent cell lines. Blood 2004; 104:696-703. [PMID: 15059850 DOI: 10.1182/blood-2003-05-1754] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (EPO) is the hormone necessary for development of erythrocytes from immature erythroid cells. EPO activates Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family in the EPO-dependent murine erythroid HCD57 cells. Therefore, we tested if JNK activity supported proliferation and/or survival of these cells. Treatment with the JNK inhibitor SP600125 inhibited JNK activity and EPO-dependent proliferation of HCD57 cells and the human EPO-dependent cell lines TF-1 and UT7-EPO. SP600125 also increased the fraction of cells in G2/M. Introduction of a dominant-negative form of JNK1 inhibited EPO-dependent proliferation in HCD57 cells but did not increase the fraction of cells in G2/M. Constitutive JNK activity was observed in primary murine erythroid progenitors. Treatment of primary mouse bone marrow cells with the SP600125 inhibitor reduced the number of erythroid burst-forming units (BFU-e's) but not the more differentiated erythroid colony-forming units (CFU-e's), and SP600125 protected the BFU-e's from apoptosis induced by cytosine arabinoside, demonstrating that the SP600125 inhibited proliferation of the BFU-e's. Therefore, JNK activity appears to be an important regulator of proliferation in immature, primary erythroid cells and 3 erythroid cell lines but may not be required for the survival or proliferation of CFU-e's or proerythroblasts.
Collapse
Affiliation(s)
- Sarah M Jacobs-Helber
- Department of Pharmacology/Toxicology, Virginia Commonwealth University, Richmond, USA
| | | |
Collapse
|
9
|
Abstract
Stimulation of the erythropoietin (EPO) receptor triggers a cascade of signaling events. We reported that EPO upregulates c-myc expression through 2 pathways in BaF3-EpoR cells--a phosphatidylinositol 3-kinase (PI3K) pathway operating on transcriptional initiation and a Raf-1-mitogen-activated protein kinase (MAPK) pathway affecting elongation. We now show that EPO induces phosphorylation of Raf-1 at serine 338 and within the carboxy-terminal domain, resulting in an electrophoretic mobility change (hyperphosphorylation). Importantly, MEK 1 inhibitor PD98059 blocked only the hyperphosphorylation of Raf-1 but not the phosphorylation at serine 338. This inhibition of Raf-1 hyperphosphorylation resulted in increased kinase activity of Raf-1 and increased phosphorylation of MEK, suggesting that the hyperphosphorylation of Raf-1 inhibits its MEK kinase activity. Deletion of the first 184 amino acids of Raf-1, which are involved in its interaction with Ras, had no effect on EPO-induced phosphorylation. Introducing the dominant-negative N17Ras or GAP had no effect on EPO-induced kinase activity of Raf-1 and ELK activation. N17Ras failed to inhibit ELK activation in another cell line-Rauscher murine erythroleukemia- which expresses the EPO receptor endogenously and differentiates in response to the hormone. These results indicate the presence of a Ras-independent mechanism for Raf-1 and MEK activation in these cells.
Collapse
Affiliation(s)
- Changmin Chen
- Laboratory for Cell and Molecular Biology, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
10
|
van den Akker E, van Dijk T, Parren-van Amelsvoort M, Grossmann KS, Schaeper U, Toney-Earley K, Waltz SE, Löwenberg B, von Lindern M. Tyrosine kinase receptor RON functions downstream of the erythropoietin receptor to induce expansion of erythroid progenitors. Blood 2004; 103:4457-65. [PMID: 14982882 DOI: 10.1182/blood-2003-08-2713] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Erythropoietin (EPO) is required for cell survival during differentiation and for progenitor expansion during stress erythropoiesis. Although signaling pathways may couple directly to docking sites on the EPO receptor (EpoR), additional docking molecules expand the signaling platform of the receptor. We studied the roles of the docking molecules Grb2-associated binder-1 (Gab1) and Gab2 in EPO-induced signal transduction and erythropoiesis. Inhibitors of phosphatidylinositide 3-kinase and Src kinases suppressed EPO-dependent phosphorylation of Gab2. In contrast, Gab1 activation depends on recruitment and phosphorylation by the tyrosine kinase receptor RON, with which it is constitutively associated. RON activation induces the phosphorylation of Gab1, mitogen-activated protein kinase (MAPK), and protein kinase B (PKB) but not of signal transducer and activator of transcription 5 (Stat5). RON activation was sufficient to replace EPO in progenitor expansion but not in differentiation. In conclusion, we elucidated a novel mechanism specifically involved in the expansion of erythroblasts involving RON as a downstream target of the EpoR.
Collapse
Affiliation(s)
- Emile van den Akker
- Department of Hematology, Erasmus MC, PO Box 1738, 3000 DR Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gong Y, Zhao X. Shc-dependent pathway is redundant but dominant in MAPK cascade activation by EGF receptors: a modeling inference. FEBS Lett 2003; 554:467-72. [PMID: 14623113 DOI: 10.1016/s0014-5793(03)01174-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In cell signaling cascades, one stimulus often leads to various physiological functions by multiple pathways. Perturbation of one pathway by blocking or overexpressing one of its components will result in changes in multiple pathways and multiple cell functions. Thus, it is important to reveal the relative contribution of each pathway to each function in order to assess the consequence of perturbations (e.g. drug delivery). By exploring an established mathematical model, the Shc-dependent pathway is found to be both redundant and dominant during activation of the mitogen-activated protein kinase cascade by epidermal growth factor receptor (EGFR). Its dominance results from the majority consumption of the common precursor ((EGF-EGFR*)2-GAP) by this pathway. The key steps for the dominance are the binding and phosphorylation of Shc. In conclusion, cells may prefer the long Shc-dependent pathway to the short Shc-independent pathway.
Collapse
Affiliation(s)
- Yunchen Gong
- Department of Animal Science, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC, Canada H9X 3V9.
| | | |
Collapse
|
12
|
Lebigot I, Gardellin P, Lefebvre L, Beug H, Ghysdael J, Quang CT. Up-regulation of SLAP in FLI-1-transformed erythroblasts interferes with EpoR signaling. Blood 2003; 102:4555-62. [PMID: 12946994 DOI: 10.1182/blood-2003-06-2077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rearrangement of the FLI-1 locus and ensuing overexpression of FLI-1 protein is an early event in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia. When overexpressed in primary erythroblasts, FLI-1 converts erythropoietin (Epo)-induced terminal differentiation into a proliferative response. We found that SLAP, a gene encoding a recently described negative regulator of T-cell antigen receptor function during thymocyte development, is up-regulated both at the RNA and protein levels in FLI-1-transformed erythroblasts. Src-like adaptor protein (SLAP) was found in a specific complex with erythropoietin receptor (EpoR), a cytokine receptor essential to erythroid differentiation. Constitutive expression of SLAP severely impairs hemoglobinization and late survival during Epo-induced terminal differentiation of erythroblasts. This impairment is associated with the specific inhibition of several critical Epo-dependent signaling events, including signal transducer and activator of transcription 5 (STAT5) activation and up-regulation of the expression of the antiapoptotic BCL-X gene. Our data support a model by which FLI-1 inhibits normal erythroid differentiation through the deregulation of genes encoding adaptors/effectors that modify the signaling output of cytokine receptors normally required for terminal differentiation.
