1
|
Edelstein J, Fritz M, Lai SK. Challenges and opportunities in gene editing of B cells. Biochem Pharmacol 2022; 206:115285. [PMID: 36241097 DOI: 10.1016/j.bcp.2022.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023]
Abstract
B cells have long been an underutilized target in immune cell engineering, despite a number of unique attributes that could address longstanding challenges in medicine. Notably, B cells evolved to secrete large quantities of antibodies for prolonged periods, making them suitable platforms for long-term protein delivery. Recent advances in gene editing technologies, such as CRISPR-Cas, have improved the precision and efficiency of engineering and expanded potential applications of engineered B cells. While most work on B cell editing has focused on ex vivo modification, a body of recent work has also advanced the possibility of in vivo editing applications. In this review, we will discuss both past and current approaches to B cell engineering, and its promising applications in immunology research and therapeutic gene editing.
Collapse
Affiliation(s)
- Jasmine Edelstein
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Marshall Fritz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Immunology and Microbiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Bastin DJ, Quizi J, Kennedy MA, Kekre N, Auer RC. Current challenges in the manufacture of clinical-grade autologous whole cell vaccines for hematological malignancies. Cytotherapy 2022; 24:979-989. [PMID: 35562303 DOI: 10.1016/j.jcyt.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
Autologous whole cell vaccines use a patient's own tumor cells as a source of antigen to elicit an anti-tumor immune response in vivo. Recently, the authors conducted a systematic review of clinical trials employing these products in hematological cancers that showed a favorable safety profile and trend toward efficacy. However, it was noted that manufacturing challenges limit both the efficacy and clinical implementation of these vaccine products. In the current literature review, the authors sought to define the issues surrounding the manufacture of autologous whole cell products for hematological cancers. The authors describe key factors, including the acquisition, culture, cryopreservation and transduction of malignant cells, that require optimization for further advancement of the field. Furthermore, the authors provide a summary of pre-clinical work that informs how the identified challenges may be overcome. The authors also highlight areas in which future basic research would be of benefit to the field. The goal of this review is to provide a roadmap for investigators seeking to advance the field of autologous cell vaccines as it applies to hematological malignancies.
Collapse
Affiliation(s)
- Donald J Bastin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Schulich School of Medicine, Western University, London, Canada
| | - Jennifer Quizi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Michael A Kennedy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Natasha Kekre
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Rebecca C Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Canada; Department of Surgery, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 2022; 11:3. [PMID: 35074008 PMCID: PMC8784280 DOI: 10.1186/s40164-022-00257-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccines induce specific immune responses that can selectively eliminate target cells. In recent years, many studies have been conducted to explore DC vaccination in the treatment of hematological malignancies, including acute myeloid leukemia and myelodysplastic syndromes, as well as other nonleukemia malignancies. There are at least two different strategies that use DCs to promote antitumor immunity: in situ vaccination and canonical vaccination. Monocyte-derived DCs (mo-DCs) and leukemia-derived DCs (DCleu) are the main types of DCs used in vaccines for AML and MDS thus far. Different cancer-related molecules such as peptides, recombinant proteins, apoptotic leukemic cells, whole tumor cells or lysates and DCs/DCleu containing a vaster antigenic repertoire with RNA electroporation, have been used as antigen sources to load DCs. To enhance DC vaccine efficacy, new strategies, such as combination with conventional chemotherapy, monospecific/bispecific antibodies and immune checkpoint-targeting therapies, have been explored. After a decade of trials and tribulations, much progress has been made and much promise has emerged in the field. In this review we summarize the recent advances in DC vaccine immunotherapy for AML/MDS as well as other nonleukemia malignancies.
