1
|
Cutler MJ, Sattayaprasert P, Pivato E, Jabri A, AlMahameed ST, Ziv O. Low voltage-guided ablation of posterior wall improves 5-year arrhythmia-free survival in persistent atrial fibrillation. J Cardiovasc Electrophysiol 2022; 33:2475-2484. [PMID: 35332610 PMCID: PMC10084207 DOI: 10.1111/jce.15464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The posterior wall (PW) has been proposed as a standard target for ablation beyond pulmonary vein antral isolation (PVI) in patients with persistent atrial fibrillation (AF). However, studies have shown inconsistent outcomes with the addition of PW ablation. The presence or absence of low voltage on the PW may explain these inconsistencies. We evaluated whether PW ablation based on the presence or absence of low voltage improves long-term arrhythmia-free outcomes. METHODS We retrospectively reviewed 5-year follow-up in 152 consecutive patients who received either standard ablation (SA) with PVI alone or PVI + PW ablation (PWA) based on physician discretion (n = 77) or voltage-guided ablation (VGA) with PVI and addition of PWA only if low voltage was present on the PW (n = 75). RESULTS The two groups were well matched for baseline characteristics. At 5-year follow-up, 64% of patients receiving VGA were atrial tachyarrhythmia (AT)/AF free compared to 34% receiving SA (HR 0.358 p < .005). PWA had similar AF recurrence in SA and VGA groups (0.30 vs. 0.27 p = .96) but higher AT recurrence when comparing SA and VGA groups (0.39 vs. 0.15 p = .03). In multivariate analysis, both VGA and PWA predicted AF arrhythmia-free survival (HR 0.33, p = .001 and HR 0.20, p = .008, respectively). For AT, VGA predicted arrhythmia-free survival (HR 0.22, p = .028), while PWA predicted AT recurrence (HR 4.704, p = .0219). CONCLUSION VGA of the posterior wall ablation beyond PVI in persistent AF significantly improves long-term arrhythmia-free survival when compared with non-voltage-guided ablation. PW ablation without voltage-guidance reduced AF recurrence but at the cost of a higher incidence of AT.
Collapse
Affiliation(s)
- Michael J Cutler
- Intermountain Medical Center Heart Institute, Intermountain Medical Center, Murray, Utah, USA
| | | | | | - Ahmad Jabri
- Case Western Reserve, MetroHealth Campus, Cleveland, Ohio, USA
| | | | - Ohad Ziv
- Case Western Reserve, MetroHealth Campus, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Ge L, Yang J, Gong X, Kang J, Zhang Y, Liu X, Quan F. Bovine CAPN3 core promoter initiates expression of foreign genes in skeletal muscle cells by MyoD transcriptional regulation. Int J Biochem Cell Biol 2020; 127:105837. [PMID: 32827763 DOI: 10.1016/j.biocel.2020.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/18/2022]
Abstract
Activating foreign genes in bovine skeletal muscle is necessary in the study of the role of related genes in skeletal muscle development and the effects on skeletal muscle formation, especially in the study of transgenic cattle. At this time, a skeletal muscle-specific promoter should be selected to initiate a functional foreign gene. Here, calpain3 (CAPN3) was found to be highly expressed in skeletal muscle and skeletal muscle cells by real-time PCR. Next, 5' deletion analysis of the bovine CAPN3 promoter was performed and showed that Q5(-495/+40) region was the core promoter of the bovine CAPN3. A key regulatory site (-465/-453) in CAPN3 core promoter was associated with the transcription factor, MyoD, which is a skeletal muscle-specific transcription factor. Furthermore, the mRNA and protein expression levels of MyoD and CAPN3 were positively correlated during skeletal muscle cell differentiation. The overexpression of MyoD enhanced the activity of the bovine CAPN3 core promoter. The core promoter Q5(-495/+40) could drive the exogenous gene EGFP and the fat-specific expression gene PPARγ in skeletal muscle cells. In summary, our study obtained a bovine skeletal muscle-specific promoter and provided a basis for studying the role of functional genes in the growth and development of skeletal muscle. It also provides a basis for studying the transcriptional regulation mechanism of CAPN3.
Collapse
Affiliation(s)
- Luxing Ge
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiashu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xutong Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Therapeutic advances in musculoskeletal AAV targeting approaches. Curr Opin Pharmacol 2017; 34:56-63. [PMID: 28743034 DOI: 10.1016/j.coph.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022]
Abstract
The use of recombinant adeno-associated viruses (rAAVs) is highly prevalent in musculoskeletal gene therapies due to their versatility, high transduction efficiency, natural tropism and vector genome persistence for years. As the largest organ in the body, treatment of skeletal muscle for widespread and sufficient therapeutic gene expression is highly challenging. In addition to disease-specific hurdles, vector genome loss, off-target gene transfer and immune responses to treatment can diminish the overall benefit of rAAV therapies. A variety of approaches have been developed to overcome these challenges and improve musculoskeletal targeting of rAAVs. This review focuses on recent advancements and remaining obstacles in creating optimal rAAV-based therapies for musculoskeletal application.
Collapse
|
4
|
Nathwani AC, Nienhuis AW, Davidoff AM. Our journey to successful gene therapy for hemophilia B. Hum Gene Ther 2015; 25:923-6. [PMID: 25397929 DOI: 10.1089/hum.2014.2540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Amit C Nathwani
- 1 Katharine Dormandy Haemophilia Centre and Thrombosis Unit , Royal Free NHS Foundation Trust, London NW3 2QG, United Kingdom
| | | | | |
Collapse
|
5
|
Arimura S, Okada T, Tezuka T, Chiyo T, Kasahara Y, Yoshimura T, Motomura M, Yoshida N, Beeson D, Takeda S, Yamanashi Y. Neuromuscular disease. DOK7 gene therapy benefits mouse models of diseases characterized by defects in the neuromuscular junction. Science 2014; 345:1505-8. [PMID: 25237101 DOI: 10.1126/science.1250744] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neuromuscular junction (NMJ) is the synapse between a motor neuron and skeletal muscle. Defects in NMJ transmission cause muscle weakness, termed myasthenia. The muscle protein Dok-7 is essential for activation of the receptor kinase MuSK, which governs NMJ formation, and DOK7 mutations underlie familial limb-girdle myasthenia (DOK7 myasthenia), a neuromuscular disease characterized by small NMJs. Here, we show in a mouse model of DOK7 myasthenia that therapeutic administration of an adeno-associated virus (AAV) vector encoding the human DOK7 gene resulted in an enlargement of NMJs and substantial increases in muscle strength and life span. When applied to model mice of another neuromuscular disorder, autosomal dominant Emery-Dreifuss muscular dystrophy, DOK7 gene therapy likewise resulted in enlargement of NMJs as well as positive effects on motor activity and life span. These results suggest that therapies aimed at enlarging the NMJ may be useful for a range of neuromuscular disorders.
Collapse
Affiliation(s)
- Sumimasa Arimura
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Okada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tohru Tezuka
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoko Chiyo
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Kasahara
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshiro Yoshimura
- Department of Occupational Therapy, Nagasaki University School of Health Sciences, Nagasaki, Japan
| | - Masakatsu Motomura
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Nagasaki Institute of Applied Science, Nagasaki, Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuji Yamanashi
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Wang L, Louboutin JP, Bell P, Greig J, Li Y, Wu D, Wilson JM. Muscle-directed gene therapy for hemophilia B with more efficient and less immunogenic AAV vectors. J Thromb Haemost 2011; 9:2009-19. [PMID: 21883883 PMCID: PMC3393098 DOI: 10.1111/j.1538-7836.2011.04491.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Adeno-associated viral vector (AAV)-mediated and muscle-directed gene therapy is a safe and non-invasive approach to treatment of hemophilia B and other genetic diseases. However, low efficiency of transduction, inhibitor formation and high prevalence of pre-existing immunity to the AAV capsid in humans remain as main challenges for AAV2-based vectors using this strategy. Vectors packaged with AAV7, 8 and 9 serotypes have improved gene transfer efficiencies and may provide potential alternatives to overcome these problems. OBJECTIVE To compare the long-term expression of canine factor IX (cFIX) levels and anti-cFIX antibody responses following intramuscular injection of vectors packaged with AAV1, 2, 5, 7, 8 and 9 capsid in immunocompetent hemophilia B mice. RESULTS Highest expression was detected in mice injected with AAV2/8 vector (28% of normal), followed by AAV2/9 (15%) and AAV2/7 (10%). cFIX expression by AAV2/1 only ranged from 0 to 5% of normal levels. High incidences of anti-cFIX inhibitor (IgG) were detected in mice injected with AAV2 and 2/5 vectors, followed by AAV2/1. None of the mice treated with AAV2/7, 2/8 and 2/9 developed inhibitors or capsid T cells. CONCLUSIONS AAV7, 8 and 9 are more efficient and safer vectors for muscle-directed gene therapy with high levels of transgene expression and absence of inhibitor formation. The absence of antibody response to transgene by AAV7, 8 and 9 is independent of vector dose but may be due to the fact that these three serotypes are associated with high level distribution to, and transduction of, hepatocytes following i.m. injection.
