1
|
Hirai T, Ishii R, Miyairi S, Ikemiyagi M, Omoto K, Ishii Y, Tanabe K. Clonal Deletion Established via Invariant NKT Cell Activation and Costimulatory Blockade Requires In Vivo Expansion of Regulatory T Cells. Am J Transplant 2016; 16:426-39. [PMID: 26495767 DOI: 10.1111/ajt.13493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/25/2023]
Abstract
Recently, the immune-regulating potential of invariant natural killer T (iNKT) cells has attracted considerable attention. We previously reported that a combination treatment with a liposomal ligand for iNKT cells and an anti-CD154 antibody in a sublethally irradiated murine bone marrow transplant (BMT) model resulted in the establishment of mixed hematopoietic chimerism through in vivo expansion of regulatory T cells (Tregs). Herein, we show the lack of alloreactivity of CD8(+) T cells in chimeras and an early expansion of donor-derived dendritic cells (DCs) in the recipient thymi accompanied by a sequential reduction in the donor-reactive Vβ-T cell receptor repertoire, suggesting a contribution of clonal deletion in this model. Since thymic expansion of donor DCs and the reduction in the donor-reactive T cell repertoire were precluded with Treg depletion, we presumed that Tregs should preform before the establishment of clonal deletion. In contrast, the mice thymectomized before BMT failed to increase the number of Tregs and to establish CD8(+) T cell tolerance, suggesting the presence of mutual dependence between the thymic donor-DCs and Tregs. These results provide new insights into the regulatory mechanisms that actively promote clonal deletion.
Collapse
Affiliation(s)
- T Hirai
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - R Ishii
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - S Miyairi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - M Ikemiyagi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - K Omoto
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Y Ishii
- Laboratory for Vaccine Design, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - K Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Abstract
The thymus serves as the central organ of immunologic self-nonself discrimination. Thymocytes undergo both positive and negative selection, resulting in T cells with a broad range of reactivity to foreign antigens but with a lack of reactivity to self-antigens. The thymus is also the source of a subset of regulatory T cells that inhibit autoreactivity of T-cell clones that may escape negative selection. As a result of these functions, the thymus has been shown to be essential for the induction of tolerance in many rodent and large animal models. Proper donor antigen presentation in the thymus after bone marrow, dendritic cell, or solid organ transplantation has been shown to induce tolerance to allografts. The molecular mechanisms of positive and negative selection and regulatory T-cell development must be understood if a tolerance-inducing therapeutic intervention is to be designed effectively. In this brief and selective review, we present some of the known information on T-cell development and on the role of the thymus in experimental models of transplant tolerance. We also cite some clinical attempts to induce tolerance to allografts using pharmacologic or biologic interventions.
Collapse
|
3
|
Pitt LA, Hubert FX, Scott HS, Godfrey DI, Berzins SP. NKT cell development in the absence of the autoimmune regulator gene (Aire). Eur J Immunol 2008; 38:2689-96. [PMID: 18828139 DOI: 10.1002/eji.200838553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Autoimmune regulator gene (Aire)-deficient mice develop an array of autoimmune lesions that reflect failures of immune tolerance. Negative selection is clearly compromised in these mice, but there is evidence to suggest that other mechanisms of tolerance might also be affected, including a possible impairment of regulatory T cell (Treg) development. Studies to date have failed to demonstrate any significant impact on the development or function of the FOXP3+ Treg compartment, but NKT cells represent a distinct regulatory cell lineage that also develop in the thymus and which are known to influence self-tolerance. Aire-related defects coincide with NKT cell deficiencies in a number of animal models, but the direct consequence of Aire-deficiency on NKT cell development has not been established. In this study, we demonstrate that the frequency, distribution and cytokine production of NKT cells and their subsets is principally normal in Aire-deficient mice. We conclude that Aire has little or no effect on regulatory T cell development in general and NKT cells in particular.
