1
|
Engelmann R, Böttcher S. Flow Cytometric MRD Detection in Selected Mature B-Cell Malignancies. Methods Mol Biol 2025; 2865:145-188. [PMID: 39424724 DOI: 10.1007/978-1-0716-4188-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The quantification of submicroscopic minimal residual disease (MRD) after therapy proved to have independent prognostic significance in many mature B-cell malignancies. With the advent of routine benchtop cytometers capable of simultaneously analyzing ≥8 colors and with improved standardization, flow cytometry has become the method of choice for MRD assessments in some lymphoma entities. Herein we describe general aspects of flow cytometric standardization. Chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) are used as examples to explain the technical standardization of flow cytometry for MRD detection according to EuroFlow strategies. MRD data acquisition and detailed analysis in MM and CLL is a particular focus of this chapter.
Collapse
Affiliation(s)
- Robby Engelmann
- Rostock University Medical Center, Division of Internal Medicine, Medical Clinic III - Hematology, Oncology and Palliative Medicine, Special Hematology Laboratory, Rostock, Germany
| | - Sebastian Böttcher
- Rostock University Medical Center, Division of Internal Medicine, Medical Clinic III - Hematology, Oncology and Palliative Medicine, Special Hematology Laboratory, Rostock, Germany.
| |
Collapse
|
2
|
Flaadt T, Jaki C, Maier CP, Amorelli G, Klingebiel T, Schlegel PG, Eyrich M, Greil J, Schulte JH, Bader P, Handgretinger R, Lang P. Immune reconstitution after transplantation of autologous peripheral stem cells in children: a comparison between CD34+ selected and nonmanipulated grafts. Cytotherapy 2024; 26:1227-1235. [PMID: 38904583 DOI: 10.1016/j.jcyt.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND AIMS High-dose chemotherapy (HDC) followed by autologous stem cell transplantation (ASCT) improves the prognosis in pediatric patients with several solid tumors and lymphomas. Little is known about the reconstitution of the immune system after ASCT and the influence of CD34+ cell selection on the reconstitution in pediatric patients. METHODS Between 1990 and 2001, 94 pediatric patients with solid tumors and lymphomas received autologous CD34+ selected or unmanipulated peripheral stem cells after HDC. CD34+ selection was carried out with magnetic microbeads. The absolute numbers of T cells, B cells and natural killer (NK) cells were measured and compared in both groups at various time points post-transplant. RESULTS Recovery of T cells was significantly faster in the unmanipulated group at day 30, with no significant difference later on. Reconstitution of B and NK cells was similar in both groups without significant differences at any time. The CD34+-selected group was divided into patients receiving less or more than 5.385 × 106/kg CD34+ cells. Patients in the CD34+ high-dose group displayed significantly faster reconstitutions of neutrophiles and lymphocyte subsets than the CD34+ low-dose group. CONCLUSIONS Engraftment and reconstitution of leukocytes, B cells and NK cells after transplantation of CD34+ selected stem cells were comparable to that in patients receiving unmanipulated grafts. T-cell recovery was faster in the unmanipulated group only within the first month. However, this delay could be compensated by transplantation of >5.385 × 106 CD34+ cells/kg. Especially for patients receiving immunotherapy after HDC large numbers of immune effector cells such as NK and T cells are necessary to mediate antibody-dependent cellular cytotoxicity. Therefore, in patients receiving autologous CD34+-selected grafts, our data emphasize the need to administer high stem cell counts.
Collapse
Affiliation(s)
- Tim Flaadt
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Christina Jaki
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany; Simulation Center STUPS, Klinikum Stuttgart, Stuttgart, Germany
| | - Claus-Philipp Maier
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany; Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Germano Amorelli
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Thomas Klingebiel
- Goethe University, University Hospital, Department of Pediatrics, Division for Stem Cell Transplantation and Immunology, Frankfurt, Germany
| | - Paul Gerhardt Schlegel
- Department of Pediatric Hematology and Oncology, University Children's Hospital, University Medical Center, Wuerzburg, Germany
| | - Matthias Eyrich
- Department of Pediatric Hematology and Oncology, University Children's Hospital, University Medical Center, Wuerzburg, Germany
| | - Johann Greil
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Johannes H Schulte
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Peter Bader
- Goethe University, University Hospital, Department of Pediatrics, Division for Stem Cell Transplantation and Immunology, Frankfurt, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Kobayashi T, Otake S, Mori T, Hasegawa D, Kosaka Y, Ohkusu K, Kasai M. A pediatric case of Gordonia otitidis bacteremia detected by long-term blood culture. J Infect Chemother 2022; 28:1427-1429. [PMID: 35724915 DOI: 10.1016/j.jiac.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
For immunocompromised patients receiving chemotherapy or bone mallow transplantation, slow-growing bacteria should also be considered one of the pathogenic microorganisms. However, there is no evidence pertaining to the microbiological tests associated with a patient with febrile neutropenia before peripheral blood stem cell harvest (PBSCH). We report a case of a 4-year-old cancer-bearing female presenting with a catheter-related bloodstream infection due to Gordonia otitidis. We detected G. otitidis from long-term blood cultures for approximately 6 days and prevented iatrogenic bacteremia by identifying the same organism from the culture of the PBSC sample and postponing the scheduled PBSCH. If febrile neutropenia occurs before PBSCH, we should collect multiple sets of blood cultures and culture them for a longer period.
Collapse
Affiliation(s)
- Takao Kobayashi
- Division of Infectious Diseases, Department of Pediatrics, Kobe Children's Hospital, Hyogo, Japan
| | - Shogo Otake
- Division of Infectious Diseases, Department of Pediatrics, Kobe Children's Hospital, Hyogo, Japan.
| | - Takeshi Mori
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Hyogo, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Hyogo, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, Hyogo, Japan
| | - Kiyofumi Ohkusu
- Department of Microbiology, Tokyo Medical University, Hyogo, Japan
| | - Masashi Kasai
- Division of Infectious Diseases, Department of Pediatrics, Kobe Children's Hospital, Hyogo, Japan
| |
Collapse
|
4
|
Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, Foell J, de la Fuente J, Grupp S, Handgretinger R, Ho TW, Kattamis A, Kernytsky A, Lekstrom-Himes J, Li AM, Locatelli F, Mapara MY, de Montalembert M, Rondelli D, Sharma A, Sheth S, Soni S, Steinberg MH, Wall D, Yen A, Corbacioglu S. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N Engl J Med 2021; 384:252-260. [PMID: 33283989 DOI: 10.1056/nejmoa2031054] [Citation(s) in RCA: 927] [Impact Index Per Article: 309.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transfusion-dependent β-thalassemia (TDT) and sickle cell disease (SCD) are severe monogenic diseases with severe and potentially life-threatening manifestations. BCL11A is a transcription factor that represses γ-globin expression and fetal hemoglobin in erythroid cells. We performed electroporation of CD34+ hematopoietic stem and progenitor cells obtained from healthy donors, with CRISPR-Cas9 targeting the BCL11A erythroid-specific enhancer. Approximately 80% of the alleles at this locus were modified, with no evidence of off-target editing. After undergoing myeloablation, two patients - one with TDT and the other with SCD - received autologous CD34+ cells edited with CRISPR-Cas9 targeting the same BCL11A enhancer. More than a year later, both patients had high levels of allelic editing in bone marrow and blood, increases in fetal hemoglobin that were distributed pancellularly, transfusion independence, and (in the patient with SCD) elimination of vaso-occlusive episodes. (Funded by CRISPR Therapeutics and Vertex Pharmaceuticals; ClinicalTrials.gov numbers, NCT03655678 for CLIMB THAL-111 and NCT03745287 for CLIMB SCD-121.).
Collapse
Affiliation(s)
- Haydar Frangoul
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - David Altshuler
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - M Domenica Cappellini
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Yi-Shan Chen
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Jennifer Domm
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Brenda K Eustace
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Juergen Foell
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Josu de la Fuente
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Stephan Grupp
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Rupert Handgretinger
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Tony W Ho
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Antonis Kattamis
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Andrew Kernytsky
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Julie Lekstrom-Himes
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Amanda M Li
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Franco Locatelli
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Markus Y Mapara
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Mariane de Montalembert
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Damiano Rondelli
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Akshay Sharma
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Sujit Sheth
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Sandeep Soni
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Martin H Steinberg
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Donna Wall
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Angela Yen
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| | - Selim Corbacioglu
- From the Sarah Cannon Center for Blood Cancer at the Children's Hospital at TriStar Centennial, Nashville (H.F., J.D.), and St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; Vertex Pharmaceuticals (D.A., B.K.E., J.L.-H., A.Y.) and Boston University School of Medicine (M.H.S.), Boston, and CRISPR Therapeutics, Cambridge (Y.-S.C., T.W.H., A. Kernytsky, S. Soni) - both in Massachusetts; the University of Milan, Milan (M.D.C.), and Ospedale Pediatrico Bambino Gesù Rome, Sapienza, University of Rome, Rome (F.L.); the University of Regensburg, Regensburg (J. Foell, S.C.), and Children's University Hospital, University of Tübingen, Tübingen (R.H.) - both in Germany; Imperial College Healthcare NHS Trust, St. Mary's Hospital, London (J. de la Fuente); Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (S.G.); the University of Athens, Athens (A. Kattamis); BC Children's Hospital, University of British Columbia, Vancouver (A.M.L.), and the Hospital for Sick Children-University of Toronto, Toronto (D.W.) - both in Canada; Columbia University (M.Y.M.) and the Joan and Sanford I. Weill Medical College of Cornell University (S. Sheth), New York; Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris, Paris (M.M.); and the University of Illinois at Chicago, Chicago (D.R.)