Collapse
Affiliation(s)
- Lili Wang
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Pierre Louboutin
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Bell
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenny Greig
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Li
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Di Wu
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M. Wilson
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Isotani M, Miyake K, Miyake N, Hirai Y, Shimada T. Direct Comparison of Four Adeno-Associated Virus Serotypes in Mediating the Production of Antiangiogenic Proteins in Mouse Muscle. Cancer Invest 2011; 29:353-9. [DOI: 10.3109/07357907.2011.584585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Himeda CL, Chen X, Hauschka SD. Design and testing of regulatory cassettes for optimal activity in skeletal and cardiac muscles. Methods Mol Biol 2011; 709:3-19. [PMID: 21194018 DOI: 10.1007/978-1-61737-982-6_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Gene therapy for muscular dystrophies requires efficient gene delivery to the striated musculature and specific, high-level expression of the therapeutic gene in a physiologically diverse array of muscles. This can be achieved by the use of recombinant adeno-associated virus vectors in conjunction with muscle-specific regulatory cassettes. We have constructed several generations of regulatory cassettes based on the enhancer and promoter of the muscle creatine kinase gene, some of which include heterologous enhancers and individual elements from other muscle genes. Since the relative importance of many control elements varies among different anatomical muscles, we are aiming to tailor these cassettes for high-level expression in cardiac muscle, and in fast and slow skeletal muscles. With the achievement of efficient intravascular gene delivery to isolated limbs, selected muscle groups, and heart in large animal models, the design of cassettes optimized for activity in different muscle types is now a practical goal. In this protocol, we outline the key steps involved in the design of regulatory cassettes for optimal activity in skeletal and cardiac muscle, and testing in mature muscle fiber cultures. The basic principles described here can also be applied to engineering tissue-specific regulatory cassettes for other cell types.
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
9
|
Sam MR, Zomorodipour A, Shokrgozar MA, Ataei F, Haddad-Mashadrizeh A, Amanzadeh A. Enhancement of the human factor IX expression, mediated by an intron derived fragment from the rat aldolase B gene in cultured hepatoma cells. Biotechnol Lett 2010; 32:1385-92. [PMID: 20559684 DOI: 10.1007/s10529-010-0321-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
Combinations of a liver-specific rat aldolase B intronic enhancer (rABE) with either of the hepatocyte-specific human α1-antitrypsin promoter (hAATp) and cytomegalovirus enhancer/promoter (CMVp) were used to construct a number of plasmids expressing non-viral human factor IX (hFIX). The efficacies of the plasmids were evaluated in a hepatocyte cell line (HepG2). Potential of the rABE was evidenced, by 300%--and 800% increase of the hFIX expression levels when it was combined with the CMVp and hAATp, respectively. The highest hFIX expression level was obtained when the rABE was combined with the CMVp for which the maximum intracellular accumulation of hFIX was also evidenced. Therefore, the rABE is suggested as a suitable cis-acting element for protein expression in hepatocytes. Considering the potential of introns during post-transcriptional processes, the function of the human β-globin (hBG) intron-II, within the hFIX coding region, in the second generations of the hFIX expressing plasmids was also examined, which leaded to reduction of the hFIX expression level, probably due to improper splicing of the hBG intron-II.
Collapse
Affiliation(s)
- Mohammad Reza Sam
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
10
|
Impact of the underlying mutation and the route of vector administration on immune responses to factor IX in gene therapy for hemophilia B. Mol Ther 2009; 17:1733-42. [PMID: 19603001 DOI: 10.1038/mt.2009.159] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Immune responses to factor IX (F.IX), a major concern in gene therapy for hemophilia, were analyzed for adeno-associated viral (AAV-2) gene transfer to skeletal muscle and liver as a function of the F9 underlying mutation. Vectors identical to those recently used in clinical trials were administered to four lines of hemophilia B mice on a defined genetic background [C3H/HeJ with deletion of endogenous F9 and transgenic for a range of nonfunctional human F.IX (hF.IX) variants]. The strength of the immune response to AAV-encoded F.IX inversely correlated with the degree of conservation of endogenous coding information and levels of endogenous antigen. Null mutation animals developed T- and B-cell responses in both protocols. However, inhibitor titers were considerably higher upon muscle gene transfer (or protein therapy). Transduced muscles of Null mice had strong infiltrates with CD8+ cells, which were much more limited in the liver and not seen for the other mutations. Sustained expression was achieved with liver transduction in mice with crm(-) nonsense and missense mutations, although they still formed antibodies upon muscle gene transfer. Therefore, endogenous expression prevented T-cell responses more effectively than antibody formation, and immune responses varied substantially depending on the protocol and the underlying mutation.
Collapse
|
11
|
Boulaire J, Balani P, Wang S. Transcriptional targeting to brain cells: Engineering cell type-specific promoter containing cassettes for enhanced transgene expression. Adv Drug Deliv Rev 2009; 61:589-602. [PMID: 19394380 DOI: 10.1016/j.addr.2009.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/05/2009] [Indexed: 12/16/2022]
Abstract
Transcriptional targeting using a mammalian cellular promoter to restrict transgene expression to target cells is often desirable for gene therapy. This strategy is, however, hindered by relatively weak activity of some cellular promoters, which may lead to low levels of gene expression, thus declining therapeutic efficacy. Here we outline the advances accomplished in the area of transcriptional targeting to brain cells, with a particular focus on engineering gene cassettes to augment cell type-specific expression. Among the effective approaches that improve gene expression while retaining promoter specificity are promoter engineering to change authentic sequences of a cellular promoter and the combined use of a native cellular promoter and other cis-acting elements. Success in achieving high level and sustained transgene expression only in the cell types of interest would be of importance in allowing gene therapy to have its impact on patient treatment.
Collapse
|
12
|
Abstract
Adeno-associated viral (AAV) vectors have been broadly used for gene transfer in vivo for various applications. However, AAV precludes the use of most of the original large-sized tissue-specific promoters for expression of transgenes. Efforts are made to develop highly compact, active and yet tissue-specific promoters for use in AAV vectors. In this study, we further abbreviated the muscle creatine kinase (MCK) promoter by ligating a double or triple tandem of MCK enhancer (206-bp) to its 87-bp basal promoter, generating the dMCK (509-bp) and tMCK (720-bp) promoters. The dMCK promoter is shorter but stronger than some previously developed MCK-based promoters such as the enh358MCK (584-bp) and CK6 (589-bp) in vitro in C2C12 myotubes and in vivo in skeletal muscles. The tMCK promoter is the strongest that we tested here, more active than the promiscuous cytomegalovirus (CMV) promoter. Furthermore, both the dMCK and tMCK promoters are essentially inactive in nonmuscle cell lines as well as in the mouse liver (>200-fold weaker than the CMV promoter). The dMCK promoter was further tested in a few lines of transgenic mice. Expression of LacZ or minidystrophin gene was detected in skeletal muscles throughout the body, but was weak in the diaphragm, and undetectable in the heart and other tissues. Similar to other miniature MCK promoters, the dMCK promoter also shows preference for fast-twitch myofibers. As a result, we further examined a short, synthetic muscle promoter C5-12 (312-bp). It is active in both skeletal and cardiac muscles but lacks apparent preference on myofiber types. Combination of a MCK enhancer to promoter C5-12 has increased its strength in muscle by two- to threefold. The above-mentioned compact muscle-specific promoters are well suited for AAV vectors in muscle-directed gene therapy studies.
Collapse
|
13
|
Abstract
Recombinant adeno-associated virus (rAAV) vectors possess a number of properties that may make them suitable for clinical gene therapy, including being based upon a virus for which there is no known pathology and a natural propensity to persist in human cells. Wild-type adeno-associated viruses (AAVs) are now known to be very diverse and ubiquitous in humans and nonhuman primates, which adds to the degree of confidence one may place in the natural history of AAV, namely that it has never been associated with any human tumors or other acute pathology, other than sporadic reports of having been isolated from spontaneously aborted fetuses. On the basis of this understanding of AAV biology and a wide range of preclinical studies in mice, rabbits, dogs and nonhuman primates, a growing number of clinical trials have been undertaken with this class of vectors. Altogether, over 40 clinical trials have now been approved. Although all previous trials were undertaken using AAV serotype 2 vectors, at least two current trials utilize AAV2 vector genomes cross-packaged or pseudotyped into AAV1 capsids, which appear to mediate more efficient gene delivery to muscle. The explosion of capsid isolates available for use as vectors to over 120 has now provided the potential to broaden the application of AAV-based gene therapy to other cell types.