Collapse
Affiliation(s)
- Jifeng Yu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Hao Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| | - Zhongxing Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Page A, Hubert J, Fusil F, Cosset FL. Exploiting B Cell Transfer for Cancer Therapy: Engineered B Cells to Eradicate Tumors. Int J Mol Sci 2021; 22:9991. [PMID: 34576154 PMCID: PMC8468294 DOI: 10.3390/ijms22189991] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
Nowadays, cancers still represent a significant health burden, accounting for around 10 million deaths per year, due to ageing populations and inefficient treatments for some refractory cancers. Immunotherapy strategies that modulate the patient's immune system have emerged as good treatment options. Among them, the adoptive transfer of B cells selected ex vivo showed promising results, with a reduction in tumor growth in several cancer mouse models, often associated with antitumoral immune responses. Aside from the benefits of their intrinsic properties, including antigen presentation, antibody secretion, homing and long-term persistence, B cells can be modified prior to reinfusion to increase their therapeutic role. For instance, B cells have been modified mainly to boost their immuno-stimulatory activation potential by forcing the expression of costimulatory ligands using defined culture conditions or gene insertion. Moreover, tumor-specific antigen presentation by infused B cells has been increased by ex vivo antigen loading (peptides, RNA, DNA, virus) or by the sorting/ engineering of B cells with a B cell receptor specific to tumor antigens. Editing of the BCR also rewires B cell specificity toward tumor antigens, and may trigger, upon antigen recognition, the secretion of antitumor antibodies by differentiated plasma cells that can then be recognized by other immune components or cells involved in tumor clearance by antibody-dependent cell cytotoxicity or complement-dependent cytotoxicity for example. With the expansion of gene editing methodologies, new strategies to reprogram immune cells with whole synthetic circuits are being explored: modified B cells can sense disease-specific biomarkers and, in response, trigger the expression of therapeutic molecules, such as molecules that counteract the tumoral immunosuppressive microenvironment. Such strategies remain in their infancy for implementation in B cells, but are likely to expand in the coming years.
Collapse
Affiliation(s)
| | | | | | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, F-69007 Lyon, France; (A.P.); (J.H.); (F.F.)
| |
Collapse
|
5
|
Anti-CD19 CARs displayed at the surface of lentiviral vector particles promote transduction of target-expressing cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:42-53. [PMID: 33768128 PMCID: PMC7966970 DOI: 10.1016/j.omtm.2021.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/19/2021] [Indexed: 12/26/2022]
Abstract
Recently, a rare type of relapse was reported upon treating a B cell acute lymphoblastic leukemia (B-ALL) patient with anti-CD19 chimeric antigen receptor (CAR)-T cells caused by unintentional transduction of residual malignant B cells (CAR-B cells). We show that anti-CD19 and anti-CD20 CARs are presented on the surface of lentiviral vectors (LVs), inducing specific binding to the respective antigen. Binding of anti-CD19 CAR-encoding LVs containing supernatant was reduced by CD19-specific blocking antibodies in a dose-dependent manner, and binding was absent for unspecific LV containing supernatant. This suggests that LVs bind via displayed CAR molecules to CAR antigen-expressing cells. The relevance for CAR-T cell manufacturing was evaluated when PBMCs and B-ALL malignant B cells were mixed and transduced with anti-CD19 or anti-CD20 CAR-displaying LVs in clinically relevant doses to mimic transduction conditions of unpurified patient leukapheresis samples. Malignant B cells were transduced at higher levels with LVs displaying anti-CD19 CARs compared to LVs displaying non-binding control constructs. Stability of gene transfer was confirmed by applying a potent LV inhibitor and long-term cultures for 10 days. Our findings provide a potential explanation for the emergence of CAR-B cells pointing to safer manufacturing procedures with reduced risk of this rare type of relapse in the future.
Collapse
|
6
|
Nistal-Villán E, Argemi J, de Jaime-Soguero A, Ferrero R, di Scala M, Rodriguez-Garcia E, Coll A, Rius-Rocabert S, Prieto J, González-Aseguinolaza G, Aragón T. Linking the Expression of Therapeutic Genes to Unfolded Protein Response: A New Option for Anti-Hepatitis B Virus Gene Therapy. Hum Gene Ther 2021; 32:341-348. [PMID: 33213214 DOI: 10.1089/hum.2019.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tight control of transgene expression is key to ensure the efficacy of a wide range of gene therapy interventions, in which the magnitude and duration of gene expression have to be adjusted to therapeutic needs, thereby limiting secondary effects. The development of upgraded strategies to link transgene expression to pathological stress episodes is an unmet need in gene therapy. Here, we propose an expression strategy that associates transgene expression to an intracellular stress coping mechanism, the unfolded protein response. Specifically, we harnessed the cis elements required to sustain the noncanonical splicing of X-box binding protein 1 (XBP1) messenger RNA (mRNA) in response to the dysfunction of the endoplasmic reticulum (ER), a situation commonly known as ER stress, to drive the expression of heterologous genes. Since ER stress features a wide variety of pathological conditions, including viral infections, cancer, or metabolic disorders, this new expression module stimulates the synthesis of therapeutic genes as a response to cellular damage, and ensures their expression only when necessary. Validation of this inducible expression system was performed in vitro and in vivo, and its potential to limit/inhibit viral infections has been shown in proof-of principle experiments.
