1
|
KAVAKCIOĞLU YARDIMCI B. Imidazole Antifungals: A Review of Their Action Mechanisms on Cancerous Cells. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2020. [DOI: 10.21448/ijsm.714310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
2
|
Kim HJ, Park MK, Kim SY, Lee CH. Novel Suppressive Effects of Ketotifen on Migration and Invasion of MDA-MB-231 and HT-1080 Cancer Cells. Biomol Ther (Seoul) 2014; 22:540-6. [PMID: 25489422 PMCID: PMC4256034 DOI: 10.4062/biomolther.2014.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 11/17/2022] Open
Abstract
The high mortality rates associated with cancer reflect the metastatic spread of tumor cells from the site of their origin. Metastasis, in fact, is the cause of 90% of cancer deaths. Therefore, considerable effort is being made to inhibit metastasis. In the present study, we screened ketotifen for anti-migratory and anti-invasive activities against MDA-MB-231 breast cancer and HT-1080 fibrosarcoma cancer cells. Cancer cell migration and invasion were measured using multi-well chambers. Additionally, western blots were used to examine the effects of ketotifen on the expressions of CDC42, Rho, Rac, and matrix metalloproteinase 9 (MMP-9). The results showed that ketotifen dose-dependently suppressed the migration and invasion of MDA-MB-231 and HT-1080 cells. Ketotifen also suppressed the expressions of CDC42, Rac, and Rho, which, significantly, are involved in MDA-MB-231 and HT-1080 cancer cell migration. Moreover, ketotifen suppressed the expression and activity of MMP-9, which is involved in degradation of the extracellular matrix leading to invasion. The overall data suggested that ketotifen suppresses the migration and invasion of MDA-MB-231 and HT-1080 cancer cells via inhibition of CDC42, Rac, Rho, and MMP-9 expression.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21PLUS R-FIND Team, College of Pharmacy, Dongguk University, Seoul 100-715
| | - Mi Kyung Park
- BK21PLUS R-FIND Team, College of Pharmacy, Dongguk University, Seoul 100-715
| | - Soo Youl Kim
- BK21PLUS R-FIND Team, College of Pharmacy, Dongguk University, Seoul 100-715
| | - Chang Hoon Lee
- BK21PLUS R-FIND Team, College of Pharmacy, Dongguk University, Seoul 100-715
| |
Collapse
|
3
|
Abstract
SCL/TAL1, a tissue-specific transcription factor of the basic helix-loop-helix family, and c-Kit, a tyrosine kinase receptor, control hematopoietic stem cell survival and quiescence. Here we report that SCL levels are limiting for the clonal expansion of Kit⁺ multipotent and erythroid progenitors. In addition, increased SCL expression specifically enhances the sensitivity of these progenitors to steel factor (KIT ligand) without affecting interleukin-3 response, whereas a DNA-binding mutant antagonizes KIT function and induces apoptosis in progenitors. Furthermore, a twofold increase in SCL levels in mice bearing a hypomorphic Kit allele (W41/41) corrects their hematocrits and deficiencies in erythroid progenitor numbers. At the molecular level, we found that SCL and c-Kit signaling control a common gene expression signature, of which 19 genes are associated with apoptosis. Half of those were decreased in purified megakaryocyte/erythroid progenitors (MEPs) from W41/41 mice and rescued by the SCL transgene. We conclude that Scl operates downstream of Kit to support the survival of MEPs. Finally, higher SCL expression upregulates Kit in normal bone marrow cells and increases chimerism after bone marrow transplantation, indicating that Scl is also upstream of Kit. We conclude that Scl and Kit establish a positive feedback loop in multipotent and MEPs.
Collapse
|
4
|
Yagil Z, Nechushtan H, Kay G, Yang CM, Kemeny DM, Razin E. The enigma of the role of protein inhibitor of activated STAT3 (PIAS3) in the immune response. Trends Immunol 2010; 31:199-204. [PMID: 20181527 DOI: 10.1016/j.it.2010.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 01/09/2023]
Abstract
Protein inhibitor of activated STAT3 (PIAS3), the main cellular inhibitor of signal transducers and activator of transcription 3 (STAT3), has been described as a modulator of DNA binding transcription factors. The exploration of the emerging roles of PIAS3 in immune regulation is a growing and fascinating field. Recent discoveries have shed new light on the key role of PIAS3 in the regulation of transcriptional activity, and on the molecular mechanism involved. These findings suggest that the known functions of this signalling molecule are merely the "tip of the iceberg". This article reviews the challenging questions regarding the link between PIAS3 and the intracellular signalling in immune cells. Some of the known functions of PIAS3 that potentially modulate key proteins in the immune system will also be discussed.
Collapse
Affiliation(s)
- Zohar Yagil
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
5
|
Yagil Z, Kay G, Nechushtan H, Razin E. A Specific Epitope of Protein Inhibitor of Activated STAT3 Is Responsible for the Induction of Apoptosis in Rat Transformed Mast Cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:2168-75. [DOI: 10.4049/jimmunol.0803030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus). Genetics 2008; 179:1861-70. [PMID: 18660533 DOI: 10.1534/genetics.108.088807] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The appaloosa coat spotting pattern in horses is caused by a single incomplete dominant gene (LP). Homozygosity for LP (LP/LP) is directly associated with congenital stationary night blindness (CSNB) in Appaloosa horses. LP maps to a 6-cM region on ECA1. We investigated the relative expression of two functional candidate genes located in this LP candidate region (TRPM1 and OCA2), as well as three other linked loci (TJP1, MTMR10, and OTUD7A) by quantitative real-time RT-PCR. No large differences were found for expression levels of TJP1, MTMR10, OTUD7A, and OCA2. However, TRPM1 (Transient Receptor Potential Cation Channel, Subfamily M, Member 1) expression in the retina of homozygous appaloosa horses was 0.05% the level found in non-appaloosa horses (R = 0.0005). This constitutes a >1800-fold change (FC) decrease in TRPM1 gene expression in the retina (FC = -1870.637, P = 0.001) of CSNB-affected (LP/LP) horses. TRPM1 was also downregulated in LP/LP pigmented skin (R = 0.005, FC = -193.963, P = 0.001) and in LP/LP unpigmented skin (R = 0.003, FC = -288.686, P = 0.001) and was downregulated to a lesser extent in LP/lp unpigmented skin (R = 0.027, FC = -36.583, P = 0.001). TRP proteins are thought to have a role in controlling intracellular Ca(2+) concentration. Decreased expression of TRPM1 in the eye and the skin may alter bipolar cell signaling as well as melanocyte function, thus causing both CSNB and LP in horses.
Collapse
|
7
|
Alessandro R, Fontana S, Giordano M, Corrado C, Colomba P, Flugy AM, Santoro A, Kohn EC, De Leo G. Effects of carboxyamidotriazole on in vitro models of imatinib-resistant chronic myeloid leukemia. J Cell Physiol 2008; 215:111-21. [PMID: 17924401 DOI: 10.1002/jcp.21290] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although imatinib mesylate (IM) has revolutionized the treatment of chronic myeloid leukemia (CML), some patients develop resistance with progression of leukemia. Alternative or additional targeting of signaling pathways deregulated in bcr-abl-driven CML cells may provide a feasible option for improving clinical response and overcoming resistance. In this study, we show that carboxyamidotriazole (CAI), an orally bioavailable calcium influx and signal transduction inhibitor, is equally effective in inhibiting the proliferation and bcr-abl dependent- and independent-signaling pathways in imatinib-resistant CML cells. CAI inhibits phosphorylation of cellular proteins including STAT5 and CrkL at concentrations that induce apoptosis in IM-resistant CML cells. The combination of imatinib and CAI also down-regulated bcr-abl protein levels. Since CAI is already available for clinical use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of CML.
Collapse
Affiliation(s)
- Riccardo Alessandro
- Dipartimento di Biopatologia e Metodologie Biomediche, Sezione di Biologia e Genetica, Università di Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Radogna F, Paternoster L, Albertini MC, Cerella C, Accorsi A, Bucchini A, Spadoni G, Diamantini G, Tarzia G, De Nicola M, D'Alessio M, Ghibelli L. Melatonin antagonizes apoptosis via receptor interaction in U937 monocytic cells. J Pineal Res 2007; 43:154-62. [PMID: 17645693 DOI: 10.1111/j.1600-079x.2007.00455.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among the non-neurological functions of melatonin, much attention is being directed to the ability of melatonin to modulate the immune system, whose cells possess melatonin-specific receptors and biosynthetic enzymes. Melatonin controls cell behaviour by eliciting specific signal transduction actions after its interaction with plasma membrane receptors (MT(1), MT(2)); additionally, melatonin potently neutralizes free radicals. Melatonin regulates immune cell loss by antagonizing apoptosis. A major unsolved question is whether this is due to receptor involvement, or to radical scavenging considering that apoptosis is often dependent on oxidative alterations. Here, we provide evidence that on U937 monocytic cells, apoptosis is antagonized by melatonin by receptor interaction rather than by radical scavenging. First, melatonin and a set of synthetic analogues prevented apoptosis in a manner that is proportional to their affinity for plasma membrane receptors but not to their antioxidant ability. Secondly, melatonin's antiapoptotic effect required key signal transduction events including G protein, phospholipase C and Ca(2+) influx and, more important, it is sensitive to the specific melatonin receptor antagonist luzindole.