Collapse
|
14
|
Salva MZ, Himeda CL, Tai PW, Nishiuchi E, Gregorevic P, Allen JM, Finn EE, Nguyen QG, Blankinship MJ, Meuse L, Chamberlain JS, Hauschka SD. Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 2007; 15:320-9. [PMID: 17235310 DOI: 10.1038/sj.mt.6300027] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Systemic delivery of recombinant adeno-associated virus (rAAV) 6 vectors mediates efficient transduction of the entire striated musculature, making this an attractive strategy for muscle gene therapy. However, owing to widespread transduction of non-muscle tissues, optimization of this method would benefit from the use of muscle-specific promoters. Most such promoters either lack high-level expression in certain muscle types or are too large for inclusion in rAAV vectors encoding microdystrophin. Here, we describe novel regulatory cassettes based on enhancer/promoter regions of murine muscle creatine kinase (CK) and alpha-myosin heavy-chain genes. The strongest cassette, MHCK7 (770 bp), directs high-level expression comparable to cytomegalovirus and Rous sarcoma virus promoters in fast and slow skeletal and cardiac muscle, and low expression in the liver, lung, and spleen following systemic rAAV6 delivery in mice. Compared with CK6, our previous best cassette, MHCK7 activity is approximately 400-, approximately 50-, and approximately 10-fold higher in cardiac, diaphragm, and soleus muscles, respectively. MHCK7 also directs strong microdystrophin expression in mdx muscles. While further study of immune responses to MHCK7-regulated microdystrophin expression is needed, this cassette is not active in dendritic cell lines. MHCK7 is thus a highly improved regulatory cassette for experimental studies of rAAV-mediated transduction of striated muscle.
Collapse
Affiliation(s)
- Maja Z Salva
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sabatino DE, Mackenzie TC, Peranteau W, Edmonson S, Campagnoli C, Liu YL, Flake AW, High KA. Persistent expression of hF.IX After tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther 2007; 15:1677-85. [PMID: 17565352 DOI: 10.1038/sj.mt.6300219] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The major complication associated with protein replacement therapy currently used in the treatment of hemophilia B (HB) is the development of antibodies to the infused human Factor IX (hF.IX). We hypothesized that vector-mediated expression of hF.IX, either at a prenatal stage or early in life may lead to tolerance to hF.IX and long-term transgene expression. Fetal, neonatal, and adult F.IX-deficient mice were injected with AAV-1-hF.IX, and the hF.IX levels as well as antibodies to hF.IX in the circulation were assayed. In utero injection followed by postnatal re-administration of adeno-associated virus 1 (AAV-1) vector achieved persistent expression of hF.IX in all animals, with no cellular or humoral immune response to F.IX. Similar results were seen after initial injection in neonatal mice followed by re-administration, whereas all mice injected at the adult stage developed antibodies to hF.IX. In contrast, after administration of AAV-2-hF.IX in the neonatal period, antibodies to hF.IX were formed in all the injected animals. We conclude that in utero or neonatal-stage injection of AAV-1-hF.IX can lead to long-term expression and absence of immune response. The differences in immune response between the AAV-1 and AAV-2 groups suggests that tolerance may be related to differences in bio-distribution, timing of expression, and/or the initial levels of hF.IX expression. This supports the concept of a narrow "window of opportunity" for tolerance induction.
Collapse
Affiliation(s)
- Denise E Sabatino
- Department of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Huang F, Cai R, Qian C, Liu X. Targeting strategies for adeno-associated viral vector. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0260-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Thorrez L, Vandenburgh H, Callewaert N, Mertens N, Shansky J, Wang L, Arnout J, Collen D, Chuah M, Vandendriessche T. Angiogenesis Enhances Factor IX Delivery and Persistence from Retrievable Human Bioengineered Muscle Implants. Mol Ther 2006; 14:442-51. [PMID: 16750937 DOI: 10.1016/j.ymthe.2006.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 02/27/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022] Open
Abstract
Human muscle progenitor cells transduced with lentiviral vectors secreted high levels of blood clotting factor IX (FIX). When bioengineered into postmitotic myofibers as human bioartificial muscles (HBAMs) and subcutaneously implanted into immunodeficient mice, they secreted FIX into the circulation for >3 months. The HBAM-derived FIX was biologically active, consistent with the cells' ability to conduct the necessary posttranslational modifications. These bioengineered muscle implants are retrievable, an inherent safety feature that distinguishes this "reversible" gene therapy approach from most other gene therapy strategies. When myofibers were bioengineered from human myoblasts expressing FIX and vascular endothelial growth factor, circulating FIX levels were increased and maintained long term within the therapeutic range, consistent with the generation of a vascular network around the HBAM. The present study implicates an important role for angiogenesis in the efficient delivery of therapeutic proteins using tissue engineered stem cell-based gene therapies.
Collapse
Affiliation(s)
- Lieven Thorrez
- Center for Transgene Technology and Gene Therapy, University of Leuven/Flanders Interuniversity Institute for Biotechnology, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang CY, Wang S. Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Ther 2006; 13:1447-56. [PMID: 16724097 DOI: 10.1038/sj.gt.3302771] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Therapeutic gene expression in glial cells has been tested for the treatment of neurological diseases in animal models. Many of such studies used the promoter of the glial fibrillary acidic protein (GFAP) to restrict gene expression to astrocytes. We have investigated in the current study whether it is possible to improve the transcriptional activity of the cellular promoter, while maintaining its cell-type specificity. We constructed an expression cassette containing a hybrid cytomegalovirus (CMV) enhancer/GFAP promoter and placed it into baculovirus vectors, a type of viral vectors capable of transducing astrocytes. In another vector design, we used inverted terminal repeats (ITRs) from adeno-associated virus (AAV) to flank the expression cassette. The recombinant baculoviruses with the hybrid promoter improved gene expression levels over two orders of magnitude in glial cell lines and by 10-fold in the rat brain when compared to the baculoviruses with the GFAP promoter alone. The expression was further improved by ITR flanking, reaching levels higher than that mediated by the baculovirus vectors with the CMV immediate-early enhancer/promoter (CMV promoter). Using these recombinant baculoviruses, we observed extended in vivo transgene expression in the rat brain at 90 days postinjection, by which time the gene expression from baculovirus vectors with the GFAP or CMV promoter had already become undetectable. The astrocyte specificity of the GFAP promoter was preserved in the engineered expression cassette with the CMV enhancer and the AAV ITRs, as demonstrated by immunohistological analysis of brain samples and an axonal retrograde transport assay. Taken together, our findings suggest that these baculovirus vectors may serve as useful tools for astrocyte-specific gene expression in the brain.
Collapse
Affiliation(s)
- C Y Wang
- Institute of Bioengineering and Nanotechnology, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
19
|
Wang CY, Guo HY, Lim TM, Ng YK, Neo HP, Hwang PYK, Yee WC, Wang S. Improved neuronal transgene expression from an AAV-2 vector with a hybrid CMV enhancer/PDGF-beta promoter. J Gene Med 2005; 7:945-55. [PMID: 15756650 DOI: 10.1002/jgm.742] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Adeno-associated virus type 2 (AAV-2) vectors are highly promising tools for gene therapy of neurological disorders. After accommodating a cellular promoter, AAV-2 vectors are able to drive sustained expression of transgene in the brain. This study aimed to develop AAV-2 vectors that also facilitate a high level of neuronal expression by enhancing the strength of a neuron-specific promoter, the human platelet-derived growth factor beta-chain (PDGF) promoter. METHODS AND RESULTS A hybrid promoter approach was adopted to fuse the enhancer of human cytomegalovirus immediately early (CMV) promoter to the PDGF promoter. In cultured cortex neurons, AAV-2 vectors containing the hybrid promoter augmented transgene expression up to 20-fold over that mediated by titer-matched AAV-2 vectors with the PDGF promoter alone and 4-fold over the CMV enhancer/promoter. Injection of AAV-2 vectors with the hybrid promoter into the rat striatum resulted in neuron-specific transgene expression, the level of which was about 10-fold higher than those provided by the two control AAV-2 expression cassettes at 4 weeks post-injection and maintained for at least 12 weeks. Gene expression in the substantia nigra through possible retrograde transport of the AAV-2 vectors injected into the striatum was not obvious. After direct injection of AAV-2 vectors into the substantia nigra, transgene expression driven by the hybrid promoter was observed specifically in dopaminergic neurons and its level was about 3 and 17 times higher than that provided by the PDGF promoter alone and the CMV enhancer/promoter, respectively. CONCLUSIONS Enhanced transgene capacity plus neuron-specificity of the AAV-2 vectors developed in this study might prove valuable for gene therapy of Parkinson's disease.
