1
|
Zhang YF, Wang XL, Xu CH, Liu N, Zhang L, Zhang YM, Xie YY, Zhang YL, Huang QH, Wang L, Chen Z, Chen SJ, Roeder RG, Shen S, Xue K, Sun XJ. A direct comparison between AML1-ETO and ETO2-GLIS2 leukemia fusion proteins reveals context-dependent binding and regulation of target genes and opposite functions in cell differentiation. Front Cell Dev Biol 2022; 10:992714. [PMID: 36158200 PMCID: PMC9490184 DOI: 10.3389/fcell.2022.992714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The ETO-family transcriptional corepressors, including ETO, ETO2, and MTGR1, are all involved in leukemia-causing chromosomal translocations. In every case, an ETO-family corepressor acquires a DNA-binding domain (DBD) to form a typical transcription factor—the DBD binds to DNA, while the ETO moiety manifests transcriptional activity. A directly comparative study of these “homologous” fusion transcription factors may clarify their similarities and differences in regulating transcription and leukemogenesis. Here, we performed a side-by-side comparison between AML1-ETO and ETO2-GLIS2, the most common fusion proteins in M2-and M7-subtypes of acute myeloid leukemia, respectively, by inducible expression of them in U937 leukemia cells. We found that, although AML1-ETO and ETO2-GLIS2 can use their own DBDs to bind DNA, they share a large proportion of genome-wide binding regions dependent on other cooperative transcription factors, including the ETS-, bZIP- and bHLH-family proteins. AML1-ETO acts as either transcriptional repressor or activator, whereas ETO2-GLIS2 mainly acts as activator. The repressor-versus-activator functions of AML1-ETO might be determined by the abundance of cooperative transcription factors/cofactors on the target genes. Importantly, AML1-ETO and ETO2-GLIS2 differentially regulate key transcription factors in myeloid differentiation including PU.1 and C/EBPβ. Consequently, AML1-ETO inhibits, but ETO2-GLIS2 facilitates, myeloid differentiation of U937 cells. This function of ETO2-GLIS2 is reminiscent of a similar effect of MLL-AF9 as previously reported. Taken together, this directly comparative study between AML1-ETO and ETO2-GLIS2 in the same cellular context provides insights into context-dependent transcription regulatory mechanisms that may underlie how these seemingly “homologous” fusion transcription factors exert distinct functions to drive different subtypes of leukemia.
Collapse
|
2
|
Kumar R, Manning J, Spendlove HE, Kremmidiotis G, McKirdy R, Lee J, Millband DN, Cheney KM, Stampfer MR, Dwivedi PP, Morris HA, Callen DF. ZNF652, A Novel Zinc Finger Protein, Interacts with the Putative Breast Tumor Suppressor CBFA2T3 to Repress Transcription. Mol Cancer Res 2006; 4:655-65. [PMID: 16966434 DOI: 10.1158/1541-7786.mcr-05-0249] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcriptional repressor CBFA2T3 is a putative breast tumor suppressor. To define the role of CBFA2T3, we used a segment of this protein as bait in a yeast two-hybrid screen and identified a novel uncharacterized protein, ZNF652. In general, primary tumors and cancer cell lines showed lower expression of ZNF652 than normal tissues. Together with the location of this gene on the long arm of chromosome 17q, a region of frequent loss of heterozygosity in cancer, these results suggest a possible role of ZNF652 in tumorigenesis. In silico analysis of this protein revealed that it contains multiple classic zinc finger domains that are predicted to bind DNA. Coimmunoprecipitation assays showed that ZNF652 strongly interacts with CBFA2T3 and this interaction occurs through the COOH-terminal 109 amino acids of ZNF652. In contrast, there was a weak interaction of ZNF652 with CBFA2T1 and CBFA2T2, the other two members of this ETO family. Transcriptional reporter assays further confirmed the strength and selectivity of the ZNF652-CBFA2T3 interaction. The transcriptional repression of growth factor independent-1 (GFI-1), a previously characterized ETO effector zinc finger protein, was shown to be enhanced by CBFA2T1, but to a lesser extent by CBFA2T2 and CBFA2T3. We therefore suggest that each of the various gene effector zinc finger proteins may specifically interact with one or more of the ETO proteins to generate a defined range of transcriptional repressor complexes.