| |
Collapse
|
5
|
Fill L, Rowane M, Graven K, Sanan N, Wu SS, Hostoffer RW. Post Autologous Bone Marrow Transplant Associated With a Resultant Mixed Polyclonal/Monoclonal Hyper-IgG3. ALLERGY & RHINOLOGY 2020; 11:2152656720915701. [PMID: 32284906 PMCID: PMC7133068 DOI: 10.1177/2152656720915701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There have been few studies illustrating the post immunological phenotype of patients receiving autologous bone marrow transplant (ABMT) for the treatment of diffuse large B-cell lymphoma. High-dose chemotherapy and autologous bone marrow transplantation have been shown to be the only potential curative treatment modalities for B-cell lymphoma. Autologous bone marrow transplantation, although widely utilized in patients with non-Hodgkin lymphoma recurrence, does have an association with immunologic side effects, although serologic changes where rarely reported unless accompanied by recurrent infections. We report the first case of a 62-year-old female patient who experienced recurrent infections, namely, sinusitis and pneumonia, after receiving an ABMT with subsequent hyper-IgG3 phenotype
Collapse
Affiliation(s)
- Lauren Fill
- Internal Medicine, University Hospitals St. John Medical Center, Westlake, Ohio
| | - Marija Rowane
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Kelsey Graven
- Cleveland Medical Center, University Hospitals, Cleveland, Ohio
| | - Neha Sanan
- Cleveland Medical Center, University Hospitals, Cleveland, Ohio
| | - Shan Shan Wu
- Cleveland Medical Center, University Hospitals, Cleveland, Ohio
| | | |
Collapse
|
6
|
Monserrat J, Bohórquez C, Gómez Lahoz AM, Movasat A, Pérez A, Ruíz L, Díaz D, Chara L, Sánchez AI, Albarrán F, Sanz I, Álvarez-Mon M. The Abnormal CD4+T Lymphocyte Subset Distribution and Vbeta Repertoire in New-onset Rheumatoid Arthritis Can Be Modulated by Methotrexate Treament. Cells 2019; 8:E871. [PMID: 31405169 PMCID: PMC6721760 DOI: 10.3390/cells8080871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Patients with long-term, treated, rheumatoid arthritis (RA) show abnormalities in their circulating CD4+ T-lymphocytes, but whether this occurs in recently diagnosed naïve patients to disease-modifying drugs (DMARDs) is under discussion. These patients show heterogeneous clinical response to methotrexate (MTX) treatment. We have examined the count of circulating CD4+ T-lymphocytes, and their naïve (TN), central memory (TCM), effector memory (TEM) and effector (TE) subsets, CD28 expression and Vβ TCR repertoire distribution by polychromatic flow cytometry in a population of 68 DMARD-naïve recently diagnosed RA patients, before and after 3 and 6 months of MTX treatment. At pre-treatment baseline, patients showed an expansion of the counts of CD4+ TN, TEM, TE and TCM lymphocyte subsets, and of total CD4+CD28- cells and of the TE subset with a different pattern of numbers in MTX responder and non-responders. The expansion of CD4+TEM lymphocytes showed a predictive value of MTX non-response. MTX treatment was associated to different modifications in the counts of the CD4+ subsets and of the Vβ TCR repertoire family distribution and in the level of CD28 expression in responders and non-responders. In conclusion, the disturbance of CD4+ lymphocytes is already found in DMARD-naïve RA patients with different patterns of alterations in MTX responders and non-responders.
Collapse
Affiliation(s)
- Jorge Monserrat
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
| | - Cristina Bohórquez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana María Gómez Lahoz
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Atusa Movasat
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana Pérez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Lucía Ruíz
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - David Díaz
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Luis Chara
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana Isabel Sánchez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Fernando Albarrán
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ignacio Sanz
- Division of Immunology and Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Melchor Álvarez-Mon
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain.
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain.
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
7
|
Böttcher S. Minimal Residual Disease Quantification in Chronic Lymphocytic Leukemia: Clinical Significance and Flow Cytometric Methods. Methods Mol Biol 2019; 1881:211-238. [PMID: 30350209 DOI: 10.1007/978-1-4939-8876-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The very sensitive quantification of leukemia cells that persist in chronic lymphocytic leukemia patients after successful therapy is steadily gaining interest with clinical scientists. Minimal residual disease (MRD) has demonstrated prognostic significance in the context of different treatment modalities leading to its approval as an intermediate endpoint for licensure in randomized trials by the European Medicine Agency. Data supporting the clinical impact of MRD as well as a highly standardized and broadly available method for MRD assessments by flow cytometry are described herein. Examples of gating strategies are provided with comprehensive explanations to allow the reader the application of the technology to blood and bone samples with high and very low level MRD, respectively. This chapter has a particular focus on samples acquired shortly after anti-CD20 treatment. The standardization developed by the EuroFlow consortium is additionally described as technical basis for reproducible and standardized flow cytometric MRD assessments.
Collapse
MESH Headings
- Antigens, CD/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Cell Separation/instrumentation
- Cell Separation/methods
- Flow Cytometry/instrumentation
- Flow Cytometry/methods
- Humans
- Immunophenotyping/instrumentation
- Immunophenotyping/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukocytes/immunology
- Neoplasm, Residual
- Prognosis
- Rituximab/therapeutic use
- Treatment Outcome
Collapse
|
8
|
Abstract
The quantification of submicroscopic minimal residual disease (MRD) after therapy proved to have independent prognostic significance in many mature B-cell malignancies. With the advent of routine benchtop cytometers capable of simultaneously analyzing ≥4 colors and with improved standardization, flow cytometry has become the method of choice for MRD assessments in some lymphoma entities. Herein we describe general aspects of flow cytometric standardization. Chronic lymphocytic leukemia and multiple myeloma (MM) are used as examples to explain the technical standardization of flow cytometry for MRD detection according to EuroFlow strategies. MRD data acquisition and detailed analysis using a newly developed approach (so-called next generation flow, NGF) in MM is a particular focus of this chapter.
Collapse
|
9
|
Khan O, Winquist E, Ettler H, Power N. Late Relapse of Ovarian Germ Cell Tumour. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2018; 40:1329-1332. [PMID: 30390946 DOI: 10.1016/j.jogc.2018.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/01/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Malignant ovarian germ cell tumours typically require multimodal therapy including surgery and systemic platinum-based chemotherapy. Most patients are cured, with survival rates exceeding 95%. CASE This report describes an unusual case of ovarian germ cell tumour (GCT) recurring 15 years after surgery and manifesting as metastatic disease to the liver, lung, and retroperitoneal lymph nodes. CONCLUSION Thymic hyperplasia was a confounding finding in this case, and it should be considered in the differential diagnosis of a mediastinal mass in heavily treated patients with GCT.
Collapse
Affiliation(s)
- Obaidullah Khan
- Schulich School of Medicine & Dentistry, Western University and London Health Sciences Centre, London, ON
| | - Eric Winquist
- Schulich School of Medicine & Dentistry, Western University and London Health Sciences Centre, London, ON; Division of Medical Oncology, Department of Oncology, London Health Sciences Centre, London, ON
| | - Helen Ettler
- Schulich School of Medicine & Dentistry, Western University and London Health Sciences Centre, London, ON; Department of Pathology, London Health Sciences Centre, London, ON
| | - Nicholas Power
- Schulich School of Medicine & Dentistry, Western University and London Health Sciences Centre, London, ON; Division of Urology, Department of Surgery, London Health Sciences Centre, London, ON.
| |
Collapse
|
10
|
Muraro PA, Martin R, Mancardi GL, Nicholas R, Sormani MP, Saccardi R. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol 2017; 13:391-405. [PMID: 28621766 DOI: 10.1038/nrneurol.2017.81] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Autologous haematopoietic stem cell transplantation (AHSCT) is a multistep procedure that enables destruction of the immune system and its reconstitution from haematopoietic stem cells. Originally developed for the treatment of haematological malignancies, the procedure has been adapted for the treatment of severe immune-mediated disorders. Results from ∼20 years of research make a compelling case for selective use of AHSCT in patients with highly active multiple sclerosis (MS), and for controlled trials. Immunological studies support the notion that AHSCT causes qualitative immune resetting, and have provided insight into the mechanisms that might underlie the powerful treatment effects that last well beyond recovery of immune cell numbers. Indeed, studies have demonstrated that AHSCT can entirely suppress MS disease activity for 4-5 years in 70-80% of patients, a rate that is higher than those achieved with any other therapies for MS. Treatment-related mortality, which was 3.6% in studies before 2005, has decreased to 0.3% in studies since 2005. Current evidence indicates that the patients who are most likely to benefit from and tolerate AHSCT are young, ambulatory and have inflammatory MS activity. Clinical trials are required to rigorously test the efficacy, safety and cost-effectiveness of AHSCT against highly active MS drugs.
Collapse
Affiliation(s)
- Paolo A Muraro
- Division of Brain Sciences, Imperial College London, Burlington Danes Building, 190 Du Cane Road, London W12 0NN, UK
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research, Neurology Clinic, University Hospital Zurich, University Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Giovanni Luigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Largo Paolo Daneo 3, 16145 Genova, Italy
- Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Richard Nicholas
- Division of Brain Sciences, Imperial College London, Burlington Danes Building, 190 Du Cane Road, London W12 0NN, UK
| | - Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences (DISSAL), University of Genoa, Via Pastore 1, 16132, Genova, Italy
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Largo Brambilla, 3-50134 Firenze, Italy
| |
Collapse
|
11
|
Lee YN, Frugoni F, Dobbs K, Tirosh I, Du L, Ververs FA, Ru H, Ott de Bruin L, Adeli M, Bleesing JH, Buchbinder D, Butte MJ, Cancrini C, Chen K, Choo S, Elfeky RA, Finocchi A, Fuleihan RL, Gennery AR, El-Ghoneimy DH, Henderson LA, Al-Herz W, Hossny E, Nelson RP, Pai SY, Patel NC, Reda SM, Soler-Palacin P, Somech R, Palma P, Wu H, Giliani S, Walter JE, Notarangelo LD. Characterization of T and B cell repertoire diversity in patients with RAG deficiency. Sci Immunol 2016; 1:eaah6109. [PMID: 28783691 PMCID: PMC5586490 DOI: 10.1126/sciimmunol.aah6109] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
Recombination-activating genes 1 and 2 (RAG1 and RAG2) play a critical role in T and B cell development by initiating the recombination process that controls the expression of T cell receptor (TCR) and immunoglobulin genes. Mutations in the RAG1 and RAG2 genes in humans cause a broad spectrum of phenotypes, including severe combined immunodeficiency (SCID) with lack of T and B cells, Omenn syndrome, leaky SCID, and combined immunodeficiency with granulomas or autoimmunity (CID-G/AI). Using next-generation sequencing, we analyzed the TCR and B cell receptor (BCR) repertoire in 12 patients with RAG mutations presenting with Omenn syndrome (n = 5), leaky SCID (n = 3), or CID-G/AI (n = 4). Restriction of repertoire diversity skewed usage of variable (V), diversity (D), and joining (J) segment genes, and abnormalities of CDR3 length distribution were progressively more prominent in patients with a more severe phenotype. Skewed usage of V, D, and J segment genes was present also within unique sequences, indicating a primary restriction of repertoire. Patients with Omenn syndrome had a high proportion of class-switched immunoglobulin heavy chain transcripts and increased somatic hypermutation rate, suggesting in vivo activation of these B cells. These data provide a framework to better understand the phenotypic heterogeneity of RAG deficiency.