Collapse
Affiliation(s)
- C Y Wang
- Institute of Bioengineering and Nanotechnology, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rawle FEM, Shi CX, Brown B, McKinven A, Tinlin S, Graham FL, Hough C, Lillicrap D. Heterogeneity of the immune response to adenovirus-mediated factor VIII gene therapy in different inbred hemophilic mouse strains. J Gene Med 2005; 6:1358-68. [PMID: 15493040 DOI: 10.1002/jgm.624] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The development of anti-factor VIII (FVIII) antibodies (inhibitors) is a critical concern when considering gene therapy as a potential treatment modality for hemophilia A. We used a hemophilia A mouse model bred on different genetic backgrounds to explore genetically controlled differences in the immune response to FVIII gene therapy. METHODS C57BL/6 FVIII knockout (C57-FVIIIKO) mice were bred with normal BALB/c (BAL) mice, to generate a recombinant congenic BAL-FVIIIKO model of hemophilia A. Early generation adenoviral (Ad) vectors containing the canine FVIII B-domain-deleted transgene under the control of either the CMV promoter or a tissue-restricted (TR) promoter were administered to C57-FVIIIKO, C57xBAL(F1)-FVIIIKO crosses, and BAL-FVIIIKO mice. FVIII expression, inhibitor development, inflammation, and vector-mediated toxicity were assessed. RESULTS In response to administration of Ad-CMV-cFVIII, C57-FVIIIKO mice attain 3-fold higher levels of FVIII expression than BAL-FVIIIKO. All strains injected with Ad-CMV-FVIII displayed FVIII expression lasting only 2 weeks, with associated inhibitor development. C57-FVIII-KO mice that received Ad-TR-FVIII expressed FVIII for 12 months post-injection, whereas FVIII expression was limited to 1 week in C57xBAL(F1)-FVIIIKO and BAL-FVIIIKO mice. This loss of expression was associated with anti-FVIII inhibitor development. BAL-FVIIIKO mice showed increased hepatotoxicity with alanine aminotransferase levels reaching 4-fold higher levels than C57-FVIIIKO mice. However, C57-FVIIIKO mice initiate a more rapid and effective cell-mediated clearance of virally transduced cells than BAL-FVIIIKO, as evidenced by real-time PCR analysis of transduced tissues. Overall, strain-dependent differences in the immune response to FVIII gene delivery were only noted in the adaptive response, and not in the innate response. CONCLUSIONS Our results indicate that the genetic background of the murine model of hemophilia A influences FVIII expression levels, the development of anti-FVIII inhibitors, clearance of transduced cells, and the severity of vector-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Fiona E M Rawle
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nitta Y, Kawamoto S, Halbert C, Iwata A, Miller AD, Miyazaki JI, Allen MD. A CMV-actin-globin hybrid promoter improves adeno-associated viral vector gene expression in the arterial wallin vivo. J Gene Med 2005; 7:1348-55. [PMID: 15945122 DOI: 10.1002/jgm.784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Adeno-associated virus (AAV) vectors are attractive tools for direct intralumenal arterial gene transfer in interventional cardiology or cardiovascular surgery, but clinical application has been constrained by poor gene expression in this setting. METHODS To improve arterial wall gene expression, a hybrid promoter consisting of a cytomegalovirus (CMV) immediate-early enhancer, a chicken beta-actin transcription start site, and a rabbit beta-globin intron (CAG promoter) was substituted for the Rous sarcoma virus (RSV) promoter in an AAV type 2 vector with an alkaline phosphatase (AP) reporter gene. RESULTS Intralumenal transduction of rabbit carotid arteries by an AAV2 vector containing a CAG promoter resulted in gene expression in a mean of > or = 80% of the lumenal area at 14 days following exposure, compared to < or = 25% gene-expressing area with the RSV promoter-based control vector. The high prevalence of gene expression was maintained at 3, 7, 14, and 28 days. Importantly, in carotid arteries transduced with the CAG promoter, gene product expression was readily visible by the third day following transduction whereas gene expression was rarely seen before day 10 using the RSV promoter in the same animal model. On histology, AP gene expression was predominantly in vascular smooth muscle cells although some endothelial cell expression was also present. CONCLUSIONS Substituting the CAG for the RSV promoter results in widespread gene expression, demonstrating efficient arterial wall transduction by AAV2 vectors. This finding plus the early time to gene expression hold promise for AAV vectors as agents for direct intralumenal arterial wall gene delivery during cardiovascular interventions.
Collapse
Affiliation(s)
- Yoshio Nitta
- Department of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Athanasopoulos T, Graham IR, Foster H, Dickson G. Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther 2004; 11 Suppl 1:S109-21. [PMID: 15454965 DOI: 10.1038/sj.gt.3302379] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic muscle disorder caused by recessive mutations in the dystrophin gene. The size of the gene (2.4 Mb) and mRNA (14 kb) in addition to immunogenicity problems and inefficient transduction of mature myofibres by currently available vector systems are formidable obstacles to the development of efficient gene therapy approaches. Adeno-associated viral (AAV) vectors overcome many of the problems associated with other vector systems (nonpathogenicity and minimal immunogenicity, extensive cell and tissue tropism) but accommodate limited transgene capacity (<5 kb). As a result of these observations, a number of laboratories worldwide have engineered a series of microdystrophin cDNAs based on genotype-phenotype relationship in Duchenne (DMD) and Becker (BMD) dystrophic patients, and transgenic studies in mdx mice. Recent progress in characterization of AAV serotypes from various species has demonstrated that alternative AAV serotypes are far more efficient in transducing muscle than the traditionally used AAV2. This article summarizes the current progress in the field of recombinant adeno-associated viral (rAAV) delivery for DMD, including optimization of recombinant AAV-microdystrophin vector systems/cassettes targeting the skeletal and cardiac musculature.
Collapse
Affiliation(s)
- T Athanasopoulos
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | | | | | | |
Collapse
|
23
|
Gafni Y, Pelled G, Zilberman Y, Turgeman G, Apparailly F, Yotvat H, Galun E, Gazit Z, Jorgensen C, Gazit D. Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther 2004; 9:587-95. [PMID: 15093189 DOI: 10.1016/j.ymthe.2003.12.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2002] [Accepted: 12/17/2003] [Indexed: 11/15/2022] Open
Abstract
Viral delivery of the therapeutic gene bone morphogenetic protein-2 (BMP-2) is a promising approach for bone regeneration. The human parvovirus adeno-associated virus (AAV) type 2 is considered one of the most encouraging viral vector systems because of its high transduction rates and biosafety ratings. Bone morphogenetic protein-2 is a highly potent osteoinductive protein, which induces bone formation in vivo and osteogenic differentiation in vitro. The exogenous regulation of BMP-2 expression in bone-regenerating sites is required to control BMP-2 protein secretion, thus promoting safe and controlled bone formation and regeneration. We have therefore constructed a dual-construct vector for the recombinant AAV (rAAV)-based recombinant human BMP-2 (rhBMP-2) gene delivery system, which is regulated by the tetracycline-sensitive promoter (TetON). Each vector was encapsidated separately, yielding two recombinant viruses. We evaluated the efficiency of rAAV-hBMP-2 to induce bone formation in ectopic and orthotopic sites. Doxycycline (Dox), an analogue of tetracycline, was orally administered to mice via their drinking water to induce rhBMP-2 expression. Bone formation was measured using quantitative imaging-microcomputerized tomography and cooled charge-coupled device imaging-to detect osteogenic activity at the cellular level, detecting osteocalcin expression. The rAAV-hBMP-2-treated mice that were given Dox demonstrated bone formation in both in vivo models compared to none in mice prevented from receiving Dox. Thus, the Tet-regulated rAAV-hBMP-2 vector is an effective means of induction and regulation of bone regeneration and repair.
Collapse
Affiliation(s)
- Yossi Gafni
- Skeletal Biotechnology Laboratory, Hebrew University-Hadassah Medical Center, Ein Kerem, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li Y, Yang Y, Wang S. Neuronal gene transfer by baculovirus-derived vectors accommodating a neurone-specific promoter. Exp Physiol 2004; 90:39-44. [PMID: 15542616 DOI: 10.1113/expphysiol.2004.028217] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant baculoviruses have been employed as gene delivery vectors for mammalian cells, including neurones, during recent years. The aim of the current study was to develop a new recombinant baculovirus vector capable of enhancing gene expression in neurones. A hybrid promoter constructed by fusing the enhancer of human cytomegalovirus (CMV) immediately early promoter to the human platelet-derived growth factor (PDGF) beta-chain promoter was placed into a baculovirus expression cassette. In cultured neurones, baculovirus vectors containing the hybrid promoter augmented transgene expression up to 100-fold greater than that mediated by titre-matched baculovirus vectors with the PDGF promoter alone. Double immunostaining of tissue sections collected from the striatum and the retina injected with the new baculovirus vector demonstrated its specificity in driving gene expression almost exclusively in neurones, confirming the feasibility of using a tissue-specific promoter in the context of baculovirus vectors to provide cell type-specific transgene expression. The attributes of the new baculovirus vector might have practical implications for gene therapy in the nervous system.
Collapse
Affiliation(s)
- Ying Li
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669
| | | | | |
Collapse
|
25
|
Abstract
Development of hemophilia gene therapy depends on testing gene transfer vectors in hemophilic and nonhemophilic animals. Available animal models include factor VIII or factor IX knockout mice as well as dogs with spontaneous hemophilia A or B. Large animals (particularly dogs) more closely replicate the requirements for correction of human hemophilia than do mice. Small animals are more convenient to maintain and require significantly less vector for testing than do large animals. Nonhemophilic animals (mice or nonhuman primates), whose endogenous factor VIII and factor IX complicate analysis of the human proteins, have utility for safety testing of vectors; some assays can discriminate between human coagulation factors and the endogenous coagulation factors. Most animal models suffer the limitations imposed by the immune response to human factor VIII or IX protein. Clinical trials have failed to achieve significant factor VIII expression in hemophilia A patients, while one clinical trial in hemophilia B patients showed only transient therapeutic increments of factor IX expression. Gene therapy remains an investigational method with many obstacles to overcome before it can be widely used as treatment for hemophilia.