Collapse
Affiliation(s)
- Raman Kumar
- Breast Cancer Genetics Group, Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute, Institute of Medical and Veterinary Science, Frome Road, Adelaide, SA 5000, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Qiu J, Wong J, Tweardy DJ, Dong S. Decreased intranuclear mobility of acute myeloid leukemia 1-containing fusion proteins is accompanied by reduced mobility and compartmentalization of core binding factor beta. Oncogene 2006; 25:3982-93. [PMID: 16474840 DOI: 10.1038/sj.onc.1209431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acute myeloid leukemia 1 (AML1) gene on chromosome 21 is involved in several chromosomal translocations, including t(8;21) and t(16;21), that produce chimeric fusion proteins AML1-eight twenty-one (ETO) and AML-myeloid transforming gene chromosome 16 (MTG16), which contribute to leukemogenesis. The molecular basis for the leukemogenic effects of these fusion proteins is incompletely understood. Using gel-shift assay, we showed that AML1-ETO and AML1-MTG16 bound to a series of AML1 consensus DNA-binding sites with different affinities. Using fluorescence recovery after photobleaching (FRAP), we demonstrated that a fusion of AML1 with ETO or MTG16 exhibits reduced intranuclear mobility compared with wild-type AML1 or either fusion partner. The dimerization domain (nervy homology region 2) of ETO is responsible for the reduced mobility of AML1-ETO. Dual FRAP studies revealed that CBFbeta colocalized with AML1-ETO within the nucleus, resulting in reduced mobility of CBFbeta. Therefore, AML1 fusion proteins may interfere with normal AML1 function due to aberrant nuclear dynamics, which leads to spatial and temporal sequestration of CBFbeta and perhaps other coregulators critical for myeloid differentiation.
Collapse
Affiliation(s)
- J Qiu
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
4
|
Rossetti S, Van Unen L, Touw IP, Hoogeveen AT, Sacchi N. Myeloid maturation block by AML1-MTG16 is associated with Csf1r epigenetic downregulation. Oncogene 2005; 24:5325-32. [PMID: 16007222 DOI: 10.1038/sj.onc.1208651] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
De novo epigenetic changes at histone and DNA level that affect gene transcription in cancer may be less random than we originally thought. Leukemia fusion proteins associated with specific chromosome translocations could mechanistically determine the epigenetic fate of specific target genes critical for normal hematopoiesis. This seems to be the case with AML1-MTG16, a fusion protein resulting from the t(16;21) translocation, a hallmark of therapy-related leukemia and myelodysplastic syndrome. Here we show that AML1-MTG16 blocks both myeloid differentiation and proliferation in the 32D/WT1-mouse myeloid cell line. These biological effects can be traced to the AML1 and MTG16 moieties of the fusion protein, respectively. Further, we show that AML1-MTG16 can induce epigenetic repressive changes at the histone and DNA level of the AML1 target gene Csf1r (c-fms), encoding the macrophage colony stimulating factor receptor. We observed that, concomitant with Csf1r downregulation, 32D/WT1 cells lost the ability to undergo myeloid differentiation in response to the granulocyte macrophage colony-stimulating factor (GM-CSF). Thus, there seems to be an association between AML1-MTG16-induced myeloid maturation block and epigenetic changes of a myeloid master gene.
