1
|
Giri H, Biswas I, Rezaie AR. Thrombomodulin: a multifunctional receptor modulating the endothelial quiescence. J Thromb Haemost 2024; 22:905-914. [PMID: 38266676 PMCID: PMC10960680 DOI: 10.1016/j.jtha.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Thrombomodulin (TM) is a type 1 receptor best known for its function as an anticoagulant cofactor for thrombin activation of protein C on the surface of vascular endothelial cells. In addition to its anticoagulant cofactor function, TM also regulates fibrinolysis, complement, and inflammatory pathways. TM is a multidomain receptor protein with a lectin-like domain at its N-terminus that has been shown to exhibit direct anti-inflammatory functions. This domain is followed by 6 epidermal growth factor-like domains that support the interaction of TM with thrombin. The interaction inhibits the procoagulant function of thrombin and enables the protease to regulate the anticoagulant and fibrinolytic pathways by activating protein C and thrombin-activatable fibrinolysis inhibitor. TM has a Thr/Ser-rich region immediately above the membrane surface that harbors chondroitin sulfate glycosaminoglycans, and this region is followed by a single-spanning transmembrane and a C-terminal cytoplasmic domain. The structure and physiological function of the extracellular domains of TM have been extensively studied, and numerous excellent review articles have been published. However, the physiological function of the cytoplasmic domain of TM has remained poorly understood. Recent data from our laboratory suggest that intracellular signaling by the cytoplasmic domain of TM plays key roles in maintaining quiescence by modulating phosphatase and tensin homolog signaling in endothelial cells. This article briefly reviews the structure and function of extracellular domains of TM and focuses on the mechanism and possible physiological importance of the cytoplasmic domain of TM in modulating phosphatase and tensin homolog signaling in endothelial cells.
Collapse
Affiliation(s)
- Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
2
|
Giri H, Biswas I, Rezaie AR. Thrombomodulin Regulates PTEN/AKT Signaling Axis in Endothelial Cells. Arterioscler Thromb Vasc Biol 2024; 44:352-365. [PMID: 38059351 PMCID: PMC10841639 DOI: 10.1161/atvbaha.123.320000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND We recently demonstrated that deletion of thrombomodulin gene from endothelial cells results in upregulation of proinflammatory phenotype. In this study, we investigated the molecular basis for the altered phenotype in thrombomodulin-deficient (TM-/-) cells. METHODS Different constructs containing deletions or mutations in the cytoplasmic domain of thrombomodulin were prepared and introduced to TM-/- cells. The phenotype of cells expressing different derivatives of thrombomodulin and tissue samples of thrombomodulin-knockout mice were analyzed for expression of distinct regulatory genes in established signaling assays. RESULTS The phosphatase and tensin homolog were phosphorylated and its recruitment to the plasma membrane was impaired in TM-/- cells, leading to hyperactivation of AKT (protein kinase B) and phosphorylation-dependent nuclear exclusion of the transcription factor, forkhead box O1. The proliferative/migratory properties of TM-/- cells were enhanced, and cells exhibited hypersensitivity to stimulation by angiopoietin 1 and vascular endothelial growth factor. Reexpression of wild-type thrombomodulin in TM-/- cells normalized the cellular phenotype; however, thrombomodulin lacking its cytoplasmic domain failed to restore the normal phenotype in TM-/- cells. Increased basal permeability and loss of VE-cadherin were restored to normal levels by reexpression of wild-type thrombomodulin but not by a thrombomodulin construct lacking its cytoplasmic domain. A thrombomodulin cytoplasmic domain deletion mutant containing 3-membrane-proximal Arg-Lys-Lys residues restored the barrier-permeability function of TM-/- cells. Enhanced phosphatase and tensin homolog phosphorylation and activation of AKT and mTORC1 (mammalian target of rapamycin complex 1) were also observed in the liver of thrombomodulin-KO mice. CONCLUSIONS These results suggest that the cytoplasmic domain of thrombomodulin interacts with the actin cytoskeleton and plays a crucial role in regulation of phosphatase and tensin homolog/AKT signaling in endothelial cells.