Collapse
Affiliation(s)
- Jay Lozier
- Food and Drug Administration Center for Biologics Evaluation and Research, Rockville, MD 20852-1448, USA.
| |
Collapse
|
26
|
Yamauchi A, Ito Y, Morikawa M, Kobune M, Huang J, Sasaki K, Takahashi K, Nakamura K, Dehari H, Niitsu Y, Abe T, Hamada H. Pre-administration of angiopoietin-1 followed by VEGF induces functional and mature vascular formation in a rabbit ischemic model. J Gene Med 2004; 5:994-1004. [PMID: 14601137 DOI: 10.1002/jgm.439] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF) play important roles in vascular formation and maturation, suggesting that the combination of these two would be a promising therapy for ischemia. However, it remains unclear what the best schedule of administration of these cytokines might be. METHODS Six experimental groups were used to prepare the rabbit ischemic hindlimb model following naked plasmid intramuscular administration as follows: empty vector (C), single gene (Ang1, A; VEGF, V), Ang-1 followed by VEGF (A - V), co-administration of Ang1 and VEGF (A + V), and VEGF followed by Ang1 (V - A). RESULTS Thirty days after gene administration, A - V showed a significantly increased blood pressure and blood-flow recovery in the ischemic limb compared with the control group. Histological findings by alpha-smooth muscle-actin (alpha-SMA) staining revealed that the two combination groups had more mature vessels as compared with the control group. Significantly, A - V revealed the highest density of alpha-SMA-positive vessels compared with VEGF alone or Ang1 alone. Angiographic assessment revealed that A - V had a greater increased arterial diameter compared with VEGF alone. Edema, one of the major adverse effects induced by VEGF, was not found in A - V throughout the experiments, while VEGF alone and V - A showed severe edema induced by VEGF. CONCLUSIONS The pre-administration of Ang1 followed by VEGF resulted in an improvement of hemodynamic status, an increased number of vessels covered with alpha-actin-positive mural cells, and prevention of VEGF-mediated edema. Thus, priming by Ang1 gene administration would be beneficial for therapeutic angiogenesis in VEGF gene therapy.
Collapse
Affiliation(s)
- Akihiko Yamauchi
- Department of Molecular Medicine, Sapporo Medical University, S1 W17 Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu YL, Mingozzi F, Rodriguéz-Colôn SM, Joseph S, Dobrzynski E, Suzuki T, High KA, Herzog RW. Therapeutic Levels of Factor IX Expression Using a Muscle-Specific Promoter and Adeno-Associated Virus Serotype 1 Vector. Hum Gene Ther 2004; 15:783-92. [PMID: 15319035 DOI: 10.1089/1043034041648453] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Extensive studies in animal models of the X-linked bleeding disorder hemophilia B (deficiency in functional coagulation factor IX, F.IX) have shown that muscle-directed adeno-associated (AAV)-mediated F.IX gene transfer can be used to treat this disease. However, large vector doses of AAV-2 vector are required for therapeutic levels of expression, and the number of vector doses that can be injected per intramuscular site is limited. Several studies have shown that some of these limitations can be overcome by use of AAV serotype 1 vector. Here, we demonstrate levels of F.IX transgene expression from a synthetic muscle-specific promoter (C5-12) that were higher than from the cytomegalovirus (CMV) immediate-early enhancer-promoter in cultured muscle cells in vitro and approximately 50% of CMV-driven expression in vivo in murine skeletal muscle after AAV-1 gene transfer. These data show for the first time that a tissue-specific promoter can be used to achieve therapeutic levels of muscle-derived F.IX expression in the context of viral gene transfer. However, use of a muscle-specific promoter did not prevent antibody formation in response to a murine F.IX transgene product in mice with F.IX gene deletion, indicating that the risk of humoral immune responses remains in the context of an immunologically unfavorable mutation.
Collapse
Affiliation(s)
- Yi-Lin Liu
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen L, Chen H, Zou B, Wu Z, Wu X, Lu D, Xue J. Preparation of rAAV/hFlX by HSV/AAV hybrid helper virus and evaluation of its safety. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf03184181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Abstract
Significant progress has recently been made in the development of gene therapy for the treatment of hemophilia A and B. These advances parallel the development of improved gene delivery systems. Long-term therapeutic levels of factor (F) VIII and FIX can be achieved in adult FVIII- and FIX-deficient mice and in adult hemophiliac dogs using adeno-associated viral (AAV) vectors, high-capacity adenoviral vectors (HC-Ad) and lentiviral vectors. In mouse models, some of the highest FVIII or FIX expression levels were achieved using HC-Ad vectors with no or only limited adverse effects. Encouraging preclinical data have been obtained using AAV vectors, yielding long-term FIX levels above 10% in primates and in hemophilia B dogs, which prevented spontaneous bleeding. Non-viral ex vivo gene therapy approaches have also led to long-term therapeutic levels of coagulation factors in animal models. Nevertheless, the induction of neutralizing antibodies (inhibitors) to FVIII or FIX sometimes precludes stable phenotypic correction following gene therapy. The risk of inhibitor formation varies depending on the type of vector, vector serotype, vector dose, expression levels and promoter used, route of administration, transduced cell type and the underlying mutation in the hemophilia model. Some studies suggest that continuous expression of clotting factors may induce immune tolerance, particularly when expressed by the liver. Several gene therapy phase I clinical trials have been initiated in patients suffering from severe hemophilia A or B. Some subjects report fewer bleeding episodes and occasionally have low levels of clotting factor activity detected. Further improvement of the various gene delivery systems is warranted to bring a permanent cure for hemophilia one step closer to reality.
Collapse
Affiliation(s)
- T VandenDriessche
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology-University of Leuven, 49 Herestraat B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
30
|
Xu L, Gao C, Sands MS, Cai SR, Nichols TC, Bellinger DA, Raymer RA, McCorquodale S, Ponder KP. Neonatal or hepatocyte growth factor-potentiated adult gene therapy with a retroviral vector results in therapeutic levels of canine factor IX for hemophilia B. Blood 2003; 101:3924-32. [PMID: 12531787 DOI: 10.1182/blood-2002-10-3050] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemophilia B is a bleeding disorder resulting from factor IX (FIX) deficiency that might be treated with gene therapy. Neonatal delivery would correct the disease sooner than would transfer into adults, and could reduce immunological responses. Neonatal mice were injected intravenously with a Moloney murine leukemia virus-based retroviral vector (RV) expressing canine FIX (cFIX). They achieved 150% to 280% of normal cFIX antigen levels in plasma (100% is 5 microg/mL), which was functional in vitro and in vivo. Three newborn hemophilia B dogs that were injected intravenously with RV achieved 12% to 36% of normal cFIX antigen levels, which improved coagulation tests. Only one mild bleed has occurred during 14 total months of evaluation. This is the first demonstration of prolonged expression after neonatal gene therapy for hemophilia B in mice or dogs. Most animals failed to make antibodies to cFIX, demonstrating that neonatal gene transfer may induce tolerance. Although hepatocytes from newborns replicate, those from adults do not. Adult mice therefore received hepatocyte growth factor to induce hepatocyte replication prior to intravenous injection of RV. This resulted in expression of 35% of normal cFIX antigen levels for 11 months, although all mice produced anti-cFIX antibodies. This is the first demonstration that high levels of FIX activity can be achieved with an RV in adults without a partial hepatectomy to induce hepatocyte replication. We conclude that RV-mediated hepatic gene therapy is effective for treating hemophilia B in mice and dogs, although the immune system may complicate gene transfer in adults.
Collapse
Affiliation(s)
- Lingfei Xu
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lu QL, Liang HD, Partridge T, Blomley MJK. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 2003; 10:396-405. [PMID: 12601394 DOI: 10.1038/sj.gt.3301913] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Accepted: 08/29/2002] [Indexed: 11/09/2022]
Abstract
Intramuscular injection of naked plasmid DNA is a safe approach to the systemic delivery of therapeutic gene products, but with limited efficiency. We have investigated the use of microbubble ultrasound to augment naked plasmid DNA delivery by direct injection into mouse skeletal muscle in vivo, in both young (4 weeks) and older (6 months) mice. We observed that the albumin-coated microbubble, Optison (licensed for echocardiography in patients), significantly improves the transfection efficiency even in the absence of ultrasound. The increase in transgene expression is age related as Optison improves transgene expression less efficiently in older mice than in younger mice. More importantly, Optison markedly reduces muscle damage associated with naked plasmid DNA and the presence of cationic polymer PEI 25000. Ultrasound at moderate power (3 W/cm2 1 MHz, 60 s exposure, duty cycle 20%), combined with Optison, increases transfection efficiency in older, but not in young, mice. The safe clinical use of microbubbles and therapeutic ultrasound and, particularly, the protective effect of the microbubbles against tissue damage provide a highly promising approach for gene delivery in muscle in vivo.
Collapse
Affiliation(s)
- Q L Lu
- Muscle Cell Biology, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
32
|
Waddington SN, Buckley SMK, Nivsarkar M, Jezzard S, Schneider H, Dahse T, Kemball-Cook G, Miah M, Tucker N, Dallman MJ, Themis M, Coutelle C. In utero gene transfer of human factor IX to fetal mice can induce postnatal tolerance of the exogenous clotting factor. Blood 2003; 101:1359-66. [PMID: 12393743 DOI: 10.1182/blood-2002-03-0779] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fundamental hypotheses behind fetal gene therapy are that it may be possible (1) to achieve immune tolerance of transgene product and, perhaps, vector; (2) to target cells and tissues that are inaccessible in adult life; (3) to transduce a high percentage of rapidly proliferating cells, and in particular stem cells, with relatively low absolute virus doses leading to clonal transgene amplification by integrating vectors; and (4) to prevent early disease manifestation of genetic diseases. This study provides evidence vindicating the first hypothesis; namely, that intravascular prenatal administration of an adenoviral vector carrying the human factor IX (hFIX) transgene can induce immune tolerance of the transgenic protein. Following repeated hFIX protein injection into adult mice, after prenatal vector injection, we found persistence of blood hFIX and absence of hFIX antibodies in 5 of 9 mice. Furthermore, there was substantial hFIX expression after each of 2 reinjections of vector without detection of hFIX antibodies. In contrast, all adult mice that had not been treated prenatally showed a rapid loss of the injected hFIX and the development of high hFIX antibody levels, both clear manifestations of a strong immune reaction.