Collapse
Affiliation(s)
- Flavia Radogna
- Dipartimento di Biologia, Università di Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang Y, Soboloff J, Zhu Z, Berger SA. Inhibition of Ca2+ influx is required for mitochondrial reactive oxygen species-induced endoplasmic reticulum Ca2+ depletion and cell death in leukemia cells. Mol Pharmacol 2006; 70:1424-34. [PMID: 16849592 DOI: 10.1124/mol.106.024323] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Disturbances of endoplasmic reticulum (ER) Ca2+ homeostasis or protein processing can lead to ER stress-induced cell death. Increasing evidence suggests that oxidative stress (OS) plays an important role in a variety of cell death mechanisms. To investigate the role of OS in ER stress, we measured OS in response to three ER stress agents: econazole (Ec), which stimulates ER Ca2+ release and blocks Ca2+ influx; thapsigargin (Tg), a sarco(endo)plasmic reticulum Ca2+ ATPase inhibitor that releases ER Ca2+ and stimulates Ca2+ influx; and tunicamycin (Tu), a glycosylation inhibitor that causes protein accumulation in the ER. Ec, but not Tg or Tu, caused a rapid increase in OS. Reactive oxygen species (ROS) generation was observed within mitochondria immediately after exposure to Ec. Furthermore, Ec hyperpolarized the mitochondrial membrane and inhibited adenine nucleotide transport in cell-free mitochondria, suggesting a mitochondrial target. Antimycin A, an inhibitor of complex III in electron transport, reversed mitochondrial hyperpolarization, OS generation, ER Ca2+ depletion, and cell death by Ec, suggesting complex III dependence for these effects. Antioxidants butylated hydroxytoluene and N-Acetyl-L-cysteine prevented ER Ca2+ depletion and cell death by Ec. However, inhibition of Ca2+ influx by Ec was unaffected by either antimycin A or the antioxidants, suggesting that this target is distinct from the mitochondrial target of Ec. Atractyloside, an adenine nucleotide transport inhibitor, generated ROS and stimulated ER Ca2+ release, but it did not block Ca2+ influx, deplete the ER or induce cell death. Taken together, these results demonstrate that combined mitochondrial ROS generation and Ca2+ influx blockade by Ec is required for cell death.
Collapse
Affiliation(s)
- Yicheng Zhang
- Arthritis and Immune Disorder Research Centre, University Health Network and Department of Immunology, University of Toronto, Medical Discovery Tower, 8th Floor, Rm 8-356, 101 College St., Toronto, ON, Canada M5G 1L7
| | | | | | | |
Collapse
|
10
|
Vichalkovski A, Kotevic I, Gebhardt N, Kaderli R, Porzig H. Tyrosine kinase modulation of protein kinase C activity regulates G protein-linked Ca2+ signaling in leukemic hematopoietic cells. Cell Calcium 2006; 39:517-28. [PMID: 16620963 DOI: 10.1016/j.ceca.2006.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 01/18/2006] [Accepted: 03/03/2006] [Indexed: 11/17/2022]
Abstract
We have used a recombinant mouse pre-B cell line (TonB210.1, expressing Bcr/Abl under the control of an inducible promoter) and several human leukemia cell lines to study the effect of high tyrosine kinase activity on G protein-coupled receptor (GPCR) agonist-stimulated cellular Ca(2+) release and store-operated Ca(2+) entry (SOCE). After induction of Bcr/Abl expression, GPCR-linked SOCE increased. The effect was reverted in the presence of the specific Abl inhibitor imatinib (1microM) and the Src inhibitor PP2 (10microM). In leukemic cell lines constitutively expressing high tyrosine kinase activity, Ca(2+) transients were reduced by imatinib and/or PP2. Ca(2+) transients were enhanced by specific inhibitors of PKC subtypes and this effect was amplified by tyrosine kinase inhibition in Bcr/Abl expressing TonB210.1 and K562 cells. Under all conditions Ca(2+) transients were essentially blocked by the PKC activator PMA. In Bcr/Abl expressing (but not in native) TonB210.1 cells, tyrosine kinase inhibitors enhanced PKCalpha catalytic activity and PKCalpha co-immunoprecipitated with Bcr/Abl. Unlike native TonB210.1 cells, Bcr/Abl expressing cells showed a high rate of cell death if Ca(2+) influx was reduced by complexing extracellular Ca(2+) with BAPTA. Our data suggest that tonic inhibition of PKC represents a mechanism by which high tyrosine kinase activity can enhance cellular Ca(2+) transients and thus exert profound effects on the proliferation, apoptosis and chemotaxis of leukemic cells.
Collapse
Affiliation(s)
- Anton Vichalkovski
- Institute of Pharmacology, University of Bern, Friedbuehlstrasse 49, CH-3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Cheuk ATC, Chan L, Czepulkowski B, Berger SA, Yagita H, Okumura K, Farzaneh F, Mufti GJ, Guinn BA. Development of a whole cell vaccine for acute myeloid leukaemia. Cancer Immunol Immunother 2006; 55:68-75. [PMID: 15891884 PMCID: PMC11030895 DOI: 10.1007/s00262-005-0674-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 01/06/2005] [Indexed: 01/24/2023]
Abstract
We describe the modification of tumour cells to enhance their capacity to act as antigen presenting cells with particular focus on the use of costimulatory molecules to do so. We have been involved in the genetic modification of tumour cells to prepare a whole cell vaccine for nearly a decade and we have a particular interest in acute myeloid leukaemia (AML). AML is an aggressive and difficult to treat disease, especially, for patients for whom haematopoietic stem cell (HSC) transplant is not an option. AML patients who have a suitable donor and meet HSC transplant fitness requirements, have a 5-year survival of 50%; however, for patients with no suitable donor or for who age is a factor, the prognosis is much worse. It is particularly poor prognosis patients, who are not eligible for HSC transplant, who are likely to benefit most from immunotherapy. It would be hoped that immunotherapy would be used to clear residual tumour cells in these patients in the first remission following standard chemotherapy treatments and this will extend the remission and reduce the risk of a second relapse associated with disease progression and poor mortality rates. In this symposia report, we will focus on whole cell vaccines as an immunotherapeutic option with particular reference to their use in the treatment of AML. We will aim to provide a brief overview of the latest data from our group and considerations for the use of this treatment modality in clinical trials for AML.
Collapse
Affiliation(s)
- Adam T. C. Cheuk
- Department of Haematological Medicine, Guy’s, King’s & St. Thomas’ School of Medicine, The Rayne Institute, King’s College London, 123 Coldharbour Lane, London, SE5 9NU UK
| | - Lucas Chan
- Department of Haematological Medicine, Guy’s, King’s & St. Thomas’ School of Medicine, The Rayne Institute, King’s College London, 123 Coldharbour Lane, London, SE5 9NU UK
| | - Barbara Czepulkowski
- Department of Haematological Medicine, Guy’s, King’s & St. Thomas’ School of Medicine, The Rayne Institute, King’s College London, 123 Coldharbour Lane, London, SE5 9NU UK
| | - Stuart A. Berger
- Arthritis and Immune Disorder Research Centre, University Health Network and the Department of Immunology, University of Toronto, Toronto, Canada
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Farzin Farzaneh
- Department of Haematological Medicine, Guy’s, King’s & St. Thomas’ School of Medicine, The Rayne Institute, King’s College London, 123 Coldharbour Lane, London, SE5 9NU UK
| | - Ghulam J. Mufti
- Department of Haematological Medicine, Guy’s, King’s & St. Thomas’ School of Medicine, The Rayne Institute, King’s College London, 123 Coldharbour Lane, London, SE5 9NU UK
| | - Barbara-ann Guinn
- Department of Haematological Medicine, Guy’s, King’s & St. Thomas’ School of Medicine, The Rayne Institute, King’s College London, 123 Coldharbour Lane, London, SE5 9NU UK
| |
Collapse
|
12
|
Levy C, Lee YN, Nechushtan H, Schueler-Furman O, Sonnenblick A, Hacohen S, Razin E. Identifying a common molecular mechanism for inhibition of MITF and STAT3 by PIAS3. Blood 2005; 107:2839-45. [PMID: 16368885 DOI: 10.1182/blood-2005-08-3325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein inhibitor of activated STAT3 (PIAS3) functions in vivo as a key molecule in suppressing the transcriptional activity of both microphthalmia transcription factor (MITF) and signal transducer and activator of transcription 3 (STAT3), 2 transcription factors that play a major role in the regulation of growth and function in mast cells and melanocytes. Previously, we have demonstrated binding of PIAS3 to MITF leading to the inhibition of MITF transcriptional activity. Following cellular activation, PIAS3 is released from MITF and binds to STAT3. Now we have localized a common binding motif in PIAS3 for MITF and STAT3. This motif (PIAS82-132), which contains 50 amino acids, is sufficient for the inhibition of both MITF and STAT3. Three-dimensional protein modeling demonstrated that this motif contains 2 alpha helices. Disruption of one of the helices led to the loss of PIAS3 inhibitory activity. In addition to contributing to our understanding of the mechanisms of PIAS3 activity, these results could pave the way toward the formulation of an antioncogenic agent for the inhibition of both STAT3 and MITF.