Collapse
Affiliation(s)
- Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - Alireza R. Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
3
|
Oda H, Nagamatsu T, Osuga Y. Thrombomodulin and pregnancy in the limelight: Insights into the therapeutic aspect of thrombomodulin in pregnancy complications. J Thromb Haemost 2022; 20:1040-1055. [PMID: 35191182 DOI: 10.1111/jth.15680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thrombomodulin (TM) is a transmembrane glycoprotein expressed on the endothelial cell functioning as a cofactor in the anticoagulation system. However, aside from anticoagulation, recent studies have revealed its multiple organ protective roles such as anti-inflammation, angiogenesis, and cell proliferation, which may redefine the function of TM. Although TM is predominantly expressed on placental trophoblasts, the physiological role of TM during pregnancy remains unclear. Because the understanding of TM function has drastically progressed, these new discoveries shed light on the unknown activities of placental TM. Moreover, the clinical application of recombinant TM (rTM) has opened the possibility of TM as a therapeutic target for pregnancy complications. OBJECTIVES Here, we comprehensively review the studies elucidating the role of TM during pregnancy from both classic and newly discovered perspectives, and seek for its potential as a therapeutic target for pregnancy complications. METHODS Basic research using trophoblast cells and transgenic mice, as well as cohort studies of inherited TM deficiency and clinical trials of rTM were summarized, which led us to further discuss the clinical application of rTM as a novel therapeutic for pregnancy complications. RESULTS AND CONCLUSION Accumulating evidence suggest the relevance of placental TM deficiency in pregnancy complications such as miscarriage, fetal growth restriction, and preeclampsia. Most importantly, promising results in animal studies and clinical trials further assure the possibility of rTM as an optimal therapeutic for such conditions. The therapeutic potential of TM raised throughout this review could drastically change the clinical approach to pregnancy complication and improve maternal outcomes.
Collapse
Affiliation(s)
- Hiroko Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
4
|
Khan KA, McMurray JL, Mohammed F, Bicknell R. C-type lectin domain group 14 proteins in vascular biology, cancer and inflammation. FEBS J 2019; 286:3299-3332. [PMID: 31287944 PMCID: PMC6852297 DOI: 10.1111/febs.14985] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
The C‐type lectin domain (CTLD) group 14 family of transmembrane glycoproteins consist of thrombomodulin, CD93, CLEC14A and CD248 (endosialin or tumour endothelial marker‐1). These cell surface proteins exhibit similar ectodomain architecture and yet mediate a diverse range of cellular functions, including but not restricted to angiogenesis, inflammation and cell adhesion. Thrombomodulin, CD93 and CLEC14A can be expressed by endothelial cells, whereas CD248 is expressed by vasculature associated pericytes, activated fibroblasts and tumour cells among other cell types. In this article, we review the current literature of these family members including their expression profiles, interacting partners, as well as established and speculated functions. We focus primarily on their roles in the vasculature and inflammation as well as their contributions to tumour immunology. The CTLD group 14 family shares several characteristic features including their ability to be proteolytically cleaved and engagement of some shared extracellular matrix ligands. Each family member has strong links to tumour development and in particular CD93, CLEC14A and CD248 have been proposed as attractive candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Canada
| | - Jack L McMurray
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Roy Bicknell
- Institutes of Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|
5
|
Thrombomodulin Regulation of Mitogen-Activated Protein Kinases. Int J Mol Sci 2019; 20:ijms20081851. [PMID: 30991642 PMCID: PMC6514922 DOI: 10.3390/ijms20081851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
The multifaceted role of mitogen-activated protein kinases (MAPKs) in modulating signal transduction pathways in inflammatory conditions such as infection, cardiovascular disease, and cancer has been well established. Recently, coagulation factors have also emerged as key players in regulating intracellular signaling pathways during inflammation. Among coagulation factors, thrombomodulin, as a high affinity receptor for thrombin on vascular endothelial cells, has been discovered to be a potent anti-inflammatory and anti-tumorigenic signaling molecule. The protective signaling function of thrombomodulin is separate from its well-recognized role in the clotting cascade, which is to function as an anti-coagulant receptor in order to switch the specificity of thrombin from a procoagulant to an anti-coagulant protease. The underlying protective signaling mechanism of thrombomodulin remains largely unknown, though a few published reports link the receptor to the regulation of MAPKs under different (patho)physiological conditions. The goal of this review is to summarize what is known about the regulatory relationship between thrombomodulin and MAPKs.
