1
|
Engelbrecht E, Metzler MA, Sandell LL. Retinoid signaling regulates angiogenesis and blood-retinal barrier integrity in neonatal mouse retina. Microcirculation 2022; 29:e12752. [PMID: 35203102 DOI: 10.1111/micc.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The neonatal mouse retina is a well-characterized experimental model for investigating factors impacting retinal angiogenesis and inner blood-retinal barrier (BRB) integrity. Retinoic acid (RA) is an essential signaling molecule. RA is needed for vasculogenic development in embryos and endothelial barrier integrity in zebrafish retina and adult mouse brain, however the function of this signaling molecule in developing mammalian retinal vasculature remains unknown. This study aims to investigate the role of RA signaling in angiogenesis and inner BRB integrity in mouse neonatal retina. METHODS RA distribution in the developing neurovascular retina was assessed in mice carrying an RA-responsive transgene. RA function in retinal angiogenesis was determined by treating C57BL/6 neonatal pups with a pharmacological inhibitor of RA signaling BMS493 or control vehicle. BRB integrity assessed by monitoring leakage of injected tracer into extravascular retinal tissue. RESULTS RA signaling activity is present in peripheral astrocytes in domains corresponding to RA activity of the underlying neural retina. RA inhibition impaired retinal angiogenesis and reduced endothelial cell proliferation. RA inhibition also compromised BRB integrity. Vascular leakage was not associated with altered expression of CLDN5, PLVAP, LEF1 or VEcad. CONCLUSIONS RA signaling is needed for angiogenesis and integrity of the BRB in the neonatal mouse retina.
Collapse
Affiliation(s)
- Eric Engelbrecht
- University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| |
Collapse
|
2
|
Metzler MA, Raja S, Elliott KH, Friedl RM, Tran NQH, Brugmann SA, Larsen M, Sandell LL. RDH10-mediated retinol metabolism and RARα-mediated retinoic acid signaling are required for submandibular salivary gland initiation. Development 2018; 145:dev.164822. [PMID: 29986869 DOI: 10.1242/dev.164822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
In mammals, the epithelial tissues of major salivary glands generate saliva and drain it into the oral cavity. For submandibular salivary glands (SMGs), the epithelial tissues arise during embryogenesis from naïve oral ectoderm adjacent to the base of the tongue, which begins to thicken, express SOX9 and invaginate into underlying mesenchyme. The developmental mechanisms initiating salivary gland development remain unexplored. In this study, we show that retinoic acid (RA) signaling activity at the site of gland initiation is colocalized with expression of retinol metabolic genes Rdh10 and Aldh1a2 in the underlying SMG mesenchyme. Utilizing a novel ex vivo assay for SMG initiation developed for this study, we show that RDH10 and RA are required for salivary gland initiation. Moreover, we show that the requirement for RA in gland initiation involves canonical signaling through retinoic acid receptors (RAR). Finally, we show that RA signaling essential for gland initiation is transduced specifically through RARα, with no contribution from other RAR isoforms. This is the first study to identify a molecular signal regulating mammalian salivary gland initiation.
Collapse
Affiliation(s)
- Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Swetha Raja
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Regina M Friedl
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - N Q H Tran
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Kurtys E, Eisel ULM, Verkuyl JM, Broersen LM, Dierckx RAJO, de Vries EFJ. The combination of vitamins and omega-3 fatty acids has an enhanced anti-inflammatory effect on microglia. Neurochem Int 2016; 99:206-214. [PMID: 27465516 DOI: 10.1016/j.neuint.2016.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/01/2016] [Accepted: 07/18/2016] [Indexed: 01/27/2023]
Abstract
Neuroinflammation is a common phenomenon in the pathology of many brain diseases. In this paper we explore whether selected vitamins and fatty acids known to modulate inflammation exert an effect on microglia, the key cell type involved in neuroinflammation. Previously these nutrients have been shown to exert anti-inflammatory properties acting on specific inflammatory pathways. We hypothesized that combining nutrients acting on converging anti-inflammatory pathways may lead to enhanced anti-inflammatory properties as compared to the action of a single nutrient. In this study, we investigated the anti-inflammatory effect of combinations of nutrients based on the ability to inhibit the LPS-induced release of nitric oxide and interleukin-6 from BV-2 cells. Results show that omega-3 fatty acids, vitamins A and D can individually reduce the LPS-induced secretion of the pro-inflammatory cytokines by BV-2 cells. Moreover, we show that vitamins A, D and omega-3 fatty acids (docosahexaenoic and eicosapentaenoic) at concentrations where they individually had little effect, significantly reduced the secretion of the inflammatory mediator, nitric oxide, when they were combined. The conclusion of this study is that combining different nutrients acting on convergent anti-inflammatory pathways may result in an increased anti-inflammatory efficacy.