Collapse
Affiliation(s)
- Stefano Rossetti
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
5
|
Giresi PG, Stevenson EJ, Theilhaber J, Koncarevic A, Parkington J, Fielding RA, Kandarian SC. Identification of a molecular signature of sarcopenia. Physiol Genomics 2005; 21:253-63. [PMID: 15687482 DOI: 10.1152/physiolgenomics.00249.2004] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Investigating the molecular mechanisms underlying sarcopenia in humans with the use of microarrays has been complicated by low sample size and the variability inherent in human gene expression profiles. We have conducted a study using Affymetrix GeneChips to identify a molecular signature of aged skeletal muscle. The molecular signature was defined as the set of expressed genes that best distinguished the vastus lateralis muscle of young (n = 10) and older (n = 12) male subjects, when a k-nearest neighbor supervised classification method was used in conjunction with a signal-to-noise ratio gene selection method and a holdout cross-validation procedure. The age-specific expression signature was comprised of 45 genes; 27 were upregulated and 18 were downregulated. This signature also correctly classified 75% of the muscle samples from young and older subjects published by an independent laboratory, based on their expression profiles. The signature revealed increased expression of several genes involved in mediating cellular responses to inflammation and apoptosis, including complement component C1QA, Galectin-1, C/EBP-beta, and FOXO3A, among others. The increased expressions of genes that regulate pre-mRNA splicing, localization, and modification of RNA comprise markers of the aging signature. Downregulated genes in the signature were the glutamine transporter SLC38A1, a TRAF-6 inhibitory zinc finger protein, and membrane-bound transcription factor protease S2P, among others. The sarcopenia signature developed here will be useful as a molecular model to judge the effectiveness of exercise and other therapeutic treatments aimed at ameliorating the effects of muscle loss associated with aging.
Collapse
Affiliation(s)
- Paul G Giresi
- Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Ibañez V, Sharma A, Buonamici S, Verma A, Kalakonda S, Wang J, Kadkol S, Saunthararajah Y. AML1-ETO Decreases ETO-2 (MTG16) Interactions with Nuclear Receptor Corepressor, an Effect That Impairs Granulocyte Differentiation. Cancer Res 2004; 64:4547-54. [PMID: 15231665 DOI: 10.1158/0008-5472.can-03-3689] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The t(8;21) chromosome abnormality in acute myeloid leukemia targets the AML1 and ETO genes to produce the leukemia fusion protein AML1-ETO. Another member of the ETO family, ETO-2/MTG16, is highly expressed in murine and human hematopoietic cells, bears >75% homology to ETO, and like ETO, contains a conserved MYND domain that interacts with the nuclear receptor corepressor (N-CoR). AML1-ETO prevents granulocyte but not macrophage differentiation of murine 32Dcl3 granulocyte/macrophage progenitors. One possible mechanism is recruitment of N-CoR to aberrantly repress AML1 target genes. We wished to examine another mechanism by which AML1-ETO might impair granulocyte differentiation. We demonstrate that AML1-ETO decreases interactions between ETO-2 and N-CoR. Furthermore, overexpression of ETO-2 relieves AML1-ETO-induced granulocyte differentiation arrest. This suggests that decreased interactions between ETO-2 and N-CoR may contribute to granulocyte differentiation impairment. The MYND domain coimmunoprecipitates with N-CoR and inhibits interactions between ETO-2 and N-CoR, presumably by occupying the ETO-2 binding site on N-CoR. This inhibition of ETO-2 interactions with N-CoR is specific because the MYND domain does not inhibit retinoic acid receptor interactions with N-CoR. To examine the effect of decreasing interactions between ETO-2 and N-CoR in hematopoietic cells, without effects of AML1-ETO such as direct repression of AML1 target genes, the MYND domain was expressed in 32Dcl3 and human CD34+ cells. The MYND domain prevented granulocyte but not macrophage differentiation of both 32Dcl3 and human CD34+ cells, recapitulating this effect of AML1-ETO. In conclusion, decreasing interactions between ETO-2 and N-CoR, an effect of AML1-ETO, inhibits granulocyte differentiation.