Collapse
|
6
|
Wang L, Jiang R, Sun XL. Recombinant thrombomodulin of different domains for pharmaceutical, biomedical, and cell transplantation applications. Med Res Rev 2013; 34:479-502. [PMID: 23804235 DOI: 10.1002/med.21294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thrombomodulin (TM) is a membrane glycoprotein mainly expressed by vascular endothelial cells and is involved in many physiological and pathological processes, such as coagulation, inflammation, cancer development, and embryogenesis. Human TM consists of 557 amino acids divided into five distinct domains: N-terminal lectin-like domain (designated as TMD1); six epidermal growth factor (EGF)-like domain (TMD2); Ser/Thr-rich domain (TMD3); transmembrane domain (TMD4); and cytoplasmic tail domain (TMD5). The different domains are responsible for different biological functions of TM. In the past decades, various domains of TM have been cloned and expressed for TM structural and functional study. Further, recombinant TMs of different domains show promising antithrombotic and anti-inflammatory activity in both rodents and primates and a recombinant soluble TM has been approved for therapeutic application. This review highlights recombinant TMs of diverse structures and their biological functions, as well as the complex interactions of TM with factors involved in the related biological processes. Particularly, recent advances in exploring recombinant TM of different domains for pharmaceutical, biomedical, and cell transplantation applications are summarized.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115
| | | | | |
Collapse
|
7
|
Thrombomodulin as a regulator of the anticoagulant pathway: implication in the development of thrombosis. Blood Coagul Fibrinolysis 2012; 23:1-10. [PMID: 22036808 DOI: 10.1097/mbc.0b013e32834cb271] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Thrombomodulin is a cell surface-expressed glycoprotein that serves as a cofactor for thrombin-mediated activation of protein C (PC), an event further amplified by the endothelial cell PC receptor. The PC pathway is a major anticoagulant mechanism that downregulates thrombin formation and hedges thrombus formation. The objectives of this review were to review recent findings regarding thrombomodulin structure, its involvement in the regulation of hemostasis and further discuss the implication, if any, of the genetic polymorphisms in the thrombomodulin gene in the risk of development of thrombosis. We performed a literature search by using electronic bibliographic databases. Although the direct evaluation of risk situations associated with thrombomodulin mutations/polymorphisms could be of clinical significance, it appears that mutations that affect the function of thrombomodulin are rarely associated with venous thromboembolism. However, several polymorphisms are reported to be associated with increased risk for arterial thrombosis. Additionally studies on knock out mice as well studies on humans bearing rare mutations suggest that thrombomodulin dysfunction may be implicated in the pathogenesis of myocardial infraction.
Collapse
|
8
|
Thrombomodulin: a bifunctional modulator of inflammation and coagulation in sepsis. Crit Care Res Pract 2012; 2012:614545. [PMID: 22482044 PMCID: PMC3299293 DOI: 10.1155/2012/614545] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/01/2011] [Accepted: 12/01/2011] [Indexed: 01/08/2023] Open
Abstract
Deregulated interplay between inflammation and coagulation plays a pivotal role in the pathogenesis of sepsis. Therapeutic approaches that simultaneously target both inflammation and coagulation hold great promise for the treatment of sepsis. Thrombomodulin is an endogenous anticoagulant protein that, in cooperation with protein C and thrombin-activatable fibrinolysis inhibitor, serves to maintain the endothelial microenvironment in an anti-inflammatory and anticoagulant state. A recombinant soluble form of thrombomodulin has been approved to treat patients suffering from disseminated intravascular coagulation (DIC) and has thus far shown greater therapeutic potential than heparin. A phase II clinical trial is currently underway in the USA to study the efficacy of thrombomodulin for the treatment of sepsis with DIC complications. This paper focuses on the critical roles that thrombomodulin plays at the intersection of inflammation and coagulation and proposes the possible existence of interactions with integrins via protein C. Finally, we provide a rationale for the clinical application of thrombomodulin for alleviating sepsis.
Collapse
|
9
|
Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol 2012; 34:107-25. [PMID: 21805323 DOI: 10.1007/s00281-011-0282-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/30/2022]
Abstract
The goal is to provide an extensive review of the physiologic role of thrombomodulin (TM) in maintaining vascular homeostasis, with a focus on its anti-inflammatory properties. Data were collected from published research. TM is a transmembrane glycoprotein expressed on the surface of all vascular endothelial cells. Expression of TM is tightly regulated to maintain homeostasis and to ensure a rapid and localized hemostatic and inflammatory response to injury. By virtue of its strategic location, its multidomain structure and complex interactions with thrombin, protein C (PC), thrombin activatable fibrinolysis inhibitor (TAFI), complement components, the Lewis Y antigen, and the cytokine HMGB1, TM exhibits a range of physiologically important anti-inflammatory, anti-coagulant, and anti-fibrinolytic properties. TM is an essential cofactor that impacts on multiple biologic processes. Alterations in expression of TM and its partner proteins may be manifest by inflammatory and thrombotic disorders. Administration of soluble forms of TM holds promise as effective therapies for inflammatory diseases, and infections and malignancies that are complicated by disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Edward M Conway