Collapse
Affiliation(s)
- Yu Nee Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Pediatric Department A and the Immunology Service, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco Frugoni
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kerry Dobbs
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irit Tirosh
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Likun Du
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francesca A Ververs
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Heng Ru
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lisa Ott de Bruin
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mehdi Adeli
- Pediatrics Department, Weill Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Jacob H Bleesing
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David Buchbinder
- Division of Hematology, Children's Hospital Orange County, Orange County, CA 92868, USA
| | - Manish J Butte
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Caterina Cancrini
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Karin Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Sharon Choo
- Department of Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Reem A Elfeky
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Andrea Finocchi
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Ramsay L Fuleihan
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew R Gennery
- Department of Paediatric Immunology, Great North Children's Hospital, Newcastle Upon Tyne, U.K
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, U.K
| | - Dalia H El-Ghoneimy
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Elham Hossny
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Robert P Nelson
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sung-Yun Pai
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Niraj C Patel
- Division of Infectious Disease and Immunology, Department of Pediatrics, Levine Children's Hospital, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Shereen M Reda
- Department of Pediatric Allergy and Immunology, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Pere Soler-Palacin
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Raz Somech
- Pediatric Department A and the Immunology Service, "Edmond and Lily Safra" Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paolo Palma
- DPUO, University Department of Pediatrics, Bambino Gesù Children's Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Silvia Giliani
- A. Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Section of Medical Genetics, Department of Pathology, Spedali Civili di Bresia, Brescia, Italy
| | - Jolan E Walter
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Pediatric Allergy/Immunology, University of South Florida, and Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Sarwal MM. Fingerprints of transplant tolerance suggest opportunities for immunosuppression minimization. Clin Biochem 2016; 49:404-10. [PMID: 26794635 DOI: 10.1016/j.clinbiochem.2016.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
HLA incompatible organ transplant tolerance is the holy grail of transplantation. Stable engraftment of an HLA mismatched allograft and life-long tolerance induction, though feasible in highly selected cohorts with depletional protocols, is not ready for generalized application to the entire transplant recipient pool. It has thus been important to harness biomarkers that can uncover mechanisms and tools for monitoring HLA mismatched recipients that develop a state of operational tolerance, during accidental immunosuppression withdrawal secondary to problems of over-immunosuppression (infection or malignancy) or toxicity (mostly cosmetic or cardiovascular). A restricted and unpredictable group of patients can demonstrate a clinical state of operational tolerance, manifested by state of stable graft function of a graft with HLA mismatches between recipient and donor, intact immune responses to third party antigens and no measurable immunosuppression. These patients have served as the basis for the discovery of clinically correlative biomarkers, in distal biofluids (mainly blood), that can define the existing state of operational clinical tolerance. Operationally tolerant patients are rare, as withdrawal of immunosuppression most often results in rejection and graft loss. Nevertheless, operationally tolerant kidney, liver and heart allograft recipients have been reported. The presence of similar biomarker signature profiles in HLA mismatched transplant recipients on immunosuppression, suggests the feasibility of utilizing these biomarkers for educated immunosuppression minimization with a view to retaining immunological quiescence, while reducing the maintenance immunosuppression burden to a "safe" alloimmune threshold. Though clinical operational tolerance is rare, as immunosuppression cessation most often results in increased alloimmunity and rejection, the biomarker profile studies that have harnessed whole genome profiling suggest that the frequency of this state may be ~8% in kidney allograft recipients, and even more frequent in pediatric recipients and in liver transplantation: 25% in adult liver allograft recipients and ~60% in pediatric liver allograft recipients. In this review we discuss putative molecular mechanisms, cellular players and correlative biomarkers that have been developed through clinically associative studies of tolerant and non-tolerant patients. Through mechanisms of carefully constructed and monitored randomized, prospective clinical trials, the transplant community stands at the cusp of improved quality of recipient life through educated immunosuppression minimization.
Collapse
Affiliation(s)
- Minnie M Sarwal
- Division of Transplant Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Berger MD, Branger G, Leibundgut K, Baerlocher GM, Seipel K, Mueller BU, Gregor M, Ruefer A, Pabst T. CD34+ selected versus unselected autologous stem cell transplantation in patients with advanced-stage mantle cell and diffuse large B-cell lymphoma. Leuk Res 2015; 39:561-7. [PMID: 25890431 DOI: 10.1016/j.leukres.2015.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 11/16/2022]
Abstract
Novel strategies aiming to increase survival rates in patients with advanced-stage mantle cell lymphoma (MCL) and relapsing diffuse large B-cell lymphoma (DLBCL) are a clinical need. High-dose chemotherapy (HDCT) with autologous stem cell transplantation (ASCT) has improved progression-free (PFS) and overall survival (OS) in MCL and relapsed DLBCL. However, the role of CD34+ cell selection before ASCT in MCL and DLBCL is unclear. We retrospectively analyzed the outcome of 62 consecutive patients with advanced-stage MCL or relapsed DLBCL undergoing ASCT with (n=31) or without (n=31) prior CD34+ selection. All patients had stage III or IV disease, with 47% having DLBCL and 53% MCL. The median duration for neutrophil and platelet recovery was 12 and 16 days in CD34+ selected patients, and 11 (P<.001) and 14 days (P=.012) in the group without selection, respectively. No differences in toxicities were observed. The 5-year PFS for CD34+ selected versus not selected patients was 67% and 39% (P=.016), and the 5-year OS was 86% and 54% (P=.007). Our data suggest that using CD34+ selected autografts for ASCT in advanced stage MCL and DLBCL is associated with longer PFS and OS without increased toxicity.
Collapse
Affiliation(s)
- Martin D Berger
- Department of Medical Oncology, University Hospital and University of Berne, Berne, Switzerland
| | - Giacomo Branger
- Department of Medical Oncology, University Hospital and University of Berne, Berne, Switzerland
| | - Kurt Leibundgut
- Department of Pediatrics, University Hospital and University of Berne, Berne, Switzerland
| | - Gabriela M Baerlocher
- Department of Hematology, University Hospital and University of Berne, Berne, Switzerland
| | - Katja Seipel
- Department of Clinical Research, University Hospital and University of Berne, Berne, Switzerland
| | - Beatrice U Mueller
- Department of Clinical Research, University Hospital and University of Berne, Berne, Switzerland
| | - Michael Gregor
- Department of Hematology, Kantonsspital, Lucerne, Switzerland
| | - Axel Ruefer
- Department of Hematology, Kantonsspital, Lucerne, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital and University of Berne, Berne, Switzerland; Department of Clinical Research, University Hospital and University of Berne, Berne, Switzerland.
| |
Collapse
|
14
|
Transcriptome analysis reveals transmembrane targets on transplantable midbrain dopamine progenitors. Proc Natl Acad Sci U S A 2015; 112:E1946-55. [PMID: 25775569 DOI: 10.1073/pnas.1501989112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An important challenge for the continued development of cell therapy for Parkinson's disease (PD) is the establishment of procedures that better standardize cell preparations for use in transplantation. Although cell sorting has been an anticipated strategy, its application has been limited by lack of knowledge regarding transmembrane proteins that can be used to target and isolate progenitors for midbrain dopamine (mDA) neurons. We used a "FACS-array" approach to identify 18 genes for transmembrane proteins with high expression in mDA progenitors and describe the utility of four of these targets (Alcam, Chl1, Gfra1, and Igsf8) for isolating mDA progenitors from rat primary ventral mesencephalon through flow cytometry. Alcam and Chl1 facilitated a significant enrichment of mDA neurons following transplantation, while targeting of Gfra1 allowed for robust separation of dopamine and serotonin neurons. Importantly, we also show that mDA progenitors isolated on the basis of transmembrane proteins are capable of extensive, functional innervation of the host striatum and correction of motor impairment in a unilateral model of PD. These results are highly relevant for current efforts to establish safe and effective stem cell-based procedures for PD, where clinical translation will almost certainly require safety and standardization measures in order to deliver well-characterized cell preparations.
Collapse
|
15
|
Wu J, Liu D, Tu W, Song W, Zhao X. T-cell receptor diversity is selectively skewed in T-cell populations of patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2014; 135:209-16. [PMID: 25091438 DOI: 10.1016/j.jaci.2014.06.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) is a severe disorder characterized by thrombocytopenia, eczema, immunodeficiency, and increased risk of autoimmune disease and lymphoid malignancies. The immunodeficiency caused by a lack of WAS protein expression has been mainly attributed to defective T-cell functions. Whether WAS mutations differentially influence the T-cell receptor (TCR) diversity of different T-cell subsets is unknown. OBJECTIVE We aimed to identify the degree and pattern of skewing in the variable region of the TCR β-chain (Vβ) in different T-cell subsets from patients with WAS. METHODS The TCR repertoire diversity in total peripheral T cells, sorted CD4(+) and CD8(+) T cells, and CD45RA(+) (CD45RA(+)CD45RO(-) cells) and CD45RO(+) (CD45RA(-)CD45RO(+) cells) CD4(+) and CD8(+) T cells from patients with WAS and age-matched healthy control subjects was analyzed and compared by using spectratyping of complementarity-determining region 3. The complementarity-determining region 3 of TCRβ transcripts in CD45RA(+)CD4(+) and CD45RA(+)CD8(+) T cells, CD45RO(+)CD4(+) T cells, CD8(+) terminally differentiated effector memory T (Temra) cells, and naive CD8(+) T cells (CD8(+)CD45RO(-)CCR7(+) cells) from patients and control subjects were analyzed and compared by using high-throughput sequencing. RESULTS The TCR repertoire diversity in CD45RO(+)CD4(+) T cells and CD8(+) Temra cells of patients with WAS was significantly skewed in comparison with that seen in age-matched control subjects. CONCLUSION Our results indicate that WAS gene mutations selectively influence TCR repertoire development or expansion in CD45RO(+) (memory) CD4(+) T cells.
