1
|
Patel JN, Jiang C, Owzar K, Hertz DL, Wang J, Mulkey FA, Kelly WK, Halabi S, Furukawa Y, Lassiter C, Dorsey SG, Friedman PN, Small EJ, Carducci MA, Kelley MJ, Nakamura Y, Kubo M, Ratain MJ, Morris MJ, McLeod HL. Pharmacogenetic and clinical risk factors for bevacizumab-related gastrointestinal hemorrhage in prostate cancer patients treated on CALGB 90401 (Alliance). THE PHARMACOGENOMICS JOURNAL 2024; 24:6. [PMID: 38438359 PMCID: PMC10912014 DOI: 10.1038/s41397-024-00328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
The objective of this study was to discover clinical and pharmacogenetic factors associated with bevacizumab-related gastrointestinal hemorrhage in Cancer and Leukemia Group B (Alliance) 90401. Patients with metastatic castration-resistant prostate cancer received docetaxel and prednisone ± bevacizumab. Patients were genotyped using Illumina HumanHap610-Quad and assessed using cause-specific risk for association between single nucleotide polymorphisms (SNPs) and gastrointestinal hemorrhage. In 1008 patients, grade 2 or higher gastrointestinal hemorrhage occurred in 9.5% and 3.8% of bevacizumab (n = 503) and placebo (n = 505) treated patients, respectively. Bevacizumab (P < 0.001) and age (P = 0.002) were associated with gastrointestinal hemorrhage. In 616 genetically estimated Europeans (n = 314 bevacizumab and n = 302 placebo treated patients), grade 2 or higher gastrointestinal hemorrhage occurred in 9.6% and 2.0% of patients, respectively. One SNP (rs1478947; HR 6.26; 95% CI 3.19-12.28; P = 9.40 × 10-8) surpassed Bonferroni-corrected significance. Grade 2 or higher gastrointestinal hemorrhage rate was 33.3% and 6.2% in bevacizumab-treated patients with the AA/AG and GG genotypes, versus 2.9% and 1.9% in the placebo arm, respectively. Prospective validation of these findings and functional analyses are needed to better understand the genetic contribution to treatment-related gastrointestinal hemorrhage.
Collapse
Affiliation(s)
- Jai N Patel
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC, USA.
| | - Chen Jiang
- Alliance Statistics and Data Management Center, Duke University, Durham, NC, USA
| | - Kouros Owzar
- Alliance Statistics and Data Management Center, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Janey Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Flora A Mulkey
- Alliance Statistics and Data Management Center, Duke University, Durham, NC, USA
| | - William K Kelly
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Susan Halabi
- Alliance Statistics and Data Management Center, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Yoichi Furukawa
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Cameron Lassiter
- University of Maryland School of Nursing (Miltenyi Biotech at time of publication), Baltimore, MD, USA
| | - Susan G Dorsey
- University of Maryland School of Nursing (Miltenyi Biotech at time of publication), Baltimore, MD, USA
| | - Paula N Friedman
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University, Evanston, IL, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Michael A Carducci
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Michael J Kelley
- Durham VA Medical Center/Duke University Medical Center, Durham, NC, USA
| | - Yusuke Nakamura
- Center for Personalized Therapeutics, University of Chicago (Japanese Foundation for Cancer Research, Ariake, Tokyo at time of publication), Chicago, IL, USA
| | - Michiaki Kubo
- Riken Center for Integrative Medical Sciences (Haradoi Hospital, Fukuoka, Japan at time of publication), Kanagawa, Japan
| | - Mark J Ratain
- Center for Personalized Therapeutics, University of Chicago (Japanese Foundation for Cancer Research, Ariake, Tokyo at time of publication), Chicago, IL, USA
| | - Michael J Morris
- Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
2
|