Collapse
Affiliation(s)
- Carmit Levy
- Department of Biochemistry, Hebrew University Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
13
|
Sonnenblick A, Levy C, Razin E. Immunological trigger of mast cells by monomeric IgE: effect on microphthalmia transcription factor, STAT3 network of interactions. THE JOURNAL OF IMMUNOLOGY 2005; 175:1450-5. [PMID: 16034081 DOI: 10.4049/jimmunol.175.3.1450] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microphthalmia transcription factor (MITF) and STAT3 are two transcription factors that play a major role in the regulation of growth and function of mast cells and melanocytes. We have previously provided experimental evidence regarding the functional cross-talk between MITF, protein inhibitor of activated STAT3, and STAT3 in response to cytokine activation of mast cells. Recent studies have demonstrated that binding of different IgE molecules to their FcepsilonRI induces a spectrum of intracellular events in the absence of specific Ag. In this work, we show for the first time that, in mouse bone marrow-derived mast cells and in rat basophilic leukemia cells, monomeric IgE alone can induce the MITF-protein inhibitor of activated STAT3-STAT3 network of interactions and leads to phosphorylation of MITF at S73 and of STAT3 at both tyrosine 705 and S727. This phosphorylation increases the transcriptional activity of MITF and STAT3 as indicated by mRNA accumulation of their target genes such as Bcl-2, granzyme B, and c-Myc. Interestingly, MITF and STAT3 were not found to be obligatory factors in the anti-apoptotic response induced by IgE. Thus, the phenomenon that IgE alone was able to induce transcription factors that are essential for mast cell function could contribute to our understanding of the pathogenesis of allergy and its associated diseases.
Collapse
Affiliation(s)
- Amir Sonnenblick
- Department of Biochemistry, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
14
|
Hoffmann S, He S, Jin ML, Masiero L, Wiedemann P, Ryan SJ, Kohn EC. Carboxyamido-triazole modulates retinal pigment epithelial and choroidal endothelial cell attachment, migration, proliferation, and MMP-2 secretion of choroidal endothelial cells. Curr Eye Res 2005; 30:103-13. [PMID: 15814468 DOI: 10.1080/02713680490894595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To determine the effect of the calcium signaling modulating drug carboxyamido-triazole (CAI) on substeps of exudative age-related macular degeneration (AMD) in vitro. MATERIALS AND METHODS Zymography and ELISA determined the effect of CAI on MMP-2 production of choroidal endothelial cells (CECs) stimulated by bFGF and VEGF. The effects of CAI on attachment of retinal pigment endothelial (RPE) cells/CECs onto fibronectin, laminin, collagen IV, and migration toward fibronectin were investigated. Proliferation induced by serum and bFGF (10 microg/ml) with and without CAI (0.1-10 microM) was measured by cell counting and 3H-uptake. Viability and apoptosis of the exposed cells was assessed by an MTT and an apoptosis assay. RESULTS CAI inhibited serum- and bFGF-induced proliferation, cell attachment onto fibronectin and collagen IV, but only CEC attachment onto laminin. Inhibition of MMP-2 production was observed (10 microM CAI). CAI reduced the cellular viability by apoptosis induction. CONCLUSIONS CAI inhibits substeps of exudative macular degeneration and may be of value for the treatment of the disease.
Collapse
Affiliation(s)
- Stephan Hoffmann
- Department of Ophthalmology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Möller C, Alfredsson J, Engström M, Wootz H, Xiang Z, Lennartsson J, Jönsson JI, Nilsson G. Stem cell factor promotes mast cell survival via inactivation of FOXO3a-mediated transcriptional induction and MEK-regulated phosphorylation of the proapoptotic protein Bim. Blood 2005; 106:1330-6. [PMID: 15855272 DOI: 10.1182/blood-2004-12-4792] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Mast cells are found in tissues throughout the body where they play important roles in the regulation of inflammatory responses. One characteristic feature of mast cells is their longevity. Although it is well established that mast cell survival is dependent on stem cell factor (SCF), it has not been described how this process is regulated. Herein, we report that SCF promotes mast cell survival through inactivation of the Forkhead transcription factor FOXO3a (forkhead box, class O3A) and down-regulation and phosphorylation of its target Bim (Bcl-2 [B-cell lymphoma-2] interacting modulator of cell death), a Bcl-2 homology 3 (BH3)-only proapoptotic protein. SCF induced a rapid and transient phosphorylation of Akt (protein kinase B) and FOXO3a. SCF treatment prevented up-regulation of Bim protein expression and led to increased Bim phosphorylation. Bim phosphorylation was inhibited by PD98059 and LY294002 treatment, suggesting the involvement of mitogen-activated protein kinase kinase/mitogen-activated protein kinase (MEK/MAPK) and phosphatidylinositol 3 (PI3)-kinase pathways in this process. Overexpression of phosphorylation-deficient FOXO3a caused an up-regulation of Bim and induced mast cell apoptosis even in the presence of SCF. Mast cell apoptosis induced by the phosphorylation-deficient FOXO3a was attenuated in bim-/- mast cells. Because apoptosis is abnormally reduced in bim-/- mast cells, these data provide evidence that Akt-mediated inhibition of FOXO3a and its transcription target Bim provides an important mechanism by which SCF acts to prevent apoptosis in mast cells.
Collapse
Affiliation(s)
- Christine Möller
- Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Aldinucci D, Lorenzon D, Olivo K, Rapanà B, Gattei V. Interactions between tissue fibroblasts in lymph nodes and Hodgkin/Reed-Sternberg cells. Leuk Lymphoma 2005; 45:1731-9. [PMID: 15223630 DOI: 10.1080/10428190410001683633] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Classic Hodgkin's Disease (cHD) is a lymphoid neoplasia characterized by a few malignant Hodgkin and Reed-Sternberg (H-RS) cells embedded in an abundant background of non-tumor cells. In this context, fibrosis is a common morphologic feature of HD lesions, being found more frequently in cHD subtypes. The clinical and histopathologic features of cHD are thought to be largely due to the effects of a wide variety of cytokines and chemokines primarily produced by H-RS cells, as well as by the surrounding reactive component. In the present review, first we propose three mechanisms putatively explaining fibroblast activation and fibrosis in HD: (1) unbalanced production of the pro-fibrogenic Th2 over Th1 cytokines; (2) production of TGF-beta, b-FGF and IL-13 by H-RS cells; (3) activation of fibroblasts by CD40L-expressing cells of the HD microenvironment. Second, we suggest some molecular pathways involving cytokines produced by HD-derived fibroblasts (SCF, IL-7, IL-6) supposedly responsible for H-RS proliferation and rescue from apoptosis. Finally, we describe the role of specific molecules produced by H-RS cells in the regulation of HD-derived fibroblast production of chemokines, in turn involved in T-lymphocytes and recruitment of eosinophils.
Collapse
Affiliation(s)
- Donatella Aldinucci
- Clinical and Experimental Hematology Research Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy.
