1
|
Braniewska A, Skorzynski M, Sas Z, Dlugolecka M, Marszalek I, Kurpiel D, Bühler M, Strzemecki D, Magiera A, Bialasek M, Walczak J, Cheda L, Komorowski M, Weiss T, Czystowska-Kuzmicz M, Kwapiszewska K, Boffi A, Krol M, Rygiel TP. A novel process for transcellular hemoglobin transport from macrophages to cancer cells. Cell Commun Signal 2024; 22:570. [PMID: 39605056 PMCID: PMC11603754 DOI: 10.1186/s12964-024-01929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Hemoglobin (Hb) performs its physiological function within the erythrocyte. Extracellular Hb has prooxidative and proinflammatory properties and is therefore sequestered by haptoglobin and bound by the CD163 receptor on macrophages. In the present study, we demonstrate a novel process of Hb uptake by macrophages independent of haptoglobin and CD163. Unexpectedly, macrophages do not degrade the entire Hb, but instead transfer it to neighboring cells. We have shown that the phenomenon of Hb transfer from macrophages to other cells is mainly mediated by extracellular vesicles. In contrast to the canonical Hb degradation pathway by macrophages, Hb transfer has not been reported before. In addition, we have used the process of Hb transfer in anticancer therapy, where macrophages are loaded with a Hb-anticancer drug conjugate and act as cellular drug carriers. Both mouse and human macrophages loaded with Hb-monomethyl auristatin E (MMAE) effectively killed cancer cells when co-cultured in vitro.
Collapse
Affiliation(s)
- Agata Braniewska
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Skorzynski
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Zuzanna Sas
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Dlugolecka
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Marcel Bühler
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Damian Strzemecki
- Cellis AG, Zurich, Switzerland
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta Magiera
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Bialasek
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jaroslaw Walczak
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Cheda
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Michal Komorowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tobias Weiss
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | | | | | - Alberto Boffi
- Cellis AG, Zurich, Switzerland
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center of Life Nano and Neuro Science, Italian Institute of Technology, Rome, Italy
| | - Magdalena Krol
- Cellis AG, Zurich, Switzerland
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz P Rygiel
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
- Cellis AG, Zurich, Switzerland.
| |
Collapse
|
2
|
Xue J, Li XA. Therapeutics for sickle cell disease intravascular hemolysis. Front Physiol 2024; 15:1474569. [PMID: 39345787 PMCID: PMC11427376 DOI: 10.3389/fphys.2024.1474569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Sickle cell disease (SCD) is a genetic disorder predominantly affecting individuals of African descent, with a significant global health burden. SCD is characterized by intravascular hemolysis, driven by the polymerization of mutated hemoglobin within red blood cells (RBCs), leading to vascular inflammation, organ damage, and heme toxicity. Clinical manifestations include acute pain crises, hemolytic anemia, and multi-organ dysfunction, imposing substantial morbidity and mortality challenges. Current therapeutic strategies mitigate these complications by increasing the concentration of RBCs with normal hemoglobin via transfusion, inducing fetal hemoglobin, restoring nitric oxide signaling, inhibiting platelet-endothelium interaction, and stabilizing hemoglobin in its oxygenated state. While hydroxyurea and gene therapies show promise, each faces distinct challenges. Hydroxyurea's efficacy varies among patients, and gene therapies, though effective, are limited by issues of accessibility and affordability. An emerging frontier in SCD management involves harnessing endogenous clearance mechanisms for hemolysis products. A recent work by Heggland et al. showed that CD-36-like proteins mediate heme absorption in hematophagous ectoparasite, a type of parasite that feeds on the blood of its host. This discovery underscores the need for further investigation into scavenger receptors (e.g., CD36, SR-BI, SR-BII) for their possible role in heme uptake and detoxification in mammalian species. In this review, we discussed current SCD therapeutics and the specific stages of pathophysiology they target. We identified the limitations of existing treatments and explored potential future developments for novel SCD therapies. Novel therapeutic targets, including heme scavenging pathways, hold the potential for improving outcomes and reducing the global burden of SCD.
Collapse
Affiliation(s)
- Jianyao Xue
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Xiang-An Li
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
- Lexington VA Healthcare System, Lexington, KY, United States
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
3
|
Silveira THRE, Pereira DA, Pereira DA, Calmasini FB, Burnett AL, Costa FF, Silva FH. Impact of intravascular hemolysis on functional and molecular alterations in the urinary bladder: implications for an overactive bladder in sickle cell disease. Front Physiol 2024; 15:1369120. [PMID: 39100273 PMCID: PMC11294091 DOI: 10.3389/fphys.2024.1369120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/20/2024] [Indexed: 08/06/2024] Open
Abstract
Patients with sickle cell disease (SCD) display an overactive bladder (OAB). Intravascular hemolysis in SCD is associated with various severe SCD complications. However, no experimental studies have evaluated the effect of intravascular hemolysis on bladder function. This study aimed to assess the effects of intravascular hemolysis on the micturition process and the contractile mechanisms of the detrusor smooth muscle (DSM) in a mouse model with phenylhydrazine (PHZ)-induced hemolysis; furthermore, it aimed to investigate the role of intravascular hemolysis in the dysfunction of nitric oxide (NO) signaling and in increasing oxidative stress in the bladder. Mice underwent a void spot assay, and DSM contractions were evaluated in organ baths. The PHZ group exhibited increased urinary frequency and increased void volumes. DSM contractile responses to carbachol, KCl, α-β-methylene-ATP, and EFS were increased in the PHZ group. Protein expression of phosphorylated endothelial NO synthase (eNOS) (Ser-1177), phosphorylated neuronal NO synthase (nNOS) (Ser-1417), and phosphorylated vasodilator-stimulated phosphoprotein (VASP) (Ser-239) decreased in the bladder of the PHZ group. Protein expression of oxidative stress markers, NOX-2, 3-NT, and 4-HNE, increased in the bladder of the PHZ group. Our study shows that intravascular hemolysis promotes voiding dysfunction correlated with alterations in the NO signaling pathway in the bladder, as evidenced by reduced levels of p-eNOS (Ser-1177), nNOS (Ser-1417), and p-VASP (Ser-239). The study also showed that intravascular hemolysis increases oxidative stress in the bladder. Our study indicates that intravascular hemolysis promotes an OAB phenotype similar to those observed in patients and mice with SCD.
Collapse
Affiliation(s)
| | - Dalila Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Danillo Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arthur L. Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| |
Collapse
|
4
|
Watanabe-Okochi N, Sato A, Okuyama A, Tomiyoshi G, Suzuki Y, Watanabe Y, Kitsukawa K, Anazawa M, Shimoyamada T, Takahashi D, Onodera T, Uchikawa M, Tsuno NH, Muroi K. A novel reagent for the screening of haptoglobin-deficient blood donors. Vox Sang 2023; 118:1109-1114. [PMID: 37798623 DOI: 10.1111/vox.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND OBJECTIVES In Japan, the prevalence of haptoglobin deficiency is approximately 1 in 4000. Haptoglobin-deficient individuals may produce anti-haptoglobin from allo-immunization, leading to serious transfusion reactions. Therefore, implementation of a consistent supply of haptoglobin-deficient fresh frozen plasma is crucial. We developed a novel reagent to facilitate large-scale identification of haptoglobin-deficient individuals as potential donors of plasma products. MATERIALS AND METHODS We established mouse monoclonal anti-haptoglobin-producing cell lines (three clones) using the hybridoma method by immunizing mice with the haptoglobin protein. Purified antibodies were conjugated with carboxylate-modified polystyrene latex beads and used for haptoglobin measurements by the latex agglutination method using an automatic analyser (LABOSPECT008). Samples with low protein concentrations were re-examined by enzyme-linked immunosorbent assay to confirm the results. Additionally, the haptoglobin gene was amplified by polymerase chain reaction to confirm the haptoglobin deletion allele (Hpdel ). RESULTS From February to October 2022, 7476 blood donor samples were screened. Two haptoglobin-deficient and 21 low-haptoglobin-expressing individuals were identified. Two haptoglobin-deficient donors were found homozygous for Hpdel , and 19 (90%) of the 21 low-haptoglobin-expressing individuals were heterozygous for Hpdel , which includes the first reported case of heterozygous Hpdel /HpJohnson . CONCLUSION We developed a new reagent for the detection of haptoglobin deficiency, which is automatable and inexpensive and appears useful for large-scale screening of blood donors.
Collapse
Affiliation(s)
| | - Ayaka Sato
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | | | | | - Yumi Suzuki
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Yukiko Watanabe
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Kaori Kitsukawa
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Masako Anazawa
- Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | | | | | - Takayuki Onodera
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Makoto Uchikawa
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | | | - Kazuo Muroi
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| |
Collapse
|
5
|
Jamshidi V, Nobakht M Gh BF, Parvin S, Bagheri H, Ghanei M, Shahriary A, Davoudi SM, Arabfard M. Proteomics analysis of chronic skin injuries caused by mustard gas. BMC Med Genomics 2022; 15:175. [PMID: 35933451 PMCID: PMC9357330 DOI: 10.1186/s12920-022-01328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Sulfur mustard (SM) is an alkylating and forming chemical that was widely used by Iraqi forces during the Iran–Iraq wars. One of the target organs of SM is the skin. Understanding the mechanisms involved in the pathogenesis of SM may help better identify complications and find appropriate treatments. The current study collected ten SM-exposed patients with long-term skin complications and ten healthy individuals. Proteomics experiments were performed using the high-efficiency TMT10X method to evaluate the skin protein profile, and statistical bioinformatics methods were used to identify the differentially expressed proteins. One hundred twenty-nine proteins had different expressions between the two groups. Of these 129 proteins, 94 proteins had increased expression in veterans' skins, while the remaining 35 had decreased expression. The hub genes included RPS15, ACTN1, FLNA, HP, SDHC, and RPL29, and three modules were extracted from the PPI network analysis. Skin SM exposure can lead to oxidative stress, inflammation, apoptosis, and cell proliferation.