Collapse
Affiliation(s)
- Ingrid Lebigot
- Institut Curie, Bat 110, Centre Universitaire, 91405 Orsay, France
| | | | | | | | | | | |
Collapse
|
13
|
Guillard C, Chrétien S, Pelus AS, Porteu F, Muller O, Mayeux P, Duprez V. Activation of the mitogen-activated protein kinases Erk1/2 by erythropoietin receptor via a G(i )protein beta gamma-subunit-initiated pathway. J Biol Chem 2003; 278:11050-6. [PMID: 12538595 DOI: 10.1074/jbc.m208834200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that a heterotrimeric G(i) protein is coupled to the erythropoietin (Epo) receptor. The G(i) protein constitutively associates in its heterotrimeric form with the intracellular domain of Epo receptor (EpoR). After Epo stimulation G(i) is released from the receptor and activated. In the present study we have investigated the functional role of the heterotrimeric G(i) protein bound to EpoR. In Chinese hamster ovary cells expressing EpoR, the G(i) inhibitor pertussis toxin blocked mitogen-activated protein kinase (MAPK) Erk1/2 activation induced by Epo. Epo-dependent MAPK activation was also sensitive to the G beta gamma competitive inhibitor beta ARK1-ct (C-terminal fragment of the beta-adrenergic receptor kinase), to the Ras dominant negative mutant RasN17, and to the phosphoinositide 3-kinase (PI3K) inhibitor LY 294002. A region of 7 amino acids (469-475) in the C-terminal end of EpoR was shown to be required for G(i) binding to EpoR in vivo. Deletion of this region in EpoR abolished both MAPK and PI3K activation in response to Epo. We conclude that in Chinese hamster ovary cells, Epo activates MAPK via a novel pathway dependent on G(i) association to EpoR, G beta gamma subunit, Ras, and PI3K. The tyrosine kinase Jak2 also contributes to this new pathway, more likely downstream of beta gamma and upstream of Ras and PI3K. This pathway is similar to the best characterized pathway used by seven transmembrane receptors coupled to G(i) to activate MAPK and may cooperate with other described Epo-dependent MAPK activation pathways in hematopoietic cells.
Collapse
Affiliation(s)
- Christine Guillard
- Department of Hematology, Institut Cochin, INSERM U567, CNRS UMR 8104, Université René Descartes, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Jacobs-Helber SM, Roh KH, Bailey D, Dessypris EN, Ryan JJ, Chen J, Wickrema A, Barber DL, Dent P, Sawyer ST. Tumor necrosis factor-alpha expressed constitutively in erythroid cells or induced by erythropoietin has negative and stimulatory roles in normal erythropoiesis and erythroleukemia. Blood 2003; 101:524-31. [PMID: 12393629 DOI: 10.1182/blood-2001-11-0084] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding of erythropoietin (EPO) to its receptor (EPOR) on erythroid cells induces the activation of numerous signal transduction pathways, including the mitogen-activated protein kinase Jun-N-terminal kinase (JNK). In an effort to understand the regulation of EPO-induced proliferation and JNK activation, we have examined the role of potential autocrine factors in the proliferation of the murine erythroleukemia cell line HCD57. We report here that treatment of these cells with EPO induced the expression and secretion of tumor necrosis factor alpha (TNF-alpha). EPO-dependent proliferation was reduced by the addition of neutralizing antibodies to TNF-alpha, and exogenously added TNF-alpha induced proliferation of HCD57 cells. EPO also could induce TNF-alpha expression in BAF3 and DA3 myeloid cells ectopically expressing EPOR. Addition of TNF-alpha activated JNK in HCD57 cells, and the activity of JNK was partially inhibited by addition of a TNF-alpha neutralizing antibody. Primary human and murine erythroid progenitors expressed TNF-alpha in either an EPO-dependent or constitutive manner. However, TNF-alpha had an inhibitory effect on both immature primary human and murine cells, suggestive that the proliferative effects of TNF-alpha may be limited to erythroleukemic cells. This study suggests a novel role for autocrine TNF-alpha expression in the proliferation of erythroleukemia cells that is distinct from the effect of TNF-alpha in normal erythropoiesis.
Collapse
Affiliation(s)
- Sarah M Jacobs-Helber
- Departments of Pharmacology/Toxicology, Radiation Oncology and Physiology, Medical College of Virginia Campus, Richmond 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tilbrook PA, Colley SM, McCarthy DJ, Marais R, Klinken SP. Erythropoietin-stimulated Raf-1 tyrosine phosphorylation is associated with the tyrosine kinase Lyn in J2E erythroleukemic cells. Arch Biochem Biophys 2001; 396:128-32. [PMID: 11716471 DOI: 10.1006/abbi.2001.2577] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The serine/threonine kinase Raf-1 is crucial for transducing intracellular signals emanating from numerous growth factors. Here we used the J2E erythroid cell line transformed by the nu-raf/nu-myc oncogenes to examine the effects of erythropoietin on endogenous Raf-1 activity. Despite the presence of constitutively active v-raf in these cells, Raf-1 exokinase activity increased after erythropoietin stimulation. This increase in enzymatic activity coincided with tyrosine phosphorylation of Raf-1 on residue Y341. Significantly, the tyrosine kinase Lyn coimmunoprecipitated with Raf-1, and Raf-1 was not tyrosine-phosphorylated in a J2E subclone lacking Lyn. Therefore, it was concluded that Lyn may be the kinase responsible for tyrosine phosphorylating Raf-1 and increasing its exokinase activity in response to erythropoietin.
Collapse
Affiliation(s)
- P A Tilbrook
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital, Department of Biochemistry, The University of Western Australia, Western Australia 6000, Australia
| | | | | | | | | |
Collapse
|
16
|
Chen C, Sytkowski AJ. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc. J Biol Chem 2001; 276:38518-26. [PMID: 11483613 DOI: 10.1074/jbc.m105702200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.