| | | | | | | | | |
Collapse
|
17
|
Sonnenblick A, Levy C, Razin E. Interplay between MITF, PIAS3, and STAT3 in mast cells and melanocytes. Mol Cell Biol 2004; 24:10584-92. [PMID: 15572665 PMCID: PMC533964 DOI: 10.1128/mcb.24.24.10584-10592.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microphthalmia transcription factor (MITF) and STAT3 are two transcription factors that play a major role in the regulation of growth and function in mast cells and melanocytes. In the present study, we explored the MITF-PIAS3-STAT3 network of interactions, how these interactions regulate gene expression, and how cytokine-mediated phosphorylation of MITF and STAT3 is involved in the in vivo interplay between these three proteins. In NIH 3T3 cells stimulated via gp130 receptor, transfected MITF was found to be phosphorylated at S409. Such phosphorylation of MITF leads to PIAS3 dissociation from MITF and its association with STAT3. Activation of mouse melanoma and mast cells through gp130 or c-Kit receptors induced the mobilization of PIAS3 from MITF to STAT3. In mast cells derived from MITF(di/di) mice, whose MITF lacks the Zip domain (PIAS3-binding domain), we found downregulation in mRNA levels of genes regulated by either MITF or STAT3. This regulatory mechanism is of considerable importance since it is likely to advance the deciphering of a role for MITF and STAT3 in mast cells and melanocytes.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Electrophoresis, Polyacrylamide Gel
- Fluorescent Dyes
- Glutathione Transferase/metabolism
- Intracellular Signaling Peptides and Proteins/chemistry
- Intracellular Signaling Peptides and Proteins/metabolism
- Mast Cells/metabolism
- Melanocytes/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Transgenic
- Microphthalmia-Associated Transcription Factor
- Microscopy, Fluorescence
- Models, Biological
- NIH 3T3 Cells
- Phosphorylation
- Precipitin Tests
- Protein Inhibitors of Activated STAT
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-kit/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytokine/metabolism
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rhodamines
- Serine/metabolism
- Signal Transduction
- Transcription Factors/chemistry
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Amir Sonnenblick
- Department of Biochemistry, Hebrew University Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
18
|
Jenkins CE, Swiatoniowski A, Issekutz AC, Lin TJ. Pseudomonas aeruginosa exotoxin A induces human mast cell apoptosis by a caspase-8 and -3-dependent mechanism. J Biol Chem 2004; 279:37201-7. [PMID: 15205454 DOI: 10.1074/jbc.m405594200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cells play an important role in both allergy and innate immunity. Recently, we demonstrated an active interaction between human mast cells and Pseudomonas aeruginosa leading to the production of multiple cytokines. Here, we show that both primary cultured human cord blood-derived mast cells and the human mast cell line HMC-1 undergo apoptosis as determined by single-stranded DNA (ssDNA) formation after stimulation with P. aeruginosa exotoxin A (ETA), a major toxin produced by this bacterium. ETA-induced ssDNA formation was completely inhibited by Z-VAD (where Z is benzyloxycarbonyl), which blocks multiple caspases, suggesting a role for caspases in this process. Active caspase-3 formation in mast cells after an ETA challenge was detected by both Western blotting and flow cytometry analysis. ETA-induced caspase-3 activity in human mast cells was demonstrated by the detection of a characteristic 23 kDa product of D4-GDI (where GDI is guanine nucleotide dissociation inhibitor), an endogenous caspase-3 substrate. Interestingly, a specific caspase-8 inhibitor, Z-IETD-fmk (where fmk is fluoromethyl ketone), blocked ETA-induced cleavage of D4-GDI, but a caspase-9 inhibitor (Z-LEHD-fmk) did not. Treatment of mast cells with caspase-3 inhibitor Z-DEVD-fmk or caspase-8 inhibitor Z-IETD-fmk reduced the generation of ssDNA induced by ETA, suggesting a role for caspase-8 and -3 in ETA-induced mast cell apoptosis. Furthermore, treatment of mast cells with ETA induced decreases of the short form and a long form (p43) of Fas-associated death domain protein (FADD)-like interleukin-1beta-converting enzyme (FLICE) (caspase-8)-inhibitory proteins (FLIPs), which are endogenous caspase-8 inhibitors. Taken together, these results suggest that ETA-induced mast cell apoptosis involves down-regulation of antiapoptotic proteins, FLIPs, and activation of caspase-8 and -3 pathways.
Collapse
Affiliation(s)
- Christopher E Jenkins
- Department of Microbiology and Immunology, Dalhousie University, 5850 University Avenue, Halifax, Nova Scotia B3J 3G9, Canada
| | | | | | | |
Collapse
|
19
|
Zhang Y, Berger SA. Increased calcium influx and ribosomal content correlate with resistance to endoplasmic reticulum stress-induced cell death in mutant leukemia cell lines. J Biol Chem 2003; 279:6507-16. [PMID: 14660643 DOI: 10.1074/jbc.m306117200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell clones were derived by treatment of HL-60 cells with stepwise increasing concentrations of econazole (Ec), an imidazole antifungal that blocks Ca2+ influx and induces endoplasmic reticulum (ER) stress-related cell death in multiple mammalian cell types. Clones exhibit 20- to more than 300-fold greater resistance to Ec. Unexpectedly, they also display stable cross-resistance to tunicamycin, thapsigargin, dithiothreitol, and cycloheximide but not doxorubicin, etoposide, or Fas ligand. Phenotypic analysis indicates that the cells display increased store-operated calcium influx and resistance to ER Ca2+ store depletion by Ec. E2R2, the most resistant clone, was observed to maintain protein synthesis levels after treatment with Ec or thapsigargin. Expression of GRP78, an ER-based chaperone, was induced by these ER stress treatments but to equal degrees in HL-60 and E2R2 cells. By using microarray analysis, at least 15 ribosomal protein genes were found to be overexpressed in E2R2 compared with HL-60 cells. We also found that ribosomal protein content was increased by 30% in E2R2 as well as other clones. The resistance phenotype was partially reversed by the ribosome-inactivating protein saporin. Therefore, increased store-operated calcium influx, resistance to ER Ca2+ store depletion, and overexpression of ribosomal proteins define a novel phenotype of ER stress-associated multidrug resistance.
Collapse
Affiliation(s)
- Yicheng Zhang
- Arthritis and Immune Disorder Research Centre, University Health Network and the Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | |
Collapse
|
20
|
Shelburne CP, McCoy ME, Piekorz R, Sexl V, Roh KH, Jacobs-Helber SM, Gillespie SR, Bailey DP, Mirmonsef P, Mann MN, Kashyap M, Wright HV, Chong HJ, Bouton LA, Barnstein B, Ramirez CD, Bunting KD, Sawyer S, Lantz CS, Ryan JJ. Stat5 expression is critical for mast cell development and survival. Blood 2003; 102:1290-7. [PMID: 12714518 DOI: 10.1182/blood-2002-11-3490] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-3 (IL-3) and stem cell factor (SCF) are important mast cell growth and differentiation factors. Since both cytokines activate the transcription factor signal transducer and activator of transcription 5 (Stat5), a known regulator of proliferation and survival, we investigated the effects of Stat5 deficiency on mast cell development and survival. Bone marrow-derived mast cell (BMMC) populations cultured from Stat5A/B-deficient mice survived in IL-3 + SCF, but not in either cytokine alone. These cells demonstrated reduced expression of Bcl-2, Bcl-x(L), cyclin A2, and cyclin B1, with increased apoptosis and delayed cell cycle progression during IL-3 or SCF culture. Finally, the absence of Stat5 resulted in loss of in vivo mast cell development, as judged by assessments of Stat5-deficient mice and transplantation of Stat5-deficient bone marrow cells to mast cell-deficient recipient mice. These results indicate that Stat5A and Stat5B are critical regulators of in vitro and in vivo mast cell development and survival.
Collapse
|
21
|
Zhang Y, Berger SA. Ketotifen reverses MDR1-mediated multidrug resistance in human breast cancer cells in vitro and alleviates cardiotoxicity induced by doxorubicin in vivo. Cancer Chemother Pharmacol 2003; 51:407-14. [PMID: 12687290 DOI: 10.1007/s00280-003-0600-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Accepted: 02/05/2003] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate the effect of the antihistamine ketotifen on multidrug resistance in human breast cancer cells and doxorubicin toxicity in mice. METHODS Clonogenicity assays were used to test the effect of ketotifen on human multidrug resistant breast cancer cell lines exposed to chemotherapeutic agents. Flow cytometry was used to measure accumulation of doxorubicin in cells. Fluorimetry was used to measure accumulation of doxorubicin in cardiac tissues. Histological analysis and toxicity studies in mice were used to test the effect of ketotifen on doxorubicin-induced toxicity. RESULTS Ketotifen was found to restore the sensitivity of P-glycoprotein-overexpressing multidrug-resistant MCF-7/adr cells to doxorubicin, mitoxantrone, VP-16 and vinblastine, but not to methotrexate or camptothecin. Ketotifen, however, was unable to restore sensitivity of BCRP-overexpressing MCF-7/mx cells or MRP-overexpressing MCF-7/vp cells to mitoxantrone or VP-16, respectively. In vivo, pretreatment of mice with ketotifen caused an increased accumulation of doxorubicin in cardiac tissue, consistent with a block in drug clearance. However, unlike verapamil, ketotifen pretreatment did not enhance doxorubicin toxicity but in fact provided protection, both at the level of cardiac tissue damage and in terms of survival. CONCLUSIONS Taken together, these observations show that ketotifen is unique in its ability both to reverse multidrug resistance due to P-glycoprotein overexpression and to provide cardioprotection to doxorubicin.