Chen CP, Chen CY, Chern SR, Wu PS, Chen SW, Lee CC, Chen LF, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of mosaicism for r(13), monosomy 13 and idic r(13) by amniocentesis. Taiwan J Obstet Gynecol 2020; 59:130-134. [PMID: 32039781 DOI: 10.1016/j.tjog.2019.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of mosaicism for ring chromosome 13 [r(13)], monosomy 13 and isodicentric ring chromosome 13 [idic r(13)] by amniocentesis. CASE REPORT A 24-year-old woman underwent amniocentesis at 23 weeks of gestation because of intrauterine growth restriction (IUGR) in the fetus. Amniocentesis revealed a karyotype of 46,XY,r(13)[23]/45,XY,-13[10]/46,XY,idic r(13)[2]. The parental karyotypes were normal. Array comparative genomic hybridization (aCGH) on cultured amniocytes revealed the result of arr 13q11q31.3 (19,436,286-92,284,309) × 1.85, arr 13q31.3q34 (92,288,514-115,107,733) × 1 [GRCh37 (hg19)], indicating a 22.82-Mb 13q31.3-q34 deletion and a 15-20% mosaicism for 13q11-q31.3 deletion. The pregnancy was subsequently terminated, and a malformed fetus was delivered with facial dysmorphism. The placental tissues had a karyotype of 46,XY,r(13)[18]/46,XY,-13,+mar[14]/45,XY,-13[8]. Polymorphic DNA marker analysis confirmed a maternal origin of the 13q deletion. CONCLUSION Fetus with mosaic r(13), monosomy 13 and idic r(13) may present IUGR on prenatal ultrasound, and fetoplacental cytogenetic discrepancy may exist under such a circumstance.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Chi Lee
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Li-Feng Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
3
|
Pfeiffer C, Mathieu-Dupas E, Logghe P, Lissalde-Lavigne G, Balicchi J, Caliskan U, Valentin T, Laune D, Molina F, Schved JF, Giansily-Blaizot M. Isotypic analysis of antibodies against activated Factor VII in patients with Factor VII deficiency using the x-MAP technology. Thromb Res 2016; 141:22-7. [DOI: 10.1016/j.thromres.2016.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
|
4
|
Chen CP, Tsai CH, Chern SR, Wu PS, Su JW, Lee CC, Chen YT, Chen WL, Chen LF, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of mosaic ring chromosome 13. Gene 2013; 529:163-8. [DOI: 10.1016/j.gene.2013.07.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/07/2013] [Accepted: 07/09/2013] [Indexed: 12/25/2022]
|
5
|
Giansily-Blaizot M, Lopez E, Viart V, Chafa O, Tapon-Bretaudière J, Claustres M, Taulan M. Lethal factor VII deficiency due to novel mutations in the F7 promoter: functional analysis reveals disruption of HNF4 binding site. Thromb Haemost 2012; 108:277-83. [PMID: 22628013 DOI: 10.1160/th11-09-0638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 05/02/2012] [Indexed: 12/15/2022]
Abstract
Hereditary factor VII (FVII) deficiency is a rare autosomal recessive disorder. Deleterious mutations that prevent the synthesis of any amount of functional FVII have been associated with life-threatening haemorrhage in neonates. Here we report two infants, of Maghrebian origin, who suffered a fatal spontaneous cerebral haemorrhage. Investigation of the molecular basis for their severe FVII deficiency revealed novel mutations in a homozygous state within the F7 gene promoter: a single nucleotide substitution (c.-65G>C) and a 2bp deletion (c.-60_-59delTT). To determine whether these promoter variants were responsible for the FVII deficiency, computer-assisted sequence analyses were performed. The data predicted a disrupted binding of both HNF4 and COUP-TF transcription factors with each variant. Concordantly, experimental results revealed an altered HNF4-induced transactivation in the promoter mutated variants. The execution of functional tests is critical to ensuring a complete understanding of the effect of any promoter mutant on FVII deficiency. Only then can an accurate molecular diagnosis be made and further genetic counselling and prenatal diagnosis be offered.