Collapse
Affiliation(s)
- C Chen
- Laboratory for Cell and Molecular Biology, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
17
|
Barber DL, Beattie BK, Mason JM, Nguyen MH, Yoakim M, Neel BG, D'Andrea AD, Frank DA. A common epitope is shared by activated signal transducer and activator of transcription-5 (STAT5) and the phosphorylated erythropoietin receptor: implications for the docking model of STAT activation. Blood 2001; 97:2230-7. [PMID: 11290583 DOI: 10.1182/blood.v97.8.2230] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (EPO) specifically activates the Janus kinase JAK2 and the transcription factor signal transducer and activator of transcription-5 (STAT5). All members of the STAT family are tyrosine phosphorylated in response to cytokine stimulation at a conserved carboxy-terminal tyrosine, Y694, in the case of STAT5. To determine structural features important for STAT signaling, we generated an activation-specific STAT5 antibody using a phosphopeptide containing amino acids 687 to 698 of STAT5 as antigen. This antibody specifically recognizes tyrosine- phosphorylated STAT5 but not nonphosphorylated STAT5. In immunoprecipitation reactions from cell lines and primary erythroblasts, 2 distinct polyclonal activation-specific STAT5 antibodies selectively immunoprecipitate the tyrosine phosphorylated EPO receptor (EPO-R) in addition to STAT5 under native and denaturing conditions. We propose that the activation-specific STAT5 antibody recognizes the 2 substrates to which the STAT5 SH2 domain interacts, namely, the tyrosine- phosphorylated EPO-R and STAT5 itself. Several studies have implicated EPO-R Y343, Y401, Y431, and Y479 in the recruitment of STAT5. Using a series of EPO-R tyrosine mutants expressed in Ba/F3 cells, we have shown that the activation-specific STAT5 antibody immunoprecipitates an EPO-R containing only 2 tyrosines at positions 343 and 401, confirming the importance of these tyrosines in STAT5 recruitment. These data uncover a novel aspect of STAT SH2 domain recognition and demonstrate the utility of activation-specific antibodies for examining the specificity of STAT-cytokine receptor interactions.
Collapse
Affiliation(s)
- D L Barber
- Division of Cellular and Molecular Biology, Ontario Cancer Institute, Toronto, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lu L, Ge Y, Li ZH, Dai MS, Broxmeyer HE. Enhancement of proliferation and differentiation of erythroid progenitors by co-transduction of erythropoietin receptor and H-ras cDNAS into single CD34(3+) cord blood cells. Bone Marrow Transplant 2000; 26:817-22. [PMID: 11081379 DOI: 10.1038/sj.bmt.1702620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our previous studies have demonstrated that retrovirus-mediated gene transduction of either the human erythropoietin receptor (EpoR) or H-ras cDNA into single purified hematopoietic progenitor (HPC), CD34(3+), cells from cord blood (CB) resulted in increased numbers and sizes of erythroid cell containing colonies. We therefore evaluated if there were further effects when H-ras and EpoR genes were co-transduced into the same progenitor cells. Highly purified single sorted CD34(3+) CB cells were transduced with retroviral vectors encoding EpoR or H-ras cDNA. At the single cell level, and in response to stimulation by a combination of growth factors, including Epo, the number of colonies formed by BFU-E and CFU-GEMM was significantly increased in cells transduced with either single H-ras or EpoR cDNA compared to mock virus-transduced cells as previously described. Increased numbers of BFU-E, but not CFU-GEMM, colonies were produced from cells simultaneously co-transduced with both EpoR and Hras genes. Little or no growth was seen in transduced cells without exogenously added cytokines. The size of all types of colonies including CFU-GM was increased in cells transduced with H-ras and/or EpoR cDNAs, and the greatest increase was noticed in cells co-transduced with both genes. Integration and expression of either gene in individual colonies as assessed by PCR and RT-PCR analysis were 45-62% and 48-58%, respectively, with approximately 31% of the cells containing and expressing both genes. These results add to information suggesting an enhancing interacting role of H-ras and EpoR in erythroid proliferation/differentiation.
Collapse
Affiliation(s)
- L Lu
- Department of Microbiology/lmmunology, Indiana University School of Medicine, Indianapolis 46202-5254, USA
| | | | | | | | | |
Collapse
|
19
|
Gadina M, Sudarshan C, Visconti R, Zhou YJ, Gu H, Neel BG, O'Shea JJ. The Docking Molecule Gab2 Is Induced by Lymphocyte Activation and Is Involved in Signaling by Interleukin-2 and Interleukin-15 but Not Other Common γ Chain-using Cytokines. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61466-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Nishigaki K, Hanson C, Ohashi T, Thompson D, Muszynski K, Ruscetti S. Erythroid cells rendered erythropoietin independent by infection with Friend spleen focus-forming virus show constitutive activation of phosphatidylinositol 3-kinase and Akt kinase: involvement of insulin receptor substrate-related adapter proteins. J Virol 2000; 74:3037-45. [PMID: 10708418 PMCID: PMC111802 DOI: 10.1128/jvi.74.7.3037-3045.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1999] [Accepted: 01/04/2000] [Indexed: 11/20/2022] Open
Abstract
The erythroleukemia-inducing Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). In an effort to understand how SFFV causes Epo independence, we have been examining erythroid cells rendered factor independent by SFFV infection for constitutive activation of signal-transducing molecules. Previous studies from our laboratory showed that various signal-transducing molecules known to be activated by Epo, including Stat proteins and components of the Raf-1/MAP kinase pathway, are constitutively activated in SFFV-infected erythroid cells in the absence of Epo. Since another signal transduction pathway involving activation of phosphatidylinositol 3-kinase (PI 3-kinase) after Epo stimulation plays an important role in erythroid cell proliferation and differentiation, we carried out studies to determine if this pathway was also activated in SFFV-infected cells in the absence of Epo. Our studies show that PI 3-kinase is constitutively activated in erythroid cells rendered factor independent by infection with SFFV and that PI 3-kinase activity, but not Epo receptor tyrosine phosphorylation, is required for the proliferation of these cells in the absence of Epo. We further show that in SFFV-infected erythroid cells grown in the absence of Epo, PI 3-kinase associates with the insulin receptor substrate (IRS)-related adapter molecules IRS-2, Gab1, and Gab2, which are constitutively tyrosine phosphorylated in SFFV-infected cells. Finally, Akt, a protein kinase that is one of the downstream effectors of PI 3-kinase, and SHIP, a lipid phosphatase that is important for Akt activation through PI 3-kinase, are both tyrosine phosphorylated in SFFV-infected cells grown in the absence of Epo. Our results indicate that induction of Epo independence by SFFV requires the activation of PI 3-kinase and suggest that constitutive activation of this kinase in SFFV-infected cells may occur primarily through interaction of PI 3-kinase with constitutively phosphorylated IRS-related adapter molecules.