Collapse
Affiliation(s)
- Vinzon Ibañez
- Section of Hematology/Oncology, Department of Medicine, University of Illinois, Chicago, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene 2004; 23:4275-83. [PMID: 15156184 DOI: 10.1038/sj.onc.1207672] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Balanced chromosomal translocations are frequently associated with haematopoietic neoplasms and often involve genes that encode transcription factors, which play critical roles in normal haematopoiesis. Fusion oncoproteins that arise from chimeric genes generated by such translocations are usually stable and consistent molecular markers for a given disease subtype and contribute to the leukaemogenic processes. The t(12;21)(p13;q22) chromosomal translocation is the most frequent illegitimate gene recombination in paediatric cancer, occurring in approximately 25% of common (c) B-cell precursor acute lymphoblastic leukaemia (cALL) cases. The rearrangement results in the in-frame fusion of the 5' region of the ETS-related gene, TEL (ETV6), to almost the entire AML1 (RUNX1) locus and is associated with favourable prognosis following conventional therapeutic strategies. We discuss here the prenatal origins of the TEL/AML1 translocation as an initiating mutation, the role of TEL-AML1 in cellular transformation and the molecular mechanisms by which the chimeric protein imposes altered patterns of gene expression.
Collapse
Affiliation(s)
- Arthur Zelent
- Section of Haematological Oncology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | | | | |
Collapse
|
8
|
Abstract
The 8;21 translocation produces a fusion between the ETO gene and that encoding the myeloid transcription factor AML1. The AML1-ETO fusion substitutes the majority of the ETO protein for the coregulator recruitment domains of AML1. Biochemical analyses of ETO have led to the identification of numerous interacting proteins including many corepressors. Importantly, the proteins interacting with ETO are different from those of wild-type AML1, suggesting that altered coregulator recruitment underlies the oncogenic properties of AML1-ETO. The list of corepressors capable of binding ETO includes histone deacetylases (HDACs) and components of distinct HDAC core complexes. These investigations have provided mechanistic insight into corepressor recruitment by ETO and clues to the leukemogenic activity of AML1-ETO.
Collapse
Affiliation(s)
- Bruce A Hug
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
9
|
Hoogeveen AT, Rossetti S, Stoyanova V, Schonkeren J, Fenaroli A, Schiaffonati L, van Unen L, Sacchi N. The transcriptional corepressor MTG16a contains a novel nucleolar targeting sequence deranged in t (16; 21)-positive myeloid malignancies. Oncogene 2002; 21:6703-12. [PMID: 12242670 DOI: 10.1038/sj.onc.1205882] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Revised: 07/15/2002] [Accepted: 07/18/2002] [Indexed: 11/09/2022]
Abstract
The MTG (Myeloid Translocation Gene) proteins are a family of novel transcriptional corepressors. We report that MTG16a, a protein isoform encoded by the MTG16 gene deranged by the t (16; 21) in myeloid malignancies, is targeted to the nucleolus. The amino acid sequence necessary for nucleolar localization was mapped to the MTG16a N-terminal region. MTG16a, like MTG8, the nuclear corepressor deranged by the t (8; 21), is capable to interact with specific histone deacetylases (HDACs) suggesting that the protein may mediate silencing of nucleolar gene transcription. In addition, MTG16a is capable to form oligomers with other MTG proteins. As a consequence of the t (16; 21) the AML1 DNA-binding domain replaces the MTG16a N-terminal region. The AML1-MTG16 fusion protein is targeted to the nucleoplasm where it is capable to oligomerize with MTG16a and interact with HDAC1 and HDAC3. The deficiency of HDAC-containing complexes at nucleolar sites and the accumulation of HDAC-containing complexes at AML1-sites may be critical in the pathogenesis of t (16; 21) myeloid malignancies.