Collapse
Affiliation(s)
- Muriel Giansily-Blaizot
- CHU Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, 641 Avenue du Doyen Gaston Giraud, 34095 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Jackson AA, Cronin KR, Zachariah R, Carew JA. CCAAT/enhancer-binding protein-beta participates in insulin-responsive expression of the factor VII gene. J Biol Chem 2007; 282:31156-65. [PMID: 17675296 DOI: 10.1074/jbc.m704694200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Expression of the human coagulation factor VII (FVII) gene by hepatoma cells was modulated in concert with levels of glucose and insulin in the culture medium. In low glucose medium without insulin, amounts of both FVII mRNA and secreted FVII protein were coordinately increased; in the presence of glucose with insulin, both were decreased. Analysis of the FVII promoter showed that these effects could be reproduced in a reporter-gene system, and a small promoter element immediately upstream of the translation start site of the gene, which mediated these effects, was identified. Mutation of this element largely abrogated the glucose/insulin-responsive change in expression of the reporter gene. Several members of the CCAAT/enhancer-binding protein family were found to be capable of binding the identified sequence element but not the mutated element. The expression of a FVII minigene directed by a segment of the native FVII promoter responded to co-expressed activating and inhibiting forms of CCAAT/enhancer-binding protein beta.
Collapse
Affiliation(s)
- Audrey A Jackson
- Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts 02132, USA
| | | | | | | |
Collapse
|
7
|
Gerdin AK, Surve VV, Jönsson M, Bjursell M, Björkman M, Edenro A, Schuelke M, Saad A, Bjurström S, Lundgren EJ, Snaith M, Fransson-Steen R, Törnell J, Berg AL, Bohlooly-Y M. Phenotypic screening of hepatocyte nuclear factor (HNF) 4-gamma receptor knockout mice. Biochem Biophys Res Commun 2006; 349:825-32. [PMID: 16945327 DOI: 10.1016/j.bbrc.2006.08.103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 12/21/2022]
Abstract
Using the mouse as a model organism in pharmaceutical research presents unique advantages as its physiology in many ways resembles the human physiology, it also has a relatively short generation time, low breeding and maintenance costs, and is available in a wide variety of inbred strains. The ability to genetically modify mouse embryonic stem cells to generate mouse models that better mimic human disease is another advantage. In the present study, a comprehensive phenotypic screening protocol is applied to elucidate the phenotype of a novel mouse knockout model of hepatocyte nuclear factor (HNF) 4-gamma. HNF4-gamma is expressed in the kidneys, gut, pancreas, and testis. The first level of the screen is aimed at general health, morphologic appearance, normal cage behaviour, and gross neurological functions. The second level of the screen looks at metabolic characteristics and lung function. The third level of the screen investigates behaviour more in-depth and the fourth level consists of a thorough pathological characterisation, blood chemistry, haematology, and bone marrow analysis. When compared with littermate wild-type mice (HNF4-gamma(+/+)), the HNF4-gamma knockout (HNF4-gamma(-/-)) mice had lowered energy expenditure and locomotor activity during night time that resulted in a higher body weight despite having reduced intake of food and water. HNF4-gamma(-/-) mice were less inclined to build nest and were found to spend more time in a passive state during the forced swim test.
Collapse
Affiliation(s)
- Anna Karin Gerdin
- AstraZeneca Transgenic and Comparative Genomics, AstraZeneca R&D, Mölndal, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Knight JC. Regulatory polymorphisms underlying complex disease traits. J Mol Med (Berl) 2005; 83:97-109. [PMID: 15592805 PMCID: PMC3132451 DOI: 10.1007/s00109-004-0603-7] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 09/15/2004] [Indexed: 01/08/2023]
Abstract
There is growing evidence that genetic variation plays an important role in the determination of individual susceptibility to complex disease traits. In contrast to coding sequence polymorphisms, where the consequences of non-synonymous variation may be resolved at the level of the protein phenotype, defining specific functional regulatory polymorphisms has proved problematic. This has arisen for a number of reasons, including difficulties with fine mapping due to linkage disequilibrium, together with a paucity of experimental tools to resolve the effects of non-coding sequence variation on gene expression. Recent studies have shown that variation in gene expression is heritable and can be mapped as a quantitative trait. Allele-specific effects on gene expression appear relatively common, typically of modest magnitude and context specific. The role of regulatory polymorphisms in determining susceptibility to a number of complex disease traits is discussed, including variation at the VNTR of INS, encoding insulin, in type 1 diabetes and polymorphism of CTLA4, encoding cytotoxic T lymphocyte antigen, in autoimmune disease. Examples where regulatory polymorphisms have been found to play a role in mongenic traits such as factor VII deficiency are discussed, and contrasted with those polymorphisms associated with ischaemic heart disease at the same gene locus. Molecular mechanisms operating in an allele-specific manner at the level of transcription are illustrated, with examples including the role of Duffy binding protein in malaria. The difficulty of resolving specific functional regulatory variants arising from linkage disequilibrium is demonstrated using a number of examples including polymorphism of CCR5, encoding CC chemokine receptor 5, and HIV-1 infection. The importance of understanding haplotypic structure to the design and interpretation of functional assays of putative regulatory variation is highlighted, together with discussion of the strategic use of experimental tools to resolve regulatory polymorphisms at a transcriptional level. A number of examples are discussed including work on the TNF locus which demonstrate biological and experimental context specificity. Regulatory variation may also operate at other levels of control of gene expression and the modulation of splicing at PTPRC, encoding protein tyrosine phosphatase receptor-type C, and of translational efficiency at F12, encoding factor XII, are discussed.