Collapse
Affiliation(s)
- Estanislao Nistal-Villán
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, Madrid, Spain
| | - Josepmaria Argemi
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Anchel de Jaime-Soguero
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Roberto Ferrero
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Marianna di Scala
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Estefania Rodriguez-Garcia
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Aniol Coll
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Sergio Rius-Rocabert
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Jesús Prieto
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Gloria González-Aseguinolaza
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Tomás Aragón
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
7
|
Collins SA, Buhles A, Scallan MF, Harrison PT, O'Hanlon DM, O'Sullivan GC, Tangney M. AAV2-mediated in vivo immune gene therapy of solid tumours. GENETIC VACCINES AND THERAPY 2010; 8:8. [PMID: 21172020 PMCID: PMC3016353 DOI: 10.1186/1479-0556-8-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/20/2010] [Indexed: 11/10/2022]
Abstract
Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour vasculature and immune cell recruitment.
Collapse
Affiliation(s)
- Sara A Collins
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C, Quick Jnr, Laboratory, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
8
|
Smits ELJM, Berneman ZN, Van Tendeloo VFI. Immunotherapy of acute myeloid leukemia: current approaches. Oncologist 2009; 14:240-52. [PMID: 19289488 DOI: 10.1634/theoncologist.2008-0165] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Following standard therapy that consists of chemotherapy with or without stem cell transplantation, both relapsed and refractory disease shorten the survival of acute myeloid leukemia (AML) patients. Therefore, additional treatment options are urgently needed, especially to fight residual AML cells. The identification of leukemia-associated antigens and the observation that administration of allogeneic T cells can mediate a graft-versus-leukemia effect paved the way to the development of active and passive immunotherapy strategies, respectively. The aim of these strategies is the eradication of AML cells by the immune system. In this review, an overview is provided of both active and passive immunotherapy strategies that are under investigation or in use for the treatment of AML. For each strategy, a critical view on the state of the art is given and future perspectives are discussed.
Collapse
Affiliation(s)
- Evelien L J M Smits
- Vaccine & Infectious Disease Institute (VIDI), Laboratory of Experimental Hematology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
9
|
Veron P, Boutin S, Martin S, Chaperot L, Plumas J, Davoust J, Masurier C. Highly efficient transduction of human plasmacytoid dendritic cells without phenotypic and functional maturation. J Transl Med 2009; 7:10. [PMID: 19173717 PMCID: PMC2657113 DOI: 10.1186/1479-5876-7-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 01/27/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gene modified dendritic cells (DC) are able to modulate DC functions and induce therapeutic immunity or tolerance in an antigen-specific manner. Among the different DC subsets, plasmacytoid DC (pDC) are well known for their ability to recognize and respond to a variety of viruses by secreting high levels of type I interferon. METHODS We analyzed here, the transduction efficiency of a pDC cell line, GEN2.2, and of pDC derived from CD34+ progenitors, using lentiviral vectors (LV) pseudotyped with different envelope glycoproteins such as the vesicular stomatitis virus envelope (VSVG), the gibbon ape leukaemia virus envelope (GaLV) or the feline endogenous virus envelope (RD114). At the same time, we evaluated transgene expression (E-GFP reporter gene) under the control of different promoters. RESULTS We found that efficient gene transfer into pDC can be achieved with VSVG-pseudotyped lentiviral vectors (LV) under the control of phoshoglycerate kinase (PGK) and elongation factor-1 (EF1alpha) promoters (28% to 90% of E-GFP+ cells, respectively) in the absence of phenotypic and functional maturation. Surprisingly, promoters (desmin or synthetic C5-12) described as muscle-specific and which drive gene expression in single strand AAV vectors in gene therapy protocols were very highly active in pDC using VSVG-LV. CONCLUSION Taken together, our results indicate that LV vectors can serve to design pDC-based vaccines in humans, and they are also useful in vitro to evaluate the immunogenicity of the vector preparations, and the specificity and safety of given promoters used in gene therapy protocols.