Collapse
Affiliation(s)
- Junfeng Wu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Wenxia Song
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Md
| | - Xiaodong Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Wu Q, Pesenacker AM, Stansfield A, King D, Barge D, Foster HE, Abinun M, Wedderburn LR. Immunological characteristics and T-cell receptor clonal diversity in children with systemic juvenile idiopathic arthritis undergoing T-cell-depleted autologous stem cell transplantation. Immunology 2014; 142:227-36. [PMID: 24405357 PMCID: PMC4008230 DOI: 10.1111/imm.12245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/13/2013] [Accepted: 01/05/2014] [Indexed: 01/14/2023] Open
Abstract
Children with systemic Juvenile Idiopathic Arthritis (sJIA), the most severe subtype of JIA, are at risk from destructive polyarthritis and growth failure, and corticosteroids as part of conventional treatment can result in osteoporosis and growth delay. In children where there is failure or toxicity from drug therapies, disease has been successfully controlled by T-cell-depleted autologous stem cell transplantation (ASCT). At present, the immunological basis underlying remission after ASCT is unknown. Immune reconstitution of T cells, B cells, natural killer cells, natural killer T cells and monocytes, in parallel with T-cell receptor (TCR) diversity by analysis of the β variable region (TCRVb) complementarity determining region-3 (CDR3) using spectratyping and sequencing, were studied in five children with sJIA before and after ASCT. At time of follow up (mean 11·5 years), four patients remain in complete remission, while one child relapsed within 1 month of transplant. The CD8+ TCRVb repertoire was highly oligoclonal early in immune reconstitution and re-emergence of pre-transplant TCRVb CDR3 dominant peaks was observed after transplant in certain TCRVb families. Further, re-emergence of pre-ASCT clonal sequences in addition to new sequences was identified after transplant. These results suggest that a chimeric TCR repertoire, comprising T-cell clones developed before and after transplant, can be associated with clinical remission from severe arthritis.
Collapse
Affiliation(s)
- Qiong Wu
- Rheumatology Unit, UCL Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mensen A, Na IK, Häfer R, Meerbach A, Schlecht M, Pietschmann ML, Gruhn B. Comparison of different rabbit ATG preparation effects on early lymphocyte subset recovery after allogeneic HSCT and its association with EBV-mediated PTLD. J Cancer Res Clin Oncol 2014; 140:1971-80. [PMID: 24962343 DOI: 10.1007/s00432-014-1742-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/08/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Rabbit antithymocyte globulin (ATG) is commonly used before allogeneic hematopoietic stem cell transplantation (allo-HSCT) to prevent graft-versus-host disease. Studies comparing the effect of different ATG preparations and dosages on immune reconstitution and risk for Epstein-Barr virus (EBV)-mediated post-transplant lymphoproliferative disorder (PTLD) are rare. METHODS In this retrospective study, we determined T and B cell subsets by flow cytometry after allo-HSCT in children, who received ATG-Genzyme (ATG-G, n = 15), ATG-Fresenius (ATG-F, n = 25) or no-ATG treatment (n = 19). Additionally, PCR-quantified EBV-genome copy counts were correlated with incidence of PTLD. RESULTS We could confirm a dose-dependent impairment of CD8(+) and CD4(+) T cell regeneration by ATG-G, including naïve and memory CD4(+) T cells. No differences were seen between the currently applied dosages of 5-10 mg/kg ATG-G and 20-60 mg/kg ATG-F. Significantly delayed T cell subset reconstitution was determined only at high dosages of 20-60 mg/kg ATG-G compared to ATG-F. B cell reconstitution was comparably impaired in ATG-G- and ATG-F-treated patients. Although the incidence of EBV reactivation was similar in both ATG groups, EBV copy counts of >10(4) copies/10(5) peripheral blood mononuclear cells and the occurrence of PTLD were only found in ATG-G-treated patients. CONCLUSIONS We conclude that high, but importantly not currently applied low dosages of ATG-G, impair thymic T cell regeneration and memory T cell immunity to a greater extent than ATG-F in pediatric patients. In addition, our results suggest an increased risk for EBV-PTLD when treated with ATG-G. Prospective studies are warranted to compare different ATG preparations with regard to the immune reconstitution and EBV-PTLD.
Collapse
Affiliation(s)
- Angela Mensen
- Institute of Medical Immunology, Charité CVK, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc Natl Acad Sci U S A 2013; 110:20200-5. [PMID: 24282306 DOI: 10.1073/pnas.1313654110] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The association between lymphopenia and autoimmunity is recognized, but the underlying mechanisms are poorly understood and have not been studied systematically in humans. People with multiple sclerosis treated with the lymphocyte-depleting monoclonal antibody alemtuzumab offer a unique opportunity to study this phenomenon; one in three people develops clinical autoimmunity, and one in three people develops asymptomatic autoantibodies after treatment. Here, we show that T-cell recovery after alemtuzumab is driven by homeostatic proliferation, leading to the generation of chronically activated (CD28(-)CD57(+)), highly proliferative (Ki67(+)), oligoclonal, memory-like CD4 and CD8 T cells (CCR7(-)CD45RA(-) or CCR7(-)CD45RA(+)) capable of producing proinflammatory cytokines. Individuals who develop autoimmunity after treatment are no more lymphopenic than their nonautoimmune counterparts, but they show reduced thymopoiesis and generate a more restricted T-cell repertoire. Taken together, these findings demonstrate that homeostatic proliferation drives lymphopenia-associated autoimmunity in humans.
Collapse
|
19
|
Yahng SA, Yoon JH, Shin SH, Lee SE, Cho BS, Eom KS, Kim YJ, Lee S, Kim HJ, Min CK, Kim DW, Lee JW, Min WS, Park CW, Kim Y, Cho SG. Influence ofex vivopurging with CliniMACS CD34+selection on outcome after autologous stem cell transplantation in non-Hodgkin lymphoma. Br J Haematol 2013; 164:555-64. [DOI: 10.1111/bjh.12664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/02/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Seung-Ah Yahng
- Department of Haematology; Incheon St. Mary's Hospital; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Jae-Ho Yoon
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Seung-Hwan Shin
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Sung-Eun Lee
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Byung-Sik Cho
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Ki-Seong Eom
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Yoo-Jin Kim
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Seok Lee
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Hee-Je Kim
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Chang-Ki Min
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Dong-Wook Kim
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Jong-Wook Lee
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Woo-Sung Min
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Chong-Won Park
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine; Seoul St. Mary's Hospital; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Seok-Goo Cho
- Department of Haematology; Catholic Blood and Marrow Transplantation Centre; College of Medicine; The Catholic University of Korea; Seoul Korea
| |
Collapse
|
20
|
Ciupe SM, Devlin BH, Markert ML, Kepler TB. Quantification of total T-cell receptor diversity by flow cytometry and spectratyping. BMC Immunol 2013; 14:35. [PMID: 23914737 PMCID: PMC3750526 DOI: 10.1186/1471-2172-14-35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND T-cell receptor diversity correlates with immune competency and is of particular interest in patients undergoing immune reconstitution. Spectratyping generates data about T-cell receptor CDR3 length distribution for each BV gene but is technically complex. Flow cytometry can also be used to generate data about T-cell receptor BV gene usage, but its utility has not been compared to or tested in combination with spectratyping. RESULTS Using flow cytometry and spectratype data, we have defined a divergence metric that quantifies the deviation from normal of T-cell receptor repertoire. We have shown that the sample size is a sensitive parameter in the predicted flow divergence values, but not in the spectratype divergence values. We have derived two ways to correct for the measurement bias using mathematical and statistical approaches and have predicted a lower bound in the number of lymphocytes needed when using the divergence as a substitute for diversity. CONCLUSIONS Using both flow cytometry and spectratyping of T-cells, we have defined the divergence measure as an indirect measure of T-cell receptor diversity. We have shown the dependence of the divergence measure on the sample size before it can be used to make predictions regarding the diversity of the T-cell receptor repertoire.
Collapse
Affiliation(s)
- Stanca M Ciupe
- Department of Mathematics, Virginia Tech, 460 McBryde Hall, Blacksburg, VA 24060, USA.
| | | | | | | |
Collapse
|
21
|
Kearl TJ, Jing W, Gershan JA, Johnson BD. Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma. THE JOURNAL OF IMMUNOLOGY 2013; 190:5620-8. [PMID: 23616570 DOI: 10.4049/jimmunol.1202005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early phase clinical trials targeting the programmed death receptor-1/ligand-1 (PD-1/PD-L1) pathway to overcome tumor-mediated immunosuppression have reported promising results for a variety of cancers. This pathway appears to play an important role in the failure of immune reactivity to malignant plasma cells in multiple myeloma patients, as the tumor cells express relatively high levels of PD-L1, and T cells show increased PD-1 expression. In the current study, we demonstrate that PD-1/PD-L1 blockade with a PD-L1-specific Ab elicits rejection of a murine myeloma when combined with lymphodepleting irradiation. This particular combined approach by itself has not previously been shown to be efficacious in other tumor models. The antitumor effect of lymphodepletion/anti-PD-L1 therapy was most robust when tumor Ag-experienced T cells were present either through cell transfer or survival after nonmyeloablative irradiation. In vivo depletion of CD4 or CD8 T cells completely eliminated antitumor efficacy of the lymphodepletion/anti-PD-L1 therapy, indicating that both T cell subsets are necessary for tumor rejection. Elimination of myeloma by T cells occurs relatively quickly as tumor cells in the bone marrow were nearly nondetectable by 5 d after the first anti-PD-L1 treatment, suggesting that antimyeloma reactivity is primarily mediated by preactivated T cells, rather than newly generated myeloma-reactive T cells. Anti-PD-L1 plus lymphodepletion failed to improve survival in two solid tumor models, but demonstrated significant efficacy in two hematologic malignancy models. In summary, our results support the clinical testing of lymphodepletion and PD-1/PD-L1 blockade as a novel approach for improving the survival of patients with multiple myeloma.