- Division of Hematology-Oncology, Department of Medicine, Centre for Blood Research (CBR), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Raife TJ, Dwyre DM, Stevens JW, Erger RA, Leo L, Wilson KM, Fernández JA, Wilder J, Kim HS, Griffin JH, Maeda N, Lentz SR. Human thrombomodulin knock-in mice reveal differential effects of human thrombomodulin on thrombosis and atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31:2509-17. [PMID: 21885846 PMCID: PMC3202707 DOI: 10.1161/atvbaha.111.236828] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We sought to develop a murine model to examine the antithrombotic and antiinflammatory functions of human thrombomodulin in vivo. METHODS AND RESULTS Knock-in mice that express human thrombomodulin from the murine thrombomodulin gene locus were generated. Compared with wild-type mice, human thrombomodulin knock-in mice exhibited decreased protein C activation in the aorta (P<0.01) and lung (P<0.001). Activation of endogenous protein C following infusion of thrombin was decreased by 90% in knock-in mice compared with wild-type mice (P<0.05). Carotid artery thrombosis induced by photochemical injury occurred more rapidly in knock-in mice (12±3 minutes) than in wild-type mice (31±6 minutes; P<0.05). No differences in serum cytokine levels were detected between knock-in and wild-type mice after injection of endotoxin. When crossed with apolipoprotein E-deficient mice and fed a Western diet, knock-in mice had a further decrease in protein C activation but did not exhibit increased atherosclerosis. CONCLUSION Expression of human thrombomodulin in place of murine thrombomodulin produces viable mice with a prothrombotic phenotype but unaltered responses to systemic inflammatory or atherogenic stimuli. This humanized animal model will be useful for investigating the function of human thrombomodulin under pathophysiological conditions in vivo.
Collapse
Affiliation(s)
- Thomas J. Raife
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Denis M. Dwyre
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jeff W. Stevens
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | - Lorie Leo
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Katina M. Wilson
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jose A. Fernández
- Department of Molecular & Experimental Medicine, Scripps Research Institute, La Jolla, CA
| | - Jennifer Wilder
- Department of Pathology, University of North Carolina, Chapel Hill, NC
| | - Hyung-Suk Kim
- Department of Pathology, University of North Carolina, Chapel Hill, NC
| | - John H. Griffin
- Department of Molecular & Experimental Medicine, Scripps Research Institute, La Jolla, CA
| | - Nobuyo Maeda
- Department of Pathology, University of North Carolina, Chapel Hill, NC
| | - Steven R. Lentz
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
- Veterans Affairs Medical Center, Iowa City, IA
| |
Collapse
|
11
|
A comparative study of the protein C system in mother's blood, cord blood and amniotic fluid. Folia Histochem Cytobiol 2010; 48:262-6. [DOI: 10.2478/v10042-10-0059-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Abstract
OBJECTIVE To review new findings about the function of the protein C system during inflammation and coagulation. MAIN FINDINGS Coagulation proteases and their cofactors modify the outcome of severe inflammation by engaging signaling-competent cell surface receptors. The central effector protease of the protein C pathway, activated protein C, interacts with the endothelial cell protein C receptor, protease-activated receptors, and other receptors to exert multiple effects on hemostasis and immune cell function. Thrombomodulin controls the complement arm of the innate immune system in a thrombin-dependent manner through activation of the thrombin activatable inhibitor of fibrinolysis, and in a thrombin-independent, constitutive manner via its lectin-like extracellular domain; and inhibits the inflammatory effects of high-mobility box group 1 protein. Protein S not only suppresses coagulation as an enhancing cofactor for the coagulation inhibitors activated protein C and tissue factor pathway inhibitor but also is also a physiologic ligand for the Tyro/axl/Mer-family of receptor tyrosine kinases that mediate an anti-inflammatory regulatory loop of dendritic cell and monocyte inflammatory function. CONCLUSIONS The immune-regulatory capacity of the protein C pathway and its individual components emerge as the dominant action of this pathway in the setting of severe inflammation.
Collapse
|
13
|
Schmidt O, Söderhäll K, Theopold U, Faye I. Role of adhesion in arthropod immune recognition. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:485-504. [PMID: 19743913 DOI: 10.1146/annurev.ento.54.110807.090618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The recognition and inactivation of toxins and pathogens are mediated by a combination of cell-free and cellular mechanisms. A number of soluble and membrane-bound pattern recognition molecules interact with elicitors to become involved in both cell-free inactivation as well as cellular uptake reactions. Here we describe the possible recognition and effector function of key arthropod immune proteins, such as peroxinectin, hemolin, and hemomucin, as an outcome of changes in adhesiveness, which drive self-assembly reactions leading to cell-free coagulation and cellular uptake reactions. The fact that some of these proteins are essential for immune and developmental functions in some species, but are not found in closely related species, may point to the existence of multiprotein assemblies, which are conserved at the mechanistic level and can function with more than one combination of protein constituents.