Collapse
Affiliation(s)
- Lauren A Pitt
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
4
|
Sommer N, Tackenberg B, Hohlfeld R. The immunopathogenesis of myasthenia gravis. HANDBOOK OF CLINICAL NEUROLOGY 2008; 91:169-212. [PMID: 18631843 DOI: 10.1016/s0072-9752(07)01505-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Norbert Sommer
- Clinical Neuroimmunology Group, Philipps-University, Marburg, Germany
| | | | | |
Collapse
|
5
|
Abstract
T-cell development is a highly coordinated process that depends on interactions between thymocytes, thymic epithelium, and bone marrow (BM)-derived dendritic cells (DCs). Before entering the peripheral T-cell pool, thymocytes are subject to negative selection, a process that eliminates (or deletes) T cells with high affinity toward self-antigens and therefore promotes self-tolerance. These self-antigens include those that are broadly expressed ubiquitous antigens and those whose expression is restricted to a few tissues, tissue-specific antigens (TSAs). Expression of TSAs in the thymus is mostly a property of medullary thymic epithelial cells (mTECs), and because these cells may be less capable than BM-derived DCs at mediating negative selection to ubiquitous antigens, we investigated the roles of both of these cell types in tolerance to TSAs. Here, we review our studies in which we found that mTECs were competent mediators of negative selection to a subset of TSA-reactive T cells, while thymic DCs extend the range of TSA-reactive T cells that undergo negative selection by capturing TSAs from mTECs. In addition, we recently investigated the efficiency of central tolerance to TSA during ontogeny, and we report that this process was less efficient in neonates than adult animals.
Collapse
Affiliation(s)
- Alena M Gallegos
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7370, USA
| | | |
Collapse
|
6
|
Joffre O, Gorsse N, Romagnoli P, Hudrisier D, Van Meerwijk JP. Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes. Blood 2004; 103:4216-21. [PMID: 14976053 PMCID: PMC2516529 DOI: 10.1182/blood-2004-01-0005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thymus-derived regulatory T lymphocytes of CD4(+)CD25(+) phenotype regulate a large variety of beneficial and deleterious immune responses and can inhibit lethal graft-versus-host disease in rodents. In vitro, CD4(+)CD25(+) T cells require specific major histocompatibility complex (MHC)/peptide ligands for their activation, but once activated they act in an antigen-nonspecific manner. In vivo, regulatory T cells are also activated in an antigen-specific fashion, but nothing is known about antigen specificity of their suppressor-effector function. Here we show that CD4(+)CD25(+) regulatory T lymphocytes isolated from naive mice and activated in vitro with allogeneic antigen-presenting cells (APCs) induced specific long-term tolerance to bone marrow grafts disparate for major and minor histocompatibility antigens; whereas "target" bone marrow was protected, third-party bone marrow was rejected. Importantly, in mice injected with a mix of target and third-party bone marrows, protection and rejection processes took place simultaneously. These results indicate that CD4(+)CD25(+) regulatory T cells can act in an antigen-specific manner in vivo. Our results suggest that CD4(+)CD25(+) regulatory T cells could in the future be used in clinical settings to induce specific immunosuppression.