Collapse
Affiliation(s)
- Yicheng Zhang
- Arthritis and Immune Disorder Research Centre, University Health Network, 620 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | | |
Collapse
|
22
|
Engström M, Karlsson R, Jönsson JI. Inactivation of the forkhead transcription factor FoxO3 is essential for PKB-mediated survival of hematopoietic progenitor cells by kit ligand. Exp Hematol 2003; 31:316-23. [PMID: 12691919 DOI: 10.1016/s0301-472x(03)00002-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Kit ligand (KL) is a major survival factor for hematopoietic stem cells. Although anti-apoptotic bcl-2 family members are expressed in these cells, the survival effects by KL appear to involve other mechanisms. Survival signals can also be elicited by the activation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), which in turn inactivates forkhead transcription factors, known to be potent regulators of apoptosis. In this study, we investigated the involvement of PKB, FoxO1, FoxO3, and FoxO4 in c-kit-mediated survival. METHODS By Western blot analysis, immunofluorescence, and subcellular fractionation, we analyzed the effects of KL on PKB and different forkhead family members in two factor-dependent cell lines, FDCP-mix and FDC-P1, as well as primary mouse bone marrow-derived Lin(-) progenitors. Forced overexpression of triple mutated form of FoxO3 by retroviral gene transfer has enabled us to directly study its involvement in these cells. RESULTS Upon KL stimulation, PKB and its downstream target FoxO3, and to some extent FoxO1, were rapidly phosphorylated. This led to an exclusion of endogenous FoxO3 from the nucleus, which was shown to be dependent of PI3K activation. Overexpression of triple-mutated FoxO3 in a factor-dependent cell line induced apoptosis in the presence of KL. Also, triple-mutated FoxO3 was able to inhibit the colony formation of Lin(-) progenitors in KL. CONCLUSION Our data suggest that FoxO3 plays an important role in KL-mediated survival of hematopoietic progenitors. Because forkhead proteins are involved in controlling apoptosis and cell-cycle progression, this may be one important mechanism by which survival of hematopoietic progenitors is mediated.
Collapse
Affiliation(s)
- Maria Engström
- Department of Laboratory Medicine, Division of Molecular Medicine, Lund University, University Hospital MAS, Malmö, Sweden
| | | | | |
Collapse
|
23
|
Domae M, Sagara H, Sakaue M, Fukuda T, Kamikawa Y. The antiallergic drug oxatomide promotes human eosinophil apoptosis and suppresses IL-5-induced eosinophil survival. J Allergy Clin Immunol 2003; 111:567-72. [PMID: 12642838 DOI: 10.1067/mai.2003.136] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Eosinophils accumulated in sites of allergic inflammation are thought to play a crucial role in the pathogenesis of allergic disorders including asthma, allergic rhinitis, and atopic dermatitis, and tissue eosinophilia is attributable to increased eosinophil survival or decreased eosinophil apoptosis. OBJECTIVE Effects of the antiallergic, histamine H1 blocker oxatomide on viability and apoptosis of eosinophils isolated from the peripheral blood of atopic subjects were studied. METHODS Eosinophil viability and apoptosis were evaluated by using a colorimetric assay and annexin V-labeling, caspase-3 activity, and DNA fragmentation assay. RESULTS The viability of eosinophils increased in the presence of IL-5 (10 ng/mL), confirming that IL-5 prolongs eosinophil survival in vitro. Application of oxatomide at concentrations over 20 micromol/L for 24 hours decreased the IL-5-induced enhancement of eosinophil viability. Double staining of the cells with annexin V and propidium iodide showed that deprivation of IL-5 promoted spontaneous eosinophil apoptosis and that oxatomide facilitated apoptosis and suppressed the prolongation of eosinophil survival stimulated by IL-5. In the absence of IL-5, approximately 71% and 96% of eosinophils after 24 and 48 hours, respectively, underwent spontaneous apoptosis. IL-5 decreased the rate of eosinophil apoptosis to 38% and 52% after 24 and 48 hours, respectively. Oxatomide increased eosinophil apoptosis in a concentration-dependent manner in the presence of IL-5. Furthermore, oxatomide increased caspase-3 activity and DNA fragmentation. CONCLUSION We demonstrated that oxatomide possesses a novel therapeutic effect of apoptosis promotion on eosinophils and prevents the antiapoptotic effects of IL-5, suggesting that oxatomide may contribute to resolution of tissue eosinophilia in allergic inflammation.
Collapse
Affiliation(s)
- Mariko Domae
- Department of Pharmacology, Dokkyo University School of Medicine, Mibu, Tochigi, Japan
| | | | | | | | | |
Collapse
|
24
|
Grimbaldeston MA, Simpson A, Finlay-Jones JJ, Hart PH. The effect of ultraviolet radiation exposure on the prevalence of mast cells in human skin. Br J Dermatol 2003; 148:300-6. [PMID: 12588383 DOI: 10.1046/j.1365-2133.2003.05113.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Dermal mast cells have been implicated as important effector cells in innate immunity, hypersensitivity responses and ultraviolet (UV)B-induced suppression of cell-mediated immune responses to contact allergens. Humans, like mouse strains, display variations in dermal mast cell prevalence. The factors determining these differences are yet to be fully elucidated. In mice, expression of the receptor for stem cell factor, c-kit, on dermal mast cells correlates with prevalence. OBJECTIVES To evaluate dermal mast cell prevalence and mast cell c-kit expression in non-sun-exposed and sun-exposed skin in the same donor. METHODS In 14 subjects, biopsies of skin (4 mm) were sampled from the skin sites of buttock, inner arm, shoulder and back of hand skin and dermal mast cell prevalence quantified. Non-sun-exposed buttock and chronically sun-exposed hand skin were evaluated for mast cell expression of c-kit and elastin content, a feature of photoageing and surrogate marker of UV exposure. RESULTS The prevalence of dermal mast cells was significantly higher in hand skin than in the three other anatomically different skin sites. Significant correlations were observed in hand but not buttock skin between increasing dermal mast cell densities, extent of elastin content in the papillary dermis and age of the subject. Cellular expression of c-kit correlated with mast cell prevalence in hand skin. However, no relationship was observed in hand skin between c-kit expression, elastin content and age. CONCLUSIONS The prevalence of mast cells in human skin is altered by factors that are intrinsic (mechanisms regulating c-kit expression) and extrinsic (chronic sun exposure), and the fact that the associations of mast cell prevalence with age is explained by the latter being a correlate of cumulative sun exposure.
Collapse
Affiliation(s)
- M A Grimbaldeston
- Department of Microbiology and Infectious Diseases, School of Medicine, Flinders University, GPO Box 2100, Adelaide, Australia 5001
| | | | | | | |
Collapse
|
25
|
Kunzelman C, Toti F, Freyssinet JM, Meyer D. Interference of activated factor VII in apoptosis of erytholeukemic K562 cells. C R Biol 2002; 325:1111-8. [PMID: 12506724 DOI: 10.1016/s1631-0691(02)01522-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Coagulation factor VIIa (FVIIa) is a key protease initiating the coagulation cascade in the presence of its receptor, tissue factor (TF). FVIIa elicits several cellular responses, probably involving other receptors(s) than TF. This study investigates the implication of recombinant FVIIa on the apoptosis of K562 erythroleukemia cells. These cells undergo apoptosis when induced to differentiate towards the erythroid lineage by hemin. They do not express TF, but can be transfected to do so. FVIIa treatment significantly reduced the degree of hemin-induced apoptosis in K562 cells, but not in TF+ derived transfectants. Induction of apoptosis by hemin also elicited decrease in intracellular Ca2+ concentration ([Ca2+]i), but FVIIa restored this [Ca2+]i close to that of non-treated cells. These results suggest that FVIIa acts via a TF-independent pathway to counteract apoptosis by a mechanism involving its Gla domain and linked to the maintenance of Ca2+ homeostasis in K562 cells.
Collapse
Affiliation(s)
- Corinne Kunzelman
- Unité 143 INSERM, hôpital de Bicêtre, 78, rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre, France
| | | | | | | |
Collapse
|
26
|
Soboloff J, Zhang Y, Minden M, Berger SA. Sensitivity of myeloid leukemia cells to calcium influx blockade: application to bone marrow purging. Exp Hematol 2002; 30:1219-26. [PMID: 12384154 DOI: 10.1016/s0301-472x(02)00893-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The aim of this study was to assess the potential of store-operated Ca(2+) channel (SOC) antagonists as purging agents for leukemia cells. MATERIALS AND METHODS Clonogenic, limiting dilution, and nuclear condensation assays were used to evaluate SOC antagonist efficacy. SOC activity and endoplasmic reticulum Ca(2+) content were measured by flow cytometry. Murine bone marrow transplantation was used to determine purging efficacy and effects on hemopoietic reconstitution. RESULTS Econazole (Ec) and ketotifen (Ke) were variably effective against human and murine leukemia cell lines after 24 hours of incubation. However, a 2-hour serum and bovine serum albumin-free treatment protocol with Ec was found to maximize differential sensitivity between leukemic cells and normal hemopoietic progenitors. Primary acute myelogenous leukemia blast cell viability was reduced 4.2 to 5.1 logs by 2-hour Ec treatment as measured by limiting dilution. An inverse relationship between endoplasmic reticulum Ca(2+) content and Ke sensitivity in leukemia and untransformed cells was observed. Nuclear condensation, an index of apoptosis, which occurred after 24-hour treatments with either Ec or Ke, was not observed after 2-hour serum- and bovine serum albumin-free Ec exposures; however, condensed nuclei were observed after an additional 10-hour incubation in growth medium without drug. Using bone marrow deliberately contaminated with 1% P815 cells, we showed that highly effective in vitro purging can be accomplished using Ec with no adverse effects on bone marrow reconstitution in mice. CONCLUSIONS These studies suggest that SOC antagonists have potential as purging agents for residual leukemia cells present in bone marrow in the context of high-dose chemotherapy and autologous transplantation for leukemia.