Collapse
Affiliation(s)
- Vahid Jamshidi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - B Fatemeh Nobakht M Gh
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Education Office, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyyed Masoud Davoudi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Divergent roles of haptoglobin and hemopexin deficiency for disease progression of Shiga-toxin-induced hemolytic-uremic syndrome in mice. Kidney Int 2022; 101:1171-1185. [PMID: 35031328 DOI: 10.1016/j.kint.2021.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Thrombotic microangiopathy, hemolysis and acute kidney injury are typical clinical characteristics of hemolytic-uremic syndrome (HUS), which is predominantly caused by Shiga-toxin-producing Escherichia coli. Free heme aggravates organ damage in life-threatening infections, even with a low degree of systemic hemolysis. Therefore, we hypothesized that the presence of the hemoglobin- and the heme-scavenging proteins, haptoglobin and hemopexin, respectively impacts outcome and kidney pathology in HUS. Here, we investigated the effect of haptoglobin and hemopexin deficiency (haptoglobin-/-, hemopexin-/-) and haptoglobin treatment in a murine model of HUS-like disease. Seven-day survival was decreased in haptoglobin-/- (25%) compared to wild type mice (71.4%), whereas all hemopexin-/- mice survived. Shiga-toxin-challenged hemopexin-/- mice showed decreased kidney inflammation and attenuated thrombotic microangiopathy, indicated by reduced neutrophil recruitment and platelet deposition. These observations were associated with supranormal haptoglobin plasma levels in hemopexin-/- mice. Low dose haptoglobin administration to Shiga-toxin-challenged wild type mice attenuated kidney platelet deposition and neutrophil recruitment, suggesting that haptoglobin at least partially contributes to the beneficial effects. Surrogate parameters of hemolysis were elevated in Shiga-toxin-challenged wild type and haptoglobin-/- mice, while signs for hepatic hemoglobin degradation like heme oxygenase-1, ferritin and CD163 expression were only increased in Shiga-toxin-challenged wild type mice. In line with this observation, haptoglobin-/- mice displayed tubular iron deposition as an indicator for kidney hemoglobin degradation. Thus, haptoglobin and hemopexin deficiency play divergent roles in Shiga-toxin-mediated HUS, suggesting haptoglobin is involved, and hemopexin is redundant for the resolution of HUS pathology.
Collapse
|
7
|
García-Vázquez FA, Moros-Nicolás C, López-Úbeda R, Rodríguez-Tobón E, Guillén-Martínez A, Ross JW, Luongo C, Matás C, Hernández-Caravaca I, Avilés M, Izquierdo-Rico MJ. Evidence of haptoglobin in the porcine female genital tract during oestrous cycle and its effect on in vitro embryo production. Sci Rep 2021; 11:12041. [PMID: 34103548 PMCID: PMC8187724 DOI: 10.1038/s41598-021-90810-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Recent evidence supports involvement of the acute phase protein haptoglobin in numerous events during mammalian reproduction. The present study represents an in-depth investigation of haptoglobin expression and secretion in the porcine oviduct and uterus, and assesses its effect on porcine in vitro embryo production. A systematic study was made of sows in different oestrous stages: late follicular, early luteal and late luteal stages. Relative haptoglobin mRNA abundance was quantified by RT-qPCR. In addition, expression of the protein was analysed by immunohistochemistry and the results were complemented by Western-blot and proteomic analyses of the oviductal and uterine fluids. In vitro porcine fertilization and embryo culture were carried out in the presence of haptoglobin. The results indicate that haptoglobin mRNA expression in the porcine oviduct and uterus is most abundant during the late luteal stage of the oestrous cycle. By means of Western blot and proteomic analyses haptoglobin presence was demonstrated in the oviduct epithelium and in the oviductal and uterine fluids in different stages of the oestrous cycle. The addition of haptoglobin during gamete co-incubation had no effect on sperm penetration, monospermy or efficiency rates; however, compared with the control group, blastocyst development was significantly improved when haptoglobin was present (haptoglobin: 64.50% vs. control: 37.83%; p < 0.05). In conclusion, the presence of haptoglobin in the oviduct and uterus of sows at different stages of the oestrous cycle suggests that it plays an important role in the reproduction process. The addition of haptoglobin during in vitro embryo production improved the blastocyst rates.
Collapse
Affiliation(s)
- Francisco A. García-Vázquez
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Carla Moros-Nicolás
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Rebeca López-Úbeda
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Ernesto Rodríguez-Tobón
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Ascensión Guillén-Martínez
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Jason W. Ross
- grid.34421.300000 0004 1936 7312Department of Animal Science, Iowa State University, Ames, IA USA
| | - Chiara Luongo
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Carmen Matás
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Iván Hernández-Caravaca
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Manuel Avilés
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Mª José Izquierdo-Rico
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| |
Collapse
|
8
|
Pettway YD, Neder TH, Ho DH, Fox BM, Burch M, Colson J, Liu X, Kellum CE, Hyndman KA, Pollock JS. Early life stress induces dysregulation of the heme pathway in adult mice. Physiol Rep 2021; 9:e14844. [PMID: 34042301 PMCID: PMC8157772 DOI: 10.14814/phy2.14844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
Early life stress (ELS) is associated with cardiovascular disease (CVD) risk in adulthood, but the underlying vascular mechanisms are poorly understood. Increased hemoglobin and heme have recently been implicated to mediate endothelial dysfunction in several vascular diseases. Chronic physiological stress is associated with alterations in the heme pathway that have been well-described in the literature. However, very little is known about the heme pathway with exposure to ELS or chronic psychosocial stress. Utilizing a mouse model of ELS, maternal separation with early weaning (MSEW), we previously reported that MSEW induces endothelial dysfunction via increased superoxide production. We reasoned that heme dysregulation may be one of the culprits induced by MSEW and sustained throughout adulthood; thus, we hypothesized that MSEW induces heme dysfunction. We investigated whether circulating levels of heme, a circulating pro-oxidant mediator, are increased by MSEW and examined the role of the heme metabolic pathway and heme homeostasis in this process. We found that circulating levels of heme are increased in mice exposed to MSEW and that plasma from MSEW mice stimulated higher superoxide production in cultured mouse aortic endothelial cells (MAECs) compared to plasma from normally reared mice. The heme scavenger hemopexin blunted this enhanced superoxide production. Splenic haptoglobin abundance was significantly lower and hemoglobin levels per red blood cell were significantly higher in MSEW versus control mice. These findings lead us to propose that ELS induces increased circulating heme through dysregulation of the haptoglobin-hemoglobin system representing a mechanistic link between ELS and CVD risk in adulthood.
Collapse
Affiliation(s)
- Yasminye D Pettway
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas H Neder
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dao H Ho
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brandon M Fox
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mariah Burch
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jackson Colson
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiaofen Liu
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cailin E Kellum
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kelly A Hyndman
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Mondello S, Kobeissy FH, Mechref Y, Zhao J, El Hayek S, Zibara K, Moresco M, Plazzi G, Cosentino FII, Ferri R. Searching for Novel Candidate Biomarkers of RLS in Blood by Proteomic Analysis. Nat Sci Sleep 2021; 13:873-883. [PMID: 34234594 PMCID: PMC8243594 DOI: 10.2147/nss.s311801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE We performed comparative proteomic analyses of blood of patients with RLS and healthy individuals aiming to identify potential biomarker and therapeutic target candidate for RLS. PATIENTS AND METHODS Blood serum samples from 12 patients with a clinical diagnosis of RLS (8 females and 4 males, with a mean age of 68.52 years) and 10 healthy controls (5 females and 5 males, with a mean age of 67.61 years) underwent proteomic profiling by liquid chromatography coupled with tandem mass spectrometry. Pathway analysis incorporating protein-protein interaction networks was carried out to identify pathological processes linked to the differentially expressed proteins. RESULTS We quantified 272 proteins in patients with RLS and healthy controls, of which 243 were shared. Five proteins - apolipoprotein C-II, leucine-rich alpha-2-glycoprotein 1, FLJ92374, extracellular matrix protein 1, and FLJ93143 - were substantially increased in RLS patients, whereas nine proteins - vitamin D-binding protein, FLJ78071, alpha-1-antitrypsin, CD5 antigen-like, haptoglobin, fibrinogen alpha chain, complement factor H-related protein 1, platelet factor 4, and plasma protease C1 inhibitor - were decreased. Bioinformatics analyses revealed that these proteins were linked to 1) inflammatory and immune response, and complement activation, 2) brain-related development, cell aging, and memory disorders, 3) pregnancy and associated complications, 4) myocardial infarction, and 5) reactive oxygen species generation and subsequent diabetes mellitus. CONCLUSION Our findings shed light on the multifactorial nature of RLS and identified a set of circulating proteins that may have clinical importance as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Firas H Kobeissy
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Samer El Hayek
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- Department of Biology, Faculty of Sciences-I, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Monica Moresco
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
10
|
di Masi A, De Simone G, Ciaccio C, D'Orso S, Coletta M, Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med 2020; 73:100851. [PMID: 32660714 DOI: 10.1016/j.mam.2020.100851] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Haptoglobin (Hp) belongs to the family of acute-phase plasma proteins and represents the most important plasma detoxifier of hemoglobin (Hb). The basic Hp molecule is a tetrameric protein built by two α/β dimers. Each Hp α/β dimer is encoded by a single gene and is synthesized as a single polypeptide. Following post-translational protease-dependent cleavage of the Hp polypeptide, the α and β chains are linked by disulfide bridge(s) to generate the mature Hp protein. As human Hp gene is characterized by two common Hp1 and Hp2 alleles, three major genotypes can result (i.e., Hp1-1, Hp2-1, and Hp2-2). Hp regulates Hb clearance from circulation by the macrophage-specific receptor CD163, thus preventing Hb-mediated severe consequences for health. Indeed, the antioxidant and Hb binding properties of Hp as well as its ability to stimulate cells of the monocyte/macrophage lineage and to modulate the helper T-cell type 1 and type 2 balance significantly associate with a variety of pathogenic disorders (e.g., infectious diseases, diabetes, cardiovascular diseases, and cancer). Alternative functions of the variants Hp1 and Hp2 have been reported, particularly in the susceptibility and protection against infectious (e.g., pulmonary tuberculosis, HIV, and malaria) and non-infectious (e.g., diabetes, cardiovascular diseases and obesity) diseases. Both high and low levels of Hp are indicative of clinical conditions: Hp plasma levels increase during infections, inflammation, and various malignant diseases, and decrease during malnutrition, hemolysis, hepatic disease, allergic reactions, and seizure disorders. Of note, the Hp:Hb complexes display heme-based reactivity; in fact, they bind several ferrous and ferric ligands, including O2, CO, and NO, and display (pseudo-)enzymatic properties (e.g., NO and peroxynitrite detoxification). Here, genetic, biochemical, biomedical, and biotechnological aspects of Hp are reviewed.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Silvia D'Orso
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146, Roma, Italy.
| |
Collapse
|
11
|
Label-free plasma proteomics identifies haptoglobin-related protein as candidate marker of idiopathic pulmonary fibrosis and dysregulation of complement and oxidative pathways. Sci Rep 2020; 10:7787. [PMID: 32385381 PMCID: PMC7211010 DOI: 10.1038/s41598-020-64759-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung parenchymal disease of unknown cause usually occurring in older adults. It is a chronic and progressive condition with poor prognosis and diagnosis is largely clinical. Currently, there exist few biomarkers that can predict patient outcome or response to therapies. Together with lack of markers, the need for novel markers for the detection and monitoring of IPF, is paramount. We have performed label-free plasma proteomics of thirty six individuals, 17 of which had confirmed IPF. Proteomics data was analyzed by volcano plot, hierarchical clustering, Partial-least square discriminant analysis (PLS-DA) and Ingenuity pathway analysis. Univariate and multivariate statistical analysis overlap identified haptoglobin-related protein as a possible marker of IPF when compared to control samples (Area under the curve 0.851, ROC-analysis). LXR/RXR activation and complement activation pathways were enriched in t-test significant proteins and oxidative regulators, complement proteins and protease inhibitors were enriched in PLS-DA significant proteins. Our pilot study points towards aberrations in complement activation and oxidative damage in IPF patients and provides haptoglobin-related protein as a new candidate biomarker of IPF.