Collapse
Affiliation(s)
- E Kurtys
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - U L M Eisel
- Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J M Verkuyl
- Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - L M Broersen
- Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - R A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - E F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
4
|
HACE1 is a putative tumor suppressor gene in B-cell lymphomagenesis and is down-regulated by both deletion and epigenetic alterations. Leuk Res 2016; 45:90-100. [DOI: 10.1016/j.leukres.2016.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/07/2016] [Accepted: 04/08/2016] [Indexed: 11/19/2022]
|
5
|
D'Aniello E, Waxman JS. Input overload: Contributions of retinoic acid signaling feedback mechanisms to heart development and teratogenesis. Dev Dyn 2015; 244:513-23. [PMID: 25418431 DOI: 10.1002/dvdy.24232] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/07/2022] Open
Abstract
Appropriate levels of retinoic acid (RA) signaling are critical for normal heart development in vertebrates. A fascinating property of RA signaling is the thoroughness by which positive and negative feedback are employed to promote proper embryonic RA levels. In the present short review, we first cover the advancement of hypotheses regarding the impact of RA signaling on cardiac specification. We then discuss our current understanding of RA signaling feedback mechanisms and the implications of recent studies, which have indicated improperly maintained RA signaling feedback can be a contributing factor to developmental malformations.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | | |
Collapse
|
6
|
Depletion of retinoic acid receptors initiates a novel positive feedback mechanism that promotes teratogenic increases in retinoic acid. PLoS Genet 2013; 9:e1003689. [PMID: 23990796 PMCID: PMC3750112 DOI: 10.1371/journal.pgen.1003689] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/19/2013] [Indexed: 11/19/2022] Open
Abstract
Normal embryonic development and tissue homeostasis require precise levels of retinoic acid (RA) signaling. Despite the importance of appropriate embryonic RA signaling levels, the mechanisms underlying congenital defects due to perturbations of RA signaling are not completely understood. Here, we report that zebrafish embryos deficient for RA receptor αb1 (RARαb1), a conserved RAR splice variant, have enlarged hearts with increased cardiomyocyte (CM) specification, which are surprisingly the consequence of increased RA signaling. Importantly, depletion of RARαb2 or concurrent depletion of RARαb1 and RARαb2 also results in increased RA signaling, suggesting this effect is a broader consequence of RAR depletion. Concurrent depletion of RARαb1 and Cyp26a1, an enzyme that facilitates degradation of RA, and employment of a novel transgenic RA sensor line support the hypothesis that the increases in RA signaling in RAR deficient embryos are the result of increased embryonic RA coupled with compensatory RAR expression. Our results support an intriguing novel mechanism by which depletion of RARs elicits a previously unrecognized positive feedback loop that can result in developmental defects due to teratogenic increases in embryonic RA. Retinoic acid (RA) is the most active metabolic product of Vitamin A. Appropriate levels of RA are required for proper embryonic development and tissue maintenance in all vertebrates. Inappropriate levels of RA in human embryos can cause congenital defects that affect many organs, including the heart and limbs, and lead to numerous types of cancers. Understanding how animals maintain appropriate RA levels and the consequences of inappropriate RA signaling will therefore provide insight into human congenital defects and diseases. RA signaling is mediated by RA receptors (RARs), which are transcription factors that are activated when binding RA. We have found that depletion of RARs in zebrafish results in defects that are surprisingly due to increases in embryonic RA and not a deficiency of RA signaling. Our results are the first to demonstrate that RAR depletion elicits a positive feedback mechanism that promotes RA signaling through complementary increases in both embryonic RA and RAR expression. Therefore, our analysis provides novel insight into the molecular mechanisms that are required to maintain appropriate RA signaling and will positively impact our understanding of the mechanisms underlying congenital defects.