Collapse
Affiliation(s)
- K Nishigaki
- Basic Research Laboratory, Frederick Cancer Research and Development Center, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
21
|
Cull V, Tilbrook PA, Adenan AS, Chappell D, Ingley E, Sarna MK, Palmer TN, Watowich SS, Klinken SP. Dominant action of mutated erythropoietin receptors on differentiation in vitro and erythroleukemia development in vivo. Oncogene 2000; 19:953-60. [PMID: 10702804 DOI: 10.1038/sj.onc.1203370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
J2E cells produce rapid, fatal erythroleukemias in vivo but still respond to erythropoietin (epo) in vitro by differentiating, proliferating and remaining viable in the absence of serum. Mutant epo receptors were introduced into these cells to determine whether they could influence the different biological responses to epo in vitro and the development of erythroleukemias. Three mutant receptors were used as cytoplasmic truncation mutants Delta257 and Delta321 (above box 1 and below box 2 respectively), and the cytoplasmic point mutant W282R (defective for JAK2 activation). Strikingly, the Delta321 mutation produced a hyper-sensitive response in vitro to epo-induced differentiation and viability, but not to proliferation. In contrast with the Delta321 receptor, the Delta257 and W282R mutants inhibited all biological responses to epo due to impaired JAK2 phosphorylation. Significantly, erythroleukemias took almost twice as long to develop with cells containing the W282R mutation, indicating that JAK2 plays an important role in the emergence of these leukemias. These data demonstrate that mutant epo receptors dominantly altered responses of J2E cells to epo in culture and the development of erythroleukemias. Oncogene (2000) 19, 953 - 960.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Division/genetics
- Cell Survival/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Erythropoietin/metabolism
- Erythropoietin/physiology
- Genes, Dominant
- Janus Kinase 2
- Leukemia, Erythroblastic, Acute/etiology
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Mice
- Mutation/genetics
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- V Cull
- Laboratory for Cancer Medicine, Department of Biochemistry, University of Western Australia and Royal Perth Hospital, Western Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mason JM, Beattie BK, Liu Q, Dumont DJ, Barber DL. The SH2 inositol 5-phosphatase Ship1 is recruited in an SH2-dependent manner to the erythropoietin receptor. J Biol Chem 2000; 275:4398-406. [PMID: 10660611 DOI: 10.1074/jbc.275.6.4398] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ship1 (SH2 inositol 5-phosphatase 1) has been shown to be a target of tyrosine phosphorylation downstream of cytokine and immunoregulatory receptors. In addition to its catalytic activity on phosphatidylinositol substrates, it can serve as an adaptor protein in binding Shc and Grb2. Erythropoietin (EPO), the primary regulator of erythropoiesis, has been shown to activate the tyrosine phosphorylation of Shc, resulting in recruitment of Grb2. However, the mechanism by which the erythropoietin receptor (EPO-R) recruits Shc remains unknown. EPO activates the tyrosine phosphorylation of Ship1, resulting in the interdependent recruitment of Shc and Grb2. Ship1 is recruited to the EPO-R in an SH2-dependent manner. Utilizing a panel of EPO-R deletion and tyrosine mutants, we have discovered remarkable redundancy in Ship1 recruitment. EPO-R Tyr(401) appears to be a major site of Ship1 binding; however, Tyr(429) and Tyr(431) can also serve to recruit Ship1. In addition, we have shown that EPO stimulates the formation of a ternary complex consisting of Ship1, Shc, and Grb2. Ship1 may modulate several discrete signal transduction pathways. EPO-dependent activation of ERK1/2 and protein kinase B (PKB)/Akt was examined utilizing a panel of EPO-R deletion mutants. Activation of ERK1/2 was observed in EPO-RDelta99, which retains only the most proximal tyrosine, Tyr(343). In contrast, EPO-dependent PKB activation was observed in EPO-RDelta43, but not in EPO-RDelta99. It appears that EPO-dependent PKB activation is downstream of a region that indirectly couples to phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- J M Mason
- Division of Cellular and Molecular Biology, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2G1
| | | | | | | | | |
Collapse
|
23
|
Distinct Roles of JNKs/p38 MAP Kinase and ERKs in Apoptosis and Survival of HCD-57 Cells Induced by Withdrawal or Addition of Erythropoietin. Blood 1999. [DOI: 10.1182/blood.v94.12.4067] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractErythropoietin (EPO), a major regulator of erythroid progenitor cells, is essential for the survival, proliferation, and differentiation of immature erythroid cells. To gain insight into the molecular mechanism by which EPO functions, we analyzed the activation of Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERKs) in HCD-57 cells, a murine erythroid progenitor cell line that requires EPO for survival and proliferation. Withdrawal of EPO from the cell culture medium resulted in sustained activation of JNKs plus p38 MAP kinase, and inactivation of ERKs, preceding apoptosis of the cells. Addition of EPO to the EPO-deprived cells caused activation of ERKs accompanied by inactivation of JNKs and p38 MAP kinase and rescued the cells from apoptosis. Phorbol 12-myristate 13-acetate, which activated ERKs by a different mechanism, also suppressed the activation of JNKs and significantly retarded apoptosis of the cells caused by withdrawal of EPO. Furthermore, MEK inhibitor PD98059, which inhibited activation of ERKs, caused activation of JNKs, whereas suppression of JNK expression by antisense oligonucleotides and inhibition of p38 MAP kinase by SB203580 caused attenuation of the apoptosis that occurs upon withdrawal of EPO. Finally, the activation of JNKs and p38 MAP kinase and concurrent inactivation of ERKs upon withdrawal of EPO were also observed in primary human erythroid colony-forming cells. Taken together, the data suggest that activation of ERKs promotes cell survival, whereas activation of JNKs and p38 MAP kinase leads to apoptosis and EPO functions by controlling the dynamic balance between ERKs and JNKs.