Collapse
|
12
|
Mikkelsen JH, Runager K, Andersen CBF. The human protein haptoglobin inhibits IsdH-mediated heme-sequestering by Staphylococcus aureus. J Biol Chem 2019; 295:1781-1791. [PMID: 31819010 DOI: 10.1074/jbc.ra119.011612] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
Iron is an essential nutrient for all living organisms. To acquire iron, many pathogens have developed elaborate systems to steal it from their hosts. The iron acquisition system in the opportunistic pathogen Staphylococcus aureus comprises nine proteins, called iron-regulated surface determinants (Isds). The Isd components enable S. aureus to extract heme from hemoglobin (Hb), transport it into the bacterial cytoplasm, and ultimately release iron from the porphyrin ring. IsdB and IsdH act as hemoglobin receptors and are known to actively extract heme from extracellular Hb. To limit microbial pathogenicity during infection, host organisms attempt to restrict the availability of nutrient metals at the host-pathogen interface. The human acute phase protein haptoglobin (Hp) protects the host from oxidative damage by clearing hemoglobin that has leaked from red blood cells and also restricts the availability of extracellular Hb-bound iron to invading pathogens. To investigate whether Hp serves an additional role in nutritional immunity through a direct inhibition of IsdH-mediated iron acquisition, here we measured heme extraction from the Hp-Hb complex by UV-visible spectroscopy and determined the crystal structure of the Hp-Hb-IsdH complex at 2.9 Å resolution. We found that Hp strongly inhibits IsdH-mediated heme extraction and that Hp binding prevents local unfolding of the Hb heme pocket, leaving IsdH unable to wrest the heme from Hb. Furthermore, we noted that the Hp-Hb binding appears to trap IsdH in an initial state before heme transfer. Our findings provide insights into Hp-mediated IsdH inhibition and the dynamics of IsdH-mediated heme extraction.
Collapse
Affiliation(s)
- Jakob H Mikkelsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Kasper Runager
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
13
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
14
|
Wang A, Singh S, Yu B, Bloch DB, Zapol WM, Kluger R. Cross-linked hemoglobin bis-tetramers from bioorthogonal coupling do not induce vasoconstriction in the circulation. Transfusion 2018; 59:359-370. [PMID: 30444016 DOI: 10.1111/trf.15003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hemoglobin-based oxygen carriers (HBOCs) are potential alternatives to red blood cells in transfusions. Clinical trials using early versions of HBOCs noted adverse effects that appeared to result from removal of the vasodilator nitric oxide (NO). Previous reports suggest that size-enlarged HBOCs may avoid NO-rich regions along the vasculature and therefore not cause vasoconstriction and hypertension. STUDY DESIGN AND METHODS Hemoglobin (Hb) bis-tetramers (bis-tetramers of hemoglobin that are prepared using CuAAC chemistry [BT-Hb] and bis-tetramers of hemoglobin that are specifically acetylated and prepared using CuAAC chemistry [BT-acHb]) can be reliably produced by a bio-orthogonal cyclo-addition approach. We considered that an HBOC derived from chemical coupling of two Hbs would be sufficiently large to avoid NO scavenging and related side effects. The ability of intravenously infused BT-Hb and BT-acHb to remain in the circulation without causing hypertension were determined in wild-type (WT) and diabetic (db/db) mouse models. RESULTS In WT mice, the coupled oxygen-carrying proteins retained their function over several hours after administration. No significant changes in systolic blood pressure from baseline were observed after intravenous infusion of BT-Hb or BT-acHb in awake WT and db/db mice. In contrast, infusion of native Hb or cross-linked Hb tetramers in both animal models induced systemic hypertension. CONCLUSION The results of this study indicate that bis-tetrameric HBOCs derived from the bio-orthogonal cyclo-addition process are likely to overcome clinical issues that arise from NO scavenging by Hb derivatives.
Collapse
Affiliation(s)
- Aizhou Wang
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Serena Singh
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Binglan Yu
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Warren M Zapol
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ronald Kluger
- Davenport Chemistry Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Henrique Silva F, Yotsumoto Fertrin K, Costa Alexandre E, Beraldi Calmasini F, Fernanda Franco-Penteado C, Ferreira Costa F. Impairment of Nitric Oxide Pathway by Intravascular Hemolysis Plays a Major Role in Mice Esophageal Hypercontractility: Reversion by Soluble Guanylyl Cyclase Stimulator. J Pharmacol Exp Ther 2018; 367:194-202. [PMID: 30108160 DOI: 10.1124/jpet.118.249581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/30/2018] [Indexed: 01/18/2023] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) patients display exaggerated intravascular hemolysis and esophageal disorders. Since excess hemoglobin in the plasma causes reduced nitric oxide (NO) bioavailability and oxidative stress, we hypothesized that esophageal contraction may be impaired by intravascular hemolysis. This study aimed to analyze the alterations of the esophagus contractile mechanisms in a murine model of exaggerated intravascular hemolysis induced by phenylhydrazine (PHZ). For comparative purposes, sickle cell disease (SCD) mice were also studied, a less severe intravascular hemolysis model. Esophagus rings were dissected free and placed in organ baths. Plasma hemoglobin was higher in PHZ compared with SCD mice, as expected. The contractile responses produced by carbachol (CCh), KCl, and electrical-field stimulation (EFS) were superior in PHZ esophagi compared with control but remained unchanged in SCD mice. Preincubation with the NO-independent soluble guanylate cyclase stimulator 3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine (BAY 41-2272; 1 μM) completely reversed the increased contractile responses to CCh, KCl, and EFS in PHZ mice, but responses remained unchanged with prior treatment with NO donor sodium nitroprusside (300 μM). Protein expression of 3-nitrotyrosine and 4-hydroxynonenal increased in esophagi from PHZ mice, suggesting a state of oxidative stress. In endothelial nitric oxide synthase gene-deficient mice, the contractile responses elicited by KCl and CCh were increased in the esophagus but remained unchanged with the intravascular hemolysis induced by PHZ. In conclusion, our results show that esophagus hypercontractile state occurs in association with lower NO bioavailability due to exaggerated hemolysis intravascular and oxidative stress. Moreover, our study supports the hypothesis that esophageal disorders in PNH patients are secondary to intravascular hemolysis affecting the NO-cGMP pathway.
Collapse
Affiliation(s)
- Fabio Henrique Silva
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Kleber Yotsumoto Fertrin
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Eduardo Costa Alexandre
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Fabiano Beraldi Calmasini
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Carla Fernanda Franco-Penteado
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| |
Collapse
|
16
|
Abstract
The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas - UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
18
|
Shen L, Liao L, Chen C, Guo Y, Song D, Wang Y, Chen Y, Zhang K, Ying M, Li S, Liu Q, Ni J. Proteomics Analysis of Blood Serums from Alzheimer's Disease Patients Using iTRAQ Labeling Technology. J Alzheimers Dis 2018; 56:361-378. [PMID: 27911324 DOI: 10.3233/jad-160913] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer' disease (AD) is the most common form of dementia affecting up to 6% of the population over the age of 65. In order to discover differentially expressed proteins that might serve as potential biomarkers, the serums from AD patients and healthy controls were compared and analyzed using the proteomics approach of isobaric tagging for relative and absolute quantitation (iTRAQ). For the first time, AD biomarkers in serums are investigated in the Han Chinese population using iTRAQ labeled proteomics strategy. Twenty-two differentially expressed proteins were identified and out of which nine proteins were further validated with more sample test. Another three proteins that have been reported in the literature to be potentially associated with AD were also investigated for alteration in expression level. Functions of those proteins were mainly related to the following processes: amyloid-β (Aβ) metabolism, cholesterol transport, complement and coagulation cascades, immune response, inflammation, hemostasis, hyaluronan metabolism, and oxidative stress. These results support current views on the molecular mechanism of AD. For the first time, differential expression of zinc-alpha-2-glycoprotein (AZGP1), fibulin-1 (FBLN1), platelet basic protein (PPBP), thrombospondin-1 (THBS1), S100 calcium-binding protein A8 (S100A8), and S100 calcium-binding protein A9 (S100A9) were detected in the serums of AD patients compared with healthy controls. These proteins might play a role in AD pathophysiology and serve as potential biomarkers for AD diagnosis. Specifically, our results strengthened the crucial role of Aβ metabolism and blood coagulation in AD pathogenesis and proteins related to these two processes may be used as peripheral blood biomarkers for AD.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Liping Liao
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Cheng Chen
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, P.R. China
| | - Dalin Song
- Department of Geriatrics, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Yong Wang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Youjiao Chen
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Ming Ying
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Shuiming Li
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, P.R. China
| | - Qiong Liu
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Jiazuan Ni
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
19
|
Guerrero-Hue M, Rubio-Navarro A, Sevillano Á, Yuste C, Gutiérrez E, Palomino-Antolín A, Román E, Praga M, Egido J, Moreno JA. Efectos adversos de la acumulación renal de hemoproteínas. Nuevas herramientas terapéuticas. Nefrologia 2018; 38:13-26. [DOI: 10.1016/j.nefro.2017.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/21/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
|
20
|
Louie JE, Anderson CJ, Fayaz M. Fomani K, Henry A, Killeen T, Mohandas N, Yazdanbakhsh K, Belcher JD, Vercellotti GM, Shi PA. Case series supporting heme detoxification via therapeutic plasma exchange in acute multiorgan failure syndrome resistant to red blood cell exchange in sickle cell disease. Transfusion 2017; 58:470-479. [DOI: 10.1111/trf.14407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/08/2017] [Accepted: 10/08/2017] [Indexed: 01/25/2023]
Affiliation(s)
- James E. Louie
- Long Island Jewish Medical Center, Northwell Health; New Hyde Park New York
| | - Caitlin J. Anderson
- Lindley F. Kimball Research Institute, New York Blood Center; New York New York