Collapse
Affiliation(s)
- Tyce J Kearl
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
22
|
The Role of Minimal Residual Disease Measurements in the Therapy for CLL. Hematol Oncol Clin North Am 2013; 27:267-88. [DOI: 10.1016/j.hoc.2013.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Darlington PJ, Touil T, Doucet JS, Gaucher D, Zeidan J, Gauchat D, Corsini R, Kim HJ, Duddy M, Jalili F, Arbour N, Kebir H, Chen J, Arnold DL, Bowman M, Antel J, Prat A, Freedman MS, Atkins H, Sekaly R, Cheynier R, Bar-Or A. Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Ann Neurol 2013; 73:341-54. [PMID: 23463494 DOI: 10.1002/ana.23784] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To define changes in phenotype and functional responses of reconstituting T cells in patients with aggressive multiple sclerosis (MS) treated with ablative chemotherapy and autologous hematopoietic stem cell transplantation (HSCT). METHODS Clinical and brain magnetic resonance imaging measures of disease activity were monitored serially in patients participating in the Canadian MS HSCT Study. Reconstitution kinetics of immune-cell subsets were determined by flow cytometry, whereas thymic function was assessed using T-cell receptor excision circle analyses as well as flow cytometry measurements of CD31+ recent thymic emigrants (RTEs). Functional assays were performed to track central nervous system-autoreactive antigen-specific T-cell responses, and the relative capacity to generate Th1, Th17, or Th1/17 T-cell responses. RESULTS Complete abrogation of new clinical relapses and new focal inflammatory brain lesions throughout the 2 years of immune monitoring following treatment was associated with sustained decrease in naive T cells, in spite of restoration of both thymic function and release of RTEs during reconstitution. Re-emergence as well as in vivo expansion of autoreactive T cells to multiple myelin targets was evident in all patients studied. The reconstituted myelin-specific T cells exhibited the same Th1 and Th2 responses as preablation myelin-reactive T cells. In contrast, the post-therapy T-cell repertoire exhibited a significantly diminished capacity for Th17 responses. INTERPRETATION Our results indicate that diminished Th17 and Th1/17 responses, rather than Th1 responses, are particularly relevant to the abrogation of new relapsing disease activity observed in this cohort of patients with aggressive MS following chemoablation and HSCT.
Collapse
Affiliation(s)
- Peter J Darlington
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, and Laboratory of Immunology, University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Böttcher S, Ritgen M, Kneba M. Flow cytometric MRD detection in selected mature B-cell malignancies. Methods Mol Biol 2013; 971:149-174. [PMID: 23296963 DOI: 10.1007/978-1-62703-269-8_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The quantification of submicroscopic minimal residual disease (MRD) after therapy proved to have independent prognostic significance in many mature B-cell malignancies. With the advent of routine bench-top cytometers capable of simultaneously analyzing ≥ 4 colors and with improved standardization, flow cytometry has become the method of choice for MRD assessments in some lymphoma entities. Herein we describe general aspects of flow cytometric standardization. Using chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) as examples we explain in detail the application of flow cytometry for MRD detection.
Collapse
MESH Headings
- Bone Marrow Cells/pathology
- Flow Cytometry/instrumentation
- Flow Cytometry/methods
- Flow Cytometry/standards
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukocytes, Mononuclear/pathology
- Light
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Neoplasm, Residual/diagnosis
- Polymerase Chain Reaction
- Reference Standards
- Scattering, Radiation
- Staining and Labeling
Collapse
Affiliation(s)
- Sebastian Böttcher
- Second Department of Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany.
| | | | | |
Collapse
|
25
|
A look into the future: can minimal residual disease guide therapy and predict prognosis in chronic lymphocytic leukemia? Hematology 2012. [DOI: 10.1182/asheducation.v2012.1.97.3798195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Over the past 2 decades, dramatic improvements in the efficacy of treatments for chronic lymphocytic leukemia have led to progressively higher percentages of clinical complete remissions. A molecular eradication of the leukemia has become not only a desirable, but also an achievable, end point that needs to be evaluated within clinical trials. The assessment of complete remission only at the clinical and morphological level is insufficient, at least for physically fit patients. The detection of minimal residual disease (MRD) in chronic lymphocytic leukemia has become feasible using PCR-based or flow cytometric techniques that reproducibly allow reaching the detection level of less than 1 leukemic cell per 10 000 leukocytes (10−4), the level currently defined as MRD− status. Emerging data indicate that the MRD status during and at the end of treatment is one of the most powerful predictors of progression-free and overall survival. This predictor appears to be independent of clinical response, type or line of therapy, and known biological markers. For these reasons, the time is ripe to test the use of MRD as a surrogate marker of clinical end points and as a real-time marker of efficacy and/or resistance to the administered therapies. In the near future, clinical trials will determine whether MRD assessment can be used for guiding therapy, either to improve quality of responses through consolidation or to prevent relapses through preemptive therapies based on the reappearance of MRD.
Collapse
|
26
|
Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia 2012; 27:142-9. [PMID: 23041722 DOI: 10.1038/leu.2012.216] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Detection of minimal residual disease (MRD) in chronic lymphocytic leukaemia (CLL) is becoming increasingly important as treatments improve. An internationally harmonised four-colour (CLR) flow cytometry MRD assay is widely used but has limitations. The aim of this study was to improve MRD analysis by identifying situations where a less time-consuming CD19/CD5/κ/λ analysis would be sufficient for detecting residual CLL, and develop a six-CLR antibody panel that is more efficient for cases requiring full MRD analysis. In 784 samples from CLL patients after treatment, it was possible to determine CD19/CD5/κ/λ thresholds that identified cases with detectable MRD with 100% positive predictive value (PPV). However, CD19/CD5/κ/λ analysis was unsuitable for predicting iwCLL/NCI response status or identifying cases with no detectable MRD. For the latter cases requiring a full MRD assessment, a six-CLR assay was designed comprising CD19/CD5/CD20 with (1) CD3/CD38/CD79b and (2) CD81/CD22/CD43. There was good correlation between four-CLR and six-CLR panels in dilution studies and clinical samples, with 100% concordance for detection of residual disease at the 0.01% (10(-4)) level (n=59) and good linearity even at the 0.001-0.01% (10(-5)-10(-4)) level. A six-CLR panel therefore provides equivalent results to the four-CLR panel but it requires fewer reagents, fewer cells and a much simpler analysis approach.
Collapse
|
27
|
Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering. Polymers (Basel) 2012. [DOI: 10.3390/polym4031349] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
28
|
Dean HF, Cazaly A, Hurlock C, Borras J, Williams AP, Johnson PW, Davies AJ. Defects in lymphocyte subsets and serological memory persist a median of 10 years after high-dose therapy and autologous progenitor cell rescue for malignant lymphoma. Bone Marrow Transplant 2012; 47:1545-51. [PMID: 22580768 DOI: 10.1038/bmt.2012.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The number of survivors having undergone high-dose therapy (HDT) followed by auto-SCT continues to increase, although some of the long-term sequelae remain incompletely understood. The immunological status and quality of life of 37 HDT/auto-SCT survivors with lymphoma in continuous remission of ≥3 years were assessed alongside 14 age-matched controls. At a median follow-up of 10.5 years (range 2.2-20.2) following HDT/auto-SCT, the proportion of CD4(+) cells remained significantly reduced in patients compared with controls (median 43.4% vs 62.5%, respectively; P = < 0.001), predominantly a result of sustained reduction in the naive CD4(+) component (P < 0.001). Naive CD8(+) lymphocytes (P = 0.014) and transitional B cells (P = 0.008) were also significantly reduced, but differences in other lymphocyte subsets were not observed. Uptake of revaccination following HDT/auto-SCT was sporadic; between 11% and 33% of patients had serological titres outside the protective ranges for five of six routinely used vaccines. In the main, patients were found to have a good quality of life, although their EORTC QLQ-C30 questionnaire scores were significantly lower for the physical and social functioning domains compared with controls. Ten years after HDT/auto-SCT immunological deficits persist; to avoid excess risk of preventable disease, serological immunity should be assessed post HDT/auto-SCT followed by appropriate revaccination.
Collapse
Affiliation(s)
- H F Dean
- Cancer Research UK Centre, Cancer Sciences Division, University of Southampton, Faculty of Medicine, Southampton, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Jaye DL, Bray RA, Gebel HM, Harris WAC, Waller EK. Translational Applications of Flow Cytometry in Clinical Practice. THE JOURNAL OF IMMUNOLOGY 2012; 188:4715-9. [DOI: 10.4049/jimmunol.1290017] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Sairafi D, Mattsson J, Uhlin M, Uzunel M. Thymic function after allogeneic stem cell transplantation is dependent on graft source and predictive of long term survival. Clin Immunol 2011; 142:343-50. [PMID: 22227522 DOI: 10.1016/j.clim.2011.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/28/2011] [Accepted: 12/03/2011] [Indexed: 01/23/2023]
Abstract
T-cell deficiency after allogeneic stem cell transplantation (ASCT) is common and has major impact on clinical outcome. In this retrospective study 210 patients were analyzed with regards to levels of T-cell receptor excision circles (TRECs) during the first 24 months after transplantation. We could for the first time show a significant correlation between the use of bone marrow grafts and higher TREC levels >6 months post-ASCT (p<0.001). Treatment with anti-thymocyte globulin was correlated with lower TREC levels ≤6 months post-ASCT (p<0.001). Patients with TREC levels above median at 3 months had a superior overall survival, 80% vs. 56% (p=0.002), and lower transplantation-related mortality, 7% vs. 21% (p=0.01). We conclude that graft source and conditioning regimen may have a significant effect on T-cell reconstitution after ASCT and can thus affect outcome. These results strongly support the use of TREC measurement as part of the standard repertoire of immunological monitoring after ASCT.