Collapse
Affiliation(s)
- Julian C Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
9
|
Brummel Ziedins K, Rivard GE, Pouliot RL, Butenas S, Gissel M, Parhami-Seren B, Mann KG. Factor VIIa replacement therapy in factor VII deficiency. J Thromb Haemost 2004; 2:1735-44. [PMID: 15456484 DOI: 10.1111/j.1538-7836.2004.00922.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Factor (F)VII deficiency is an autosomal recessive disorder for which a replacement therapy is not universally available; recombinant FVIIa has been utilized as a therapeutic substitute. As FVII competes with FVIIa for binding to tissue factor in initiating the extrinsic pathway of blood coagulation, a lower dose of FVIIa replacement in cross-reacting material-negative (CRM-) individuals can achieve hemostasis. Three coagulation models (computational, synthetic and in vitro whole blood) were used to predict the FVIIa levels needed to provide apparent hemostasis in a non-bleeding state. Our whole blood results show that a 'normalized' coagulation profile for FVII-deficient individuals has an initiation phase that ends at 5.8 +/- 0.5 min (clot time) and the propagation phase of thrombin generation (thrombin-antithrombin III) yields a maximum concentration of 380 +/- 29 nmol L(-1). When CRM- FVII-deficient subjects were infused with a prophylactic dose of 23 micro g kg(-1) of recombinant FVIIa, 6-8 h postinfusion resulted in a comparable normalized whole blood profile. This FVIIa concentration (0.3-0.7 nmol L(-1)/equivalent dose: 0.8-1.8 micro g kg(-1)) is approximately 1/10 that currently used in treating FVII-deficient individuals and suggests that therapies should be altered relative to the concentration of the FVII zymogen.
Collapse
Affiliation(s)
- K Brummel Ziedins
- Department of Biochemistry, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Carew JA, Jackson AA, Bauer KA. ARP1 interacts with the 5' flanking region of the coagulation factor VII gene. J Thromb Haemost 2003; 1:1220-7. [PMID: 12871323 DOI: 10.1046/j.1538-7836.2003.00227.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Factor (F)VII plays a critical role in initiation of coagulation. Several segments within the 5' flanking region of the FVII gene were previously demonstrated to recognize hepatic nuclear proteins, but few have been identified. To identify a regulatory protein binding the nuclear hormone response region (-237 to -200) of the FVII 5' flanking region and demonstrate that the interaction is functional. Electrophoretic mobility shift assays and mutation analysis showed that ARP1, an orphan nuclear hormone receptor, interacted with two regions of the FVII 5' flanking region, the hepatic nuclear factor 4 binding region (-77 to -47) and the nuclear hormone response region (-237 to -200). Transfection experiments demonstrated that reporter gene expression was decreased from vectors including the nuclear hormone response segment compared with that containing only the minimal promoter between positions -109 and +1, and that ARP1 also repressed expression through an interaction with the minimal promoter. These data indicate a role for ARP1 in transcriptional modulation of the FVII gene.