| | | | - Alonye Henry
- Lindley F. Kimball Research Institute, New York Blood Center; New York New York
| | - Trevor Killeen
- Department of Hematology, Oncology, and Transplantation; University of Minnesota Medical School; Minneapolis Minnesota
| | - Narla Mohandas
- Lindley F. Kimball Research Institute, New York Blood Center; New York New York
| | - Karina Yazdanbakhsh
- Lindley F. Kimball Research Institute, New York Blood Center; New York New York
| | - John D. Belcher
- Department of Hematology, Oncology, and Transplantation; University of Minnesota Medical School; Minneapolis Minnesota
| | - Gregory M. Vercellotti
- Department of Hematology, Oncology, and Transplantation; University of Minnesota Medical School; Minneapolis Minnesota
| | - Patricia A. Shi
- Lindley F. Kimball Research Institute, New York Blood Center; New York New York
| |
Collapse
|
21
|
Li L, Wu C, Hou G, Xue B, Xie S, Zhao Q, Nan Y, Zhang G, Zhou EM. Generation of murine macrophage-derived cell lines expressing porcine CD163 that support porcine reproductive and respiratory syndrome virus infection. BMC Biotechnol 2017; 17:77. [PMID: 29121904 PMCID: PMC5680797 DOI: 10.1186/s12896-017-0399-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/31/2017] [Indexed: 11/24/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) exhibits a highly restricted tropism for cells of the monocyte-macrophage lineage, utilizing porcine CD163 (pCD163) as an indispensable cellular receptor for infection. Transfection the gene of pCD163 into several non-permissive cell lines followed by protein expression confers susceptibility to PRRSV. A lack of specialized porcine antibody tools for use with existing porcine-derived primary cells and cell lines has hampered studies of both PRRSV pathogenesis and virus triggering of immune response cascades. Therefore, we constructed PRRSV-susceptible murine alveolar macrophage-derived MH-S and peritoneal macrophage-like RAW264.7 cell lines by achieving pCD163 cell surface expression in these cells. We then evaluated PRRSV susceptibility and cytokine expression patterns induced upon PRRSV infection of these pCD163-expressing cell lines. Results Growth of MH-SCD163 and RAW264.7CD163 cells was indistinguishable from growth of un-transfected parental cell lines. Meanwhile, various stages of the PRRSV replication cycle, including viral particle attachment, internalization, disassembly and infection were confirmed in both pCD163-transfected cell lines. Analysis of PRRSV replication using immunofluorescence staining of virus and viral titration of cell lysates demonstrated that both MH-SCD163 and RAW264.7CD163 cells supported replication of various genotype 2 PRRSV isolates. Moreover, PRRSV replication in MH-SCD163 cells was similar to that observed in porcine alveolar macrophages (PAMs) and was more efficient than in RAW264.7CD163 cells. However, peak virus titers in MH-SCD163 cells were attained at 60 h post-infection (pi) versus 48 hpi in PAMs. Analysis of cytokine expression showed that post-PRRSV infection, mRNA expression patterns of anti-inflammatory cytokines (IL-4 and IL-10) and pro-inflammatory cytokines (TNF-α and IFN-γ) in MH-SCD163 cells were more similar to those observed in PAMs versus levels in RAW264.7CD163 cells. Conclusions MH-S and RAW264.7 cells were not susceptible to PRRSV infection until transfection and subsequent expression of pCD163 were achieved in these cell lines. The PRRSV-susceptible MH-SCD163 cell line efficiently supported viral replication of various genotype 2 PRRSV isolates and exhibited similar cytokine expression patterns as observed in PAMs. In conclusion, this work describes the development of new tools to further understand PRRSV pathogenesis and immune response mechanisms to PRRSV infection. Electronic supplementary material The online version of this article (10.1186/s12896-017-0399-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liangliang Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Gaopeng Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Biyun Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Sha Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
22
|
Yang H, Wang H, Wang Y, Addorisio M, Li J, Postiglione MJ, Chavan SS, Al-Abed Y, Antoine DJ, Andersson U, Tracey KJ. The haptoglobin beta subunit sequesters HMGB1 toxicity in sterile and infectious inflammation. J Intern Med 2017; 282:76-93. [PMID: 28464519 PMCID: PMC5477782 DOI: 10.1111/joim.12619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Extra-corpuscular haemoglobin is an endogenous factor enhancing inflammatory tissue damage, a process counteracted by the haemoglobin-binding plasma protein haptoglobin composed of alpha and beta subunits connected by disulfide bridges. Recent studies established that haptoglobin also binds and sequesters another pro-inflammatory mediator, HMGB1, via triggering CD163 receptor-mediated anti-inflammatory responses involving heme oxygenase-1 expression and IL-10 release. The molecular mechanism underlying haptoglobin-HMGB1 interaction remains poorly elucidated. METHODS Haptoglobin β subunits were tested for HMGB1-binding properties, as well as efficacy in animal models of sterile liver injury (induced by intraperitoneal acetaminophen administration) or infectious peritonitis (induced by cecal ligation and puncture, CLP, surgery) using wild-type (C57BL/6) or haptoglobin gene-deficient mice. RESULTS Structural-functional analysis demonstrated that the haptoglobin β subunit recapitulates the HMGB1-binding properties of full-length haptoglobin. Similar to HMGB1-haptoglobin complexes, the HMGB1-haptoglobin β complexes also elicited anti-inflammatory effects via CD163-mediated IL-10 release and heme oxygenase-1 expression. Treatment with haptoglobin β protein conferred significant protection in mouse models of polymicrobial sepsis as well as acetaminophen-induced liver injury, two HMGB1-dependent inflammatory conditions. CONCLUSIONS Haptoglobin β protein offers a novel therapeutic approach to fight against various inflammatory diseases caused by excessive HMGB1 release.
Collapse
Affiliation(s)
- H Yang
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - H Wang
- Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Y Wang
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - M Addorisio
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - J Li
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - M J Postiglione
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - S S Chavan
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Y Al-Abed
- Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - D J Antoine
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - U Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - K J Tracey
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
23
|
Knutson MD. Iron transport proteins: Gateways of cellular and systemic iron homeostasis. J Biol Chem 2017; 292:12735-12743. [PMID: 28615441 DOI: 10.1074/jbc.r117.786632] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular iron homeostasis is maintained by iron and heme transport proteins that work in concert with ferrireductases, ferroxidases, and chaperones to direct the movement of iron into, within, and out of cells. Systemic iron homeostasis is regulated by the liver-derived peptide hormone, hepcidin. The interface between cellular and systemic iron homeostasis is readily observed in the highly dynamic iron handling of four main cell types: duodenal enterocytes, erythrocyte precursors, macrophages, and hepatocytes. This review provides an overview of how these cell types handle iron, highlighting how iron and heme transporters mediate the exchange and distribution of body iron in health and disease.
Collapse
Affiliation(s)
- Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611-03170.
| |
Collapse
|
24
|
Protein aggregation as a cellular response to oxidative stress induced by heme and iron. Proc Natl Acad Sci U S A 2016; 113:E7474-E7482. [PMID: 27821769 DOI: 10.1073/pnas.1608928113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hemolytic diseases include a variety of conditions with diverse etiologies in which red blood cells are destroyed and large amounts of hemeproteins are released. Heme has been described as a potent proinflammatory molecule that is able to induce multiple innate immune responses, such as those triggered by TLR4 and the NLRP3 inflammasome, as well as necroptosis in macrophages. The mechanisms by which eukaryotic cells respond to the toxic effects induced by heme to maintain homeostasis are not fully understood, however. Here we describe a previously uncharacterized cellular response induced by heme: the formation of p62/SQTM1 aggregates containing ubiquitinated proteins in structures known as aggresome-like induced structures (ALIS). This action is part of a response driven by the transcription factor NRF2 to the excessive generation of reactive oxygen species induced by heme that results in the expression of genes involved in antioxidant responses, including p62/SQTM1. Furthermore, we show that heme degradation by HO-1 is required for ALIS formation, and that the free iron released on heme degradation is necessary and sufficient to induce ALIS. Moreover, ferritin, a key protein in iron metabolism, prevents excessive ALIS formation. Finally, in vivo, hemolysis promotes an increase in ALIS formation in target tissues. Our data unravel a poorly understood aspect of the cellular responses induced by heme that can be explored to better understand the effects of free heme and free iron during hemolytic diseases such as sickle cell disease, dengue fever, malaria, and sepsis.
Collapse
|
25
|
Ji X, Feng Y, Tian H, Meng W, Wang W, Liu N, Zhang J, Wang L, Wang J, Gao H. The Mechanism of Proinflammatory HDL Generation in Sickle Cell Disease Is Linked to Cell-Free Hemoglobin via Haptoglobin. PLoS One 2016; 11:e0164264. [PMID: 27716784 PMCID: PMC5055316 DOI: 10.1371/journal.pone.0164264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
In sickle cell disease (SCD), the inflammatory properties of high-density lipoprotein (HDL) can be changed by cell-free hemoglobin (Hb), which is released into the blood during hemolysis. Hb in the plasma of SCD patients or mice can bind with HDL specifically inducing an inflammatory reaction. In our study, we found increased amounts of inflammatory factor proteins in the chronic oxidative state of SCD with higher levels of Hb, haptoglobin (Hp) and hemopexin (Hx) in the apolipoprotein A-I (ApoA-1) particles of HDL and the role of HDL is changed from being anti-inflammatory to proinflammatory. Our results also suggest Hp and Hx, the scavengers of Hb in HDL, are positively associated with inflammatory levels in SCD patients. HDL retained its inflammatory inhibition role in Hp−/− mice, with less Hb accumulation. Hx may further prevent inflammatory reaction because its level will be even higher when lack of Hx. We therefore demonstrated that Hp is indispensable during the process whereby Hb associates with HDL and plays a clear proinflammatory role. Therefore, it is essential to break the binding between Hb and Hp for treatment. The dissociation of Hb/Hp/Hx complexes may also play an important role in the study of other inflammatory angiogenesis-related diseases.