Collapse
Affiliation(s)
- Olivier Joffre
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563IFR30Université Paul Sabatier - Toulouse IIIHopital de Purpan TOULOUSE
Place du Docteur Baylac
31024 TOULOUSE CEDEX 3,FR
| | - Nathalie Gorsse
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563IFR30Université Paul Sabatier - Toulouse IIIHopital de Purpan TOULOUSE
Place du Docteur Baylac
31024 TOULOUSE CEDEX 3,FR
| | - Paola Romagnoli
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563IFR30Université Paul Sabatier - Toulouse IIIHopital de Purpan TOULOUSE
Place du Docteur Baylac
31024 TOULOUSE CEDEX 3,FR
| | - Denis Hudrisier
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563IFR30Université Paul Sabatier - Toulouse IIIHopital de Purpan TOULOUSE
Place du Docteur Baylac
31024 TOULOUSE CEDEX 3,FR
- UFR SVT
Université Paul Sabatier - Toulouse IIIToulouse, F-31400 France,FR
| | - Joost Pm Van Meerwijk
- Centre de Physiopathologie Toulouse Purpan
INSERM : U563IFR30Université Paul Sabatier - Toulouse IIIHopital de Purpan TOULOUSE
Place du Docteur Baylac
31024 TOULOUSE CEDEX 3,FR
- UFR SVT
Université Paul Sabatier - Toulouse IIIToulouse, F-31400 France,FR
- IUF
Institut Universitaire de FranceToulouse, France,FR
- * Correspondence should be adressed to: Joost Van Meerwijk
| |
Collapse
|
7
|
Marx A, Müller-Hermelink HK, Ströbel P. The Role of Thymomas in the Development of Myasthenia Gravis. Ann N Y Acad Sci 2003; 998:223-36. [PMID: 14592880 DOI: 10.1196/annals.1254.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thymic pathology occurs in 80-90% of myasthenia gravis patients. Significant associations between different thymic alterations and clinical findings are discussed. To highlight peculiarities in thymoma-associated myasthenia gravis, we briefly review myasthenia gravis associated with thymic lymphofollicular hyperplasia (TFH) and thymic atrophy.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University of Würzburg, D-97080 Würzburg, Germany.
| | | | | |
Collapse
|
8
|
Teshima T, Reddy P, Liu C, Williams D, Cooke KR, Ferrara JLM. Impaired thymic negative selection causes autoimmune graft-versus-host disease. Blood 2003; 102:429-35. [PMID: 12663438 DOI: 10.1182/blood-2003-01-0266] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Animal models with impaired thymic negative selection do not always cause autoimmune diseases despite the development of an autoreactive T-cell repertoire. We investigated the requirements for the development of systemic autoimmune disease by using bone marrow chimeras that lacked expression of major histocompatibility complex (MHC) class II on thymic antigen-presenting cells (APCs), leading to impaired negative selection. We found that impaired negative selection mediated by absence of MHC class II, but not MHC class I, permitted the development of systemic autoimmune disease that is indistinguishable from acute graft-versus-host disease (GVHD). Thymectomy prevented disease, confirming the causal association of the thymus with its development. Adoptive transfer of CD4+ T cells caused GVHD in secondary hosts only when they were irradiated, and cotransfer of peripheral CD4+ and CD8+ T cells from naive mice prevented the disease. These results demonstrate that impaired thymic negative selection can cause lethal autoimmune disease indistinguishable from acute GVHD in the context of a proinflammatory milieu when peripheral regulatory mechanisms are absent.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Internal Medicine, University of Michigan Cancer Center, Ann Arbor, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Dead cells are a prominent feature of the thymic landscape as only 5% of developing thymocytes are exported as mature T cells. The remaining thymocytes die by one of two mechanisms; most thymocytes die because they are not positively selected and do not receive a survival signal, whereas a minority of thymocytes undergo T-cell receptor (TCR)-mediated apoptosis, a process known as negative selection. Negative selection is extremely important for establishing a functional immune system, as it provides an efficient mechanism for ridding the T-cell repertoire of self-reactive and potentially autoimmune lymphocytes. This review discusses several cellular and molecular aspects of negative selection.