Collapse
Affiliation(s)
- Otto Schmidt
- Insect Molecular Biology, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | | | | | | |
Collapse
|
14
|
Emeis JJ, Jirouskova M, Muchitsch EM, Shet AS, Smyth SS, Johnson GJ. A guide to murine coagulation factor structure, function, assays, and genetic alterations. J Thromb Haemost 2007; 5:670-9. [PMID: 17403201 DOI: 10.1111/j.1538-7836.2007.02408.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Murine blood coagulation factors and function are quite similar to those of humans. Because of this similarity and the adaptability of mice to genetic manipulation, murine coagulation factors and inhibitors have been extensively studied. These studies have provided significant insights into human hemostasis. They have also provided useful experimental models for evaluation of the pathophysiology and treatment of thrombosis. This review contains recommendations for obtaining, processing and assaying mouse blood hemostatic components, and it summarizes the extensive literature on murine coagulation factor structure and function, assays and genetic alteration. It is intended to be a convenient reference source for investigators of hemostasis and thrombosis.
Collapse
Affiliation(s)
- J J Emeis
- Vascular and Metabolic Diseases, TNO--Prevention and Health, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Schmidt O, Schreiber A. Integration of cell adhesion reactions—a balance of forces? J Theor Biol 2006; 238:608-15. [PMID: 16098540 DOI: 10.1016/j.jtbi.2005.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 05/29/2005] [Accepted: 06/15/2005] [Indexed: 11/26/2022]
Abstract
The rearrangement of receptors by oligomeric adhesion molecules constitutes a configurational mechanism able to sculpture membranes and dislocate receptors from cytoplasmic anchorage. This provides a conceptual framework for complex cellular processes in mechanical terms, as a dynamic balance between extracellular and intracellular driving forces.
Collapse
Affiliation(s)
- Otto Schmidt
- University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.
| | | |
Collapse
|
16
|
Tsuneyoshi N, Fukudome K, Higuchi K, Kimoto M. Preparation and Characterization of Monoclonal Antibodies to Thrombomodulin. Hybridoma (Larchmt) 2005; 24:189-96. [PMID: 16120024 DOI: 10.1089/hyb.2005.24.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thrombomodulin (TM) is an endothelial cell surface molecule, capable of specific binding for thrombin. The thrombin/TM complex promotes activation of plasma anticoagulant protein C (PC) and negatively regulates blood coagulation. Along with anticoagulant function, TM has been shown to have additional physiological functions such as regulation of fibrinolysis, cell adhesion, tumor growth, and embryonic development. The extracellular region of TM contains a lectin domain and six epidermal growth factor (EGF)-like domains, which are required for the various functions. To analyze the functions, we established a panel of monoclonal antibodies (MAbs) reactive to each functional domain. We obtained MAbs that react to the lectin domain or the front half of EGF domains from the first to the third using the antigen of a transfected cell line expressing full-length TM. We also obtained MAbs that reacted to the bottom half of the EGF domain from the fourth to the sixth using the antigen of a transfected cell line expressing truncated form of TM lacking the lectin domain and the EGF domains from the first to the third. All obtained MAbs could be used for Western blotting. Endothelial cell function for PC activation can be mimicked by transfected cells positive for TM and the endothelial cell protein C receptor (EPCR). Effects of the established MAbs on thrombin-dependent PC activation on the transfected cells were examined. Strong inhibition was demonstrated by three MAbs, which reacted to the fourth or fifth EGF domain, but not by MAbs to the other domains. The fourth EGF domain is known as the interaction site for PC, and the fifth domain is known to be required for thrombin binding. The sixth EGF domain also has been shown to be required for thrombin binding. An MAb against the domain strongly inhibited thrombin-binding. However, the MAb demonstrated little effect on thrombin dependent PC activation. The contradictory results demonstrated with the MAb to the sixth EGF domain suggest an unknown molecular mechanism for PC activation on the cell surface. A panel of MAbs reactive to each domain could be useful for analyzing the multifunctional molecule thrombomodulin.