Collapse
Affiliation(s)
- Xiang Ji
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Yimin Feng
- Clinical Laboratory, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Hui Tian
- ICU, The Affiliated Hospital of Qiingdao University, Qingdao 266012, Shandong, China
| | - Wei Meng
- Cardiology Department, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Weiling Wang
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Na Liu
- Pharmacological Laboratory, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Jun Zhang
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Lingshu Wang
- Endocrinology Department, Qilu Hospital of Shandong Univeristy, Jinan 250012, Shandong, China
| | - Jian Wang
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
| | - Haiqing Gao
- Geriatric Department Qilu Hospital of Shandong Univeristy; Shandong Key Laboratory of Proteomics, Jinan 250012, Shandong, China
- * E-mail:
| |
Collapse
|
26
|
Sæderup KL, Stødkilde K, Graversen JH, Dickson CF, Etzerodt A, Hansen SWK, Fago A, Gell D, Andersen CBF, Moestrup SK. The Staphylococcus aureus Protein IsdH Inhibits Host Hemoglobin Scavenging to Promote Heme Acquisition by the Pathogen. J Biol Chem 2016; 291:23989-23998. [PMID: 27681593 DOI: 10.1074/jbc.m116.755934] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/25/2016] [Indexed: 12/30/2022] Open
Abstract
Hemolysis is a complication in septic infections with Staphylococcus aureus, which utilizes the released Hb as an iron source. S. aureus can acquire heme in vitro from hemoglobin (Hb) by a heme-sequestering mechanism that involves proteins from the S. aureus iron-regulated surface determinant (Isd) system. However, the host has its own mechanism to recapture the free Hb via haptoglobin (Hp) binding and uptake of Hb-Hp by the CD163 receptor in macrophages. It has so far remained unclear how the Isd system competes with this host iron recycling system in situ to obtain the important nutrient. By binding and uptake studies, we now show that the IsdH protein, which serves as an Hb receptor in the Isd system, directly interferes with the CD163-mediated clearance by binding the Hb-Hp complex and inhibiting CD163 recognition. Analysis of truncated IsdH variants including one or more of three near iron transporter domains, IsdHN1, IsdHN2, and IsdHN3, revealed that Hb binding of IsdHN1 and IsdHN2 accounted for the high affinity for Hb-Hp complexes. The third near iron transporter domain, IsdHN3, exhibited redox-dependent heme extraction, when Hb in the Hb-Hp complex was in the oxidized met form but not in the reduced oxy form. IsdB, the other S. aureus Hb receptor, failed to extract heme from Hb-Hp, and it was a poor competitor for Hb-Hp binding to CD163. This indicates that Hb recognition by IsdH, but not by IsdB, sterically inhibits the receptor recognition of Hb-Hp. This function of IsdH may have an overall stimulatory effect on S. aureus heme acquisition and growth.
Collapse
Affiliation(s)
| | | | | | - Claire F Dickson
- the School of Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia, and
| | | | | | - Angela Fago
- Zoophysiology Section, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - David Gell
- the School of Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia, and
| | | | - Søren Kragh Moestrup
- From the Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark, .,the Department of Biomedicine and.,the Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
27
|
Shi PA, Choi E, Chintagari NR, Nguyen J, Guo X, Yazdanbakhsh K, Mohandas N, Alayash AI, Manci EA, Belcher JD, Vercellotti GM. Sustained treatment of sickle cell mice with haptoglobin increases HO-1 and H-ferritin expression and decreases iron deposition in the kidney without improvement in kidney function. Br J Haematol 2016; 175:714-723. [PMID: 27507623 DOI: 10.1111/bjh.14280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
Abstract
There is growing evidence that extracellular haemoglobin and haem mediate inflammatory and oxidative damage in sickle cell disease. Haptoglobin (Hp), the scavenger for free haemoglobin, is depleted in most patients with sickle cell disease due to chronic haemolysis. Although single infusions of Hp can ameliorate vaso-occlusion in mouse models of sickle cell disease, prior studies have not examined the therapeutic benefits of more chronic Hp dosing on sickle cell disease manifestations. In the present study, we explored the effect of Hp treatment over a 3-month period in sickle mice at two dosing regimens: the first at a moderate dose of 200 mg/kg thrice weekly and the second at a higher dose of 400 mg/kg thrice weekly. We found that only the higher dosing regimen resulted in increased haem-oxygenase-1 and heavy chain ferritin (H-ferritin) expression and decreased iron deposition in the kidney. Despite the decreased kidney iron deposition following Hp treatment, there was no significant improvement in kidney function. However, there was a nearly significant trend towards decreased liver infarction.
Collapse
Affiliation(s)
- Patricia A Shi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Erika Choi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | | | - Julia Nguyen
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xinhua Guo
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Karina Yazdanbakhsh
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Narla Mohandas
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Abdu I Alayash
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Elizabeth A Manci
- Department of Pathology, University of South Alabama School of Medicine, Birmingham, AL, USA
| | - John D Belcher
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Gregory M Vercellotti
- Department of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
28
|
Maffei M, Barone I, Scabia G, Santini F. The Multifaceted Haptoglobin in the Context of Adipose Tissue and Metabolism. Endocr Rev 2016; 37:403-16. [PMID: 27337111 DOI: 10.1210/er.2016-1009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is a low chronic inflammatory state because several inflammatory factors are increased in obese subjects, this having important implications for the onset of obesity-associated complications. The source of most of these inflammatory molecules is white adipose tissue (WAT), which upon excessive weight gain, becomes infiltrated with macrophages and lymphocytes and undergoes important changes in its gene expression. Haptoglobin (Hp), a typical marker of inflammation in clinical practice, main carrier of free hemoglobin, and long known to be part of the hepatic acute phase response, perfectly sits in the intersection between obesity and inflammation: it is expressed by adipocytes and its abundance in WAT and in plasma positively relates to the degree of adiposity. In the present review, we will analyze causes and consequences of Hp expression and regulation in WAT and how these relate to the obesity/inflammation paradigm and comorbidities.
Collapse
Affiliation(s)
- Margherita Maffei
- Institute of Clinical Physiology (M.M.), Italian National Research Council, 56124 Pisa, Italy; Laboratory of Neurobiology (I.B.), Scuola Normale Superiore, 56100 Pisa, Italy; and Obesity Center at the Endocrinology Unit (M.M., I.B., G.S., F.S.), Pisa University-Hospital Department of Clinical and Experimental Medicine, 56124 Pisa, Italy
| | - Ilaria Barone
- Institute of Clinical Physiology (M.M.), Italian National Research Council, 56124 Pisa, Italy; Laboratory of Neurobiology (I.B.), Scuola Normale Superiore, 56100 Pisa, Italy; and Obesity Center at the Endocrinology Unit (M.M., I.B., G.S., F.S.), Pisa University-Hospital Department of Clinical and Experimental Medicine, 56124 Pisa, Italy
| | - Gaia Scabia
- Institute of Clinical Physiology (M.M.), Italian National Research Council, 56124 Pisa, Italy; Laboratory of Neurobiology (I.B.), Scuola Normale Superiore, 56100 Pisa, Italy; and Obesity Center at the Endocrinology Unit (M.M., I.B., G.S., F.S.), Pisa University-Hospital Department of Clinical and Experimental Medicine, 56124 Pisa, Italy
| | - Ferruccio Santini
- Institute of Clinical Physiology (M.M.), Italian National Research Council, 56124 Pisa, Italy; Laboratory of Neurobiology (I.B.), Scuola Normale Superiore, 56100 Pisa, Italy; and Obesity Center at the Endocrinology Unit (M.M., I.B., G.S., F.S.), Pisa University-Hospital Department of Clinical and Experimental Medicine, 56124 Pisa, Italy
| |
Collapse
|
29
|
Yang H, Wang H, Levine YA, Gunasekaran MK, Wang Y, Addorisio M, Zhu S, Li W, Li J, de Kleijn DP, Olofsson PS, Warren HS, He M, Al-Abed Y, Roth J, Antoine DJ, Chavan SS, Andersson U, Tracey KJ. Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight 2016; 1:85375. [PMID: 27294203 DOI: 10.1172/jci.insight.85375] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Secreted by activated cells or passively released by damaged cells, extracellular HMGB1 is a prototypical damage-associated molecular pattern (DAMP) inflammatory mediator. During the course of developing extracorporeal approaches to treating injury and infection, we inadvertently discovered that haptoglobin, the acute phase protein that binds extracellular hemoglobin and targets cellular uptake through CD163, also binds HMGB1. Haptoglobin-HMGB1 complexes elicit the production of antiinflammatory enzymes (heme oxygenase-1) and cytokines (e.g., IL-10) in WT but not in CD163-deficient macrophages. Genetic disruption of haptoglobin or CD163 expression significantly enhances mortality rates in standardized models of intra-abdominal sepsis in mice. Administration of haptoglobin to WT and to haptoglobin gene-deficient animals confers significant protection. These findings reveal a mechanism for haptoglobin modulation of the inflammatory action of HMGB1, with significant implications for developing experimental strategies targeting HMGB1-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Huan Yang
- Laboratories of Biomedical Science and
| | - Haichao Wang
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | | | | | | | - Shu Zhu
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Wei Li
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | - Dominique Pv de Kleijn
- Laboratory of Cardiovascular Immunology, University Medical Center, Utrecht, Netherlands
| | | | - H Shaw Warren
- Infectious Disease Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | - Jesse Roth
- Diabetes and Diabetes-related Disorders, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Daniel J Antoine
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
30
|
Całkosiński I, Majda J, Terlecki G, Gostomska-Pampuch K, Małolepsza-Jarmołowska K, Sobolewska S, Całkosińska A, Kumala A, Gamian A. Dynamic Analysis of Changes of Protein Levels and Selected Biochemical Indices in Rat Serum in the Course of Experimental Pleurisy. Inflammation 2016; 39:1076-89. [PMID: 27083876 PMCID: PMC4883275 DOI: 10.1007/s10753-016-0339-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A significant role is played in inflammation by the liver, which, stimulated by inflammatory mediators, synthetizes plasma proteins with various dynamics. The purpose of these studies is to generate a detailed dynamic analysis of changes to concentrations of plasma and serum protein fractions and selected acute-phase proteins as well as nonspecific biochemical indices during the course of an induced pleurisy. The studies were conducted on female inbred Buffalo rats, which were divided into two groups: a control group (C) and an experimental group (IP) in which pleurisy was induced. In the IP group, significant changes in biochemical indices were observed between the 48th and 96th hours of pleurisy. A reduction of albumin, transferrin, urea, and creatinine concentrations was observed, while concentrations of the complement components C3 and C4, haptoglobin, and fibrinogen increased. An early increase of IL-1 was observed, while increases of IL-6 and TNF were noted in the later period. The maximum intensity of the processes described above occurred between the 72nd and 96th hours of pleurisy.