Collapse
Affiliation(s)
- Darius Sairafi
- Center for Allogeneic Stem Cell Transplantation, B87, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| | | | | | | |
Collapse
|
31
|
Moreno C, Ritgen M, Rawstron A. Is MRD eradication a desirable goal in CLL? Best Pract Res Clin Haematol 2011; 23:97-107. [PMID: 20620974 DOI: 10.1016/j.beha.2010.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among chronic lymphocytic leukaemia (CLL) patients who require therapy, their response to therapy is the most important prognostic factor, with a better response predicting longer progression-free and overall survival. In this context, patients who achieve minimal residual disease (MRD)-negative status have better prognosis than those with inferior response to therapy, including those with MRD-positive complete response (CR). MRD can be assessed by either allele-specific polymerase chain reaction (PCR) or four-colour cytofluorometry. Importantly, methods to determine MRD in CLL have been standardised. Nevertheless, MRD status should not be used as a goal of therapy outside clinical studies. This is because the issue of the benefits of achieving MRD-negative status in patients with CLL requires further investigation in large controlled trials, in which patients should be stratified according to not only clinical variables but also biological parameters such as cytogenetics, IGHV mutations or ZAP-70 expression.
Collapse
Affiliation(s)
- Carol Moreno
- Haematology Department, Institute of Haematology and Oncology, Hospital Clínic, University of Barcelona, Spain.
| | | | | |
Collapse
|
32
|
Flow cytometry and polymerase chain reaction-based analyses of minimal residual disease in chronic lymphocytic leukemia. Adv Hematol 2010; 2010. [PMID: 20886004 PMCID: PMC2945647 DOI: 10.1155/2010/272517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/09/2010] [Accepted: 07/30/2010] [Indexed: 12/21/2022] Open
Abstract
New therapeutic strategies developed recently for chronic lymphocytic leukemia (CLL) have led to remarkable treatment response rates and complete hematological remissions. This means highly sensitive and specific techniques are increasingly needed to evaluate minimal residual disease (MRD) in CLL patients. Quantitative MRD levels can be used as prognostic markers, where total MRD eradication is associated with prolonged survival. Nowadays, PCR and flow cytometry techniques used to detect MRD in CLL patients can generate reliable and quantitative results with the highest sensitivity. MRD Flow is based on four-color flow cytometry using specific antibody combinations. For allele specific oligonucleotide real-time quantification (ASO RQ) PCR individual primers are designed to detect a specific immunoglobulin heavy chain (IgH) rearrangement in each patient clone. Five comprehensive studies investigated and compared the sensitivity and specificity of both methods. Groups of patients receiving different therapies were analyzed at different time points to generate quantitative MRD levels and MRD kinetics. All studies confirmed that both methods generate equivalent results with regard to sensitivity and MRD quantification, although each method has advantages and disadvantages in the daily routine of a standard hematological laboratory. Here, we review these investigations and compare their results in the light of modern therapies.
Collapse
|
33
|
Winstead CJ, Reilly CS, Moon JJ, Jenkins MK, Hamilton SE, Jameson SC, Way SS, Khoruts A. CD4+CD25+Foxp3+ regulatory T cells optimize diversity of the conventional T cell repertoire during reconstitution from lymphopenia. THE JOURNAL OF IMMUNOLOGY 2010; 184:4749-60. [PMID: 20357265 DOI: 10.4049/jimmunol.0904076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The functional capacity of the adaptive immune system is dependent on the size and the diversity of the T cell population. In states of lymphopenia, T cells are driven to proliferate to restore the T cell population size. However, different T cell clones proliferate at different rates, and some T cells experience burst-like expansion called spontaneous lymphopenia-induced proliferation (LIP). These T cells are likely receiving stimulation from cognate Ags and are most responsible for inflammatory pathology that can emerge in lymphopenic states. Foxp3(+) regulatory T cells (Tregs) selectively inhibit spontaneous LIP, which may contribute to their ability to prevent lymphopenia-associated autoimmunity. We hypothesized that another potential negative consequence of unrestrained spontaneous LIP is constriction of the total T cell repertoire. We demonstrate that the absence of Foxp3(+) Tregs during the period of immune reconstitution results in the development of TCR repertoire "holes" and the loss of Ag-specific responsiveness to infectious microorganisms. In contrast, the presence of Tregs during the period of immune reconstitution preserves optimal TCR diversity and foreign Ag responsiveness. This finding contrasts with the generally accepted immunosuppressive role of Tregs and provides another example of Treg activity that actually enhances immune function.
Collapse
Affiliation(s)
- Colleen J Winstead
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55414, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Condomines M, Veyrune JL, Larroque M, Quittet P, Latry P, Lugagne C, Hertogh C, Kanouni T, Rossi JF, Klein B. Increased plasma-immune cytokines throughout the high-dose melphalan-induced lymphodepletion in patients with multiple myeloma: a window for adoptive immunotherapy. THE JOURNAL OF IMMUNOLOGY 2009; 184:1079-84. [PMID: 19966210 DOI: 10.4049/jimmunol.0804159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High-dose melphalan (HDM) followed by autologous stem cell transplantation (ASCT) is a standard treatment for patients with multiple myeloma. However, lymphocyte reconstitution is impaired after HDM. Recent work has suggested that the lymphopenia period occurring after various immunosuppressive or chemotherapy treatments may provide an interesting opportunity for adoptive antitumor immunotherapy. The objective of this study was to determine an immunotherapy window after HDM and ASCT, evaluating T cell lymphopenia, and measuring circulating immune cytokine concentrations in patients with multiple myeloma. The counts of T cell subpopulations reached a nadir at day 8 post-ASCT (day 10 post-HDM) and recovered by day 30. IL-6, IL-7, and IL-15 plasma levels increased on a median day 8 post-ASCT, respectively, 35-fold, 8-fold, and 10-fold compared with pre-HDM levels (p < or = 0.05). The increases in IL-7 and IL-15 levels were inversely correlated to the absolute lymphocyte count, unlike monocyte or myeloid counts. Furthermore, we have shown that CD3 T cells present in the ASC graft are activated, die rapidly when they are cultured without cytokine in vitro, and that addition of IL-7 or IL-15 could induce their survival and proliferation. In conclusion, the early lymphodepletion period, occurring 4-11 d post-HDM and ASCT, is associated with an increase of circulating immune cytokines and could be an optimal window to enhance the survival and proliferation of polyclonal T cells present in the ASC autograft and also of specific antimyeloma T cells previously expanded in vitro.
Collapse
Affiliation(s)
- Maud Condomines
- Centre Hospitalier Universitaire Montpellier, Institute of Research in Biotherapy, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yoong Y, Porrata LF, Inwards DJ, Ansell SM, Micallef INM, Litzow MR, Gertz MA, Lacy MQ, Dispenzieri A, Gastineau DA, Tefferi A, Elliott M, Snow DS, Hogan WJ, Markovic SN. The effect of absolute lymphocyte count recovery kinetics on survival after autologous stem cell transplantation for non-Hodgkin's lymphoma. Leuk Lymphoma 2009; 46:1287-94. [PMID: 16109605 DOI: 10.1080/10428190500126380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Absolute lymphocyte count (ALC) >or=500 cells/microl at day 15 after autologous stem cell transplantation (ASCT) is a powerful independent, prognostic indicator for survival in multiple hematological malignancies. A limitation in these studies was the selection of a single time point (day 15 post-ASCT) as the only discriminator of clinical outcome in relation to ALC recovery. We hypothesized there is a continuous and not discrete relationship between ALC recovery and clinical outcome post-ASCT in NHL. Therefore, we analyzed 274 consecutive patients who underwent ASCT for NHL between 1987 and 2001. The primary end point was to assess the impact of the kinetics of post-ASCT lymphocyte recovery>or=500 cells/microl (K-ALC) on overall survival (OS) and progression-free survival (PFS). K-ALC was a predictor of OS and PFS when the Cox proportional hazards model was used with K-ALC entered as a continuous variable (p<0.0001). Multivariate analysis demonstrated K-ALC recovery post-ASCT to be an independent prognostic indicator for OS and PFS. These data support our hypothesis that the K-ALC post-ASCT is associated with clinical outcome in NHL.
Collapse
Affiliation(s)
- Yinlee Yoong
- Division of Hematology, Department of Internal Medecine, Mayo Clinic, Rochester, MN 55909, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Laurenti L, Piccioni P, Piccirillo N, Sora' F, Chiusolo P, Garzia M, Reddiconto G, De Matteis S, Tarnani M, Leone G, Sica S. Immune Recovery of Lymphocyte Subsets 6 Years after Autologous Peripheral Blood Stem Cell Transplantation (PBSCT) for Lymphoproliferative Diseases. A Comparison between NHL, HD and MM in Group of 149 Patients. Leuk Lymphoma 2009; 45:2063-70. [PMID: 15370251 DOI: 10.1080/10428190410001714052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To evaluate the normalization of lymphocyte subsets several years after autologous peripheral blood stem cell transplantation (aPBSCT) and to detect any differences based on the underlying lymphoproliferative diseases, we analyzed the immunological recovery of 149 patients with Non Hodgkin's Lymphoma (NHL), Hodgkin's Disease (HD), Multiple Myeloma (MM). Lymphocyte recovery was assessed before the transplant, on days 15, 30, 60, 90, 120 and on years 1, 2, 4, 6. Analysis of a total of 709 lymphocytes, including total lymphocyte count, CD3 +, CD4 +, CD8 +, CD4 +/CD8 + ratio, CD19 +, CD3 + HLA-DR +, CD16 + 56 +, was performed. The normalization of total lymphocyte counts was achieved between days 14 to 22 following PBSCT. CD3 + cells count showed a normalization after 2 years in the HD and NHL groups and after 4 years in MM group. CD4 + subset achieved normalization during the sixth year in the 3 groups. The CD8 + and CD19 + lymphocytes subsets achieved normal values in the 3 groups at day 60 and at day 120 respectively. CD16 + 56 + and CD3 +/HLA-DR + lymphocytes showed median values above the normal range starting from day 30. Immunological recovery was similar in all 3 groups. Moreover, the recovery of all subsets evaluated was similarly demonstrated within 6 years after aPBSCT.