Collapse
Affiliation(s)
- Jonathan Soboloff
- AIDRC, University Health Network and the Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Aldinucci D, Poletto D, Nanni P, Degan M, Gloghini A, Di Francia R, Russo S, Carbone A, Pinto A, Gattei V. Hodgkin and Reed-Sternberg cells express functional c-kit receptors and interact with primary fibroblasts from Hodgkin's disease-involved lymph nodes through soluble and membrane-bound stem cell factor. Br J Haematol 2002; 118:1055-64. [PMID: 12199785 DOI: 10.1046/j.1365-2141.2002.03732.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Classic Hodgkin's disease (cHD) is a lymphoid neoplasia characterized by few malignant Hodgkin and Reed-Sternberg (H-RS) cells, embedded in an abundant background of non-tumour cells. We have previously demonstrated the expression in primary H-RS cells of the receptor tyrosine kinase (RTK) c-kit; here we describe its functional role in the cross-talk between H-RS cells themselves with neighbouring cell populations. In particular, we analysed the expression of c-kit and its ligand stem cell factor (SCF) in a panel of HD-derived cell lines and fibroblasts from HD-involved lymph nodes (HDF). While c-kit was expressed by HD-derived cell lines, usually in the absence of SCF, this latter molecule, in its soluble and/or membrane-bound (mb) form, was in turn expressed at a high level by primary HDF. In vitro adhesion between HD-derived cell lines and HDF was mainly mediated by c-kit/SCF interactions, and this phenomenon was significantly inhibited by an excess of soluble SCF or by neutralizing anti-c-kit monoclonal antibodies. Furthermore, both soluble and mb-SCF increased growth and colony survival of HD-derived cell lines; these effects were significantly enhanced upon co-stimulation of H-RS cells with interleukin 9. Finally, soluble SCF was able to partially rescue H-RS cells from apoptosis induced by serum starvation. Taken together, our data indicated the expression of functional c-kit receptor by H-RS cells and suggests a role of SCF in the pathobiology of cHD.
Collapse
Affiliation(s)
- Donatella Aldinucci
- Clinical and Experimental Haematology Research Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Istituto Nazionale Tumori, Aviano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shelburne CP, McCoy ME, Piekorz R, Sexl VV, Gillespie SR, Bailey DP, Gharse A, Mirmonsef P, Mann MN, Kashyap M, Wright HV, Chong HJ, Bouton LA, Ramirez CD, Lantz CS, Ryan JJ. Stat5: an essential regulator of mast cell biology. Mol Immunol 2002; 38:1187-91. [PMID: 12217382 DOI: 10.1016/s0161-5890(02)00061-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interleukin-3 (IL-3) and stem cell factor (SCF) are important mast cell growth and differentiation factors. Since both cytokines activate the transcription factor Stat5, a known regulator of proliferation and survival, we investigated the effects of Stat5 deficiency on mast cell development and survival. This article will review data presented at The Fourth International Workshop on Signal Transduction in the Activation and Development of Mast Cells and Basophils. The full set of data is now in preparation for publication. We find that the absence of Stat5 A and B results in a total loss of in vivo mast cell development. Bone marrow-derived mast cell (BMMC) populations can be cultured and maintained from Stat5-deficient mice in IL-3+SCF, but not in either cytokine alone. The absence of Stat5 resulted in aberrant control of Bcl-2, Bcl-x(L) and cyclin A2, with increased apoptosis and delayed cell cycle progression after IL-3 or SCF stimulation. These results indicate that Stat5 A and B are critical regulators of in vitro and in vivo mast cell biology.
Collapse
|
29
|
Kit signaling inhibits the sphingomyelin-ceramide pathway through PLCγ1: implication in stem cell factor radioprotective effect. Blood 2002. [DOI: 10.1182/blood.v100.4.1294.h81602001294_1294_1301] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies demonstrated that Kit activation confers radioprotection. However, the mechanism by which Kit signaling interferes with cellular response to ionizing radiation (IR) has not been firmly established. Based on the role of the sphingomyelin (SM) cycle apoptotic pathway in IR-induced apoptosis, we hypothesized that one of the Kit signaling components might inhibit IR-induced ceramide production or ceramide-induced apoptosis. Results show that, in both Ba/F3 and 32D murine cell lines transfected with wild-type c-kit, stem cell factor (SCF) stimulation resulted in a significant reduction of IR-induced apoptosis and cytotoxicity, whereas DNA repair remained unaffected. Moreover, SCF stimulation inhibited IR-induced neutral sphingomyelinase (N-SMase) stimulation and ceramide production. The SCF inhibitory effect on SM cycle was not influenced by wortmannin, a phosphoinositide-3 kinase (PI3K) inhibitor. The SCF protective effect was maintained in 32D-KitYF719 cells in which the PI3K/Akt signaling pathway is abolished due to mutation in Kit docking site for PI3K. In contrast, phospholipase C γ (PLCγ) inhibition by U73122 totally restored IR-induced N-SMase stimulation, ceramide production, and apoptosis in Kit-activated cells. Moreover, SCF did not protect 32D-KitYF728 cells (lacking a functional docking site for PLCγ1), from IR-induced SM cycle. Finally, SCF-induced radioprotection of human CD34+ bone marrow cells was also inhibited by U73122. Altogether, these results suggest that SCF radioprotection is due to PLCγ1-dependent negative regulation of IR-induced N-SMase stimulation. Beyond the scope of Kit-expressing cells, it suggests that PLCγ1 status could greatly influence the post-DNA damage cellular response to IR, and perhaps, to other genotoxic agents.
Collapse
|
30
|
Soboloff J, Berger SA. Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells. J Biol Chem 2002; 277:13812-20. [PMID: 11836247 DOI: 10.1074/jbc.m112129200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Depletion of Ca(2+) from the endoplasmic reticulum (ER) induces large increases in cytoplasmic Ca(2+), mitochondrial Ca(2+) loading, protein synthesis inhibition, and cell death. To clarify the connections among these events, we have evaluated the effect of Ca(2+) mobilizing agents thapsigargin (Tg), econazole (Ec), and the growth factor Steel Factor (SLF) on bone marrow-derived mast cells (BMMCs). BMMC Ca(2+) stores were found to consist of a Tg-sensitive ER compartment, the Tg-insensitive SIC store, and mitochondrial stores. Low levels of Ec interfered with Tg-stimulated mitochondrial loading while promoting progressive leakage of Ca(2+) from the ER. Low levels of Ec completely reversed Tg toxicity while higher levels blocked store-operated influx and induced cell death in a SLF-enhanced manner. Both Ec and Tg inhibited protein synthesis, however, only SLF plus Tg or very high levels of Ec were able to significantly stimulate EIF-2alpha phosphorylation. Cycloheximide only partially protected BMMCs from Tg toxicity yet strongly synergized with Ec to induce cell death. These results therefore indicate that although both Tg and Ec deplete ER Ca(2+) levels, Ec-induced cell death results from sustained protein synthesis inhibition while Tg toxicity results primarily from mitochondrial Ca(2+) overload and secondarily from ER stress associated with Ca(2+) depletion.
Collapse
Affiliation(s)
- Jonathan Soboloff
- Arthritis and Immune Disorder Research Centre, University Health Network and the Department of Immunology, University of Toronto, Ontario M5G 2M9, Canada
| | | |
Collapse
|
31
|
Zhang Y, Crump M, Berge SA. Purging of contaminating breast cancer cells from hematopoietic progenitor cell preparations using activation enhanced cell death. Breast Cancer Res Treat 2002; 72:265-78. [PMID: 12058968 DOI: 10.1023/a:1014965726663] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Activation enhanced cell death (AECD) involves stimulating cells with growth or activation signals while concurrently blocking calcium influx. In this study, we have evaluated the effect of AECD on human breast cancer cells. MCF-7 or MDA-MB-231 cells treated with Ca2+ influx blockers econazole or ketotifen for 24 h underwent a dose-dependent, irreversible loss of viability, and clonogenicity. Two-hour treatment of these cells with higher concentrations of the drugs also resulted in loss of clonogenicity, but morphological indicators of cell death were apparent only after longer incubation. Loss of clonogenicity could be enhanced almost 10-fold by co-stimulation of the cells with the agonists EGF or bombesin. Econazole was also effective in inducing cell death in multi-drug resistant MCF-7adr cells. Human hemopoietic progenitor cell sensitivity to econazole or ketotifen was evaluated by colony assay. Under conditions resulting in 2.5-3 logs of breast cancer cell loss, 60-70% of hemopoietic progenitors could be recovered. We further evaluated the effect of econazole on breast cancer cells present in mobilized hemopoietic cells obtained from patients undergoing high dose chemotherapy with autologous stem cell support. In six of eight samples evaluated, cytokeratin-positive breast cancer cells could be detected by immunofluorescence microscopy and colony formation. Breast cancer colonies were reduced 60-500-fold or more after exposure to econazole while hemopoietic colonies were typically reduced only 2-fold. In all cases, addition of EGF as an activator either had no evaluable effect or enhanced breast cancer cell loss. We conclude that Ca2+ influx blockade with concurrent EGF stimulation is a promising approach for purging breast cancer cells from hemopoietic progenitor cell preparations.