Collapse
|
24
|
Abstract
The proliferation and differentiation of erythroid cells is a highly regulated process that is controlled primarily at the level of interaction of erythropoietin (Epo) with its specific cell surface receptor (EpoR). However, this process is deregulated in mice infected with the Friend spleen focus-forming virus (SFFV). Unlike normal erythroid cells, erythroid cells from SFFV-infected mice are able to proliferate and differentiate in the absence of Epo, resulting in erythroid hyperplasia and leukemia. Over the past 20 years, studies have been carried out to identify the viral genes responsible for the pathogenicity of SFFV and to understand how expression of these genes leads to the deregulation of erythropoiesis in infected animals. The studies have revealed that SFFV encodes a unique envelope glycoprotein which interacts specifically with the EpoR at the cell surface, resulting in activation of the receptor and subsequent activation of erythroid signal transduction pathways. This leads to the proliferation and differentiation of erythroid precursor cells in the absence of Epo. Although the precise mechanism by which the viral protein activates the EpoR is not yet known, it has been proposed that it causes dimerization of the receptor, resulting in constitutive activation of Epo signal transduction pathways. While interaction of the SFFV envelope glycoprotein with the EpoR leads to Epo-independent erythroid hyperplasia, this is not sufficient to transform these cells. Transformation requires the viral activation of the cellular gene Sfpi-1, whose product is thought to block erythroid cell differentiation. By understanding how SFFV can deregulate erythropoiesis, we may gain insights into the causes and treatment of related diseases in man.
Collapse
Affiliation(s)
- S K Ruscetti
- National Cancer Institute, Frederick Cancer Research and Development Center, MD 21702-1201, USA.
| |
Collapse
|
25
|
Xia K, Lee RS, Narsimhan RP, Mukhopadhyay NK, Neel BG, Roberts TM. Tyrosine phosphorylation of the proto-oncoprotein Raf-1 is regulated by Raf-1 itself and the phosphatase Cdc25A. Mol Cell Biol 1999; 19:4819-24. [PMID: 10373531 PMCID: PMC84280 DOI: 10.1128/mcb.19.7.4819] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is a growing body of evidence demonstrating that Raf-1 is phosphorylated on tyrosines upon stimulation of a variety of receptors. Although detection of Raf-1 tyrosine phosphorylation has remained elusive, genetic analyses have demonstrated it to be important for Raf-1 activation. Here we report new findings which indicate that Raf-1 tyrosine phosphorylation is regulated in vivo. In both a mammalian and baculovirus expression system, a kinase-inactive allele of Raf-1 was found to be tyrosine phosphorylated at levels much greater than that of wild-type Raf-1. The level of tyrosine phosphate on Raf-1 was markedly increased upon treatment with phosphatase inhibitors either before or after cell lysis. Cdc25A was found to dephosphorylate Raf-1 on tyrosines that resulted in a significant decrease in Raf-1 kinase activity. In NIH 3T3 cells, coexpression of wild-type Raf-1 and phosphatase-inactive Cdc25A led to a marked increase in Raf-1 tyrosine phosphorylation in response to platelet-derived growth factor. These data suggest that the tyrosine phosphorylation of Raf-1 is regulated not only by itself but also by Cdc25A.
Collapse
Affiliation(s)
- K Xia
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Erythropoietin (EPO) and its receptor (EPOR) are required for the development of mature erythrocytes. After binding of ligand, the EPOR activates a variety of signaling pathways that ultimately control cellular proliferation, survival, and specific gene expression. Although erythroid progenitors appear to be the principal EPO-responsive cell type in vivo due to the restricted expression of the EPOR, many growth factor–dependent cell lines expressing the EPOR can respond to EPO by activating many or all of these pathways. In the present study, we have identified a cellular context (the interleukin-2 [IL-2]–dependent HT-2 line) in which the EPO stimulation of the EPOR fails to support cellular proliferation, STAT-5 induction, or MAPK activation, despite efficient phosphorylation of the EPOR and JAK2 and inhibition of apoptosis after withdrawal of IL-2. Interestingly, when we fused HT-2 cells expressing the EPOR with Ba/F3 cells in a complementation assay, the resulting hybridomas proliferated and potently activated STAT-5 and MAPK in response to EPO. These data indicate that an unidentified cellular factor is needed to mediate signaling by the EPOR. Moreover, Ba/F3 cells apparently express this factor(s) and somatic fusions can, therefore, confer EPO-responsiveness to HT-2 cells that lack this factor.
Collapse
|
27
|
Protein Kinase B (c-Akt), Phosphatidylinositol 3-Kinase, and STAT5 Are Activated by Erythropoietin (EPO) in HCD57 Erythroid Cells But Are Constitutively Active in an EPO-Independent, Apoptosis-Resistant Subclone (HCD57-SREI Cells). Blood 1999. [DOI: 10.1182/blood.v93.11.3757] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe found that erythropoietin (EPO) and stem cell factor (SCF) activated protein kinase B (PKB/Akt) in EPO-dependent HCD57 erythroid cells. To better understand signals controlling proliferation and viability, erythroid cells that resist apoptosis in the absence of EPO were subcloned and characterized (HCD57-SREI cells). Constitutive activations of PKB/Akt, STAT5a, and STAT5b were noted in these EPO-independent cells. PI3-kinase activity was an upstream activator of PKB/Akt because the PI3-kinase inhibitor LY294002 blocked both constitutive PKB/Akt and factor-dependent PKB/Akt activity. The LY294002 study showed that proliferation and viability of both HCD57-SREI and HCD57 cells correlated with the activity of PKB/Akt; however, PKB/Akt activity alone did not protect these cells from apoptosis. Treatment of HCD57 cells with SCF also activated PKB/Akt, but did not protect from apoptosis. This result suggested that PKB/PI3-kinase activity is necessary but not sufficient to promote viability and/or proliferation. Constitutive STAT5 activity, activated through an unknown pathway not including JAK2 or EPOR, may act in concert with the constitutive PI3-kinase/PKB/Akt pathway to protect the EPO-independent HCD57-SREI cells from apoptosis and promote limited proliferation.
Collapse
|
28
|
Marchisio M, Bertagnolo V, Celeghini C, Vitale M, Capitani S, Zauli G. Selective modulation of specific protein kinase C (PKC) isoforms in primary human megakaryocytic vs. erythroid cells. Anat Rec (Hoboken) 1999; 255:7-14. [PMID: 10321988 DOI: 10.1002/(sici)1097-0185(19990501)255:1<7::aid-ar2>3.0.co;2-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have investigated the pattern of expression of classical (alpha, betaI, betaII, gamma), novel (delta) and atypical (zeta) protein kinase C (PKC) isoforms during the course of human hematopoietic differentiation along the closely related megakaryocytic and erythroid lineages. Using in situ immunofluorescence analysis, freshly isolated human pluripotent CD34+ hematopoietic progenitor cells expressed detectable amounts of all the PKC isoforms investigated. On the other hand, clear-cut differences in terms of PKC staining were noticed between cells belonging to the erythroid and megakaryocytic lineages, obtained after 9 days of serum-free liquid culture in the presence of specific growth factors. Specifically, 1) erythroid cells showed a very weak expression of PKC-alpha, -betaI, -betaII, and -gamma, while megakaryocytes showed an enhanced expression of all classical PKC isoforms, predominantly confined to the cytoplasm; 2) the expression of PKC-delta increased in the cytoplasmic and nuclear compartments of both erythroid and megakaryocytic cells with respect to CD34+ cells; and 3) atypical PKC-zeta isoform showed a striking accumulation in the nucleus during both erythroid and megakaryocytic differentiation.