Collapse
Affiliation(s)
- Luca Laurenti
- Divisione di Ematologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The curative potential of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for many hematologic malignancies derives in large part from reconstitution of normal donor immunity and the development of a potent graft-versus-leukemia (GVL) immune response capable of rejecting tumor cell in vivo. Elucidation of the mechanisms of GVL by studies of animal models and analysis of clinical data has yielded important insights into how clinically effective tumor immunity is generated following allo-HSCT. These studies have identified NK cells and B cells as well as T cells as important mediators of the GVL response. A variety of antigenic targets of the GVL response have also been identified, and include tumor-associated antigens as well as minor histocompatibility antigens. The principles of effective GVL can now be applied to the development of novel therapies that enhance the therapeutic benefit of allogeneic HSCT while minimizing the toxicities associated with treatment. Moreover, many components of this approach that result in elimination of tumor cells following allogeneic HSCT can potentially be adapted to enhance the effectiveness of tumor immunity in the autologous setting.
Collapse
Affiliation(s)
- Catherine J Wu
- Cancer Vaccine Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
38
|
Early recovery of CD4 T cell receptor diversity after "lymphoablative" conditioning and autologous CD34 cell transplantation. Biol Blood Marrow Transplant 2009; 14:1373-9. [PMID: 19041059 DOI: 10.1016/j.bbmt.2008.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 09/14/2008] [Indexed: 12/29/2022]
Abstract
T cell diversity posttransplantation is thought to be severely restricted, based on T cell receptor beta-chain immunophenotyping or spectratyping. Using beta-chain sequencing, we studied CD4 T cell diversity in 2 adult patients undergoing "lymphoablative" conditioning with cyclophosphamide (Cy), total body irradiation (TBI), and antithymocyte globulin (ATG) and autologous transplantation of hematopoietic cells depleted of T cells by enrichment for CD34 cells. The indication for the transplantation was systemic sclerosis (SSc) or multiple sclerosis (MS). Pretransplantation, the estimated number of distinct beta chains (the minimum number of CD4 T cell clones) in the 2 patients was 600,000 to 700,000, similar to the number in a healthy control. This number was 200,000 to 500,000 at 1 month posttransplantation and 400,000 to 1,600,000 at 12 months posttransplantation. In conclusion, the number of T cells early after lymphoablative conditioning and autologous CD34 cell transplantation may be more diverse than previously appreciated, possibly because many T cell clones survive the conditioning or are reinfused with the graft. Thus, the therapy may not be completely T cell lymphoablative.
Collapse
|
39
|
Haploidentical stem cell transplantation after a reduced-intensity conditioning regimen for the treatment of advanced hematologic malignancies: posttransplantation CD8-depleted donor lymphocyte infusions contribute to improve T-cell recovery. Blood 2009; 113:4771-9. [PMID: 19211934 DOI: 10.1182/blood-2008-10-183723] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Haploidentical hematopoietic stem cell transplantation provides an option for patients with advanced hematologic malignancies lacking a compatible donor. In this prospective phase 1/2 trial, we evaluated the role of reduced-intensity conditioning (RIC) followed by early add-backs of CD8-depleted donor lymphocyte infusions (DLIs). The RIC regimen consisted of thiotepa, fludarabine, cyclophosphamide, and 2 Gy total body irradiation. Twenty-eight patients with advanced lymphoproliferative diseases (n = 24) or acute myeloid leukemia (n = 4) were enrolled. Ex vivo and in vivo T-cell depletion was carried out by CD34(+) cell selection and alemtuzumab treatment. The 2-year cumulative incidence of nonrelapse mortality was 26% and the 2-year overall survival (OS) was 44%, with a better outcome for patients with chemosensitive disease (OS, 75%). Overall, 54 CD8-depleted DLIs were administered to 23 patients (82%) at 3 different dose levels without loss of engraftment or acute toxicities. Overall, 6 of 23 patients (26%) developed grade II-IV graft-versus-host disease, mainly at dose level 2. In conclusion, our RIC regimen allowed a stable engraftment with a rather low nonrelapse mortality in poor-risk patients; OS is encouraging with some long-term remissions in lymphoid malignancies. CD8-depleted DLIs are feasible and promote the immune reconstitution.
Collapse
|
40
|
Okajima M, Wada T, Nishida M, Yokoyama T, Nakayama Y, Hashida Y, Shibata F, Tone Y, Ishizaki A, Shimizu M, Saito T, Ohta K, Toma T, Yachie A. Analysis of T cell receptor Vbeta diversity in peripheral CD4 and CD8 T lymphocytes in patients with autoimmune thyroid diseases. Clin Exp Immunol 2008; 155:166-72. [PMID: 19040601 DOI: 10.1111/j.1365-2249.2008.03842.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autoimmune thyroid diseases are characterized by intrathyroidal infiltration of CD4(+) and CD8(+) T lymphocytes reactive to self-thyroid antigens. Early studies analysing T cell receptor (TCR) Valpha gene usage have shown oligoclonal expansion of intrathyroidal T lymphocytes but not peripheral blood T cells. However, TCR Vbeta diversity of the isolated CD4(+) and CD8(+) T cell compartments in the peripheral blood has not been characterized fully in these patients. We performed complementarity-determining region 3 (CDR3) spectratyping as well as flow cytometric analysis for the TCR Vbeta repertoire in peripheral CD4(+) and CD8(+) T cells from 13 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis. Polyclonal TCR Vbeta repertoire was demonstrated by flow cytometry in both diseases. In contrast, CDR3 spectratyping showed significantly higher skewing of TCR Vbeta in peripheral CD8(+) T cells but not CD4(+) T cells among patients with Hashimoto's thyroiditis compared with healthy adults. We found trends towards a more skewed CDR3 size distribution in those patients having disease longer than 5 years and requiring thyroid hormone replacement. Patients with Graves' disease exhibited no skewing both in CD4(+) and CD8(+) T cells. These findings indicate that clonal expansion of CD8(+) T cells in Hashimoto's thyroiditis can be detected in peripheral blood and may support the role of CD8(+) T cells in cell-mediated autoimmune attacks on the thyroid gland in Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- M Okajima
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 2008; 113:214-23. [PMID: 18824594 DOI: 10.1182/blood-2008-07-168286] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clinical trials have indicated that immunoablation followed by autologous hematopoietic stem cell transplantation (ASCT) has the potential to induce clinical remission in patients with refractory systemic lupus erythematosus (SLE), but the mechanisms have remained unclear. We now report the results of a single-center prospective study of long-term immune reconstitution after ASCT in 7 patients with SLE. The clinical remissions observed in these patients are accompanied by the depletion of autoreactive immunologic memory, reflected by the disappearance of pathogenic anti-double-stranded DNA (dsDNA) antibodies and protective antibodies in serum and a fundamental resetting of the adaptive immune system. The latter comprises recurrence of CD31(+)CD45RA(+)CD4(+) T cells (recent thymic emigrants) with a doubling in absolute numbers compared with age-matched healthy controls at the 3-year follow-up (P = .016), the regeneration of thymic-derived FoxP3(+) regulatory T cells, and normalization of peripheral T-cell receptor (TCR) repertoire usage. Likewise, responders exhibited normalization of the previously disturbed B-cell homeostasis with numeric recovery of the naive B-cell compartment within 1 year after ASCT. These data are the first to demonstrate that both depletion of the autoreactive immunologic memory and a profound resetting of the adaptive immune system are required to reestablish self-tolerance in SLE.
Collapse
|
42
|
Immunotransplantation preferentially expands T-effector cells over T-regulatory cells and cures large lymphoma tumors. Blood 2008; 113:85-94. [PMID: 18812472 DOI: 10.1182/blood-2008-05-155457] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ex vivo-expanded tumor-infiltrating lymphocytes infused into lymphodepleted recipients has clear antitumor efficacy. More practical sources of such antitumor lymphocytes would broaden the application of this approach. Previously, we described an in situ vaccination combining chemotherapy with intratumoral injection of CpG-enriched oligonucleotides, which induced T-cell immunity against established lymphoma. An ongoing clinical trial of this maneuver has demonstrated clinical responses in lymphoma patients. Here, we use this vaccine maneuver to generate immune cells for transfer into irradiated, syngeneic recipients. Transferred tumor-specific T-effector (T(eff)) cells preferentially expanded, increasing the T(eff)/T-regulatory (T(reg)) ratio in these "immunotransplantation" recipients and curing large and metastatic tumors. Donor T cells were necessary for tumor protection, and CD8 T-cell immune responses were enhanced by posttransplantation booster vaccination. Hematopoietic stem cell transplantation is a standard therapy for lymphoma. Therefore, in situ tumor vaccination followed by immunotransplantation of harvested tumor-specific T cells could be directly tested in clinical trials to treat otherwise resistant malignancies.
Collapse
|
43
|
Alyea EP. Modulating graft-versus-host disease to enhance the graft-versus-leukemia effect. Best Pract Res Clin Haematol 2008; 21:239-50. [DOI: 10.1016/j.beha.2008.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
|
45
|
Sadeghi B, Jansson M, Hassan Z, Mints M, Hägglund H, Abedi-Valugerdi M, Hassan M. The effect of administration order of BU and CY on engraftment and toxicity in HSCT mouse model. Bone Marrow Transplant 2008; 41:895-904. [PMID: 18223695 DOI: 10.1038/sj.bmt.1705996] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conditioning regimens are an important issue determining the outcome of hematopoietic stem cell transplantation (HSCT). Less toxicity, early engraftment and no relapse are the aims of efficient conditioning. Our objective was to investigate the long-term effects of BU-CY and their administration order on the toxicity and chimerism in a mouse model of HSCT. Female BALB/c mice were treated with either BU (15 mg/kg/day x 4)-CY (100 mg/kg/day x 2) or CY-BU. Treated mice were transplanted with Sca-1+ cells from male BALB/c mice. Until 90 days after HSCT, the animals were monitored for body weight and analyzed for cellular phenotype of the thymus, spleen and BM, total chimerism, the spleen chimerism of DCs and T regulatory (Treg) cells, and hepatotoxicity. BU-CY and CY-BU treatments exerted comparable myeloablative and immunosuppressive effects. The long-term engraftment of donor cells in the BM and thymus regeneration showed the same features in both groups. However, the two regimens differed; in general, hepatotoxicity and chimerism of DC and Treg cells. In the long term, BU-CY, but not CY-BU caused a marked decrease in body weight and a significant increase in the activities of the liver enzymes, particularly aspartate amino transferase (AST). We conclude that the alteration of the administration order of BU-CY to CY-BU not only gives the same level of engraftment but also reduces the toxicity of the conditioning regimen that might be valuable specially in young patients who are undergoing HSCT.