Collapse
Affiliation(s)
- Ireneusz Całkosiński
- Independent Laboratory of Neurotoxicology and Environmental Diagnostics, Wroclaw Medical University, Bartla 5, 51-618, Wroclaw, Poland
| | - Jacek Majda
- Department of Laboratory Diagnostics, 4th Military Hospital, Weigla 5, 50-981, Wroclaw, Poland
| | - Grzegorz Terlecki
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368, Wroclaw, Poland
| | - Kinga Gostomska-Pampuch
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| | | | - Sylwia Sobolewska
- Department of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38c, 51-630, Wroclaw, Poland
| | - Aleksandra Całkosińska
- Independent Laboratory of Neurotoxicology and Environmental Diagnostics, Wroclaw Medical University, Bartla 5, 51-618, Wroclaw, Poland
| | - Aleksandra Kumala
- Independent Laboratory of Neurotoxicology and Environmental Diagnostics, Wroclaw Medical University, Bartla 5, 51-618, Wroclaw, Poland
| | - Andrzej Gamian
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368, Wroclaw, Poland.,Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
31
|
Wong CT, Xu Y, Gupta A, Garnett JA, Matthews SJ, Hare SA. Structural analysis of haemoglobin binding by HpuA from the Neisseriaceae family. Nat Commun 2015; 6:10172. [PMID: 26671256 PMCID: PMC4703857 DOI: 10.1038/ncomms10172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022] Open
Abstract
The Neisseriaceae family of bacteria causes a range of diseases including meningitis, septicaemia, gonorrhoea and endocarditis, and extracts haem from haemoglobin as an important iron source within the iron-limited environment of its human host. Herein we report crystal structures of apo- and haemoglobin-bound HpuA, an essential component of this haem import system. The interface involves long loops on the bacterial receptor that present hydrophobic side chains for packing against the surface of haemoglobin. Interestingly, our structural and biochemical analyses of Kingella denitrificans and Neisseria gonorrhoeae HpuA mutants, although validating the interactions observed in the crystal structure, show how Neisseriaceae have the fascinating ability to diversify functional sequences and yet retain the haemoglobin binding function. Our results present the first description of HpuA's role in direct binding of haemoglobin. The Neisseriaceae bacteria family extract heame from the haemoglobin of its host, the HpuA protein is part of this system. Here, the authors report crystal structures of apo- and haemoglobin-bound HpuA and analyse mutants to examine the interaction between HpuA and haemoglobin.
Collapse
Affiliation(s)
- Chi T Wong
- Department of Life Sciences, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Akshari Gupta
- Department of Life Sciences, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - James A Garnett
- Department of Life Sciences, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Steve J Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Stephen A Hare
- Department of Life Sciences, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
32
|
Garibay-Cerdenares OL, Hernández-Ramírez VI, Osorio-Trujillo JC, Gallardo-Rincón D, Talamás-Rohana P. Haptoglobin and CCR2 receptor expression in ovarian cancer cells that were exposed to ascitic fluid: exploring a new role of haptoglobin in the tumoral microenvironment. Cell Adh Migr 2015. [PMID: 26211665 PMCID: PMC4955374 DOI: 10.1080/19336918.2015.1035504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Haptoglobin (Hp) is an acute-phase protein that is produced by the liver to capture the iron that is present in the blood circulation, thus avoiding its accumulation in the blood. Moreover, Hp has been detected in a wide variety of tissues, in which it performs various functions. In addition, this protein is considered a potential biomarker in many diseases, such as cancer, including ovarian carcinoma; however, its participation in the cancerous processes has not yet been determined. The objective of this work was to demonstrate the expression of Hp and its receptor CCR2 in the ovarian cancer cells and its possible involvement in the process of cell migration through changes in the rearrangement of the actin cytoskeleton using western blot and wound-healing assays and confirming by confocal microscopy. Ovarian cancer cells express both Hp and its receptor CCR2 but only after exposure to ascitic fluid, inducing moderated cell migration. However, when the cells are exposed to exogenous Hp, the expression of CCR2 is induced together with drastic changes in the actin cytoskeleton rearrangement. At the same time, Hp induced cell migration in a much more efficient manner than did ascitic fluid. These effects were blocked when the CCR2 synthetic antagonist RS102895 was used to pretreat the cells. These results suggest that Hp-induced changes in the cell morphology, actin cytoskeleton structure, and migration ability of tumor cells, is possibly “preparing” these cells for the potential induction of the metastatic phenotype.
Collapse
Affiliation(s)
- O L Garibay-Cerdenares
- a Departamento de Infectómica y Patogénesis Molecular , CINVESTAV, IPN.,c Present address: Unidad Académica de Ciencias Químico Biológicas; Universidad Autónoma de Guerrero (Cátedra CONACYT)
| | | | | | - D Gallardo-Rincón
- b Departamento de Oncología Médica ; Instituto Nacional de Cancerología , México, D.F
| | - P Talamás-Rohana
- a Departamento de Infectómica y Patogénesis Molecular , CINVESTAV, IPN
| |
Collapse
|
33
|
Estep TN. Pharmacokinetics and mechanisms of plasma removal of hemoglobin-based oxygen carriers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 43:203-15. [PMID: 26024447 DOI: 10.3109/21691401.2015.1047501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The circulatory persistence, distribution, and metabolism of hemoglobin-based oxygen carriers (HBOCs) is a major determinant of their safety and efficacy. In this communication, published data on the pharmacokinetics and routes of plasma elimination of HBOCs are summarized and evaluated. The circulating half-life of HBOCs is dose-dependent in both animals and humans. Half-life also increases with molecular weight in animals, at least up to the MDa range. The functional half-life of HBOCs is diminished by as much as 40% due to oxidation of the heme group relative to the overall rate of removal of hemoglobin (Hb) from plasma. Kidney excretion of HBOCs is greatly diminished compared to that of unmodified Hb, but the liver remains a primary site of catabolism. Both hepatocytes and Kupffer cells have been implicated in receptor-mediated HBOC uptake. Removal also occurs in the spleen and/or bone marrow and probably at dispersed sites in the endothelium as well. HBOCs extravasate into the lymph at a rate inversely proportional to their molecular weight and are taken up by monocyte/macrophage CD163 receptors, both as free Hb and in complexes with haptoglobin (Hp). The interactions with both Hp and the CD163 receptor are altered by Hb modification. However, monocyte/macrophage uptake may not be a quantitatively important route for the removal of clinically relevant doses of HBOCs. The relative contributions of different removal pathways have yet to be comprehensively determined, particularly in humans.
Collapse
|
34
|
Abstract
The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K(+) efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release.
Collapse
|
35
|
Haptoglobin is required to prevent oxidative stress and muscle atrophy. PLoS One 2014; 9:e100745. [PMID: 24959824 PMCID: PMC4069100 DOI: 10.1371/journal.pone.0100745] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/29/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Oxidative stress (OS) plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp) is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. RESULTS We used Hp knockout mice (Hp-/-) to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD), OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. CONCLUSIONS Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges.
Collapse
|
36
|
Shih AW, McFarlane A, Verhovsek M. Haptoglobin testing in hemolysis: measurement and interpretation. Am J Hematol 2014; 89:443-7. [PMID: 24809098 DOI: 10.1002/ajh.23623] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Haptoglobin is primarily produced in the liver and is functionally important for binding free hemoglobin from lysed red cells in vivo, preventing its toxic effects. Because haptoglobin levels become depleted in the presence of large amounts of free hemoglobin, decreased haptoglobin is a marker of hemolysis. Despite its ubiquity and importance, a paucity of literature makes testing difficult to interpret. This review highlights the many physiological roles that have been recently elucidated in the literature. Different methodologies have been developed for testing, including spectrophotometry, immunoreactive methods, and gel electrophoresis. These are covered along with their respective advantages and disadvantages. As there is no single gold standard for hemolysis, validation studies must rely on a combination of factors, which are reviewed in this article. Pitfalls and limitations of testing are also addressed. False positives can occur in improper specimen preparations, cirrhosis, elevated estrogen states, and hemodilution. False negatives can occur in hypersplenism and medications such as androgens and corticosteroids. Haptoglobin testing in the setting of inflammation is additionally discussed as interpretation can be difficult in this setting. Given the widespread use of haptoglobin testing, it is vital that clinicians and laboratory staff understand the principles and correct interpretation of this test.
Collapse
Affiliation(s)
- Andrew W.Y. Shih
- Department of Hematology and Thromboembolism; McMaster University; Hamilton Ontario Canada
| | - Andrew McFarlane
- Department of Hematology and Thromboembolism; McMaster University; Hamilton Ontario Canada
- Department of Medicine; McMaster University; Hamilton Ontario Canada
| | - Madeleine Verhovsek
- Department of Hematology and Thromboembolism; McMaster University; Hamilton Ontario Canada
- Department of Medicine; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
37
|
Baek JH, Zhang X, Williams MC, Schaer DJ, Buehler PW, D'Agnillo F. Extracellular Hb enhances cardiac toxicity in endotoxemic guinea pigs: protective role of haptoglobin. Toxins (Basel) 2014; 6:1244-59. [PMID: 24691127 PMCID: PMC4014731 DOI: 10.3390/toxins6041244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 12/13/2022] Open
Abstract
Endotoxemia plays a major causative role in the myocardial injury and dysfunction associated with sepsis. Extracellular hemoglobin (Hb) has been shown to enhance the pathophysiology of endotoxemia. In the present study, we examined the myocardial pathophysiology in guinea pigs infused with lipopolysaccharide (LPS), a Gram-negative bacterial endotoxin, and purified Hb. We also examined whether the administration of the Hb scavenger haptoglobin (Hp) could protect against the effects observed. Here, we show that Hb infusion following LPS administration, but not either insult alone, increased myocardial iron deposition, heme oxygenase-1 expression, phagocyte activation and infiltration, as well as oxidative DNA damage and apoptosis assessed by 8-hydroxy-2'-deoxyguanosine (8-OHdG) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) immunostaining, respectively. Co-administration of Hp significantly attenuated the myocardial events induced by the combination of LPS and Hb. These findings may have relevant therapeutic implications for the management of sepsis during concomitant disease or clinical interventions associated with the increased co-exposures to LPS and Hb, such as trauma, surgery or massive blood transfusions.