Collapse
Affiliation(s)
- Ed Palmer
- Laboratory of Transplantation Immunology and Nephrology, University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| |
Collapse
|
10
|
Hudrisier D, Feau S, Bonnet V, Romagnoli P, Van Meerwijk JPM. In vivo maintenance of T-lymphocyte unresponsiveness induced by thymic medullary epithelium requires antigen presentation by radioresistant cells. Immunology 2003; 108:24-31. [PMID: 12519299 PMCID: PMC1782865 DOI: 10.1046/j.1365-2567.2003.01546.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The T-cell repertoire developing in the thymus is rid of autospecific cells by the process of thymic negative selection. Recognition of major histocompatibility complex (MHC)/self-peptide complexes expressed by thymic antigen-presenting cells (APC) of bone marrow origin leads to induction of apoptotic death of autospecific thymocytes. Induction of tolerance to self-antigens not presented by thymic APC is mediated by medullary thymic epithelial cells (mTEC) which express a very wide range of proteins, e.g. inducible and tissue-specific proteins. The main type of tolerance induced by mTEC is non-deletional and the issue of how it is maintained outside the thymus is therefore of crucial interest. We have previously shown that the non-T-cell receptor (TCR) -transgenic T-cell repertoire developing in conditions in which tolerance to self-MHC/peptide ligands is exclusively induced by mTEC is tolerant to syngeneic targets in vivo but lyses such targets in vitro. Here we report that this non-deletional in vivo self-tolerance is not due to active tolerance assured by known naturally occurring regulatory or immune-modulating T lymphocytes. Importantly, we show that in vivo maintenance of this therefore probably anergic state requires continued interaction of autospecific T cells with self-MHC/peptide ligands expressed by radioresistant cells while APC are incapable of maintaining the tolerant state. Therefore, maintenance of non-deletional T-lymphocyte tolerance to the wide range of self-antigens expressed by mTEC depends on continued interaction with radioresistant cells that very probably express a much more limited repertoire of antigens. Our data may therefore have important consequences for tolerance to tissue-specific and inducible self-antigens.
Collapse
Affiliation(s)
- Denis Hudrisier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Centre de Physiopathologie de Toulouse-Purpan, Institut Claude de Preval, Toulouse, France
| | | | | | | | | |
Collapse
|
11
|
Klein L, Roettinger B, Kyewski B. Sampling of complementing self-antigen pools by thymic stromal cells maximizes the scope of central T cell tolerance. Eur J Immunol 2001; 31:2476-86. [PMID: 11500832 DOI: 10.1002/1521-4141(200108)31:8<2476::aid-immu2476>3.0.co;2-t] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity, yet the identity of cells involved remains elusive. Here we show that antigen expression in a minor fraction of medullary thymic epithelial cells leads to deletion of specific CD4 T cells. Strikingly, this deletion is not dependent on cross-presentation by hemopoietic antigen-presenting cells, which have been ascribed a predominant role in negative selection. By contrast, when the same antigen enters the thymus via the blood stream, negative selection is strictly dependent on antigen presentation by hemopoietic cells. These findings imply that the (re)-presentation of "self" by thymic stromal cells is non-redundant, and that different thymic antigen-presenting cells instead cover complementing sets of self-antigens, thus maximizing the scope of central tolerance
Collapse
Affiliation(s)
- L Klein
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
12
|
Capone M, Romagnoli P, Beermann F, MacDonald HR, van Meerwijk JP. Dissociation of thymic positive and negative selection in transgenic mice expressing major histocompatibility complex class I molecules exclusively on thymic cortical epithelial cells. Blood 2001; 97:1336-42. [PMID: 11222378 DOI: 10.1182/blood.v97.5.1336] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thymic positive and negative selection of developing T lymphocytes confronts us with a paradox: How can a T-cell antigen receptor (TCR)-major histocompatibility complex (MHC)/peptide interaction in the former process lead to transduction of signals allowing for cell survival and in the latter induce programmed cell death or a hyporesponsive state known as anergy? One of the hypotheses put forward states that the outcome of a TCR-MHC/peptide interaction depends on the cell type presenting the selecting ligand to the developing thymocyte. Here we describe the development and lack of self-tolerance of CD8(+) T lymphocytes in transgenic mice expressing MHC class I molecules in the thymus exclusively on cortical epithelial cells. Despite the absence of MHC class I expression on professional antigen-presenting cells, normal numbers of CD8(+) cells were observed in the periphery. Upon specific activation, transgenic CD8(+) T cells efficiently lysed syngeneic MHC class I(+) targets in vitro and in vivo, indicating that thymic cortical epithelium (in contrast to medullary epithelium and antigen-presenting cells of hematopoietic origin) is incapable of tolerance induction. Thus, compartmentalization of the antigen-presenting cells involved in thymic positive selection and tolerance induction can (at least in part) explain the positive/negative selection paradox.