Collapse
Affiliation(s)
- B Sadeghi
- Experimental Cancer Medicine, Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center Novum, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
46
|
Du JW, Gu JY, Liu J, Cen XN, Zhang Y, Ou Y, Chu B, Zhu P. TCR spectratyping revealed T lymphocytes associated with graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Leuk Lymphoma 2007; 48:1618-27. [PMID: 17701594 DOI: 10.1080/10428190701474357] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Clonal expansion of T cells after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been observed, but their characteristics remain to be fully elucidated. We report here that CD8(+) T cells were the dominant T lymphocytes seen and T-cell repertoire diversity decreased dramatically during the first 3 months after allo-HSCT. Patients with GVHD grade II - IV had significantly lower T-cell repertoire diversity compared with non-GVHD patients. TCR beta variable gene (TCRBV) subfamily 8, 5.1, 5.2, 4, and 13 were the five most frequently expanded subfamilies among these patients. Among the 49 over-expanded clones identified, clonotype "TCR3-5" and "TCR18-5" were isolated from four patients with HLA-A2 allele and skin GVHD. Their frequencies correlated well with skin symptoms (i.e. rash). Moreover, they were detected in donors but not detected in recipients before transplantation. Lastly, three common TCRBV CDR3 motifs shared by T cells related with GVHD were discovered: TGDS, GLAG, and GGG. These findings suggest that TCR spectratyping is helpful for revealing GVHD-related T cells and may have utility in early diagnosis.
Collapse
Affiliation(s)
- Jin-Wei Du
- Department of Hematology, Peking University First Hospital, West District, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Keith MR, Levy RB. Transplant conditions determine the contribution of homeostatically expanded donor CD8 memory cells to host lymphoid reconstitution following syngeneic HCT. Exp Hematol 2007; 35:1303-15. [PMID: 17553613 DOI: 10.1016/j.exphem.2007.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/09/2007] [Accepted: 04/13/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the ability of donor CD8 memory (CD8 TM) cells to expand in recipients following syngeneic hematopoietic stem cell transplants (HCT). The influence of clinically important transplant parameters--conditioning level, delayed infusion and dose--on the homeostatic expansion and overall contribution of donor CD8 TM to host CD8 reconstitution was determined. MATERIALS AND METHODS Lymphopenia-induced CD8 TM homeostatic expansion was examined in a syngeneic murine HCT model. Antigen specific CD8 TM included both T-cell receptor transgenic and nontransgenic populations. An ex vivo technique using antigen, interleukin (IL)-2, and IL-15 was used to generate homogenous transgenic CD8 TM (i.e., central memory) and was adapted to enrich the heterogeneous nontransgenic CD8 population specific for a nonameric epitope. RESULTS Both transgenic and naturally occurring CD8 memory populations, derived in vivo or generated ex vivo, underwent a similar kinetic pattern of homeostatic expansion following transplantation into ablatively conditioned syngeneic recipients. Transplant parameters, i.e., lower conditioning, delayed infusion, and lower donor CD8 cell numbers shortened the period of expansion and lowered the steady-state numbers. CONCLUSIONS The pattern of CD8 TM expansion was dependent on conditioning levels, time of infusion, and dose. Transplantation of varying donor CD8 TM numbers demonstrated there was a maximal donor cell contribution to host CD8 reconstitution. The application of multiple well-defined memory CD8 populations supports the notion that these findings are characteristic of memory CD8 cells in general.
Collapse
|
48
|
Schmid I, Lambert C, Ambrozak D, Marti GE, Moss DM, Perfetto SP. International Society for Analytical Cytology biosafety standard for sorting of unfixed cells. Cytometry A 2007; 71:414-37. [PMID: 17385740 DOI: 10.1002/cyto.a.20390] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cell sorting of viable biological specimens has become very prevalent in laboratories involved in basic and clinical research. As these samples can contain infectious agents, precautions to protect instrument operators and the environment from hazards arising from the use of sorters are paramount. To this end the International Society of Analytical Cytology (ISAC) took a lead in establishing biosafety guidelines for sorting of unfixed cells (Schmid et al., Cytometry 1997;28:99-117). During the time period these recommendations have been available, they have become recognized worldwide as the standard practices and safety precautions for laboratories performing viable cell sorting experiments. However, the field of cytometry has progressed since 1997, and the document requires an update. METHODS Initially, suggestions about the document format and content were discussed among members of the ISAC Biosafety Committee and were incorporated into a draft version that was sent to all committee members for review. Comments were collected, carefully considered, and incorporated as appropriate into a draft document that was posted on the ISAC web site to invite comments from the flow cytometry community at large. The revised document was then submitted to ISAC Council for review. Simultaneously, further comments were sought from newly-appointed ISAC Biosafety committee members. RESULTS This safety standard for performing viable cell sorting experiments was recently generated. The document contains background information on the biohazard potential of sorting and the hazard classification of infectious agents as well as recommendations on (1) sample handling, (2) operator training and personal protection, (3) laboratory design, (4) cell sorter set-up, maintenance, and decontamination, and (5) testing the instrument for the efficiency of aerosol containment. CONCLUSIONS This standard constitutes an updated and expanded revision of the 1997 biosafety guideline document. It is intended to provide laboratories involved in cell sorting with safety practices that take into account the enhanced hazard potential of high-speed sorting. Most importantly, it states that droplet-based sorting of infectious or hazardous biological material requires a higher level of containment than the one recommended for the risk group classification of the pathogen. The document also provides information on safety features of novel instrumentation, new options for personal protective equipment, and recently developed methods for testing the efficiency of aerosol containment.
Collapse
Affiliation(s)
- Ingrid Schmid
- Department of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Loh YSM, Hwang WYK, Ratnagopal P. Autologous Haematopoietic Stem Cell Transplantation for the Treatment of Multiple Sclerosis. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2007. [DOI: 10.47102/annals-acadmedsg.v36n6p421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Introduction: Autologous haematopoietic stem cell transplantation (auto-HSCT) has been performed for severe multiple sclerosis (MS) refractory to standard therapy with increasing frequency worldwide. However, experience in Asia employing this modality in MS has been limited. In this review, we explored the pathophysiology of autoimmunity and the underlying rationale for auto-HSCT in treating autoimmune diseases including MS, as well as existing published pre-clinical and clinical data. We aimed thereby to better understand the utility of treating MS with auto-HSCT and the feasibility of this procedure in Singapore.
Methods: A Medline search was performed with the terms “haematopoietic stem cell transplantation”, “multiple sclerosis” and “autoimmune diseases” from 1996 to 2005. Both original papers and review articles were considered.
Main Findings: The majority of publications were from Europe or the United States and most clinical series from single centres had relatively small numbers of patients. Worldwide, the number of patients reported has been less than 300 since 1997. Existing data support the feasibility and promise of this procedure and ongoing Phase III trials may serve to confirm this initial experience.
Conclusion: Pre-clinical and early clinical data support the rationale for immunoablative therapy for autoimmune disorders. Auto-HSCT for severe MS is a feasible procedure and can be safely performed in centres with experience managing HSCT patients.
Key words: Autoimmunity, Induction of tolerance, Progressive multiple sclerosis
Collapse
|
50
|
Singh RK, Varney ML, Leutzinger C, Vose JM, Bierman PJ, Buyukberber S, Ino K, Loh K, Nichols C, Inwards D, Rifkin R, Talmadge JE. Immune reconstitution after autologous hematopoietic transplantation with Lin-, CD34+, Thy-1lo selected or intact stem cell products. Int Immunopharmacol 2007; 7:1033-43. [PMID: 17570320 PMCID: PMC2034447 DOI: 10.1016/j.intimp.2007.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
In sequential studies, we compared immune reconstitution following high-dose chemotherapy (HDT) and stem cell transplantation (SCT) using intact mobilized peripheral blood stem cell (PSC) in intermediate grade non-Hodgkin's lymphoma (NHL) patients and CD34(+), lineage-negative (Lin(-)), Thy-1(lo) (CD34(+)Lin(-)Thy-1(lo)) stem cells in low-grade NHL patients. Cytokine expression and cellular phenotype and function were used as the basis of comparison. Despite differences in cellular composition of the stem cell grafts, immune reconstitution in both groups was similar. Significantly higher levels of type 1- and 2-associated cytokine messenger ribonucleic acid (mRNA) were observed both prior to and following transplant in the peripheral blood (PB) of both cohorts as compared to normal individuals. Similar levels of interleukin (IL)-4, IL-10, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) messenger ribonucleic acid (mRNA) were seen in PB mononuclear cells following transplant with either product. In contrast, patients receiving isolated CD34(+)Lin(-)Thy-1(lo) cells expressed significantly higher IL-2 levels at all times examined post-transplant. Despite the high levels of cytokine gene expression and rapid restoration to pretransplant levels of CD3 cell number by day 30, T cell function and CD4:CD8 and CD4(+)CD45RA:CD4(+)CD45RO(+) ratios were significantly depressed in both cohorts compared to normal donors, and significantly lower in patients transplanted with CD34(+)Lin(-)Thy-1(lo) compared to patients receiving an intact PSC product. These data suggest that the peripheral tolerance in patients receiving HDT and an autologous SCT occurs independent of graft composition, although immune function and CD4 recovery are better facilitated by transplantation of an intact product.
Collapse
Affiliation(s)
- Rakesh K. Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michelle L. Varney
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cheryl Leutzinger
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Julie M. Vose
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Philip J. Bierman
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Kazuhiko Ino
- Nagoya University School of Medicine, Nagoya, Japan
| | - Kevin Loh
- Hawaii Hematology Oncology, Honolulu, HI, USA
| | - Craig Nichols
- Oregon Health & Science University, Portland, OR, USA
| | | | | | - James E. Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|