Collapse
Affiliation(s)
- Simon N Waddington
- Gene Therapy, Section of Cell and Molecular Biology, Imperial College School of Science, Technology and Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Plantier JL, Enjolras N, Rodriguez MHE, Massé JM, Cramer EM, Négrier C. The P-selectin cytoplasmic domain directs the cellular storage of a recombinant chimeric factor IX. J Thromb Haemost 2003; 1:292-9. [PMID: 12871503 DOI: 10.1046/j.1538-7836.2003.00071.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hemophilia B was recognized as a good candidate for gene therapy. Several strategies have been attempted and gave promising results in hemophilic animals but failed to achieve corrective levels in humans. To overcome this inconvenience we aimed to generate intracellular pools of factor (F)IX in cells that are implicated in the hemostatic response, e.g. endothelial cells and platelets. Upon stimulation, these cells release their granule content, which in this case would result in an increase in local FIX concentration, and could locally produce an effective hemostasis. In an attempt to produce an intracellular pool of releasable coagulation FIX, the cytoplasmic domain of the P-selectin (pselCT) molecule was fused to the carboxy-terminal extremity of the human FIX protein. The properties of this chimeric molecule (FIX-pselCT) were studied in AtT20, a cell line which possesses storage granules. As previously shown for transmembrane molecules but not for a soluble protein such as FIX, the pselCT fragment induces the storage of FIX-pselCT. The coagulant activity of FIX-pselCT was not affected by the addition of the pselCT tail. The treatment of AtT20 cells with different inhibitors revealed that FIX-pselCT was not submitted to intracellular degradation and that the half-life of the chimeric molecule was at least two times longer than that of FIX-WT. An immunoelectron microscopic analysis demonstrated a specific localization of FIX-pselCT within the ACTH-containing granules. Cell stimulation using Phorbol Myristrate Acetate (PMA), ionophore A-23187 or 8-Br-cAMP induced efficient release of an active FIX-pselCT. These data demonstrate that the addition of the cytoplasmic domain of P-selectin to FIX modifies the cellular fate of the FIX molecule by directing the recombinant protein toward regulated-secretory granules without altering its coagulant activity.
Collapse
Affiliation(s)
- J-L Plantier
- INSERM U331, Laboratoire d'Hémobiologie-Faculté de Médecine RTH, Laennec, Lyon, France
| | | | | | | | | | | |
Collapse
|
34
|
Mah C, Sarkar R, Zolotukhin I, Schleissing M, Xiao X, Kazazian HH, Byrne BJ. Dual vectors expressing murine factor VIII result in sustained correction of hemophilia A mice. Hum Gene Ther 2003; 14:143-52. [PMID: 12614565 DOI: 10.1089/104303403321070838] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hemophilia A is a sex-linked disorder that results from a deficiency of functional factor VIII and is currently treated by protein replacement therapies. Within the past decade, gene therapy efforts have come to the forefront of novel therapeutics. In this work, a dual-vector approach was employed in which recombinant adeno-associated viral (rAAV) vectors expressing the heavy and light chains of the murine factor VIII gene were delivered either intramuscularly or intravenously to a mouse model of hemophilia A. From in vitro work, it was determined that coinfection with both vectors is required as heterodimerization of the heavy and light chains occurs intracellularly. In vivo, therapeutic levels of factor VIII expression were achieved throughout the duration of the study (22 weeks). Intravenous and intramuscular delivery resulted in a maximal average expression of 31.4 +/- 6.4 and 29 +/- 6.5% of normal murine factor VIII levels, respectively. Western blots of cryoprecipitate as well as immunostaining of injection sites with an anti-murine factor VIII light chain antibody also confirmed the expression of factor VIII. Because the murine form of the gene was used in the mouse model, less than 1 Bethesda unit of inhibitors was noted. This work demonstrates the feasibility of using rAAV vectors for the long-term treatment of hemophilia A.
Collapse
Affiliation(s)
- Cathryn Mah
- Department of Pediatrics, Department of Molecular Genetics and Microbiology, and Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610-0266, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Lu QL, Bou-Gharios G, Partridge TA. Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther 2003; 10:131-42. [PMID: 12571642 DOI: 10.1038/sj.gt.3301874] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ever since the publication of the first reports in 1990 using skeletal muscle as a direct target for expressing foreign transgenes, an avalanche of papers has identified a variety of proteins that can be synthesized and correctly processed by skeletal muscle. The impetus to the development of such applications is not only amelioration of muscle diseases, but also a range of therapeutic applications, from immunization to delivery of therapeutic proteins, such as clotting factors and hormones. Although the most efficient way of introducing transgenes into muscle fibres has been by a variety of recombinant viral vectors, there are potential benefits in the use of non-viral vectors. In this review we assess the recent advances in construction and delivery of naked plasmid DNA to skeletal muscle and highlight the options available for further improvements to raise efficiency to therapeutic levels.
Collapse
Affiliation(s)
- Q L Lu
- Muscle Cell Biology Group, MRC Clinical Sciences Center, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, London W12 0NN, UK
| | | | | |
Collapse
|
36
|
Krebsbach PH, Zhang K, Malik AK, Kurachi K. Bone marrow stromal cells as a genetic platform for systemic delivery of therapeutic proteins in vivo: human factor IX model. J Gene Med 2003; 5:11-7. [PMID: 12516047 DOI: 10.1002/jgm.292] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hemophilia B is an X-linked bleeding disorder that results from a deficiency in functional coagulation factor IX (hFIX). In patients lacking FIX, the intrinsic coagulation pathway is disrupted leading to a lifelong, debilitating and sometimes fatal disease. METHODS We have developed an ex vivo gene therapy system using genetically modified bone marrow stromal cells (BMSCs) as a platform for sustained delivery of therapeutic proteins into the general circulation. This model exploits the ability of BMSCs to form localized ectopic ossicles when transplanted in vivo. BMSCs were transduced with MFG-hFIX, a retroviral construct directing the expression of hFIX. The biological activity of hFIX expressed by these cells was assessed in vitro and in vivo. RESULTS Transduced cells produced biologically active hFIX in vitro with a specific activity of 90% and expressed hFIX at levels of approximately 497 ng/10(6) cells/24 h and 322 ng/10(6) cells/24 h for human and porcine cells, respectively. The secretion of hFIX was confirmed by Western blot analysis of the conditioned medium using a hFIX-specific antibody. Transduced BMSCs (8 x 10(6) cells per animal) were transplanted within scaffolds into subcutaneous sites in immunocompromised mice. At 1 week post-implantation, serum samples contained hFIX at levels greater than 25 ng/ml. Circulating levels of hFIX gradually decreased to 11.5 ng/ml at 1 month post-implantation and declined to a stable level at 6.1 ng/ml at 4 months. CONCLUSIONS These findings demonstrate that genetically modified BMSCs can continuously secrete biologically active hFIX from self-contained ectopic ossicles in vivo, and thus represent a novel delivery system for releasing therapeutic proteins into the circulation.
Collapse
Affiliation(s)
- Paul H Krebsbach
- University of Michigan School of Dentistry, Department of Oral Medicine, Pathology, and Oncology, Ann Arbor, Michigan 48109-1078, USA.
| | | | | | | |
Collapse
|
37
|
Herzog RW, Hagstrom JN. Gene therapy for hereditary hematological disorders. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 1:137-44. [PMID: 12174674 DOI: 10.2165/00129785-200101020-00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The year 2000 saw the first successful treatment of a genetic disorder by gene therapy. Pediatric patients with X-linked severe combined immunodeficiency disorder (SCID-X1) received autologous CD34+ hematopoietic cells following ex vivo gene transfer using a retroviral vector, with subsequent demonstration of improved immune responses. A number of preclinical and clinical studies have been conducted with the aim of developing gene therapy for hemophilia, Fanconi anemia, sickle cell disease, beta-thalassemia, chronic granulomatous disease, and other inherited hematological disorders. The greatest advances in novel approaches toward treatment of hematological disorders have been made in hemophilia, with 3 current phase I clinical trials ongoing. Two trials are investigating the safety and feasibility of utilizing either an ex vivo, non-viral gene transfer technique or an intravenous infusion of a retroviral vector to treat adults with severe hemophilia A (factor VIII deficiency). The third study involves intramuscular administration of an adeno-associated viral (AAV) vector for expression of factor IX in adult patients with hemophilia B. Results from this study and from preclinical studies preceding the trial demonstrate that it is possible to safely administer high doses of a viral vector in vivo.