Collapse
|
7
|
Kam RKT, Deng Y, Chen Y, Zhao H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2012; 2:11. [PMID: 22439772 PMCID: PMC3325842 DOI: 10.1186/2045-3701-2-11] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/22/2012] [Indexed: 01/08/2023] Open
Abstract
Retinoic acid (RA) is a morphogen derived from retinol (vitamin A) that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR) and retinoic acid X receptor (RXR) which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.
Collapse
Affiliation(s)
- Richard Kin Ting Kam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P, R, China.
| | | | | | | |
Collapse
|
8
|
Schreiber R, Taschler U, Preiss-Landl K, Wongsiriroj N, Zimmermann R, Lass A. Retinyl ester hydrolases and their roles in vitamin A homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:113-23. [PMID: 21586336 PMCID: PMC3242165 DOI: 10.1016/j.bbalip.2011.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 12/16/2022]
Abstract
In mammals, dietary vitamin A intake is essential for the maintenance of adequate retinoid (vitamin A and metabolites) supply of tissues and organs. Retinoids are taken up from animal or plant sources and subsequently stored in form of hydrophobic, biologically inactive retinyl esters (REs). Accessibility of these REs in the intestine, the circulation, and their mobilization from intracellular lipid droplets depends on the hydrolytic action of RE hydrolases (REHs). In particular, the mobilization of hepatic RE stores requires REHs to maintain steady plasma retinol levels thereby assuring constant vitamin A supply in times of food deprivation or inadequate vitamin A intake. In this review, we focus on the roles of extracellular and intracellular REHs in vitamin A metabolism. Furthermore, we will discuss the tissue-specific function of REHs and highlight major gaps in the understanding of RE catabolism. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
|
9
|
Mees C, Nemunaitis J, Senzer N. Transcription factors: their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Ther 2008; 16:103-12. [PMID: 18846113 DOI: 10.1038/cgt.2008.73] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pro-cancer signals are controlled by the expression and transcription of oncogenes. Transcription of DNA is dependent on the spatially and temporally coordinated interaction between transcriptional machinery (RNA polymerase II, transcription factors (TFs)) and transcriptional regulatory components (promoter elements, enhancers, silencers and locus control regions). Unique TFs have been identified in association with cancer. This review summarizes key oncogene-related TFs and organizes their pro-cancer activity according to the six hallmark functions (self sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis and metastatic spread) proposed as constituting the infrastructure of the malignant process.
Collapse
Affiliation(s)
- C Mees
- Mary Crowley Cancer Research Centers, Dallas, TX 75201, USA
| | | | | |
Collapse
|
10
|
Dawson HD, Collins G, Pyle R, Key M, Taub DD. The Retinoic Acid Receptor-alpha mediates human T-cell activation and Th2 cytokine and chemokine production. BMC Immunol 2008; 9:16. [PMID: 18416830 PMCID: PMC2394516 DOI: 10.1186/1471-2172-9-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/16/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-gamma and TNF-alpha expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA), and the retinoic acid receptor-alpha (RAR-alpha)-selective agonist, AM580 but not with the RAR-beta/gamma ligand, 4-hydroxyphenylretinamide (4-HPR). RESULTS The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-alpha-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-alpha-selective antagonist, RO 41-5253, inhibited these effects. CONCLUSION These results strongly support a role for RAR-alpha engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production.