Collapse
Affiliation(s)
- Philippe Veron
- Laboratoire d'Immunologie, GENETHON, CNRS UMR 8115, Evry Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Fenjves ES, Ochoa MS, Cechin S, Gay-Rabinstein C, Pérez-Alvarez I, Ichii H, Mendez A, Ricordi C, Curran MA. Protection of human pancreatic islets using a lentiviral vector expressing two genes: cFLIP and GFP. Cell Transplant 2008; 17:793-802. [PMID: 19044206 DOI: 10.3727/096368908786516828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pancreatic islet transplantation can provide insulin independence to diabetic patients. However, apoptosis of islets often leads to early graft failure. Genetic engineering with protective gene(s) can improve the viability of these cells. Here we show successful transduction of human islets with a feline immunodeficiency virus (FIV) vector expressing both a cytoprotective (cFLIP) gene and the green fluorescent protein (GFP). Despite using low virus titers to maximize safety, transduced islets expressed both genes, resulting in improved beta-cell metabolic activity and viability. Although only approximately 10% of total islet cells were transduced, the significant viability advantages suggest a "barrier" effect in which protecting the periphery of the islet shields the core. These results provide the first demonstration that a lentiviral vector can express two genes in islets. Furthermore, the engineered islets are resistant to a variety of apoptotic stimuli, suggesting the potential of this approach in enhancing the viability of transplanted cells.
Collapse
Affiliation(s)
- Elizabeth S Fenjves
- Diabetes Research Institute, University of Miami School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chinnasamy D, Milsom MD, Shaffer J, Neuenfeldt J, Shaaban AF, Margison GP, Fairbairn LJ, Chinnasamy N. Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI. Virol J 2006; 3:14. [PMID: 16539700 PMCID: PMC1459112 DOI: 10.1186/1743-422x-3-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 03/15/2006] [Indexed: 11/30/2022] Open
Abstract
Background A number of gene therapy applications would benefit from vectors capable of expressing multiple genes. In this study we explored the feasibility and efficiency of expressing two or three transgenes in HIV-1 based lentiviral vector. Bicistronic and tricistronic self-inactivating lentiviral vectors were constructed employing the internal ribosomal entry site (IRES) sequence of encephalomyocarditis virus (EMCV) and/or foot-and-mouth disease virus (FMDV) cleavage factor 2A. We employed enhanced green fluorescent protein (eGFP), O6-methylguanine-DNA-methyltransferase (MGMT), and homeobox transcription factor HOXB4 as model genes and their expression was detected by appropriate methods including fluorescence microscopy, flow cytometry, immunocytochemistry, biochemical assay, and western blotting. Results All the multigene vectors produced high titer virus and were able to simultaneously express two or three transgenes in transduced cells. However, the level of expression of individual transgenes varied depending on: the transgene itself; its position within the construct; the total number of transgenes expressed; the strategy used for multigene expression and the average copy number of pro-viral insertions. Notably, at limiting MOI, the expression of eGFP in a bicistronic vector based on 2A was ~4 times greater than that of an IRES based vector. Conclusion The small and efficient 2A sequence can be used alone or in combination with an IRES for the construction of multicistronic lentiviral vectors which can express encoded transgenes at functionally relevant levels in cells containing an average of one pro-viral insert.
Collapse
Affiliation(s)
- Dhanalakshmi Chinnasamy
- Vince Lombardi Gene Therapy Laboratory, Immunotherapy Program, Aurora St. Luke's Medical Center, 2900 West Oklahoma Avenue, Milwaukee, WI 53215, USA
| | - Michael D Milsom
- Cancer Research UK Gene Therapy Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James Shaffer
- Vince Lombardi Gene Therapy Laboratory, Immunotherapy Program, Aurora St. Luke's Medical Center, 2900 West Oklahoma Avenue, Milwaukee, WI 53215, USA
| | - James Neuenfeldt
- Vince Lombardi Gene Therapy Laboratory, Immunotherapy Program, Aurora St. Luke's Medical Center, 2900 West Oklahoma Avenue, Milwaukee, WI 53215, USA
| | - Aimen F Shaaban
- Surgery Department, University of Wisconsin, Madison, WI 53792, USA
| | - Geoffrey P Margison
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Leslie J Fairbairn
- Cancer Research UK Gene Therapy Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Nachimuthu Chinnasamy
- Vince Lombardi Gene Therapy Laboratory, Immunotherapy Program, Aurora St. Luke's Medical Center, 2900 West Oklahoma Avenue, Milwaukee, WI 53215, USA
| |
Collapse
|
12
|
Chan L, Nesbeth D, Mackey T, Galea-Lauri J, Gäken J, Martin F, Collins M, Mufti G, Farzaneh F, Darling D. Conjugation of lentivirus to paramagnetic particles via nonviral proteins allows efficient concentration and infection of primary acute myeloid leukemia cells. J Virol 2005; 79:13190-4. [PMID: 16189021 PMCID: PMC1235865 DOI: 10.1128/jvi.79.20.13190-13194.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nonviral producer cell proteins incorporated into retroviral vector surfaces profoundly influence infectivity and in vivo half-life. We report the purification and concentration of lentiviral vectors using these surface proteins as an efficient gene transduction strategy. Biotinylation of these proteins and streptavidin paramagnetic particle concentration enhances titer 400- to 2,500-fold (to 10(9) CFU/ml for vesicular stomatitis virus G protein and 5 x 10(8) for amphotropic murine leukemia virus envelope). This method also uses newly introduced membrane proteins (B7.1 and DeltaLNGFR) directed to lentiviral surfaces, allowing up to 17,000-fold concentrations. Particle conjugation of lentivirus allows facile manipulation in vitro, resulting in the transduction of 48 to 94% of human acute myeloid leukemia blasts.