Collapse
Affiliation(s)
- André T Hoogeveen
- Department of Clinical Genetics, Erasmus University, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Fukuyama T, Sueoka E, Sugio Y, Otsuka T, Niho Y, Akagi K, Kozu T. MTG8 proto-oncoprotein interacts with the regulatory subunit of type II cyclic AMP-dependent protein kinase in lymphocytes. Oncogene 2001; 20:6225-32. [PMID: 11593431 DOI: 10.1038/sj.onc.1204794] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2001] [Revised: 06/16/2001] [Accepted: 07/05/2001] [Indexed: 11/09/2022]
Abstract
AML1-MTG8 chimeric oncogene is generated in acute myelogenous leukemia with t(8;21), and seems to be responsible for the pathogenesis of the disease. However, the role of MTG8 is ambiguous. Here we found that MTG8 interacted with the regulatory subunit of type II cyclic AMP-dependent protein kinase (PKA RIIalpha). The binding site of MTG8 was NHR3 domain, and that of RIIalpha was the N-terminus for interacting with PKA anchoring proteins (AKAPs). NHR3 contains a putative alpha-amphipathic helix which is characteristic in binding of AKAPs with RII. Indirect immunofluorescence microscopy showed that MTG8 and RIIalpha were overlapped at the centrosome-Golgi area in lymphocytes. These findings suggest that MTG8 may function as an AKAP at the centrosome-Golgi area in lymphocytes.
Collapse
Affiliation(s)
- T Fukuyama
- Saitama Cancer Center Research Institute, Saitama 362-0806, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
MESH Headings
- Animals
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Models, Genetic
- Multigene Family
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/physiology
- Proto-Oncogene Proteins
- RUNX1 Translocation Partner 1 Protein
- Structure-Activity Relationship
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- J D Licht
- Derald H. Ruttenberg Cancer Center and Department of Medicine, Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
12
|
Odaka Y, Mally A, Elliott LT, Meyers S. Nuclear import and subnuclear localization of the proto-oncoprotein ETO (MTG8). Oncogene 2000; 19:3584-97. [PMID: 10951564 DOI: 10.1038/sj.onc.1203689] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ETO (MTG8) was first described due to its involvement in the (8;21) translocation frequently observed in acute myeloid leukemias. In the t(8;21) the AML1 gene on chromosome 21 is fused to ETO on chromosome 8. The resultant hybrid protein is comprised of the DNA binding domain of AML-1 and the majority of ETO. This study examines the subnuclear distributions of ETO, AML-1B and AML-1/ETO proteins fused to green fluorescence protein in living cells using fluorescence microscopy. Further, we identified a 40 amino acid portion of ETO (amino acids 241-280) that was sufficient to cause nuclear import of green fluorescent protein. Mutational analysis demonstrated that lysine 265 and/or arginine 266 were required for nuclear import of ETO, but that the surrounding basic residues were not critical. ETO interacted with the nuclear import proteins importin-alpha and beta in vitro, and mutations in ETO that abolish nuclear localization also abolished the in vitro interaction with importin-alpha and beta. These data suggest that ETO enters the nucleus via an importin-mediated pathway. Additionally, ETO and AML-1/ETO co-localized to punctate nuclear bodies distinct from those containing promyelocytic leukemia protein. Nuclear body formation was dependent upon a region of ETO N-terminal to the nuclear localization signal. Thus, ETO and AML-1/ETO reside in potentially novel subnuclear compartments.
Collapse
Affiliation(s)
- Y Odaka
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center School of Medicine, Shreveport 71130, USA
| | | | | | | |
Collapse
|
13
|
Analysis of genes under the downstream control of the t(8;21) fusion protein AML1-MTG8: overexpression of the TIS11b(ERF-1, cMG1) gene induces myeloid cell proliferation in response to G-CSF. Blood 2000. [DOI: 10.1182/blood.v96.2.655.014k10_655_663] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AML1-MTG8 fusion transcription factor generated by t(8;21) translocation is thought to dysregulate genes that are crucial for normal differentiation and proliferation of hematopoietic progenitors to cause acute myelogenous leukemia (AML). Although AML1-MTG8 has been shown to repress the transcription of AML1 targets, none of the known targets of AML1 are probably responsible for AML1-MTG8-mediated leukemogenesis. In this study, 24 genes under the downstream control of AML1-MTG8 were isolated by using a differential display technique. Analysis with deletion mutants of AML1-MTG8 demonstrated that the regulation of the majority of these genes requires the region of 51 residues (488-538) containing the Nervy homology region 2 (NHR2), through which AML1-MTG8 interacts with MTGR1. Among the 24 genes identified, 10 were considered to be genes under the control of AML1, because their expression was altered by AML1b or AML1a or both. However, the other 14 genes were not affected by either AML1b or AML1a, suggesting the possibility that AML1-MTG8 regulates a number of specific target genes that are not normally regulated by AML1. Furthermore, an up-regulated gene, TIS11b (ERF-1,cMG1), was highly expressed in t(8;21) leukemic cells, and the overexpression of TIS11b induced myeloid cell proliferation in response to granulocyte colony-stimulating factor. These results suggest that the high-level expression of TIS11b contributes to AML1-MTG8-mediated leukemogenesis.