Collapse
|
17
|
Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 2004; 24:1374-83. [PMID: 15178554 DOI: 10.1161/01.atv.0000134298.25489.92] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Late in the 18th century, William Hewson recognized that the formation of a clot is characteristic of many febrile, inflammatory diseases (Owen C. A History of Blood Coagulation. Rochester, Minnesota: Mayo Foundation; 2001). Since that time, there has been steady progress in our understanding of coagulation and inflammation, but it is only in the past few decades that the molecular mechanisms linking these 2 biologic systems have started to be delineated. Most of these can be traced to the vasculature, where the systems most intimately interact. Thrombomodulin (TM), a cell surface-expressed glycoprotein, predominantly synthesized by vascular endothelial cells, is a critical cofactor for thrombin-mediated activation of protein C (PC), an event further amplified by the endothelial cell protein C receptor (EPCR). Activated PC (APC), in turn, is best known for its natural anticoagulant properties. Recent evidence has revealed that TM, APC, and EPCR have activities that impact not only on coagulation but also on inflammation, fibrinolysis, and cell proliferation. This review highlights recent insights into the diverse functions of this complex multimolecular system and how its components are integrated to maintain homeostasis under hypercoagulable and/or proinflammatory stress conditions. Overall, the described advances underscore the usefulness of elucidating the relevant molecular pathways that link both systems for the development of novel therapeutic and diagnostic targets for a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Marlies Van de Wouwer
- The Center for Transgene Technology and Gene Therapy, University of Leuven and the Flanders Interuniversity Institute for Biotechnology (VIB), Belgium
| | | | | |
Collapse
|
18
|
Abstract
The objective of this study was to review the mechanisms by which thrombomodulin (TM) may modulate inflammation. The data were taken from published research performed by other laboratories and our own experimental results. TM is a transmembrane glycoprotein receptor and cofactor for thrombin in the protein C anticoagulant system. Recent studies have revealed that TM has activities, both dependent and independent of either protein C or thrombin, that affect biological systems beyond the coagulation pathway. This review highlights recent insights, provided by in vitro and in vivo analyses, into how the unique structural domains of TM effectively modify coagulation, fibrinolysis, and inflammation in health and disease. A paradigm is presented to describe how these apparently distinct functions are integrated to maintain homeostasis under stress conditions. Finally, we explore the potential diagnostic and therapeutic utility of dissecting out the structure-function correlates of TM. We conclude that TM plays a central role in regulating not only hemostasis but also inflammation, thus providing a close link between these processes. Elucidation of the molecular mechanisms by which TM functions will likely provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marlies Van de Wouwer
- Flanders Interuniversity Institute for Biotechnology and the Center for Transgene Technology and Gene Therapy, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
19
|
Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem 2003; 278:46750-9. [PMID: 12951323 DOI: 10.1074/jbc.m305216200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombomodulin (TM) is an integral membrane glycoprotein that is a potent anticoagulant factor. TM may also possess functions distinct from its anticoagulant activity. Here the influence of TM on cell adhesion was studied in TM-negative melanoma A2058 cells transfected with green fluorescent protein-tagged TM (TMG) or lectin domain-deleted TM (TMG(DeltaL)). Confocal microscopy demonstrated that both TMG and TMG(DeltaL) were distributed in the plasma membrane. TMG-expressed cells grew as closely clustered colonies, with TM localized prominently in the intercellular boundaries. TMG(DeltaL)-expressed cells grew singly. Overexpression of TMG, but not TMG(DeltaL), decreased monolayer permeability in vitro and tumor growth in vivo. The cell-to-cell adhesion in TMG-expressed cells was Ca2+-dependent and was inhibited by monoclonal antibody against the lectin-like domain of TM. The effects of TM-mediated cell adhesion were abolished by the addition of mannose, chondroitin sulfate A, or chondroitin sulfate C. In addition, anti-lectin-like domain antibody disrupted the close clustering of the endogenous TM-expressed keratinocyte HaCaT cell line derived from normal human epidermis. Double-labeling immunofluorescence staining revealed similar distributions of TM and actin filament in the cortex region of the TMG-expressed cells. Thus, TM can function as a Ca2+-dependent cell-to-cell adhesion molecule. Binding of specific carbohydrates to the lectin-like domain is essential for this specific function.
Collapse
Affiliation(s)
- Huey-Chun Huang
- Department of Biochemistry, College of Medicine, National Cheng Kung University, Tainan, Taiwan 701, Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Dewerchin M, Hérault JP, Wallays G, Petitou M, Schaeffer P, Millet L, Weitz JI, Moons L, Collen D, Carmeliet P, Herbert JM. Life-threatening thrombosis in mice with targeted Arg48-to-Cys mutation of the heparin-binding domain of antithrombin. Circ Res 2003; 93:1120-6. [PMID: 14592998 DOI: 10.1161/01.res.0000103634.69868.4f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antithrombin (AT) inhibits thrombin and some other coagulation factors in a reaction that is dramatically accelerated by binding of a pentasaccharide sequence present in heparin/heparan-sulfate to a heparin-binding site on AT. Based on the involvement of R47 in the heparin/AT interaction and the frequent occurrence of R47 mutations in AT deficiency patients, targeted knock-in of the corresponding R48C substitution in AT in mice was performed to generate a murine model of spontaneous thrombosis. The mutation efficiently abolished the effect of heparin-like molecules on coagulation inhibition in vitro and in vivo. Mice homozygous for the mutation (AT(m/m) mice) developed spontaneous, life-threatening thrombosis, occurring as early as the day of birth. Only 60% of the AT(m/m) offspring reached weaning age, with further loss at different ages. Thrombotic events in adult homozygotes were most prominent in the heart, liver, and in ocular, placental, and penile vessels. In the neonate, spontaneous death invariably was associated with major thrombosis in the heart. This severe thrombotic phenotype underlines a critical function of the heparin-binding site of antithrombin and its interaction with heparin/heparan-sulfate moieties in health, reproduction, and survival, and represents an in vivo model for comparative analysis of heparin-derived and other antithrombotic molecules.