Collapse
Affiliation(s)
- Yicheng Zhang
- Arthritis and Immune Disorder Research Centre, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
32
|
Sun X, Liu XB, Martinez JR, Dang H, Zhang GH. Effects of radiation on Ca2+signaling in salivary epithelial cell lines transfected with Bcl-2 and Bcl-XL. Eur J Oral Sci 2001; 109:103-8. [PMID: 11347653 DOI: 10.1034/j.1600-0722.2001.00982.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of radiation on the Ca2+ signaling system in HSY cells transfected with the Bcl-2 or Bcl-XL gene were studied. Bcl-2 overexpression did not alter carbachol (CCh)-elicited initial increase in cytosolic free Ca2+ concentrations ([Ca2+]i), but Bcl-XL overexpression dramatically reduced this response. Exposure to 10 Gy gamma-ray did not alter basal [Ca2+]i. By contrast, the CCh-stimulated initial [Ca2+]i increase was reduced at 0.5 and 4 h post-irradiation in all cell types and remained decreased at 24 h in wild-type and control-transfected cells, but recovered in Bcl-2- and Bcl-XL-transfectants. The formation of inositol 1,4,5-trisphosphate (IP3) in response to CCh at 4-h post-irradiation was decreased in wild-type and control-transfected cells, but not in Bcl-2 and Bcl-XL transfectants. The capacity of the IP3-sensitive Ca2+ store was significantly reduced by radiation in all cells except Bcl-XL transfectants. Ca2+ influx after stimulation with CCh was suppressed by exposure to radiation in wild-type and control-transfected cells, but not in Bcl-2- and Bcl-XL-transfectants. However, radiation enhanced Ca2+ influx activated by thapsigargin in all cell types. These results suggest that 1) radiation diminishes IP3 formation and Ca2+ release in response to CCh, but potentiates the store-operated Ca2+ influx; and 2) overexpression of Bcl-2 or Bcl-XL partially protects cells from radiation-induced inhibition of Ca2+ signaling.
Collapse
Affiliation(s)
- X Sun
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Stem cell factor is an essential haemopoietic progenitor cell growth factor with proliferative and anti-apoptotic functions. Molecular biologists have now dissected some of the various pathways through which this cytokine signals to the nucleus. At the same time, new molecules have become available which can inhibit SCF signalling. This provides an exciting prospect for the treatment of Kit+ malignancies such as acute myeloblastic leukaemia. The capacity of SCF to synergize with other cytokines has been exploited in the ex vivo expansion of haemopoietic progenitors and dendritic cells, which may also hold therapeutic promise. In this review the last 5 years' literature on these issues is reviewed and collated.
Collapse
Affiliation(s)
- M A Smith
- Centre for Research in Biomedicine, Faculty of Applied Sciences, University of the West of England, Bristol, UK
| | | | | |
Collapse
|
34
|
Itakura A, Miura Y, Hikasa Y, Kiso Y, Matsuda H. Interleukin-3 and stem cell factor modulate cell cycle regulatory factors in mast cells: negative regulation of p27Kip1 in proliferation of mast cells induced by interleukin-3 but not stem cell factor. Exp Hematol 2001; 29:803-11. [PMID: 11438202 DOI: 10.1016/s0301-472x(01)00659-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Interleukin-3 (IL-3) and stem cell factor (SCF) are able to promote survival and proliferation of mast cells. However, the precise signal transduction cascades leading to mast cell proliferation are not clearly understood. Thus, we sought to define the mechanism of mast cell proliferation induced by IL-3 and SCF. MATERIALS AND METHODS We treated murine bone marrow-derived cultured mast cells (BMCMC) with recombinant IL-3 (rIL-3) or recombinant SCF (rSCF) and examined the effects of rIL-3 and rSCF on cell cycle regulatory factors. RESULTS Both rIL-3 and rSCF suppressed apoptosis of BMCMC. rSCF induced great proliferation of BMCMC with elevation of the proportions of cells in S and G2/M phases, whereas most BMCMC incubated with rIL-3 were arrested in the G1 phase. The G1/S phase transition is initiated by phosphorylated retinoblastoma protein (pRb), which was prominent in cells stimulated with rSCF. In contrast, rIL-3 relatively increased a dephosphorylated form of pRb in BMCMC. Compared with rIL-3, rSCF induced greater expression of cyclin-dependent kinase (CDK) 2 and CDK4, which are able to phosphorylate pRb, and cyclin D3, a partner of CDK4. BMCMC treated with rIL-3 contained a high amount of a CDK inhibitor p27Kip1 that was suppressed by pretreatment with Ro31-7549, a protein kinase C inhibitor, whereas rSCF induced weak expression of p27Kip1 in BMCMC. CONCLUSION The results suggest that IL-3 and SCF exert their respective mitogenic effects on mast cells by modulating the expression of pRb, CDK, cyclin, and p27Kip1.
Collapse
Affiliation(s)
- A Itakura
- Department of Veterinary Clinic, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Schimmer AD, Hedley DW, Pham NA, Chow S, Minden MD. BAD induces apoptosis in cells over-expressing Bcl-2 or Bcl-xL without loss of mitochondrial membrane potential. Leuk Lymphoma 2001; 42:429-43. [PMID: 11699408 DOI: 10.3109/10428190109064600] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inhibitors of Bcl-2 may be useful therapeutic agents for the treatment of a wide variety of malignancies including leukemia. A potential prototype of such a compound is the endogenous Bcl-2 and Bcl-xL binding protein BAD. Previous reports indicate that BAD can overcome the anti-apoptotic effect of Bcl-xL but not Bcl-2. If BAD cannot induce apoptosis in cells over-expressing Bcl-2, it would limit the application of molecules like BAD as novel anti-tumor agents. We report that transient transfection of BAD induced cell death in cells with and without over-expression of Bcl-2 or Bcl-xL. Forty-eight hours after transfection, BAD increased cell death in COS, COS Bcl-2, and COS Bcl-xL cells as demonstrated by decreased GFP expression, and an increase in the number of number of floating cells. In addition, BAD induced cell death in leukemic cell lines over-expressing Bcl-2 and Bcl-xL as determined by changes in luciferase activity. BAD-induced apoptosis was not accompanied by loss of mitochondrial membrane potential. Therefore, we conclude that transient transfection of BAD directly induces apoptosis in cells over-expressing Bcl-2 or Bcl-xL and validates the pursuit of molecules like BAD as novel therapeutic agents.
Collapse
Affiliation(s)
- A D Schimmer
- Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
36
|
Kalesnikoff J, Huber M, Lam V, Damen JE, Zhang J, Siraganian RP, Krystal G. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 2001; 14:801-11. [PMID: 11420049 DOI: 10.1016/s1074-7613(01)00159-5] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although IgE binding to mast cells is thought to be a passive presensitization step, we demonstrate herein that monomeric IgE (mIgE) in the absence of antigen (Ag) stimulates multiple phosphorylation events in normal murine bone marrow-derived mast cells (BMMCs). While mIgE does not induce degranulation or leukotriene synthesis, it leads to a more potent production of cytokines than IgE + Ag. Moreover, mIgE prevents the apoptosis of cytokine-deprived BMMCs, likely by maintaining Bcl-X(L) levels and producing autocrine-acting cytokines. The addition of Ag does not increase this IgE-induced survival. Since IgE concentrations as low as 0.1 microg/ml enhance BMMC survival, elevated plasma IgE levels in humans with atopic disorders may contribute to the elevated mast cell numbers seen in these individuals.
Collapse
Affiliation(s)
- J Kalesnikoff
- The Terry Fox Laboratory, British Columbia Cancer Agency, 601 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Domen J, Weissman IL. Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kitl/c-Kit signaling the other. J Exp Med 2000; 192:1707-18. [PMID: 11120768 PMCID: PMC2213494 DOI: 10.1084/jem.192.12.1707] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2000] [Accepted: 10/24/2000] [Indexed: 12/26/2022] Open
Abstract
Growth factors can cause cells to proliferate, differentiate, survive, or die. Distinguishing between these responses is difficult in multicellular, multiparameter systems. Yet this is essential to understand the impact on cells like hematopoietic stem cells (HSCs), which have strict and still poorly understood growth factor requirements. Single cell plating in serum-free medium allows direct assessment of growth factor responses. The range of tested factors can be expanded if the cells are protected from growth factor deprivation-induced apoptosis. BCL-2 is overexpressed in HSCs of H2K-BCL-2 transgenic mice, protecting them from many apoptotic stimuli. The response of single wild-type and transgenic HSCs to stimulations with individual factors was tested. Surprisingly, we find that high level BCL-2 expression does not prevent rapid death under serum-free conditions, even though it does in the presence of serum. We also find that transgenic, but not wild-type cells, survive and proliferate rapidly in response to steel factor (Kit ligand). These studies show that two separate signals are necessary to prevent apoptosis in HSCs, and that Kit ligand by itself provides a strong proliferative stimulus to HSCs. However, the proliferative response does not result in self-renewal, but in differentiation to all known hematopoietic oligolineage progenitors.