Collapse
Affiliation(s)
- Harry D Dawson
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
11
|
Kupumbati TS, Cattoretti G, Marzan C, Farias EF, Taneja R, Mira-y-Lopez R. Dominant negative retinoic acid receptor initiates tumor formation in mice. Mol Cancer 2006; 5:12. [PMID: 16563162 PMCID: PMC1444935 DOI: 10.1186/1476-4598-5-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 03/24/2006] [Indexed: 01/06/2023] Open
Abstract
Background Retinoic acid suppresses cell growth and promotes cell differentiation, and pharmacological retinoic acid receptor (RAR) activation is anti-tumorigenic. This begs the question of whether chronic physiological RAR activation by endogenous retinoids is likewise anti-tumorigenic. Results To address this question, we generated transgenic mice in which expression of a ligand binding defective dominant negative RARα (RARαG303E) was under the control of the mouse mammary tumor virus (MMTV) promoter. The transgene was expressed in the lymphoid compartment and in the mammary epithelium. Observation of aging mice revealed that transgenic mice, unlike their wild type littermates, developed B cell lymphomas at high penetrance, with a median latency of 40 weeks. MMTV-RARαG303E lymphomas were high grade Pax-5+, surface H+L Ig negative, CD69+ and BCL6- and cytologically and phenotypically resembled human adult high grade (Burkitt's or lymphoblastic) lymphomas. We postulated that mammary tumors might arise after a long latency period as seen in other transgenic models of breast cancer. We tested this idea by transplanting transgenic epithelium into the cleared fat pads of wild type hosts, thus bypassing lymphomagenesis. At 17 months post-transplantation, a metastatic mammary adenocarcinoma developed in one of four transplanted glands whereas no tumors developed in sixteen of sixteen endogenous glands with wild type epithelium. Conclusion These findings suggest that physiological RAR activity may normally suppress B lymphocyte and mammary epithelial cell growth and that global RAR inactivation is sufficient to initiate a stochastic process of tumor development requiring multiple transforming events. Our work makes available to the research community a new animal resource that should prove useful as an experimental model of aggressive sporadic lymphoma in immunologically uncompromised hosts. We anticipate that it may also prove useful as a model of breast cancer.
Collapse
Affiliation(s)
- Tara S Kupumbati
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
- Current address: Medtronic Heart Valves, 1851 E. DeereAvenue, Santa Ana, CA92705, USA
| | - Giorgio Cattoretti
- Institute for Cancer Genetics, Columbia University, 1150 St Nicholas Avenue, New York, NY 10032, USA
| | - Christine Marzan
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Eduardo F Farias
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Reshma Taneja
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Rafael Mira-y-Lopez
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
12
|
Wang YA, Shen K, Ishida Y, Wang Y, Kakizuka A, Brooks SC. Induction of murine leukemia and lymphoma by dominant negative retinoic acid receptor alpha. Mol Carcinog 2006; 44:252-61. [PMID: 16273555 DOI: 10.1002/mc.20144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute promyelocytic leukemia (APL) is invariably associated with chromosomal translocation to retinoic acid receptor alpha (RARalpha) locus. In a vast majority of cases, RARalpha translocates to and fuses with the promyelocytic leukemia (PML) gene. It was thought that the fusion protein PML-RARalpha acts as a double dominant negative mutant to inhibit the PML and RARalpha signaling. In an attempt to study the physiological role of retinoic acid in mammary gland development, we created a transgenic model system expressing a dominant negative RARalpha under the regulation of murine mammary tumor viral promoter. We found that the transgene was also targeted to the lymphoid system in addition to mammary gland. Here we showed that dominant negative RARalpha induced acute lymphoblastic leukemia and lymphoma development in the transgenic mice. Retinoic acid blocked tumor development ex vivo through induction of apoptosis. Thus, our results suggested that disruption of RARalpha signaling was the first essential step in the development of APL in vivo.
Collapse
Affiliation(s)
- Y Alan Wang
- Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
13
|
Luhr KM, Nordström EK, Löw P, Kristensson K. Cathepsin B and L are involved in degradation of prions in GT1-1 neuronal cells. Neuroreport 2004; 15:1663-7. [PMID: 15232303 DOI: 10.1097/01.wnr.0000134931.81690.34] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In scrapie-infected cells, the abnormal isoform of the prion protein, PrP(Sc), accumulates in endosomes/lysosomes. In this study, the involvement of two lysosomal proteases, cathepsin B and L, in cellular processing of PrP(Sc) was analyzed in immortalized neuronal gonadotropin-releasing hormone cells (GT1-1) infected with scrapie. Treatment with inhibitors of either cathepsin B or L resulted in accumulation of PrP(Sc). Such an increased accumulation also occurred when the activities of both cathepsins were inhibited using RNA interference. We conclude that cathepsin B and L are involved in the degradation of PrP(Sc) in scrapie-infected GT1-1 cells and that they can compensate for each other's functions. This study shows that specific proteases, abundantly present in neurons, have the capacity to degrade PrP(Sc).