Collapse
Affiliation(s)
- Lucas Chan
- King's College London, Department of Haematological and Molecular Medicine, The Rayne Institute, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gruber TA, Skelton DC, Kohn DB. Recombinant murine interleukin-12 elicits potent antileukemic immune responses in a murine model of philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer Gene Ther 2005; 12:818-24. [PMID: 15877085 DOI: 10.1038/sj.cgt.7700839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the success of chemotherapy regimens in the treatment of acute lymphoblastic leukemia (ALL), certain subsets of patients have a high rate of induction failure and subsequent relapse. One of these subsets of patients carry a translocation between chromosomes 9 and 22, the so called Philadelphia chromosome (Ph+). The result of this translocation is the fusion oncogene, Bcr-Abl, which is uniquely expressed in the leukemia clone, and as such has the potential to initiate antileukemic immune responses against the leukemia blasts. We utilized a murine model of Ph+ ALL to look at the ability of systemic interleukin 12 (IL-12) treatments to initiate antileukemic immune responses, and studied the mechanisms by which it does so. We found that IL-12 was able to eliminate pre-established leukemia, and that this protection was mediated by CD4, CD8, and NK cells in combination. While IL-12 was able to eliminate pre-established leukemia, it did not elicit immunologic memory. Consistent with previous work, vaccination with irradiated leukemia cells transduced with immunomodulator genes was able to establish long-term memory, and, when used with IL-12, was able to eradicate pre-existing disease and induce resistance to subsequent leukemia challenge. These studies demonstrate the feasibility of an immunotherapeutic approach towards the treatment of Ph+ ALL.
Collapse
Affiliation(s)
- Tanja A Gruber
- Division of Research Immunology/Bone Marrow Transplantation, Childrens Hospital Los Angeles 90027, USA
| | | | | |
Collapse
|
14
|
Bonamino M, Serafini M, D'Amico G, Gaipa G, Todisco E, Bernasconi S, Golay J, Biondi A, Introna M. Functional transfer of CD40L gene in human B-cell precursor ALL blasts by second-generation SIN lentivectors. Gene Ther 2004; 11:85-93. [PMID: 14681701 DOI: 10.1038/sj.gt.3302141] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three different second-generation lentiviral self-inactivating vectors containing CMV, EF1alpha and PGK promoter, respectively, and all carrying the exogenous GFP gene, were compared for expression in human B-cell precursor ALL blasts. At a comparable percentage of transduction and vector DNA copy number, CMV clearly showed better efficiency of transcription. Human bone marrow stromal cells were favored compared to the MRC-5 cell line, as support for cell viability during infection. Cells were infected and analyzed after variable culture times ranging from 4 to 12 days, to reduce the possibility of pseudotransduction. In 10/14 samples, we detected more than 20% GFP-positive cells after exposure to high-titer viral supernatants. We then tested a similar vector carrying the human CD40L cDNA and, in similar infection conditions, obtained more than 20% transduction in 6/6 samples. The levels of transduction obtained were sufficient to induce the upregulation of CD83 molecule in cocultured immature dendritic cells.