Collapse
Affiliation(s)
- Mieke Dewerchin
- Center for Transgene Technology and Gene Therapy, VIB, KULeuven Campus Gasthuisberg O&N, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Since its discovery as a critical cofactor in the initiation of the protein C (PC) anticoagulant pathway [1,2], biochemical and structural investigations, combined with in vivo analyses of genetically engineered mice have revealed new, and in part PC- and thrombin-independent aspects of thrombomodulin (TM) function in fibrinolysis and inflammation, and in embryogenesis. This review summarizes more recent structural and functional investigations of TM, gives an overview of the association of TM gene polymorphisms with human disease, and provides a synopsis of what is know about TM function in disease states of thrombosis, stroke, arteriosclerosis, and cancer. Newly emerging aspects of TM function in inflammation and embryogenesis are presented and discussed in detail.
Collapse
Affiliation(s)
- H Weiler
- Blood Research Institute, Blood Center of Southeastern Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
22
|
Abstract
Formation of the vasculature is an essential step in embryogenesis. It was observed decades ago that the vasculature and the intravascular blood compartment, which uses the former as a means of transportation, develop in a close spatial and temporal relationship. In this review, we discuss the role of the blood coagulation system as a tool to coordinate angiogenesis. Several mouse models lacking coagulation factors result in impaired thrombin generation and display a phenotype of disturbed cardiovascular development. Similar phenotypes are observed in mouse models of impaired thrombin binding to its cellular receptor, protease-activated receptor-1, or of disrupted signaling via G proteins. Most interestingly, the available data provide evidence that thrombin signaling in vascular development cannot be explained by a model based only on the classic extrinsic and intrinsic coagulation pathways. Because angiogenesis in adults follows the same signaling patterns as angiogenesis in embryos, it is important to learn about these pathways, hoping that they may serve as therapeutic targets in cardiovascular disease.
Collapse
Affiliation(s)
- Martin Moser
- Carolina Cardiovascular Biology Center and Department of Medicine, University of North Carolina at Chapel Hill, 5.109C Neurosciences Bldg, Chapel Hill, NC 27599-7126, USA
| | | |
Collapse
|
23
|
Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 2002; 196:565-77. [PMID: 12208873 PMCID: PMC2193995 DOI: 10.1084/jem.20020077] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombomodulin (TM) is a vascular endothelial cell (EC) receptor that is a cofactor for thrombin-mediated activation of the anticoagulant protein C. The extracellular NH(2)-terminal domain of TM has homology to C-type lectins that are involved in immune regulation. Using transgenic mice that lack this structure (TM(LeD/LeD)), we show that the lectin-like domain of TM interferes with polymorphonuclear leukocyte (PMN) adhesion to ECs by intercellular adhesion molecule 1-dependent and -independent pathways through the suppression of extracellular signal-regulated kinase (ERK)(1/2) activation. TM(LeD/LeD) mice have reduced survival after endotoxin exposure, accumulate more PMNs in their lungs, and develop larger infarcts after myocardial ischemia/reperfusion. The recombinant lectin-like domain of TM suppresses PMN adhesion to ECs, diminishes cytokine-induced increase in nuclear factor kappaB and activation of ERK(1/2), and rescues ECs from serum starvation, findings that may explain why plasma levels of soluble TM are inversely correlated with cardiovascular disease. These data suggest that TM has antiinflammatory properties in addition to its role in coagulation and fibrinolysis.