Collapse
|
14
|
Davis JN, Williams BJ, Herron JT, Galiano FJ, Meyers S. ETO-2, a new member of the ETO-family of nuclear proteins. Oncogene 1999; 18:1375-83. [PMID: 10022820 DOI: 10.1038/sj.onc.1202412] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The t(8;21) is associated with 12-15% of acute myelogenous leukemias of the M2 subtype. The translocation results in the fusion of two genes, AML1 (CBFA2) on chromosome 21 and ETO (MTG8) on chromosome 8. AML1 encodes a DNA binding factor; the ETO protein product is less well characterized, but is thought to be a transcription factor. Here we describe the isolation and characterization of ETO-2, a murine cDNA that encodes a new member of the ETO family of proteins. ETO-2 is 75% identical to murine ETO and shares very high sequence identities over four regions of the protein with ETO (domain I-III and zinc-finger). Northern analysis identifies ETO-2 transcripts in many of the murine tissues analysed and in the developing mouse embryo. ETO-2 is also expressed in myeloid and erythroid cell lines. We confirmed the nuclear localization of ETO-2 and demonstrated that domain III and the zinc-finger region are not required for nuclear localization. We further showed that a region within ETO, containing domain II, mediates dimerization among family members. This region is conserved in the oncoprotein AML-1/ETO. The recent identification of another ETO-like protein, myeloid translocation gene-related protein 1, together with the data presented here, demonstrates that at least three ETO proteins exist with the potential to form dimers in the cell nucleus.
Collapse
Affiliation(s)
- J N Davis
- Department of Biochemistry and Molecular Biology, Feist-Weiller Cancer Center, Louisiana State University Medical Center, Shreveport 71130, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
CBFA2(AML1) has emerged as a gene critical in hematopoiesis; its protein product forms the DNA-binding subunit of the heterodimeric core-binding factor (CBF) that binds to the transcriptional regulatory regions of genes, some of which are active specifically in hematopoiesis. CBFA2 forms a fusion gene with ETO andMDS1/EVI1 in translocations in myeloid leukemia and withETV6(TEL) in the t(12;21) common in childhood pre-B acute lymphoblastic leukemia. We have analyzed samples from 30 leukemia patients who had chromosome rearrangements involving 21q22 by using fluorescence in situ hybridization (FISH). Our analysis showed that 7 of them involved CBFA2 and new translocation partners. Two patients had a t(17;21)(q11.2;q22), whereas the other 5 had translocations involving 1p36, 5q13, 12q24, 14q22, or 15q22. Five of these novel breakpoints in CBFA2 occurred in intron 6; this same intron is involved in the t(3;21). One breakpoint mapped to the t(8;21) breakpoint region in intron 5, and 1 mapped 5′ to that region. All 7 CBFA2 rearrangements resulted from balanced translocations. All 7 patients had myeloid disorders (acute myeloid leukemia or myelodysplastic syndrome); 2 were de novo and 5 had treatment histories that included topoisomerase II targeting agents. The association of therapy-related disorders with translocations involving CBFA2 was significant by Fisher’s exact test (P < .003). These results provide further evidence that this region of CBFA2 is susceptible to breakage in cells exposed to topoisomerase II inhibitors.
© 1998 by The American Society of Hematology.
Collapse
|