Collapse
Affiliation(s)
- Katarina M Luhr
- Department of Neuroscience B2:5, Retzius väg 8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
14
|
Tarantul VZ. Transgenic Mice as an In Vivo Model of Lymphomagenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 236:123-80. [PMID: 15261738 DOI: 10.1016/s0074-7696(04)36004-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review covers multiple data obtained on genetically modified mice that help to elucidate various intricate molecular mechanisms of lymphomagenesis in humans. We are in a "golden age" of mouse genetics. The mouse is by far the most accessible mammalian system physiologically similar to humans. Transgenic mouse models have illuminated how different genes contribute to human lymphomagenesis. Multiple experiments with transgenic mice have not only confirmed the data obtained for human lymphomas but also gave additional evidence for the role of some genes and cooperative participation of their products in the development of human lymphomas. Genes and gene networks detected on transgenic mice can successfully serve as molecular targets for tumor therapy. This review demonstrates the extraordinary possibilities of transgenic technology, which is presently one of the readily available, efficient, and accurate tools to solve the problem of cancer.
Collapse
Affiliation(s)
- V Z Tarantul
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
15
|
Shuto Y, Shibasaki T, Otagiri A, Kuriyama H, Ohata H, Tamura H, Kamegai J, Sugihara H, Oikawa S, Wakabayashi I. Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. J Clin Invest 2002. [DOI: 10.1172/jci0213300] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Berger J, Telser A, Widschwendter M, Müller-Holzner E, Daxenbichler G, Marth C, Zeimet AG. Expression of retinoic acid receptors in non-neoplastic epithelial disorders of the vulva and normal vulvar skin. Int J Gynecol Pathol 2000; 19:95-102. [PMID: 10782404 DOI: 10.1097/00004347-200004000-00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Retinoids and their nuclear retinoic receptors (RARs) are important modulators of epidermal cell proliferation and terminal differentiation. Aberrant expression of RARs in the epidermis has been found to be associated with altered differentiation capacity of keratinocytes. In this study, the expression of the various types of RARs (RAR-alpha, RAR-beta, and RAR-gamma) was investigated in surgical specimens from 17 patients with vulvar lichen sclerosus, 12 patients with vulvar squamous cell hyperplasia, and 11 specimens of normal vulvar skin by nonradioactive in situ hybridization. The results demonstrate that RAR-alpha expression is significantly decreased in lichen sclerosus (p < 0.0001) and squamous cell hyperplasia (p = 0.007) compared with normal vulvar skin. Furthermore, in normal vulvar skin RAR-alpha mRNA is mainly located in the suprabasal epidermal cell layers, whereas in lichen sclerosus RAR-alpha is expressed predominantly in the basal cell layers. In squamous cell hyperplasia RAR-alpha expression occurs in all cell layers. Compared with normal vulvar skin, RAR-gamma expression is higher in lichen sclerosus (p = 0.026), but no statistically significant differences are seen in squamous cell hyperplasia. These results suggest that partial loss and abnormal localization of RAR-alpha expression as well as increased RAR-gamma expression may play a role in the etiology of non-neoplastic epithelial disorders of the vulva.
Collapse
Affiliation(s)
- J Berger
- Department of Obstetrics and Gynecology, Innsbruck University Hospital, Austria
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Zhong S, Delva L, Rachez C, Cenciarelli C, Gandini D, Zhang H, Kalantry S, Freedman LP, Pandolfi PP. A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nat Genet 1999; 23:287-95. [PMID: 10610177 DOI: 10.1038/15463] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PML and Tif1a are fused to RARA and Braf, respectively, resulting in the production of PML-RARalpha and Tif1alpha-B-Raf (T18) oncoproteins. Here we show that PML, Tif1alpha and RXRalpha/RARalpha function together in a transcription complex that is dependent on retinoic acid (RA). We found that PML acts as a ligand-dependent coactivator of RXRalpha/RARalpha. PML interacts with Tif1alpha and CBP. In Pml-/- cells, the RA-dependent induction of genes such as RARB2 and the ability of Tif1alpha and CBP to act as transcriptional coactivators on RA are impaired. We show that both PML and Tif1alpha are growth suppressors required for the growth-inhibitory activity of RA. T18, similar to PML-RARalpha, disrupts the RA-dependent activity of this complex in a dominant-negative manner resulting in a growth advantage. Our data define a new pathway for the control of cell growth and tumorigenesis, and provide a new model for the pathogenesis of acute promyelocytic leukaemia (APL).