Collapse
Affiliation(s)
- Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | - Xiaoyuan Zhang
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | - Matthew C Williams
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | - Dominik J Schaer
- Division of Internal Medicine, University Hospital, CH-8091 Zurich, Switzerland.
| | - Paul W Buehler
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | - Felice D'Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, Mukhopadhyay CK, Singh A. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 2014; 20:1324-63. [PMID: 23815406 PMCID: PMC3935772 DOI: 10.1089/ars.2012.4931] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis. A complete understanding of the molecular events leading to this phenotype is lacking partly because of the complex regulation of iron homeostasis within the brain. Since systemic organs and the brain share several iron regulatory mechanisms and iron-modulating proteins, dysfunction of a specific pathway or selective absence of iron-modulating protein(s) in systemic organs has provided important insights into the maintenance of iron homeostasis within the brain. Here, we review recent information on the regulation of iron uptake and utilization in systemic organs and within the complex environment of the brain, with particular emphasis on the underlying mechanisms leading to brain iron mis-metabolism in specific neurodegenerative conditions. Mouse models that have been instrumental in understanding systemic and brain disorders associated with iron mis-metabolism are also described, followed by current therapeutic strategies which are aimed at restoring brain iron homeostasis in different neurodegenerative conditions. We conclude by highlighting important gaps in our understanding of brain iron metabolism and mis-metabolism, particularly in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Neena Singh
- 1 Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang Y, Zhang Y, Zhao L, Yin Y, Wang Q, Zhou H. Addition of haptoglobin to RBCs storage, a new strategy to improve quality of stored RBCs and transfusion. Med Hypotheses 2013; 82:125-8. [PMID: 24365278 DOI: 10.1016/j.mehy.2013.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/18/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Transfusion of red blood cells (RBCs) is an effective therapy in surgery and critical care. Comparing to fresh RBCs, the therapeutic effect of stored RBCs is greatly limited because of its loss of NO during storage, which leads to vasodilatation dysfunction upon transfusion. So far, there is no effective solution to this problem. Here, we summarize the protective effects of Haptoglobin (Hp) in RBCs storage and transfusion, by using data extracted from literature review. Because Free Hemoglobin (FHb) is the major factor responsible for rapid NO loss during storage, addition of FHb-sequestering protein Haptoglobin will prevent the loss of NO and improve the quality of stored RBCs.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Yuhua Zhang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Lian Zhao
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Yujing Yin
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China
| | - Quanli Wang
- Department of Blood Transfusion, Affiliated Hospital of Academy of Military Medical Sciences, No. 8 Dongda Street, FengTai, Beijing 100071, China.
| | - Hong Zhou
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, No. 27 Taiping Road, HaiDian, Beijing 100850, China.
| |
Collapse
|
40
|
An insight into the changes in human plasma proteome on adaptation to hypobaric hypoxia. PLoS One 2013; 8:e67548. [PMID: 23844025 PMCID: PMC3699623 DOI: 10.1371/journal.pone.0067548] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022] Open
Abstract
Adaptation to hypobaric hypoxia is required by animals and human in several physiological and pathological situations. Hypobaric hypoxia is a pathophysiological condition triggering redox status disturbances of cell organization leading, via oxidative stress, to proteins, lipids, and DNA damage. Identifying the molecular variables playing key roles in this process would be of paramount importance to shed light on the mechanisms known to counteract the negative effects of oxygen lack. To obtain a molecular signature, changes in the plasma proteome were studied by using proteomic approach. To enrich the low-abundance proteins in human plasma, two highly abundant proteins, albumin and IgG, were first removed. By comparing the plasma proteins of high altitude natives with those of a normal control group, several proteins with a significant alteration were found. The up-regulated proteins were identified as vitamin D-binding protein, hemopexin, alpha-1-antitrypsin, haptoglobin β-chain, apolipoprotein A1, transthyretin and hemoglobin beta chain. The down-regulated proteins were transferrin, complement C3, serum amyloid, complement component 4A and plasma retinol binding protein. Among these proteins, the alterations of transthyretin and transferrin were further confirmed by ELISA and Western blotting analysis. Since all the up- and down- regulated proteins identified above are well-known inflammation inhibitors and play a positive anti-inflammatory role, these results show that there is some adaptive mechanism that sustains the inflammation balance in high altitude natives exposed to hypobaric hypoxia.
Collapse
|
41
|
Functional significance of glutamate-cysteine ligase modifier for erythrocyte survival in vitro and in vivo. Cell Death Differ 2013; 20:1350-8. [PMID: 23787995 DOI: 10.1038/cdd.2013.70] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/24/2013] [Accepted: 05/14/2013] [Indexed: 01/21/2023] Open
Abstract
Erythrocytes endure constant exposure to oxidative stress. The major oxidative stress scavenger in erythrocytes is glutathione. The rate-limiting enzyme for glutathione synthesis is glutamate-cysteine ligase, which consists of a catalytic subunit (GCLC) and a modifier subunit (GCLM). Here, we examined erythrocyte survival in GCLM-deficient (gclm(-/-)) mice. Erythrocytes from gclm(-/-) mice showed greatly reduced intracellular glutathione. Prolonged incubation resulted in complete lysis of gclm(-/-) erythrocytes, which could be reversed by exogenous delivery of the antioxidant Trolox. To test the importance of GCLM in vivo, mice were treated with phenylhydrazine (PHZ; 0.07 mg/g b.w.) to induce oxidative stress. Gclm(-/-) mice showed dramatically increased hemolysis compared with gclm(+/+) controls. In addition, PHZ-treated gclm(-/-) mice displayed markedly larger accumulations of injured erythrocytes in the spleen than gclm(+/+) mice within 24 h of treatment. Iron staining indicated precipitations of the erythrocyte-derived pigment hemosiderin in kidney tubules of gclm(-/-) mice and none in gclm(+/+) controls. In fact, 24 h after treatment, kidney function began to diminish in gclm(-/-) mice as evident from increased serum creatinine and urea. Consequently, while all PHZ-treated gclm(+/+) mice survived, 90% of PHZ-treated gclm(-/-) mice died within 5 days of treatment. In vitro, upon incubation in the absence or presence of additional oxidative stress, gclm(-/-) erythrocytes exposed significantly more phosphatidylserine, a cell death marker, than gclm(+/+) erythrocytes, an effect at least partially due to increased cytosolic Ca(2+) concentration. Under resting conditions, gclm(-/-) mice exhibited reticulocytosis, indicating that the enhanced erythrocyte death was offset by accelerated erythrocyte generation. GCLM is thus indispensable for erythrocyte survival, in vitro and in vivo, during oxidative stress.
Collapse
|
42
|
Etzerodt A, Kjolby M, Nielsen MJ, Maniecki M, Svendsen P, Moestrup SK. Plasma clearance of hemoglobin and haptoglobin in mice and effect of CD163 gene targeting disruption. Antioxid Redox Signal 2013; 18:2254-63. [PMID: 22793784 DOI: 10.1089/ars.2012.4605] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIM In humans, plasma haptoglobin (Hp) and the macrophage receptor CD163 promote a fast scavenging of hemoglobin (Hb). In the present study, we have compared the mouse and human CD163-mediated binding and uptake of Hb and HpHb complex in vitro and characterized the CD163-mediated plasma clearance of Hb in CD163 gene knockout mice and controls. RESULTS Contrary to human Hp, mouse Hp did not promote high-affinity binding to CD163. This difference between mouse and man was evident both by analysis of the binding of purified proteins and by ligand uptake studies in CD163-transfected cells. Plasma clearance studies in mice showed a fast clearance (half-life few minutes) of fluorescently labeled mouse Hb with the highest uptake in the kidney and liver. HPLC analysis of serum showed that the clearance curve exhibited a two-phase decay with a faster clearance of Hb than plasma-formed HpHb. In CD163-deficient mice, the overall clearance of Hb was slightly slower and followed a one-phase decay. INNOVATION AND CONCLUSION In conclusion, mouse Hp does not promote high-affinity binding of mouse Hb to CD163, and noncomplexed mouse Hb has a higher CD163 affinity than human Hb has. Moreover, CD163-mediated uptake in mice seems to only account for a part of the Hb clearance. The new data further underscore the fact that the Hp system in man seems to have a broader and more sophisticated role. This has major implications in the translation of data on Hb metabolism from mouse to man.
Collapse
Affiliation(s)
- Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Ratanasopa K, Chakane S, Ilyas M, Nantasenamat C, Bulow L. Trapping of human hemoglobin by haptoglobin: molecular mechanisms and clinical applications. Antioxid Redox Signal 2013; 18:2364-74. [PMID: 22900934 DOI: 10.1089/ars.2012.4878] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIGNIFICANCE Haptoglobin (Hp) is an abundant plasma protein controlling the fate of hemoglobin (Hb) released from red blood cells after intravascular hemolysis. The complex formed between Hp and Hb is extraordinary strong, and once formed, this protein-protein association can be considered irreversible. RECENT ADVANCES A model of the Hp-Hb complex has been generated and the first steps toward understanding the mechanism behind the shielding effects of Hp have been taken. The clinical potential of the complex for modulating inflammatory reactions and for functioning as an Hb-based oxygen carrier have been described. CRITICAL ISSUES The three-dimensional structure of the Hp-Hb complex is unknown. Moreover, Hp is not a homogeneous protein. There are two common alleles at the Hp genetic locus denoted Hp1 and Hp2, which when analyzed on the protein levels result in differences between their physiological behavior, particularly in their shielding against Hb-driven oxidative stress. Additional cysteine residues on the α-subunit allow Hp2 to form a variety of native multimers, which influence the biophysical and biological properties of Hp. The multimeric conformations, in turn, also modulate the glycosylation patterns of Hp by steric hindrance. FUTURE DIRECTIONS A detailed analysis of the influence of Hp glycosylation will be instrumental to generate a deeper understanding of its biological function. Several pathological conditions also modify the glycan compositions allowing Hp to be potentially used as a marker protein for these disorders.
Collapse
|
44
|
Nielsen MJ, Andersen CBF, Moestrup SK. CD163 binding to haptoglobin-hemoglobin complexes involves a dual-point electrostatic receptor-ligand pairing. J Biol Chem 2013; 288:18834-41. [PMID: 23671278 DOI: 10.1074/jbc.m113.471060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formation of the haptoglobin (Hp)-hemoglobin (Hb) complex in human plasma leads to a high affinity recognition by the endocytic macrophage receptor CD163. A fast segregation of Hp-Hb from CD163 occurs at endosomal conditions (pH <6.5). The ligand binding site of CD163 has previously been shown to involve the scavenger receptor cysteine-rich (SRCR) domain 3. This domain and the adjacent SRCR domain 2 of CD163 contain a consensus motif for a calcium-coordinated acidic amino acid triad cluster as originally identified in the SRCR domain of the scavenger receptor MARCO. Here we show that site-directed mutagenesis in each of these acidic triads of SRCR domains 2 and 3 abrogates the high affinity binding of recombinant CD163 to Hp-Hb. In the ligand, Hp Arg-252 and Lys-262, both present in a previously identified CD163 binding loop of Hp, were revealed as essential residues for the high affinity receptor binding. These findings are in accordance with pairing of the calcium-coordinated acidic clusters in SRCR domains 2 and 3 with the two basic Arg/Lys residues in the Hp loop. Such a two-point electrostatic pairing is mechanistically similar to the pH-sensitive pairings disclosed in crystal structures of ligands in complex with tandem LDL receptor repeats or tandem CUB domains in other endocytic receptors.