Collapse
Affiliation(s)
- M Marchisio
- Department of Morphology and Embryology, University of Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Watowich SS, Liu KD, Xie X, Lai SY, Mikami A, Longmore GD, Goldsmith MA. Oligomerization and scaffolding functions of the erythropoietin receptor cytoplasmic tail. J Biol Chem 1999; 274:5415-21. [PMID: 10026152 PMCID: PMC2388248 DOI: 10.1074/jbc.274.9.5415] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Signal transduction by the erythropoietin receptor (EPOR) is activated by ligand-mediated receptor homodimerization. However, the relationship between extracellular and intracellular domain oligomerization remains poorly understood. To assess the requirements for dimerization of receptor cytoplasmic sequences for signaling, we overexpressed mutant EPORs in combination with wild-type (WT) EPOR to drive formation of heterodimeric (i.e. WT-mutant) receptor complexes. Dimerization of the membrane-proximal portion of the EPOR cytoplasmic region was found to be critical for the initiation of mitogenic signaling. However, dimerization of the entire EPOR cytoplasmic region was not required. To examine this process more closely, we generated chimeras between the intracellular and transmembrane portions of the EPOR and the extracellular domains of the interleukin-2 receptor beta and gammac chains. These chimeras allowed us to assess more precisely the signaling role of each receptor chain because only heterodimers of WT and mutant receptor chimeras form in the presence of interleukin-2. Coexpression studies demonstrated that a functional receptor complex requires the membrane-proximal region of each receptor subunit in the oligomer to permit activation of JAK2 but only one membrane-distal tail to activate STAT5 and to support cell proliferation. Thus, this study defines key relationships involved in the assembly and activation of the EPOR signal transduction complex which may be applicable to other homodimeric cytokine receptors.
Collapse
Affiliation(s)
| | - Kathleen D. Liu
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100 and the Department of Medicine, School of Medicine, University of California, San Francisco, California 94143
| | - Xiaoling Xie
- Department of Immunology, M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Stephen Y. Lai
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100 and the Department of Medicine, School of Medicine, University of California, San Francisco, California 94143
| | - Aki Mikami
- Departments of Medicine and Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Gregory D. Longmore
- Departments of Medicine and Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Mark A. Goldsmith
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100 and the Department of Medicine, School of Medicine, University of California, San Francisco, California 94143
- To whom correspondence should be addressed: Gladstone Institute of Virology and Immunology, P. O. Box 419100, San Francisco, CA 94141-9100. Tel.: 415-695-3775; Fax: 415-826-1514; E-mail:
| |
Collapse
|
30
|
Affiliation(s)
- P A Tilbrook
- Department of Biochemistry, University of Western Australia, Australia
| | | |
Collapse
|
31
|
Synergistic Activation of MAP Kinase (ERK1/2) by Erythropoietin and Stem Cell Factor Is Essential for Expanded Erythropoiesis. Blood 1998. [DOI: 10.1182/blood.v92.4.1142] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractStem cell factor (SCF) and erythropoietin (EPO) work synergistically to support erythropoiesis, but the mechanism for this synergism is unknown. By using purified human erythroid colony-forming cells (ECFC), we have found that SCF and EPO synergistically activate MAP kinase (MAPK, ERK1/2), which correlates with the cell growth and thus may be responsible for the synergistic effects. Treatment of the cells with PD98059 and wortmannin, inhibitors of MEK and PI-3 kinase, respectively, inhibited the synergistic activation of MAPK and also the cell growth, further supporting this conclusion. Wortmannin only inhibits MAPK activation induced by EPO but not that by SCF, suggesting that SCF and EPO may activate MAPK through different pathways, which would facilitate synergy. Furthermore, EPO, but not SCF, led to activation of STAT5, whereas SCF and wortmannin had no effect on the EPO-induced STAT5 activation, suggesting that STAT5 is not involved in the synergistic action of SCF and EPO. Together, the data suggest that synergistic activation of MAPK by SCF and EPO is essential for expanded erythropoiesis.© 1998 by The American Society of Hematology.
Collapse
|
32
|
Synergistic Activation of MAP Kinase (ERK1/2) by Erythropoietin and Stem Cell Factor Is Essential for Expanded Erythropoiesis. Blood 1998. [DOI: 10.1182/blood.v92.4.1142.416k42_1142_1149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stem cell factor (SCF) and erythropoietin (EPO) work synergistically to support erythropoiesis, but the mechanism for this synergism is unknown. By using purified human erythroid colony-forming cells (ECFC), we have found that SCF and EPO synergistically activate MAP kinase (MAPK, ERK1/2), which correlates with the cell growth and thus may be responsible for the synergistic effects. Treatment of the cells with PD98059 and wortmannin, inhibitors of MEK and PI-3 kinase, respectively, inhibited the synergistic activation of MAPK and also the cell growth, further supporting this conclusion. Wortmannin only inhibits MAPK activation induced by EPO but not that by SCF, suggesting that SCF and EPO may activate MAPK through different pathways, which would facilitate synergy. Furthermore, EPO, but not SCF, led to activation of STAT5, whereas SCF and wortmannin had no effect on the EPO-induced STAT5 activation, suggesting that STAT5 is not involved in the synergistic action of SCF and EPO. Together, the data suggest that synergistic activation of MAPK by SCF and EPO is essential for expanded erythropoiesis.© 1998 by The American Society of Hematology.
Collapse
|
33
|
The Induction of Megakaryocyte Differentiation Is Accompanied by Selective Ser133 Phosphorylation of the Transcription Factor CREB in Both HEL Cell Line and Primary CD34+Cells. Blood 1998. [DOI: 10.1182/blood.v92.2.472] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe addition of thrombopoietin (TPO) to HEL cells, cultured in a chemically defined serum-free medium, induced a rapid and dose-dependent phosphorylation of the transcription factor CREB on serine133 (PSer133), as detected by Western blot analysis. TPO also significantly increased the transactivation of CRE-dependent promoter, as determined in transient transfection experiments. On the other hand, neither erythropoietin (Epo; 1 to 10 U) nor hemin (10−7 mol/L) were able to significantly stimulate CREB-PSer133 or to activate CRE-promoter in HEL cells. Although pharmacological inhibitors of protein kinase C (chelerytrine and BIM) and protein kinase A (H-89) failed to block the TPO-mediated CREB phosphorylation, a specific inhibitor of the mitogen-activated protein kinases (PD98059) completely blocked the ability of TPO to stimulate CREB-PSer133. Moreover, PD98059 significantly decreased the ability of TPO to upregulate the surface expression of the αIIbβ3 megakaryocytic marker in HEL cells. In parallel, primary CD34+ hematopoietic cells were seeded in liquid cultures supplemented with 100 ng/mL of TPO and examined by immunofluorescence for the coexpression of αIIbβ3 and CREB-PSer133 at various time points. High levels of nuclear CREB-PSer133 were unequivocally demonstrated in αIIbβ3+cells, including morphologically recognizable megakaryocytes. Taken together, these data suggest that CREB plays a role in modulating the expression of genes critical for megakaryocyte differentiation and that the TPO-mediated CREB phosphorylation seems to be regulated via mitogen-activated protein kinases.