Collapse
Affiliation(s)
- M Bonamino
- Centro M Tettamanti, Clinica Pediatrica Università di Milano Bicocca, Ospedale San Gerardo, Monza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee JS, Hmama Z, Mui A, Reiner NE. Stable gene silencing in human monocytic cell lines using lentiviral-delivered small interference RNA. Silencing of the p110alpha isoform of phosphoinositide 3-kinase reveals differential regulation of adherence induced by 1alpha,25-dihydroxycholecalciferol and bacterial lipopolysaccharide. J Biol Chem 2003; 279:9379-88. [PMID: 14672955 DOI: 10.1074/jbc.m310638200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studying mononuclear phagocyte cell biology through genetic manipulation by non-viral transfection methods has been challenging due to the dual problems of low transfection efficiency and the difficulty in obtaining stable transfection. To overcome this problem, we developed a system for mediating RNA interference in monocytic cells. The p110alpha isoform of phosphoinositide 3-kinases (PI3Ks) was silenced using a lentiviral vector expressing short hairpin RNA (shRNA). This resulted in the generation of stable THP-1 and U-937 monocytic cell lines deficient in p110alpha. Notably, p110alpha was silenced without affecting levels of either the other class I(A) PI3K catalytic subunits p110beta and p110delta, or the p85alpha regulatory subunit. The role of p110alpha in mediating cell adherence was examined. Monocyte adherence induced in response to either lipopolysaccharide (LPS) or 1alpha,25-dihydroxycholecalciferol (D(3)) was blocked by the PI3K inhibitor LY294002. However, although adherence induced in response to D(3) was sensitive to silencing of p110alpha, LPS-induced adherence was not. Expression of the monocyte differentiation marker CD11b was also induced by D(3) in a PI3K-dependent manner and gene silencing using shRNA showed that p110alpha was also required for this effect. Taken together, these findings demonstrate that LPS and D(3) use distinct isoforms of class I(A) PI3K to induce functional responses and that lentiviral-mediated delivery of shRNA is a powerful approach to study monocyte biology.
Collapse
Affiliation(s)
- Jimmy S Lee
- Department of Medicine (Division of Infectious Diseases), University of British Columbia, Vancouver, British Columbia V5Z 3J5, Canada
| | | | | | | |
Collapse
|
16
|
Bai Y, Soda Y, Izawa K, Tanabe T, Kang X, Tojo A, Hoshino H, Miyoshi H, Asano S, Tani K. Effective transduction and stable transgene expression in human blood cells by a third-generation lentiviral vector. Gene Ther 2003; 10:1446-57. [PMID: 12900759 DOI: 10.1038/sj.gt.3302026] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Difficulty in gene transduction of human blood cells, including hematopoietic stem cells, has hampered the development of gene therapy applications for hematological disorders, encouraging the development and use of new gene delivery systems. In this study, we used a third-generation self-inactivating (SIN) lentiviral vector system based on human immunodeficiency virus type 1 (HIV-1) to improve transduction efficiency and prevent vector-related toxicity. The transduction efficiency of the HIV-1-based vector was compared directly with the Moloney murine leukemia virus (MLV) SIN vector in human leukemia cell lines. Initial transduction efficiencies were almost 100% for the HIV and less than 50% for the MLV vectors. Similar results were observed in 11 types of primary cells obtained from leukemia or myeloma patients. Transgene expression persisted for 8 weeks in cells transduced with the HIV vector, but declined with the MLV vector. In addition, resting peripheral blood lymphocytes and CD34(+) hematopoietic cells were transduced successfully with the HIV vector, but not with the MLV vector. Finally, we confirmed vector gene integration in almost all colony-forming cells transduced with the HIV vector, but not with the MLV vector. In conclusion, this lentiviral vector is an excellent gene transduction system for human blood cells because of its high gene transduction and host chromosome integration efficiency.
Collapse
Affiliation(s)
- Y Bai
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Lentiviral-mediated gene delivery holds significant promise for sustained gene expression within living systems. Vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 1-based lentiviral vectors can be used to introduce transgenes in a broad spectrum of dividing as well as nondividing cells. In the current study, we construct a lentiviral vector carrying two reporter genes separated by an internal ribosomal entry site and utilize that virus in delivering both genes into neuroblastoma cells in cell culture and into cells implanted in living mice. We utilize two reporter genes, a mutant herpes simplex virus type 1 (HSV1) sr39tk as a reporter gene compatible with positron emission tomography (PET) and a bioluminescent optical reporter gene, firefly luciferase (Fluc), to image expression in living mice by an optical charge-coupled device (CCD) camera. By using this lentivirus, neuroblastoma (N2a) cells are stably transfected and a high correlation (R(2) = 0.91) between expressions of the two reporter genes in cell culture is established. Imaging of both reporter genes using microPET and optical CCD camera in living mice is feasible, with the optical approach being more sensitive, and a high correlation (R(2) = 0.86) between gene expressions is again observed in lentiviral-infected N2a tumor xenografts. Indirect imaging of HSV1-sr39tk suicide gene therapy utilizing Fluc is also feasible and can be detected with increased sensitivity by using the optical CCD. These preliminary results validate the use of lentiviral vectors carrying reporter genes for multimodality imaging of gene expression and should have many applications, including imaging of xenografts, metastasis, and cell trafficking as well as noninvasive monitoring of lentiviral-mediated gene delivery and expression.