Collapse
|
45
|
Landis RC, Philippidis P, Domin J, Boyle JJ, Haskard DO. Haptoglobin Genotype-Dependent Anti-Inflammatory Signaling in CD163(+) Macrophages. Int J Inflam 2013; 2013:980327. [PMID: 23710416 PMCID: PMC3655560 DOI: 10.1155/2013/980327] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/03/2013] [Indexed: 01/15/2023] Open
Abstract
Intraplaque hemorrhage causes adaptive remodelling of macrophages towards a protective phenotype specialized towards handling iron and lipid overload, denoted Mhem. The Mhem phenotype expresses elevated levels of hemoglobin (Hb) scavenger receptor, CD163, capable of endocytosing pro-oxidant free Hb complexed to acute phase protein haptoglobin (Hp). It is notable that individuals homozygous for the Hp 2 allele (a poorer antioxidant) are at increased risk of cardiovascular disease compared to the Hp 1 allele. In this study, we examined whether scavenging of polymorphic Hp:Hb complexes differentially generated downstream anti-inflammatory signals in cultured human macrophages culminating in interleukin (IL)-10 secretion. We describe an anti-inflammatory signalling pathway involving phosphatidylinositol-3-kinase activation upstream of Akt phosphorylation (pSer473Akt) and IL-10 secretion. The pathway is mediated specifically through CD163 and is blocked by anti-CD163 antibody or phagocytosis inhibitor. However, levels of pSer473Akt and IL-10 were significantly diminished when scavenging polymorphic Hp2-2:Hb complexes compared to Hp1-1:Hb complexes (P < 0.05). Impaired anti-inflammatory macrophage signaling through a CD163/pAkt/IL-10 axis may thus represent a possible Hp2-2 disease mechanism in atherosclerosis.
Collapse
Affiliation(s)
- R. Clive Landis
- Edmund Cohen Laboratory for Vascular Research, Chronic Disease Research Centre, The University of the West Indies Bridgetown BB11115, Barbados
- Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Pandelis Philippidis
- Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Jan Domin
- Department of Life Sciences, University of Bedfordshire, Luton LU1 3JU, UK
| | - Joseph J. Boyle
- Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Dorian O. Haskard
- Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
46
|
Subramanian K, Du R, Tan NS, Ho B, Ding JL. CD163 and IgG Codefend against Cytotoxic Hemoglobin via Autocrine and Paracrine Mechanisms. THE JOURNAL OF IMMUNOLOGY 2013; 190:5267-78. [DOI: 10.4049/jimmunol.1202648] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Huntoon KM, Russell L, Tracy E, Barbour KW, Li Q, Shrikant PA, Berger FG, Garrett-Sinha LA, Baumann H. A unique form of haptoglobin produced by murine hematopoietic cells supports B-cell survival, differentiation and immune response. Mol Immunol 2013; 55:345-54. [PMID: 23548836 DOI: 10.1016/j.molimm.2013.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 01/25/2023]
Abstract
Haptoglobin (Hp), an acute phase reactant and major hemoglobin-binding protein, has a unique role in host immunity. Previously, we demonstrated that Hp-deficient C57BL/6J mice exhibit stunted development of mature T- and B-cells resulting in markedly lower levels of antigen-specific IgG. The current study identified leukocyte-derived pro-Hp as a relevant mediator of an optimal immune response. Reconstitution of Hp-/- mice with Hp+/+ bone marrow restored normal immune response to ovalbumin. Furthermore, transplanting a mixture of bone marrow-derived from B-cell-deficient and Hp-deficient mice into Rag1-/-/Hp+/+ recipients resulted in mice with a defective immune response similar to Hp-/- mice. This suggests that Hp generated by the B-cell compartment, rather than by the liver, is functionally contributing to a normal immune response. Leukocytes isolated from the spleen express Hp and release a non-proteolytically processed pro-Hp that uniquely differed from liver-derived Hp by not binding to hemoglobin. While addition of purified plasma Hp to cultured B-cells did not alter responses, pro-Hp isolated from splenocytes enhanced cellular proliferation and production of IgG. Collectively, the comparison of wild-type and Hp-deficient mice suggests a novel regulatory activity for lymphocyte-derived Hp, including Hp produced by B-cells themselves, that supports in vivo survival and functional differentiation of the B-cells to ensure an optimal immune response.
Collapse
Affiliation(s)
- Kristin M Huntoon
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Costa MM, Dos Anjos Lopes ST, França RT, da Silva AS, Paim FC, Palma HE, Maciel RM, Dornelles GL, de Azevedo MI, Tonin AA, Santurio JM, Duarte MMMF, Monteiro SG. Role of acute phase proteins in the immune response of rabbits infected with Trypanosoma evansi. Res Vet Sci 2013; 95:182-8. [PMID: 23462620 DOI: 10.1016/j.rvsc.2013.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/04/2013] [Accepted: 01/25/2013] [Indexed: 12/01/2022]
Abstract
The aim of this study was to characterize the response of acute phase proteins (APP) in rabbits experimentally infected with Trypanosoma evansi (T. evansi), and to relate the findings with serum immunoglobulins levels, in order to verify the relation between APP and the immune response of rabbits. A total of 12 animals were used in this experiment and divided into 2 groups, control and infected, of six rabbits each. The experimental period was 118 days, and blood was collected on days 0, 5, 20, 35, 65, 95 and 118 post-infection (PI). The infection with T. evansi stimulated APP and immunoglobulins production, once the infected animals showed an increase in C-reactive protein, haptoglobin, alpha 2-macroglobulin and IgM levels. The elevation in IgM levels observed in this study, when related to the increase in C-reactive protein and haptoglobin levels, suggests the involvement of these proteins in host defense against flagellated protozoa, with possible participation in the control of the parasitemia in rabbits infected with T. evansi.
Collapse
Affiliation(s)
- Márcio Machado Costa
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria - RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kurtz SL, Foreman O, Bosio CM, Anver MR, Elkins KL. Interleukin-6 is essential for primary resistance to Francisella tularensis live vaccine strain infection. Infect Immun 2013; 81:585-97. [PMID: 23230288 PMCID: PMC3553820 DOI: 10.1128/iai.01249-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/03/2012] [Indexed: 11/20/2022] Open
Abstract
We employed Francisella tularensis live vaccine strain (LVS) to study mechanisms of protective immunity against intracellular pathogens and, specifically, to understand protective correlates. One potential molecular correlate identified previously was interleukin-6 (IL-6), a cytokine with pleotropic roles in immunity, including influences on T and B cell functions. Given its role as an immune modulator and the correlation with successful anti-LVS vaccination, we examined the role IL-6 plays in the host response to LVS. IL-6-deficient (IL-6 knockout [KO]) mice infected with LVS intradermally or intranasally or anti-IL-6-treated mice, showed greatly reduced 50% lethal doses compared to wild-type (WT) mice. Increased susceptibility was not due to altered splenic immune cell populations during infection or decreased serum antibody production, as IL-6 KO mice had similar compositions of each compared to WT mice. Although LVS-infected IL-6 KO mice produced much less serum amyloid A and haptoglobin (two acute-phase proteins) than WT mice, there were no other obvious pathophysiological differences between LVS-infected WT and IL-6 KO mice. IL-6 KO or WT mice that survived primary LVS infection also survived a high-dose LVS secondary challenge. Using an in vitro overlay assay that measured T cell activation, cytokine production, and abilities of primed splenocytes to control intracellular LVS growth, we found that IL-6 KO total splenocytes or purified T cells were slightly defective in controlling intracellular LVS growth but were equivalent in cytokine production. Taken together, IL-6 is an integral part of a successful immune response to primary LVS infection, but its exact role in precipitating adaptive immunity remains elusive.
Collapse
Affiliation(s)
- Sherry L. Kurtz
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Oded Foreman
- The Jackson Laboratory, Sacramento, California, USA
| | - Catharine M. Bosio
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Miriam R. Anver
- Pathology/Histotechnology Laboratory, SAIC—Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Karen L. Elkins
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland, USA
| |
Collapse
|
50
|
Beloiartsev A, Baron DM, Yu B, Bloch KD, Zapol WM. Hemoglobin infusion does not alter murine pulmonary vascular tone. Nitric Oxide 2013; 30:1-8. [PMID: 23313572 DOI: 10.1016/j.niox.2012.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/18/2012] [Accepted: 12/28/2012] [Indexed: 12/31/2022]
Abstract
Plasma hemoglobin (Hb) scavenges endothelium-derived nitric oxide (NO), producing systemic and pulmonary vasoconstriction in many species. We hypothesized that i.v. administration of murine cell-free Hb would produce pulmonary vasoconstriction and enhance hypoxic pulmonary vasoconstriction (HPV) in mice. To assess the impact of plasma Hb on basal pulmonary vascular tone in anesthetized mice we measured left lung pulmonary vascular resistance (LPVRI) before and after infusion of Hb at thoracotomy. To confirm the findings obtained at thoracotomy, measurements of right ventricular systolic pressure (RVSP) and systemic arterial pressure (SAP) were obtained in closed-chest wild-type mice. To elucidate whether pretreatment with Hb augments HPV we assessed the increase in LPVRI before and during regional lung hypoxia produced by left mainstem bronchial occlusion (LMBO) in wild-type mice pretreated with Hb. Infusion of Hb increased SAP but did not change pulmonary arterial pressure (PAP), left lung pulmonary arterial flow (QLPA) or LPVRI in either wild-type or diabetic mice with endothelial dysfunction. Scavenging of NO by plasma Hb did not alter HPV in wild-type mice. Inhibition of NO synthase with l-NAME did not change the basal LPVRI, but augmented HPV during LMBO. Our data suggest that scavenging of NO by plasma Hb does not alter pulmonary vascular tone in mice. Therefore, generation of NO in the pulmonary circulation is unlikely to be responsible for the low basal pulmonary vascular tone of mice.
Collapse
Affiliation(s)
- Arkadi Beloiartsev
- Postdoctoral Fellow, Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114-2696, USA
| | | | | | | | | |
Collapse
|