Collapse
|
34
|
The Induction of Megakaryocyte Differentiation Is Accompanied by Selective Ser133 Phosphorylation of the Transcription Factor CREB in Both HEL Cell Line and Primary CD34+Cells. Blood 1998. [DOI: 10.1182/blood.v92.2.472.414k30_472_480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The addition of thrombopoietin (TPO) to HEL cells, cultured in a chemically defined serum-free medium, induced a rapid and dose-dependent phosphorylation of the transcription factor CREB on serine133 (PSer133), as detected by Western blot analysis. TPO also significantly increased the transactivation of CRE-dependent promoter, as determined in transient transfection experiments. On the other hand, neither erythropoietin (Epo; 1 to 10 U) nor hemin (10−7 mol/L) were able to significantly stimulate CREB-PSer133 or to activate CRE-promoter in HEL cells. Although pharmacological inhibitors of protein kinase C (chelerytrine and BIM) and protein kinase A (H-89) failed to block the TPO-mediated CREB phosphorylation, a specific inhibitor of the mitogen-activated protein kinases (PD98059) completely blocked the ability of TPO to stimulate CREB-PSer133. Moreover, PD98059 significantly decreased the ability of TPO to upregulate the surface expression of the αIIbβ3 megakaryocytic marker in HEL cells. In parallel, primary CD34+ hematopoietic cells were seeded in liquid cultures supplemented with 100 ng/mL of TPO and examined by immunofluorescence for the coexpression of αIIbβ3 and CREB-PSer133 at various time points. High levels of nuclear CREB-PSer133 were unequivocally demonstrated in αIIbβ3+cells, including morphologically recognizable megakaryocytes. Taken together, these data suggest that CREB plays a role in modulating the expression of genes critical for megakaryocyte differentiation and that the TPO-mediated CREB phosphorylation seems to be regulated via mitogen-activated protein kinases.
Collapse
|
35
|
Sanders MR, Lu H, Walker F, Sorba S, Dainiak N. The Raf-1 protein mediates insulin-like growth factor-induced proliferation of erythroid progenitor cells. Stem Cells 1998; 16:200-7. [PMID: 9617895 DOI: 10.1002/stem.160200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies from this and other laboratories have shown that insulin-like growth factor-1 (IGF-I) and insulin-like growth factor-2 (IGF-II) support erythroid colony formation in cultures supplemented with serum substitute and recombinant erythropoietin. Subpopulations of IGF-I- and IGF-II-dependent, erythropoietin-independent colony-forming unit-erythroid (CFU-E)-derived colonies and BFU-E-derived colonies were identified under serum-substituted conditions for adult bone-marrow-derived erythroid progenitors which proliferate in the absence and presence of exogenous anti-erythropoietin receptor monoclonal antibody and in serum-substituted medium that was preadsorbed with anti-erythropoietin IgG. To assess whether Raf-1 is required for the formation of IGF-dependent, erythropoietin-independent human erythroid colonies, 5-15 microM sense or antisense oligomer to raf-1 were added to serum-substituted cultures containing either 2 U/ml recombinant human erythropoietin (rHuEpo) alone or 0-1,000 ng/ml IGF-I or IGF-II with/without 2 U/ml rHuEpo. Both erythropoietin-induced and IGF-induced erythroid colony formation were completely blocked by antisense (but not sense) oligomers to raf-1. Purified human CFU-Es were examined for Raf-1 message and protein. Total RNA was extracted, and raf-1 mRNA was detected on Northern blots. Furthermore, a 74 kD protein, corresponding to Raf-1, was also detected in CFU-Es purified from human adult sources. Together, these studies support the hypothesis that the Raf-1 protein mediates both erythropoietin-induced and IGF-induced signal transduction in human erythroid progenitor cells.
Collapse
Affiliation(s)
- M R Sanders
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
One facet of cytokine receptor signaling involves the activation of signal transducers and activators of transcription (STATs). STATs are rapidly activated via tyrosine phosphorylation by Janus kinase (JAK) family members and subsequently inactivated within a short period. We investigated the effect of proteasome inhibition on interleukin-3 (IL-3) activation of the JAK/STAT pathway following stimulation of Ba/F3 cells. Treatment of Ba/F3 cells with the proteasome inhibitor,N-acetyl-l-leucinyl-l-leucinyl-norleucinal (LLnL), led to stable tyrosine phosphorylation of the IL-3 receptor, beta common (βc), and STAT5 following stimulation. The effects of LLnL were not restricted to the JAK/STAT pathway, as Shc and mitogen-activated protein kinase (MAPK) phosphorylation were also prolonged in LLnL-treated cells. Further investigation showed these stable phosphorylation events were the result of prolonged activation of JAK2 and JAK1. These observations were confirmed using pharmacologic inhibitors. In the presence of LLnL, stable phosphorylation of STAT5 and βc was abrogated if the tyrosine kinase inhibitor, staurosporine, was added. The effect of staurosporine on STAT5 phosphorylation could be overcome if the phosphatase inhibitor, vanadate, was also added, suggesting phosphorylated STAT5 could be stabilized by phosphatase, but not by proteasome inhibition per se. These observations are consistent with the hypothesis that proteasome-mediated protein degradation can modulate the activity of the JAK/STAT pathway by regulating the deactivation of JAK.