Collapse
Affiliation(s)
- Abhijit De
- The Crump Institute for Molecular Imaging, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
- Department of Molecular & Medical Pharmacology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
| | - Xiaoman Zhou Lewis
- Department of Molecular & Medical Pharmacology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
| | - Sanjiv Sam Gambhir
- The Crump Institute for Molecular Imaging, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
- Department of Molecular & Medical Pharmacology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
- UCLA–Jonsson Comprehensive Cancer Center, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
- Department of Biomathematics, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1770, USA
- To whom correspondence and reprint requests should be addressed at the Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, UCLA School of Medicine, B3-399A BRI, 700 Westwood Plaza, Los Angeles, CA 90095-1770. Fax: (310) 209-4655.
| |
Collapse
|
18
|
Stripecke R, Levine AM, Pullarkat V, Cardoso AA. Immunotherapy with acute leukemia cells modified into antigen-presenting cells: ex vivo culture and gene transfer methods. Leukemia 2002; 16:1974-83. [PMID: 12357348 DOI: 10.1038/sj.leu.2402701] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 05/27/2002] [Indexed: 11/08/2022]
Abstract
Adult patients with acute leukemia have, in general, a poor prognosis, with long-term, disease-free survival achieved in only approximately one-third of cases. One of the proposed mechanisms for this poor overall response is the inability of the immune system to detect and eliminate residual malignant leukemia cells, which subsequently serve as a source of leukemic relapse. This review discusses the rationale of immunotherapy for acute leukemia and presents in vitro and in vivo model systems that were devised for pre-B acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML). New advances in the ex vivo manipulation of acute leukemia cells are presented, which attempt to modify these cells into functional antigen-presenting cells. These cells can then be used as autologous vaccines at the time of minimal residual disease after standard chemotherapy, to stimulate host immune responses against their own leukemia cells. The various approaches toward this aim include incubation of leukemia cells with cytokines or growth factors and gene manipulation of these cells. In particular, ex vivo culture of ALL cells with CD40 ligand, incubation of AML cells with granulocyte-macrophage colony-stimulating factor and interleukin-4 (GM-CSF/IL-4) and lentiviral transduction of ALL and AML cells for expression of immunomodulators (CD80 and GM-CSF) are current approaches under investigation for the development of autologous acute leukemia cell vaccines.
Collapse
Affiliation(s)
- R Stripecke
- Institute for Genetic Medicine, University of Southern California, Los Angeles 90033, USA
| | | | | | | |
Collapse
|
19
|
Koya RC, Kasahara N, Pullarkat V, Levine AM, Stripecke R. Transduction of acute myeloid leukemia cells with third generation self-inactivating lentiviral vectors expressing CD80 and GM-CSF: effects on proliferation, differentiation, and stimulation of allogeneic and autologous anti-leukemia immune responses. Leukemia 2002; 16:1645-54. [PMID: 12200676 DOI: 10.1038/sj.leu.2402582] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2001] [Accepted: 03/14/2002] [Indexed: 11/08/2022]
Abstract
Acute myeloid leukemia (AML) patients treated with available therapies achieve remission in approximately 60% of cases, but the long-term event-free survival is less than 30%. Use of immunotherapy during remission is a potential approach to increase survival. We propose to develop cell vaccines by genetic modification of AML cells with CD80, an essential T cell costimulator that is lacking in the majority of AML cases, and GM-CSF, to induce proliferation and activation of professional antigen-presenting cells. Here, we evaluated third generation self inactivating (SIN) lentiviral vectors, which have the potential advantage of improved safety. CD80 and GM-CSF expression by these vectors was higher than that reported with second generation vectors (Stripecke et al, Blood 2000; 96: 1317-1326). In some cases, endogenous GM-CSF expression by transduced AML cells induced phenotypic changes consistent with the maturation of leukemia blasts into antigen-presenting cells. Further, in all cases studied, GM-CSF expression was associated with higher proliferation and cell viability. Allogeneic and autologous mixed lymphocyte reactions performed with transduced irradiated AML cells expressing CD80 and/or GM-CSF demonstrated that expression of either transgene enhanced T cell activation. These pre-clinical data demonstrate the potential feasibility of third generation SIN vectors for use in AML immunotherapy.