Collapse
MESH Headings
- Animals
- CREB-Binding Protein
- Cell Differentiation/drug effects
- Cell Division/drug effects
- Cell Line
- Cell Nucleus/metabolism
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- DNA/genetics
- DNA/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Tumor Suppressor/genetics
- Genes, Tumor Suppressor/physiology
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mutation
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/chemistry
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors
- Trans-Activators/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Tretinoin/metabolism
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- S Zhong
- Department of Human Genetics, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C, Grosveld F, Pandolfi PP. Role of PML in cell growth and the retinoic acid pathway. Science 1998; 279:1547-51. [PMID: 9488655 DOI: 10.1126/science.279.5356.1547] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The PML gene is fused to the retinoic acid receptor alpha (RARalpha) gene in chromosomal translocations associated with acute promyelocytic leukemia (APL). Ablation of murine PML protein by homologous recombination revealed that PML regulates hemopoietic differentiation and controls cell growth and tumorigenesis. PML function was essential for the tumor-growth-suppressive activity of retinoic acid (RA) and for its ability to induce terminal myeloid differentiation of precursor cells. PML was needed for the RA-dependent transactivation of the p21WAF1/CIP1 gene, which regulates cell cycle progression and cellular differentiation. These results indicate that PML is a critical component of the RA pathway and that disruption of its activity by the PML-RARalpha fusion protein may be important in APL pathogenesis.
Collapse
Affiliation(s)
- Z G Wang
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Involvement of Retinoic Acid Receptor-α–Mediated Signaling Pathway in Induction of CD38 Cell-Surface Antigen. Blood 1997. [DOI: 10.1182/blood.v89.10.3607] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHuman leukocyte antigen CD38, a 45-kD single-chain, transmembrane glycoprotein, is a bifunctional ectoenzyme that participates in signal transduction pathways involved in the regulation of cell growth and differentiation. In this study, we demonstrate the nature of retinoid receptors involved in retinoic acid–induced expression of CD38 protein in the human myeloblastic leukemia cell line HL-60. We used a variant HL-60 cell line, HL-60R, in which retinoid receptor function has been abrogated by a trans-dominant negative mutation. We introduced the normal retinoic acid receptors (RAR)-α, -β, and -γ or retinoid X receptor (RXR)-α into HL-60R cells by retroviral vector-mediated gene transfer. Based on experiments using these cell lines and receptor-specific synthetic retinoids that preferentially bind to one of the RARs or RXRs, we conclude that RAR-α is involved in retinoid-induced CD38 expression in HL-60 cells. Further evidence included our demonstration that blocking of RAR-α with the antagonist Ro 41-5253 completely suppressed the retinoid-induced expression of CD38 mRNA transcript and the production of CD38 protein in HL-60 cells. Various tissues from transgenic mice that expressed an antisense construct of RAR-α lacked or produced very low levels of CD38. As expected, the tissues from transgenic mice contained 50% to 80% reduced levels of RAR-α. These results suggest that regulation of CD38 expression, both in vitro and in vivo, is under the direct control of RAR-α retinoid receptors.
Collapse
|
21
|
Abstract
Human leukocyte antigen CD38, a 45-kD single-chain, transmembrane glycoprotein, is a bifunctional ectoenzyme that participates in signal transduction pathways involved in the regulation of cell growth and differentiation. In this study, we demonstrate the nature of retinoid receptors involved in retinoic acid–induced expression of CD38 protein in the human myeloblastic leukemia cell line HL-60. We used a variant HL-60 cell line, HL-60R, in which retinoid receptor function has been abrogated by a trans-dominant negative mutation. We introduced the normal retinoic acid receptors (RAR)-α, -β, and -γ or retinoid X receptor (RXR)-α into HL-60R cells by retroviral vector-mediated gene transfer. Based on experiments using these cell lines and receptor-specific synthetic retinoids that preferentially bind to one of the RARs or RXRs, we conclude that RAR-α is involved in retinoid-induced CD38 expression in HL-60 cells. Further evidence included our demonstration that blocking of RAR-α with the antagonist Ro 41-5253 completely suppressed the retinoid-induced expression of CD38 mRNA transcript and the production of CD38 protein in HL-60 cells. Various tissues from transgenic mice that expressed an antisense construct of RAR-α lacked or produced very low levels of CD38. As expected, the tissues from transgenic mice contained 50% to 80% reduced levels of RAR-α. These results suggest that regulation of CD38 expression, both in vitro and in vivo, is under the direct control of RAR-α retinoid receptors.
Collapse
|