Collapse
Affiliation(s)
- M Capone
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Klein L, Kyewski B. Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr Opin Immunol 2000; 12:179-86. [PMID: 10712940 DOI: 10.1016/s0952-7915(99)00069-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Self-antigen-MHC complexes expressed by thymic stromal cells serve as ligands for TCR-mediated positive and negative selection, resulting in a self-MHC-restricted, self-tolerant T cell repertoire. It has recently become apparent that thymic stromal cells differ in their accessibility to antigen as well as their ability to process and present antigen. These differences result in the sampling by thymic stromal cells of largely nonoverlapping self-antigen pools and the display of self-peptide profiles specific for each cell type. In conjunction with single or serial cell-cell interactions between thymocytes and stromal cells, such differences in self-antigen display allow for maximal (re)presentation of 'self' in the thymus and optimize the efficacy of positive and negative selection.
Collapse
Affiliation(s)
- L Klein
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA 02115, USA.
| | | |
Collapse
|
14
|
Marguerat S, MacDonald HR, Kraehenbuhl JP, van Meerwijk JPM. Protection from Radiation-Induced Colitis Requires MHC Class II Antigen Expression by Cells of Hemopoietic Origin. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.7.4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Ulcerative colitis, an inflammatory bowel disease, is believed to result from a breakdown of dominant tolerance mechanisms that normally control intestinal immunity. Although CD4+ T lymphocyte subpopulations and expression of MHC class II molecules have been shown to play a role in the pathogenesis of the disease, the nature of the responsible mechanisms remains unclear. In this paper we describe a novel mouse model for inflammatory bowel disease, radiation-induced colitis, that occurs with complete penetrance 6–8 wk postinduction. A combination of high dose gamma-irradiation and lack of MHC class II expression on cells of hemopoietic origin results in development of colitis in C57BL/6 mice. Because of its versatility (due to susceptibility of mice of the widely genetically manipulated C57BL/6 background), high reproducibility, and 100% penetrance, radiation-induced colitis will be a useful mouse model for colitis and a significant tool to study dominant immunological tolerance mechanisms. Moreover, our data imply that tolerization to enteric Ags requires MHC class II mediated presentation by APC of hemopoietic origin.
Collapse
Affiliation(s)
- Samuel Marguerat
- *Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland; and
| | - H. Robson MacDonald
- *Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland; and
| | | | - Joost P. M. van Meerwijk
- *Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland; and
| |
Collapse
|
15
|
Marx A, Müller-Hermelink HK. From basic immunobiology to the upcoming WHO-classification of tumors of the thymus. The Second Conference on Biological and Clinical Aspects of Thymic Epithelial Tumors and related recent developments. Pathol Res Pract 1999; 195:515-33. [PMID: 10483582 DOI: 10.1016/s0344-0338(99)80001-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Second Conference on Biological and Clinical Aspects of Thymic Epithelial Tumors in Leiden, The Netherlands, 1998, set the stage for an interdisciplinary meeting of immunologists, pathologists and members of various clinical disciplines to exchange their recent findings in the field of thymus-related biology, pathology, and medicine. The contributions covered such diverse subjects as the role of transcription factors and cytokines in the development of the thymic microenvironment, thymic T, B and NK cell development, the pathogenesis of myasthenia gravis and other thymoma-associated autoimmunities, the pathology of thymic epithelial tumors and germ cell neoplasms, and new approaches to their diagnosis and treatment. This editorial will briefly sum up the data presented at the Conference and will comment on related novel findings that have been reported since then. Because it was also at the Leiden Conference, that the proposal of the WHO committee for the classification of thymic tumors was discussed for the first time, a description of the upcoming WHO Classification of Tumors of the Thymus is given with emphasis on the diagnostic criteria of thymic epithelial tumors, that should now be termed as type A, AB, B1-3 and type C thymomas, to make pathological and clinical studies comparable in the future.
Collapse
|