Collapse
Affiliation(s)
- R C Koya
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
20
|
Oki M, Ando K, Hagihara M, Miyatake H, Shimizu T, Miyoshi H, Nakamura Y, Matsuzawa H, Sato T, Ueda Y, Gansuvd B, Kato S, Hotta T. Efficient lentiviral transduction of human cord blood CD34(+) cells followed by their expansion and differentiation into dendritic cells. Exp Hematol 2001; 29:1210-7. [PMID: 11602323 DOI: 10.1016/s0301-472x(01)00695-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To support immune reconstitution after cord blood transplantation, immunotherapy using gene-modified dendritic cells (DCs), the most potent antigen-presenting cells, can be a powerful strategy for preventing infection and recurrence. To investigate the applicability of lentiviral vector-transduced DCs compared to retroviral vectors, we transduced umbilical cord blood (CB) CD34(+) cells, then expanded and differentiated them into DCs. MATERIALS AND METHODS We transduced CB CD34(+) cells by vesicular stomatitis virus G-protein pseudotyped self-inactivating lentiviral vector or retroviral vectors carrying the enhanced green fluorescent protein gene. The cells were expanded in the stroma-dependent culture system and transferred to the culture condition for developing DCs. The efficiency of transduction and expression of the transgene in severe combined immunodeficiency (SCID) mice-repopulating cells (SRCs) and DCs were compared between lentiviral vector and retroviral vectors. Induced DCs were cocultured with allogeneic or autologous T cells to test the ability to present antigens. RESULTS CB CD34(+) cells transduced by lentiviral vector and expanded ex vivo sustained stable transgene expression and multipotentiality by assessing SRCs assay and clonogenic assay of bone marrow cells from the transplanted mice. DCs derived from these cells expressed green fluorescent protein and surface markers CD1a, CD80, and HLA-DR and showed potent allo-stimulatory activity as well as nontransduced DCs did. On the other hand, we did not detect transgene expression in SRCs and DCs transduced by retroviral vectors. CONCLUSION Gene-modified DCs derived from ex vivo expanded CB CD34(+) cells transduced by lentiviral vector will be useful in future immunotherapy protocols.
Collapse
Affiliation(s)
- M Oki
- Division of Hematology and Rheumatology, Department of Medicine, Research Center for Genetic Engineering and Cell Transplantation, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Acute lymphoblastic leukemia (ALL) is diagnosed in approximately 100000 people worldwide per year and 70% of the patients are children. Most children have a good prognosis, as almost 80% will be cured, however only 30% of adults are cured. Additionally, the current chemotherapies have long-lasting and severe side-effects. These findings indicate that the search for better and safer treatment modalities for ALL is still important. As leukemia directly affects the human immune cells, immunotherapeutic approaches have long been ignored as treatment options for this disease. However, increased knowledge of the immune system has opened new opportunities for immune modulation that could be of benefit to leukemia patients. Several recent advances towards immunotherapy of ALL will be discussed.
Collapse
Affiliation(s)
- M P Velders
- Cancer Immunology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | |
Collapse
|
22
|
Abstract
The application of gene transfer techniques to immunotherapy has animated the field of gene-based cancer vaccine research. Gene transfer strategies were developed to bring about active immunization against tumor-associated antigens (TAA) through gene transfer technology. A wide variety of viral and nonviral gene transfer methods have been investigated for immunotherapeutic purposes. Ex vivo strategies include gene delivery into tumor cells and into cellular components of the immune system, including cytotoxic T cells and dendritic cells (DC). The nature of the transferred genetic material as well as the gene transfer method has varied widely depending on the application. Several of these approaches have already been translated into clinical gene therapy trials. In this review, we will focus on the rationale and types of ex vivo gene-based immunotherapy of cancer. Critical areas for future development of gene-based cancer vaccines are addressed, with particular emphasis on use of DC and on the danger-tolerance hypothesis. Finally, the use of gene-modified DC for tumor vaccination and its prospects are discussed.
Collapse
Affiliation(s)
- V F Van Tendeloo
- Laboratory of Experimental Hematology, University Hospital, University of Antwerp, Belgium
| | | | | |
Collapse
|