Collapse
|
37
|
Abstract
AbstractOne facet of cytokine receptor signaling involves the activation of signal transducers and activators of transcription (STATs). STATs are rapidly activated via tyrosine phosphorylation by Janus kinase (JAK) family members and subsequently inactivated within a short period. We investigated the effect of proteasome inhibition on interleukin-3 (IL-3) activation of the JAK/STAT pathway following stimulation of Ba/F3 cells. Treatment of Ba/F3 cells with the proteasome inhibitor,N-acetyl-l-leucinyl-l-leucinyl-norleucinal (LLnL), led to stable tyrosine phosphorylation of the IL-3 receptor, beta common (βc), and STAT5 following stimulation. The effects of LLnL were not restricted to the JAK/STAT pathway, as Shc and mitogen-activated protein kinase (MAPK) phosphorylation were also prolonged in LLnL-treated cells. Further investigation showed these stable phosphorylation events were the result of prolonged activation of JAK2 and JAK1. These observations were confirmed using pharmacologic inhibitors. In the presence of LLnL, stable phosphorylation of STAT5 and βc was abrogated if the tyrosine kinase inhibitor, staurosporine, was added. The effect of staurosporine on STAT5 phosphorylation could be overcome if the phosphatase inhibitor, vanadate, was also added, suggesting phosphorylated STAT5 could be stabilized by phosphatase, but not by proteasome inhibition per se. These observations are consistent with the hypothesis that proteasome-mediated protein degradation can modulate the activity of the JAK/STAT pathway by regulating the deactivation of JAK.
Collapse
|
38
|
Muszynski KW, Ohashi T, Hanson C, Ruscetti SK. Both the polycythemia- and anemia-inducing strains of Friend spleen focus-forming virus induce constitutive activation of the Raf-1/mitogen-activated protein kinase signal transduction pathway. J Virol 1998; 72:919-25. [PMID: 9444983 PMCID: PMC124561 DOI: 10.1128/jvi.72.2.919-925.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The erythroleukemia-inducing Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). In an attempt to understand how the virus causes Epo independence, we have been studying signal transduction pathways activated by Epo to determine if SFFV exerts its biological effects by constitutively activating any of these pathways in the absence of Epo. We previously demonstrated that Stat proteins, the downstream components of the Epo-induced Jak-Stat pathway, are constitutively activated in SFFV-infected cells. In this study, we demonstrate that SFFV also activates Raf-1, MEK and mitogen-activated protein (MAP) kinase, the downstream components of the Raf-1/MAP kinase pathway. This pathway was activated in cells infected with the polycythemia-inducing strain of SFFV, which induces both proliferation and differentiation of erythroid cells in the absence of Epo, as well as in cells infected with the anemia-inducing strain of the virus, which still require Epo for differentiation. Inhibition of Raf-1 by using antisense oligonucleotides led to a partial inhibition of the Epo-independent proliferation of SFFV-infected cells. Expression of the transcription factors c-Jun and JunB, but not c-Fos, was induced in SFFV-infected cells in the absence of Epo, suggesting that constitutive activation of the Raf-1/MAP kinase pathway by the virus may result in deregulation of AP-1 activity. We conclude from our studies that infection of erythroid cells with SFFV leads to the constitutive activation of signal transduction molecules in both the Jak-Stat and Raf-1/MAP kinase pathways and that both of these pathways must be activated to achieve maximum proliferation and differentiation of erythroid cells in the absence of Epo.
Collapse
Affiliation(s)
- K W Muszynski
- Intramural Research Support Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
39
|
Liu C, Shen K, Liu Z, Noguchi CT. Regulated human erythropoietin receptor expression in mouse brain. J Biol Chem 1997; 272:32395-400. [PMID: 9405448 DOI: 10.1074/jbc.272.51.32395] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Erythropoietin (Epo) is known for its role in erythropoiesis and acts by binding to its receptor (EpoR) on the surface of erythroid progenitors. EpoR activity follows the site of hematopoiesis from the embryonic yolk sac to the fetal liver and then the adult spleen and bone marrow. Expression of EpoR has also been observed in selected cells of non-hematopoietic origin, such as the embryonic mouse brain during mid-gestation, at levels comparable to adult bone marrow. EpoR transcripts in brain decrease during development falling by birth to less than 1-3% of the level in hematopoietic tissue. We have now recapitulated this pattern of expression using a human EpoR transgene consisting of an 80-kb human EpoR genomic fragment. The highest level of expression was observed in the embryonic yolk sac and fetal liver, analogous to the endogenous gene, in addition to expression in adult spleen and bone marrow. Although activity of this transgene in brain is initially lower than the endogenous gene, it does exhibit the down-regulation observed for the endogenous gene in adult brain. The expression pattern of hybrid transgenes of an hEpoR promoter fused to beta-galactosidase in 9. 5-day embryos suggested that the hEpoR promoter region between -1778 and -150 bp 5' of the transcription start site is necessary to direct EpoR expression in the neural tube. EpoR expression in the neural tube may be the origin of the EpoR transcripts detected in brain during development. These data demonstrate that both the mouse and human EpoR genes contain regulatory elements to direct significant levels of expression in a developmentally controlled manner in brain and suggest that in addition to its function during erythropoiesis, EpoR may play a role in the development of selected non-hematopoietic tissue.
Collapse
Affiliation(s)
- C Liu
- Laboratory of Chemical Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1822, USA
| | | | | | | |
Collapse
|
40
|
Erythropoietin and Interleukin-3 Activate Tyrosine Phosphorylation of CBL and Association With CRK Adaptor Proteins. Blood 1997. [DOI: 10.1182/blood.v89.9.3166] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTransformation of hematopoietic cells by the Bcr-abl oncoprotein leads to constitutive tyrosine phosphorylation of a number of cellular polypeptides that function in normal growth factor-dependent cell proliferation. Recent studies have shown that the CrkL adaptor protein and the Cbl protooncoprotein are constitutively tyrosine phosphorylated and form a preformed complex in cells expressing Bcr-abl. In the current study, we have examined cytokine-dependent tyrosine phosphorylation of Cbl and its association with Crk proteins. Erythropoietin (EPO) and interleukin-3 induced a dose and time-dependent tyrosine phosphorylation of Cbl in both EPO-dependent Ba/F3 and DA-3 transfectants, and the erythroid cell line HCD-57. Furthermore, once phosphorylated, Cbl associated with Crk adaptor proteins. Of the three Crk isoforms expressed in hematopoietic cells (CrkL, CrkII, and CrkI), tyrosine phosphorylated Cbl binds preferentially to CrkL and CrkII. The amount of Cbl associated with CrkL and CrkII exceeded the fraction of Cbl associated with Grb2 indicating that unlike other receptor systems, the Cbl-Crk association represents the dominant complex of Cbl in growth factor-stimulated hematopoietic cells. In factor-dependent hematopoietic cell lines, CrkL constitutively associated with the guanine nucleotide release factor, C3G, which is known to interact via Crk src-homology 3 (SH3) domains. Our data suggest that the inducible Cbl-Crk association is a proximal component of a signaling pathway downstream of multiple cytokine receptors.
Collapse
|