Collapse
Affiliation(s)
- Jos Domen
- Department of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Irving L. Weissman
- Department of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
38
|
Differential stimulation of c-Kit mutants by membrane-bound and soluble Steel Factor correlates with leukemic potential. Blood 2000. [DOI: 10.1182/blood.v96.12.3734.h8003734_3734_3742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The authors investigated the roles of PI3-kinase and PLC-γ in stimulation by Steel Factor (SLF) through c-Kit. c-Kit mutants YF719, YF728, and a YF719/YF728 double mutant were expressed in 32D myelomonocytic cells. KitYF719 fails to recruit PI3-kinase after stimulation with SLF, whereas KitYF728 fails to stimulate PLC-γ phosphorylation or mobilize Ca++. Both single mutants responded mitogenically to soluble SLF (sSLF) in a manner indistinguishable from wild type (WT), although sSLF failed to stimulate or promote the survival of cells expressing the double mutant. In contrast, although cells expressing WT or YF719 were mitogenically stimulated by membrane-bound SLF (mSLF), stimulation of cells expressing KitYF728 was impaired. Similarly, cells expressing WT or YF719 receptors were stimulated by plate-bound anti-Kit antibodies, whereas cells expressing the YF728 receptor were not stimulated. Neomycin sulfate, a PLC antagonist, inhibited cells expressing YF719 receptors stimulated by sSLF. Neomycin also inhibited cells expressing the WT receptor that were stimulated by mSLF or immobilized anti-Kit antibodies but did not inhibit stimulation of cells expressing WT or YF719 receptors by sSLF. 32D cells expressing KitWT, KitYF719, or KitYF728 were injected into mice and the presence of cells was evaluated by colony assays 6 to 7 weeks later. Although both KitWT and KitYF719 expressing cells could be recovered from the spleen and bone marrow, recovery of KitYF728 cells from these organs was severely reduced. These results indicate that Kit tyrosine 728 is of particular importance for mitogenic stimulation by mSLF or immobilized ligand and is required for full maintenance of cells in vivo, likely through activation of PLC-γ.
Collapse
|
39
|
Differential stimulation of c-Kit mutants by membrane-bound and soluble Steel Factor correlates with leukemic potential. Blood 2000. [DOI: 10.1182/blood.v96.12.3734] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe authors investigated the roles of PI3-kinase and PLC-γ in stimulation by Steel Factor (SLF) through c-Kit. c-Kit mutants YF719, YF728, and a YF719/YF728 double mutant were expressed in 32D myelomonocytic cells. KitYF719 fails to recruit PI3-kinase after stimulation with SLF, whereas KitYF728 fails to stimulate PLC-γ phosphorylation or mobilize Ca++. Both single mutants responded mitogenically to soluble SLF (sSLF) in a manner indistinguishable from wild type (WT), although sSLF failed to stimulate or promote the survival of cells expressing the double mutant. In contrast, although cells expressing WT or YF719 were mitogenically stimulated by membrane-bound SLF (mSLF), stimulation of cells expressing KitYF728 was impaired. Similarly, cells expressing WT or YF719 receptors were stimulated by plate-bound anti-Kit antibodies, whereas cells expressing the YF728 receptor were not stimulated. Neomycin sulfate, a PLC antagonist, inhibited cells expressing YF719 receptors stimulated by sSLF. Neomycin also inhibited cells expressing the WT receptor that were stimulated by mSLF or immobilized anti-Kit antibodies but did not inhibit stimulation of cells expressing WT or YF719 receptors by sSLF. 32D cells expressing KitWT, KitYF719, or KitYF728 were injected into mice and the presence of cells was evaluated by colony assays 6 to 7 weeks later. Although both KitWT and KitYF719 expressing cells could be recovered from the spleen and bone marrow, recovery of KitYF728 cells from these organs was severely reduced. These results indicate that Kit tyrosine 728 is of particular importance for mitogenic stimulation by mSLF or immobilized ligand and is required for full maintenance of cells in vivo, likely through activation of PLC-γ.
Collapse
|
40
|
|
41
|
Abstract
Mast cells are complex, multifunctional cells that have unique phenotypes and growth requirements. Regulation in vitro of human mast cell growth and function differs from regulation of rodent mast cells. Human cell yields in vitro vary depending on tissue of origin, use of mononuclear or CD34+ progenitor cells, presence of cytokines, and serum-free versus serum-containing mediums. This article presents a summary of recent advances in the understanding of cytokine regulation of mast cell numbers and function in rodents and humans.
Collapse
Affiliation(s)
- A Kirshenbaum
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Gidon-Jeangirard C, Solito E, Hofmann A, Russo-Marie F, Freyssinet JM, Martínez MC. Annexin V counteracts apoptosis while inducing Ca(2+) influx in human lymphocytic T cells. Biochem Biophys Res Commun 1999; 265:709-15. [PMID: 10600485 DOI: 10.1006/bbrc.1999.1752] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that when annexin V is present during the execution of a cell death program, apoptosis is delayed. This is reflected by the inhibition of DNA cleavage and of the release of apoptotic membrane particles, and by reduction of the proteolytic processing of caspase-3. Here, we have studied the mechanism(s) through which annexin V counteracts apoptosis in the human CEM T cell line. The degree of apoptosis inhibition was associated with an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)). Reduction of the extracellular Ca(2+) concentration by EGTA abolished the anti-apoptotic effect, suggesting that annexin V favors Ca(2+) influx and that Ca(2+) acts as an inhibitor rather than an activator of apoptosis in CEM T cells. The effects on apoptosis and [Ca(2+)](i) of several modified annexins with different electrophysiological properties indicate that the N-terminal domain of annexin V is necessary for the Ca(2+)-dependent anti-apoptotic action of annexin V. These results suggest that annexin V regulates membrane Ca(2+) permeability and is protective against apoptosis by increasing [Ca(2+)](i) in CEM T cells.
Collapse
Affiliation(s)
- C Gidon-Jeangirard
- Institut d'Hématologie et d'Immunologie, Faculté de Médecine, Université Louis Pasteur, Strasbourg, 67085, France
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The receptor tyrosine kinase c-Kit and its ligand Stem Cell Factor (SCF) are essential for haemopoiesis, melanogenesis and fertility. SCF acts at multiple levels of the haemopoietic hierarchy to promote cell survival, proliferation, differentiation, adhesion and functional activation. It is of particular importance in the mast cell and erythroid lineages, but also acts on multipotential stem and progenitor cells, megakaryocytes, and a subset of lymphoid progenitors. SCF exists in soluble or transmembrane forms which appear to differ in function. Multiple isoforms of c-Kit also exist as a result of alternate mRNA splicing, proteolytic cleavage and the use of cryptic internal promoters in certain cell types. This review focuses on what is known about the regulation of c-Kit expression, the functions of SCF and c-Kit isoforms, and the nature of the biological responses elicited by this receptor-ligand pair with emphasis on the haemopoietic system.
Collapse
Affiliation(s)
- L K Ashman
- Division of Haematology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, SA, Australia.
| |
Collapse
|
44
|
Erythropoietin– and Stem Cell Factor–Induced DNA Synthesis in Normal Human Erythroid Progenitor Cells Requires Activation of Protein Kinase C and Is Strongly Inhibited by Thrombin. Blood 1999. [DOI: 10.1182/blood.v94.1.114.413k21_114_126] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proliferation, differentiation, and survival of erythroid progenitor cells are mainly regulated by stem cell factor (SCF) and erythropoietin (Epo). Using normal human progenitors, we analyzed the role of Ca2+-sensitive protein kinase C (PKC) subtypes and of G-protein–coupled receptor ligands on growth factor–dependent DNA synthesis. We show that stimulation of DNA synthesis by the two growth factors requires activation of PKC. Inhibitors of Ca2+-activated PKC subtypes blocked the growth factor–induced 3H-thymidine incorporation. SCF and Epo caused no significant translocation of PKC into the membrane, but treatment of intact cells with either of the two cytokines resulted in enhanced activity of immunoprecipitated cytosolic PKC. Stimulation of PKC with the phorbol ester PMA mimicked the cytokine effect on DNA synthesis. Epo-, SCF-, and PMA-induced thymidine incorporation was potently inhibited by thrombin (half-maximal inhibition with 0.1 U/mL). This effect was mediated via the G-protein-coupled thrombin receptor and the Rho guanosine triphosphatase. Adenosine diphosphate caused a modest Ca2+-dependent stimulation of DNA synthesis in the absence of cytokines and specifically enhanced the effect of SCF. Cyclic 3′,5′-adenosine monophosphate exerted a selective inhibitory effect on Epo-stimulated thymidine incorporation. Our results define PKC as major intermediate effector of cytokine signaling and suggest a role for thrombin in controlling erythroid progenitor proliferation.
Collapse
|