Collapse
Affiliation(s)
- R W Herzog
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
38
|
Abstract
Gene transfer is an exciting and potentially important treatment approach for hemophilia A and B. Four phase I clinical trials of the safety of gene transfer in hemophilia A or B have been completed and two more trials are currently underway. The results of these trials indicate that gene transfer in hemophilia with the vectors and doses used is safe and well tolerated. Efforts continue to understand the basic biology and improve the efficiency of gene transfer.
Collapse
Affiliation(s)
- Paul E Monahan
- Department of Pediatrics, University of North Carolina at Chapel Hill, 418 MacNider Building, CB#7220 UNC-CH, School of Medicine, Chapel Hill, North Carolina 27599-7220, USA.
| | | |
Collapse
|
39
|
Apparailly F, Millet V, Noël D, Jacquet C, Sany J, Jorgensen C. Tetracycline-inducible interleukin-10 gene transfer mediated by an adeno-associated virus: application to experimental arthritis. Hum Gene Ther 2002; 13:1179-88. [PMID: 12133271 DOI: 10.1089/104303402320138961] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The adeno-associated viruses (AAV) offer new perspectives for cytokine gene transfer in rheumatoid arthritis (RA) because they are nonpathogenic and allow long-term transgene expression in vivo. Moreover, the use of a tetracycline-inducible promoter allows regulation of therapeutic gene expression. This study assessed the potential long-term gene regulation of a recombinant AAV vector expressing viral interleukin-10 (vIL-10) in human rheumatoid synovium and the therapeutic efficiency in a mouse model of RA. We constructed a recombinant AAV vector in which the transcription of vIL-10 cDNA is controlled by the TetON system. Transduction of human primary RA synovial cells with AAV-tetON-vIL10 conferred in vitro controlled vIL-10 expression. After intramuscular injection, both incidence and severity of collagen-induced arthritis were significantly reduced at macroscopic, radiological, and histological levels in the group of DBA1 mice treated with AAV-TetON-vIL10 vector plus doxycycline after immunization and boosting compared to control groups. When coinjecting two separate AAV vectors, one encoding the inducible vIL-10 and the other the transcriptional activator, a 10 times excess of the transactivator vector dose allowed efficient control of vIL-10 secretion by doxycycline administration or withdrawal, over an 8-week period. Our results supported, for the first time, the utility of AAV-tetON-vIL10 as a therapeutic tool for gene therapy in RA.
Collapse
Affiliation(s)
- Florence Apparailly
- Unité de Recherche en Immunopathologie des Maladies Tumorales et Autoimmunes, INSERM U475, France.
| | | | | | | | | | | |
Collapse
|
40
|
Aikawa R, Huggins GS, Snyder RO. Cardiomyocyte-specific gene expression following recombinant adeno-associated viral vector transduction. J Biol Chem 2002; 277:18979-85. [PMID: 11889137 DOI: 10.1074/jbc.m201257200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors hold promise for delivering genes for heart diseases, but cardiac-specific expression by the use of rAAV has not been demonstrated. To achieve this goal rAAV vectors were generated expressing marker or potentially therapeutic genes under the control of the cardiac muscle-specific alpha myosin heavy chain (MHC) gene promoter. The rAAV-MHC vectors expressed in primary cardiomyocytes with similar kinetics to rAAV-CMV; however, expression by the rAAV-MHC vectors was restricted to cardiomyocytes. rAAV vectors have low cytotoxicity, and it is demonstrated here that rAAV fails to induce apoptosis in cardiomyocytes compared with a recombinant adenoviral vector. rAAV-MHC or rAAV-CMV vectors were administered to mice to determine the specificity of expression in vivo. The rAAV-MHC vectors expressed specifically in cardiomyocytes, whereas the control rAAV-CMV vector expressed in heart, skeletal muscle, and brain. rAAV-MHC transduction resulted in long term (16 weeks) expression of human growth hormone following intracardiac, yet not intramuscular, injection. Finally, we defined the minimal MHC enhancer/promoter sequences required for specific and robust in vivo expression in the context of a rAAV vector. For the first time we describe a panel of rAAV vectors capable of long term cardiac specific expression of intracellular and secreted proteins.
Collapse
Affiliation(s)
- Ryuichi Aikawa
- Cardiovascular Biology Laboratory, Harvard School of Public Health, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
41
|
Bromberg JS, Boros P, Ding Y, Fu S, Ku T, Qin L, Sung R. Gene transfer methods for transplantation. Methods Enzymol 2002; 346:199-224. [PMID: 11883069 DOI: 10.1016/s0076-6879(02)46057-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- J S Bromberg
- Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- K J Pasi
- Division of Haematology, University of Leicester, Robert Kilpatrick Clinical Science Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK.
| |
Collapse
|
43
|
Fields PA, Arruda VR, Armstrong E, Chu K, Mingozzi F, Hagstrom JN, Herzog RW, High KA. Risk and prevention of anti-factor IX formation in AAV-mediated gene transfer in the context of a large deletion of F9. Mol Ther 2001; 4:201-10. [PMID: 11545610 DOI: 10.1006/mthe.2001.0441] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The safety of several gene therapy approaches for treatment of the severe, X-linked bleeding disorder hemophilia is currently being evaluated in early phase clinical trials. One strategy seeks to correct deficiency of functional coagulation factor IX (hemophilia B) by intramuscular (IM) administration of an adeno-associated viral (AAV) vector. A potentially serious complication of any treatment for hemophilia is formation of inhibitory antibodies against the coagulation factor protein, a risk that increases in the setting of null mutations in the factor IX gene (F9). Here, we describe hemophilia B mice with a large F9 deletion that form inhibitors within 1 to 2 months after IM administration of an AAV vector expressing mouse F9 or after repeated intravenous infusion of mouse F9 concentrate. In both cases, inhibitors are primarily IgG1 immunoglobulins representing a Th2-driven humoral immune response. We further demonstrate that anti-mouse F9 antibody formation in the gene-based approach can be reduced by transient immune modulation at the time of vector administration. Moreover, this maneuver resulted in complete absence of anti-mouse F9 and sustained expression of functional mouse F9 in some hemophilia B mice, particularly in those animals treated with the immunosuppressive drug cyclophosphamide. These data have direct relevance for design of clinical trials and strategies aimed at avoiding immune responses against a secreted transgene product.
Collapse
Affiliation(s)
- P A Fields
- Department of Pediatrics, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Haemophilia is an ideal condition for gene therapy because of its monogenetic character and the fact that it requires only a small amount of the expressed protein to achieve palliation. To date, research in the field of gene therapy for haemophilia has largely relied on retroviruses, adenoviruses and adeno-associated viruses as transfer vectors and the major aims will be to achieve stable longlasting in vivo expression of factors VIII or IX (FVIII or FIX) at therapeutic levels. Two clinical trials have been approved by the US Food and Drug Administration (FDA), using miniadenovirus FVIII and the intrahepatic and intramuscular delivery of adeno-associated virus FIX. In the third millennium, haemophilia treatment should encompass more ambitious goals through gene replacement, to result in permanent and safe haemophilia 'eradication', making haemophilia a part of the history of medicine.
Collapse
Affiliation(s)
- A Liras
- Spanish Federation of Haemophilia and Molecular Biology Centre Severo Ochoa, Facultad de Biología, Universidad Autónoma, Madrid, Spain
| |
Collapse
|
45
|
Yew NS, Przybylska M, Ziegler RJ, Liu D, Cheng SH. High and sustained transgene expression in vivo from plasmid vectors containing a hybrid ubiquitin promoter. Mol Ther 2001; 4:75-82. [PMID: 11472109 DOI: 10.1006/mthe.2001.0415] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sustained transgene expression will be required for the successful treatment of most genetic diseases being considered for gene therapy. The initially high levels of expression attained with plasmid DNA (pDNA) vectors containing viral promoters, such as that from cytomegalovirus (CMV), decline precipitously to near-background levels within two to three weeks. Here we constructed pDNA vectors containing the human cellular UBB (encoding ubiquitin B; Ub) promoter and evaluated their expression in the mouse lung. Cationic lipid-pDNA complexes were instilled intranasally (IN) or injected intravenously (IV) into immunodeficient BALB/c mice. Chloramphenicol acetyltransferase (CAT) reporter gene expression from the UBB promoter was initially very low at day 2 post-administration, but by day 35 exceeded the level of expression attained from a CMV promoter vector by four- to ninefold. Appending a portion of the CMV enhancer 5' of the UBB promoter (CMV-Ub) increased CAT expression to nearly that of the CMV promoter and expression persisted in the lung for at least 3 months, with 50% of day 2 levels remaining at day 84. In the liver, expression from the CMV-Ub hybrid promoter was sustained for 42 days. As previous studies have shown that eliminating immunostimulatory CpG motifs in pDNA vectors reduces their toxicity, we constructed a CpG-deficient version of the CMV-Ub vector expressing alpha-galactosidase A, the enzyme deficient in Fabry disease, a lysosomal storage disorder. After IN or IV administration, levels of alpha-galactosidase A from this vector were not only undiminished but increased 500% to 1500% by day 35. Our results indicate that CpG-reduced plasmid vectors containing a CMV-Ub hybrid promoter may provide the long-term expression required for a practical gene therapeutic.