Collapse
Affiliation(s)
- Edward M Conway
- The Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baes M, Dewerchin M, Janssen A, Collen D, Carmeliet P. Generation of Pex5-loxP mice allowing the conditional elimination of peroxisomes. Genesis 2002; 32:177-8. [PMID: 11857813 DOI: 10.1002/gene.10047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- M Baes
- Laboratory of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
25
|
Weiler H, Lindner V, Kerlin B, Isermann BH, Hendrickson SB, Cooley BC, Meh DA, Mosesson MW, Shworak NW, Post MJ, Conway EM, Ulfman LH, von Andrian UH, Weitz JI. Characterization of a mouse model for thrombomodulin deficiency. Arterioscler Thromb Vasc Biol 2001; 21:1531-7. [PMID: 11557684 DOI: 10.1161/hq0901.094496] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the gene encoding thrombomodulin (TM), a thrombin regulator, are suspected risk factors for venous and arterial thrombotic disease. We have previously described the generation of TM(Pro/Pro) mice carrying a TM gene mutation that disrupts the TM-dependent activation of protein C. Here, it is shown that inbred C57BL/6J TM(Pro/Pro) mice exhibit a hypercoagulable state and an increased susceptibility to thrombosis and sepsis. Platelet thrombus growth after FeCl(3)-induced acute endothelial injury was accelerated in mutant mice. Vascular stasis after permanent ligation of the carotid artery precipitated thrombosis in mutant but not in normal mice. Mutant mice showed increased mortality after exposure to high doses of endotoxin and demonstrated altered cytokine production in response to low-dose endotoxin. The severity of the hypercoagulable state and chronic microvascular thrombosis caused by the TM(Pro) mutation is profoundly influenced by mouse strain-specific genetic differences between C57BL/6 and 129SvPas mice. These data demonstrate that in mice, TM is a physiologically relevant regulator of platelet- and coagulation-driven large-vessel thrombosis and modifies the response to endotoxin-induced inflammation. The phenotypic penetrance of the TM(Pro) mutation is determined by as-yet-uncharacterized genetic modifiers of thrombosis other than TM.
Collapse
Affiliation(s)
- H Weiler
- Blood Research Institute, Blood Center of Southeastern Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dean YD, McGreal EP, Akatsu H, Gasque P. Molecular and cellular properties of the rat AA4 antigen, a C-type lectin-like receptor with structural homology to thrombomodulin. J Biol Chem 2000; 275:34382-92. [PMID: 10934210 DOI: 10.1074/jbc.m006229200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The murine fetal stem cell marker AA4 has recently been cloned and is known to be the homolog of the human phagocytic C1q receptor involved in host defense. We herein report the molecular cloning and the cellular expression pattern of the rat AA4 antigen. Modular architecture analysis indicated that the rat AA4 is a member of C-type lectin-like family and, interestingly, displays similar domain composition and organization to thrombomodulin. Northern blot and reverse transcriptase-polymerase chain reaction analyses indicated that rat AA4 was encoded by a single transcript of 7 kilobases expressed constitutively in all tissues. In situ hybridization showed that AA4 was expressed predominantly by pneumocytes and vascular endothelial cells. Using an affinity purified polyclonal antibody raised against a rat AA4-Fc fusion protein, AA4 was identified as a glycosylated protein of 100 kDa expressed by endothelial cells > platelets > NK cells and monocytes (ED1+ cells). The staining was associated to the cell surface and intracytoplasmic vesicles. Conversely, erythrocytes, T and B lymphocytes, neutrophils, and macrophages (ED2+ cells) were consistently negative for AA4. As expected, the macrophage cell line NR8383 expressed weak levels of AA4. Taken together, our results support the idea that AA4/C1qRp is involved in some cell-cell interactions.
Collapse
Affiliation(s)
- Y D Dean
- Brain Inflammation and Immunity Group, Medical Biochemistry Department, University of Wales College of Medicine, Cardiff, CF144XN, United Kingdom
| | | | | | | |
Collapse
|
27
|
Abstract
The endothelium plays a crucial dynamic role as a protective interface between blood and the underlying tissues during the haemostatic process, which maintains blood flow in the circulation and prevents life-threatening blood loss. Following vessel wall injury with initial platelet adhesion and aggregation to exposed subendothelial extracellular matrix, the initiation, amplification, and control of haemostasis depend on structurally unrelated membrane-associated receptors for blood coagulation proteases including tissue factor, G-protein-coupled protease-activatable receptors, thrombomodulin, and protein C receptor, respectively. In addition to their regulatory role in haemostasis, the respective (pro-)enzyme ligands such as Factors VIIa and Xa, thrombin or protein C mediate specific signalling pathways in vascular cells related to migration, proliferation or adhesion. The functional importance of these receptors beyond haemostasis has been manifested by various lethal and pathological phenotypes in knock-out mice. These protease receptors thereby provide important molecular links in the vascular system and serve to integrate haemostasis with endothelial cell functions which are relevant for the (patho-)physiological responses to injury or inflammatory challenges.
Collapse
Affiliation(s)
- K T Preissner
- Institut für Biochemie, Fachbereich Humanmedizin, Justus-Liebig-Universität, D-35392 Giessen, Germany.
| | | | | |
Collapse
|