Collapse
Affiliation(s)
- J A Carew
- VA Boston Healthcare System, Building 3, Room 2A106(151), 1400 VFW Parkway, West Roxbury, MA 02132, USA.
| | | | | |
Collapse
|
11
|
Affiliation(s)
- David J Perry
- Haemophilia Centre and Haemostasis Unit, Royal Free and University College Medical School, London, UK
| |
Collapse
|
12
|
Tarumi T, Kravtsov DV, Zhao M, Williams SM, Gailani D. Cloning and characterization of the human factor XI gene promoter: transcription factor hepatocyte nuclear factor 4alpha (HNF-4alpha ) is required for hepatocyte-specific expression of factor XI. J Biol Chem 2002; 277:18510-6. [PMID: 11891231 DOI: 10.1074/jbc.m201886200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor XI is the zymogen of a plasma protease produced primarily in liver that is required for normal blood coagulation. We cloned approximately 2600 base pairs of the human factor XI gene upstream of exon one, identified transcription start sites, and conducted a functional analysis. Luciferase reporter assays demonstrate that the 381 base pairs upstream of exon one are sufficient for maximum promoter activity in HepG2 hepatocellular carcinoma cells. The removal of 19 base pairs between -381 and -363 results in a nearly complete loss of promoter activity. This region contains the sequence ACTTTG, a motif required for binding of the transcription factor hepatocyte nuclear factor 4alpha (HNF-4alpha) to the promoters of several genes. Gel mobility shift assays using HepG2 or rat hepatocyte nuclear extract confirm HNF-4alpha binds between bp -375 and -360. Scrambling the ACTTTG motif completely abolishes promoter activity in luciferase assays. The factor XI promoter functions poorly when transfected into HeLa carcinoma cells, and gel mobility shift experiments with HeLa nuclear extracts demonstrate no HNF-4alpha binding to the ACTTTG sequence. When a rat HNF-4alpha expression construct is co-transfected into HeLa cells, factor XI promoter activity is enhanced approximately 10-fold. We conclude that HNF-4alpha is required for hepatocyte-specific expression of factor XI.
Collapse
Affiliation(s)
- Takashi Tarumi
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232-6307, USA
| | | | | | | | | |
Collapse
|
13
|
Salvatori R, Fan X, Mullis PE, Haile A, Levine MA. Decreased expression of the GHRH receptor gene due to a mutation in a Pit-1 binding site. Mol Endocrinol 2002; 16:450-8. [PMID: 11875102 DOI: 10.1210/mend.16.3.0785] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A variety of mutations in the gene encoding the GHRH receptor (GHRHR) that are predicted to alter protein structure or function have been recently described in patients with isolated GH deficiency type IB. In the present report we describe a patient with isolated GH deficiency type IB who was heterozygous for two novel mutations in this gene: a missense mutation in codon 329 that replaces lysine with glutamic acid (K329E) and an A-->C transversion (position -124) in one of the two sites of the promoter region that binds the pituitary-specific transcription factor Pit-1, which is required for GHRHR expression. Chinese hamster ovary cells that were transfected with a cDNA encoding the K329E GHRHR expressed the receptor but failed to show a cAMP response after treatment with GHRH, confirming the lack of functionality. To test the effect of the A-->C mutation at position -124 of the promoter, we transfected rat GH3 pituitary cells, which express endogenous Pit-1, with plasmids in which the luciferase reporter gene was under the control of either the wild-type or the mutant promoter. GH3 cells expressing the mutant promoter showed significantly less luciferase activity than cells expressing the wild-type promoter. DNA-binding studies confirmed that the A-->C base change markedly reduces DNA binding to the Pit-1 protein. These results demonstrate that mutations in the GHRHR are not limited to the coding sequence and that promoter mutations that impair Pit-1 binding can reduce expression of the GHRHR gene.
Collapse
Affiliation(s)
- Roberto Salvatori
- Division of Endocrinology, and the Ilyssa Center for Molecular and Cellular Endocrinology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | | | |
Collapse
|