Collapse
Affiliation(s)
- N S Yew
- Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322, USA.
| | | | | | | | | |
Collapse
|
46
|
Herweijer H, Zhang G, Subbotin VM, Budker V, Williams P, Wolff JA. Time course of gene expression after plasmid DNA gene transfer to the liver. J Gene Med 2001; 3:280-91. [PMID: 11437333 DOI: 10.1002/jgm.178] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND High levels of expression in hepatocytes can be achieved after intraportal delivery of plasmid DNA vectors with up to 10% of all liver cells transfected. CMV promoter-driven expression is very high on Day 1 after injection, but is diminished strongly by Day 2. Expression slowly declines after 1 week. We describe experiments aimed at elucidating the reasons for this rapid decline in transgene expression. METHODS Histological methods were used to determine the presence and extent of liver damage and hepatocyte proliferation. Viral and liver-specific promoters were tested to study promoter shut-off, Southern blotting was performed to determine the loss of the pDNA vector over time, and several mouse models were used to study the host immunological response. RESULTS pDNA is lost rapidly early after injection, but remains at a relatively stable copy number after Day 4. Southern blotting experiments showed that plasmid DNA could be detected for at least 12 weeks after injection (0.2 copies per genome). The early rapid decline of expression is promoter dependent. A liver-specific albumin promoter resulted in similar levels of expression on Days 1 and 7, suggesting that promoter inactivation may be responsible for the instability of CMV promoter-driven expression. The slow decline in expression levels after 1 week appears to be the result of an immune response directed against the expressed transgene. Expression was much prolonged in immunosuppressed, immunodeficient, or antigen-tolerized mice. CONCLUSION The present data suggest that if promoter inactivation can be overcome, intravascular delivery of plasmid DNA could be a highly efficient, simple and non-toxic liver gene therapy approach. Intravascular delivery of pDNA allows for the rapid screening of novel expression vectors in vivo.
Collapse
Affiliation(s)
- H Herweijer
- Waisman Center, University of Wisconsin, Madison 53705, USA
| | | | | | | | | | | |
Collapse
|
47
|
Xu L, Daly T, Gao C, Flotte TR, Song S, Byrne BJ, Sands MS, Parker Ponder K. CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice. Hum Gene Ther 2001; 12:563-73. [PMID: 11268288 DOI: 10.1089/104303401300042500] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although AAV vectors show promise for hepatic gene therapy, the optimal transcriptional regulatory elements have not yet been identified. In this study, we show that an AAV vector with the CMV enhancer/chicken beta-actin promoter results in 9.5-fold higher expression after portal vein injection than an AAV vector with the EF1 alpha promoter, and 137-fold higher expression than an AAV vector with the CMV promoter/enhancer. Although induction of the acute-phase response with the administration of lipopolysaccharide (LPS) activated the CMV promoter/enhancer from the context of an adenoviral vector in a previous study, LPS resulted in only a modest induction of this promoter from an AAV vector in vivo. An AAV vector with the CMV-beta-actin promoter upstream of the coagulation protein human factor X (hFX) was injected intravenously into neonatal mice. This resulted in expression of hFX at 548 ng/ml (6.8% of normal) for up to 1.2 years, and 0.6 copies of AAV vector per diploid genome in the liver at the time of sacrifice. Neonatal intramuscular injection resulted in expression of hFX at 248 ng/ml (3.1% of normal), which derived from both liver and muscle. We conclude that neonatal gene therapy with an AAV vector with the CMV-beta-actin promoter might correct hemophilia due to hFX deficiency.
Collapse
Affiliation(s)
- L Xu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ribault S, Neuville P, Méchine-Neuville A, Augé F, Parlakian A, Gabbiani G, Paulin D, Calenda V. Chimeric smooth muscle-specific enhancer/promoters: valuable tools for adenovirus-mediated cardiovascular gene therapy. Circ Res 2001; 88:468-75. [PMID: 11249869 DOI: 10.1161/01.res.88.5.468] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gene transfer with adenoviral vectors is an attractive approach for the treatment of atherosclerosis and restenosis. However, because expression of a therapeutic gene in nontarget tissues may have deleterious effects, artery-specific expression is desirable. Although expression vectors containing transcriptional regulatory elements of genes expressed solely in smooth muscle cells (SMCs) have proved efficient to restrict expression of the transgene, their use in the clinical setting can be limited by their reduced strength. In the present study, we show that low levels of transgene expression are obtained with the smooth muscle (SM)-specific SM22alpha promoter compared with the viral cytomegalovirus (CMV) enhancer/promoter. We have generated chimeric transcriptional cassettes containing either a SM (SM-myosin heavy chain) or a skeletal muscle (creatine kinase) enhancer combined with the SM22alpha promoter. With both constructs we observed significantly stronger expression that remains SM-specific. In vivo, reporter gene expression was restricted to arterial SMCs with no detectable signal at remote sites. Moreover, when interferon-gamma expression was driven by one of these two chimeras, SMC growth was inhibited as efficiently as with the CMV promoter. Finally, we demonstrate that neointima formation in the rat carotid balloon injury model was reduced to the same extent by adenoviral gene transfer of interferon-gamma driven either by the SM-myosin heavy chain enhancer/SM22alpha promoter or the CMV promoter. These results indicate that such vectors can be useful for the treatment of hyperproliferative vascular disorders.
Collapse
Affiliation(s)
- S Ribault
- Cardiovascular Gene Therapy Laboratory, Transgène S.A., Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Fields PA, Armstrong E, Hagstrom JN, Arruda VR, Murphy ML, Farrell JP, High KA, Herzog RW. Intravenous administration of an E1/E3-deleted adenoviral vector induces tolerance to factor IX in C57BL/6 mice. Gene Ther 2001; 8:354-61. [PMID: 11313811 DOI: 10.1038/sj.gt.3301409] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Accepted: 11/30/2000] [Indexed: 11/09/2022]
Abstract
Inbred immunocompetent C57BL/6 mice have been a favored strain to study transgene expression of human blood coagulation factor IX (hF.IX) from viral vectors because systemic expression of the secreted protein is not limited by antibody responses following intravenous (i.v.) injection of vector. For example, i.v. injection of an adenoviral (Ad) vector results in sustained expression of hF.IX in normal or hemophilic C57BL/6 mice, while anti-hF.IX antibodies rapidly emerge in other strains (Gene Therapy 4: 473; Blood 91: 784). To investigate these observations further, we injected naive C57BL/6 mice and C57BL/6 mice with pre-existing anti-hF.IX with Ad-hF.IX vector via peripheral vein. All mice expressed hF.IX antigen without detectable anti-hF.IX, even when challenged with hF.IX in different immunogenic settings at later time points. Moreover, in mice with pre-existing immunity, anti-hF.IX titers diminished to undetectable levels after i.v. administration of Ad-hF.IX. Lymphocytes from mice that had received Ad-hF.IX i.v. failed to proliferate when stimulated with hF.IX in vitro after the animals had been repeatedly challenged with hF.IX protein formulated in complete Freund's adjuvant. Thus, absence of anti-hF.IX in C57BL/6 mice after i.v. injection of Ad vector is not due to ignorance to the foreign transgene product. Similar experiments in other strains showed that immune tolerance to hF.IX does not correlate with the strain haplotype or expression of IL-10 cytokine. Given the well-documented immunogenicity of the first-generation adenoviral vector, data from C57BL/6 mice may therefore grossly underestimate immunological consequences in certain gene therapy protocols.
Collapse
Affiliation(s)
- P A Fields
- Departments of Pediatrics and Pathology, University of Pennsylvania Medical Center and The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Hemophilia A and B are X-chromosome linked recessive bleeding disorders that result from a deficiency in factor VIII (FVIII) and factor IX (FIX) respectively. Though factor substitution therapy has greatly improved the lives of hemophiliac patients, there are still limitations to the current treatment that have triggered interest in alternative treatments by gene therapy. Significant progress has recently been made in the development of gene therapy for the treatment of hemophilia A and B. These advances parallel the technical improvements of existing vector systems including MoMLV-based retroviral, adenoviral and AAV vectors, and the development of new delivery methods such as lentiviral vectors, helper-dependent adenoviral vectors and improved non-viral gene delivery methods. Therapeutic and physiologic levels of FVIII and FIX could be achieved in FVIII- and FIX-deficient mice and hemophilia dogs by different gene therapy approaches. Long-term correction of the bleeding disorders and in some cases a permanent cure has been realized in these preclinical studies. However, the induction of neutralizing antibodies often precludes stable phenotypic correction. Another complication is that certain promoters are prone to transcriptional inactivation in vivo, precluding long-term FVIII or FIX expression. Several gene therapy phase I clinical trials are currently ongoing in patients suffering from severe hemophilia A or B. No significant adverse side-effects were reported, and semen samples were negative for vector sequences by sensitive PCR assays. Most importantly, some subjects report fewer bleeding episodes and occasionally have very low levels of clotting factor activity detected. The results from the extensive preclinical studies in normal and hemophilic animal models and encouraging preliminary clinical data indicate that the simultaneous development of different strategies is likely to bring a permanent cure for hemophilia one step closer to reality.
Collapse
Affiliation(s)
- M K Chuah
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Belgium
| | | | | |
Collapse
|