1
|
Yao HHY, Kahr WHA. Molecular basis of platelet granule defects. J Thromb Haemost 2025; 23:381-393. [PMID: 39617187 DOI: 10.1016/j.jtha.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/02/2025]
Abstract
Platelets are small, discoid, anucleate blood cells that play key roles in clotting and other functions involved in health and disease. Platelets are derived from bone marrow-resident megakaryocytes, which undergo a complex developmental process where they increase dramatically in size and produce an abundance of organelles destined for platelets. These organelles include mitochondria, lysosomes, peroxisomes, and 2 unique types of secretory organelles: α- and dense (δ-) granules. δ-Granules contain small molecules, including adenosine triphosphate, adenosine diphosphate, serotonin, and ions, such as calcium and zinc (Ca2+ and Zn2+). α-Granules contain a variety of cargo proteins, which, when secreted by activated platelets, are involved in processes such as hemostasis (eg, fibrinogen and von Willebrand factor), angiogenesis, inflammation, and wound healing. Investigations of patients with inherited conditions resulting in decreased/abnormal platelet secretory granules have led to the identification of proteins, protein complexes, and cellular processes involved in their production by megakaryocytes. Notably, studies of ARPC1B deficiency, Hermansky-Pudlak, and Chediak-Higashi syndromes have linked several genes/proteins to δ-granule biogenesis. Studies of multisystemic arthrogryposis, renal dysfunction, and cholestasis syndrome revealed the requirement of 2 proteins, VPS33B and VPS16B, in α-granule formation. Identification of the genetic cause of gray platelet syndrome established that NBEAL2 is an additional protein needed for α-granule cargo retention. These discoveries enabled studies using animal models, cell culture, and molecular analysis to gain insights into the roles of proteins and cellular processes involved in platelet secretory granule production, which are discussed in this review.
Collapse
Affiliation(s)
- Helen H Y Yao
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Stefanucci L, Frontini M. Non-coding genetic variation in regulatory elements determines thrombosis and hemostasis phenotypes. J Thromb Haemost 2022; 20:1759-1765. [PMID: 35514262 PMCID: PMC9540108 DOI: 10.1111/jth.15754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Since the early inception of genome-wide association studies (GWAS), it became clear that, in all diseases or traits studied, most genetic variants are likely to exert their effect on gene expression mainly by altering the function of regulatory elements. At the same time, the regulation of the gene expression field broadened its boundaries, from the univocal relationship between regulatory elements and genes to include genome organization, long-range DNA interactions, and epigenetics. Next-generation sequencing has introduced genome-wide approaches that have greatly improved our understanding of the general principles of gene expression. However, elucidating how these apply in every single genomic locus still requires painstaking experimental work, in which several independent lines of evidence are required, and often this is helped by rare genetic variants in individuals with rare diseases. This review will focus on the non-coding features of the genome involved in transcriptional regulation, that when altered, leads to known cases of inherited (familial) thrombotic and hemostatic phenotypes, emphasizing the role of enhancers and super-enhancers.
Collapse
Affiliation(s)
- Luca Stefanucci
- Department of HaematologyUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUK
- National Health Service (NHS) Blood and TransplantCambridge Biomedical CampusCambridgeUK
- British Heart Foundation, Cambridge Centre for Research ExcellenceUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUK
| | - Mattia Frontini
- Department of HaematologyUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUK
- National Health Service (NHS) Blood and TransplantCambridge Biomedical CampusCambridgeUK
- British Heart Foundation, Cambridge Centre for Research ExcellenceUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUK
- Institute of Biomedical & Clinical Science, College of Medicine and HealthUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
3
|
Krocker JD, Lee KH, Henriksen HH, Wang YWW, Schoof EM, Karvelsson ST, Rolfsson Ó, Johansson PI, Pedroza C, Wade CE. Exploratory Investigation of the Plasma Proteome Associated with the Endotheliopathy of Trauma. Int J Mol Sci 2022; 23:6213. [PMID: 35682894 PMCID: PMC9181752 DOI: 10.3390/ijms23116213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The endotheliopathy of trauma (EoT) is associated with increased mortality following injury. Herein, we describe the plasma proteome related to EoT in order to provide insight into the role of the endothelium within the systemic response to trauma. METHODS 99 subjects requiring the highest level of trauma activation were included in the study. Enzyme-linked immunosorbent assays of endothelial and catecholamine biomarkers were performed on admission plasma samples, as well as untargeted proteome quantification utilizing high-performance liquid chromatography and tandem mass spectrometry. RESULTS Plasma endothelial and catecholamine biomarker abundance was elevated in EoT. Patients with EoT (n = 62) had an increased incidence of death within 24 h at 21% compared to 3% for non-EoT (n = 37). Proteomic analysis revealed that 52 out of 290 proteins were differentially expressed between the EoT and non-EoT groups. These proteins are involved in endothelial activation, coagulation, inflammation, and oxidative stress, and include known damage-associated molecular patterns (DAMPs) and intracellular proteins specific to several organs. CONCLUSIONS We report a proteomic profile of EoT suggestive of a surge of DAMPs and inflammation driving nonspecific activation of the endothelial, coagulation, and complement systems with subsequent end-organ damage and poor clinical outcome. These findings support the utility of EoT as an index of cellular injury and delineate protein candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph D. Krocker
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Hanne H. Henriksen
- Center for Endotheliomics CAG, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2200 Copenhagen, Denmark;
| | - Yao-Wei Willa Wang
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Sigurdur T. Karvelsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Pär I. Johansson
- Center for Endotheliomics CAG, Department of Clinical Immunology, Rigshospitalet, & Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Charles E. Wade
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| |
Collapse
|
4
|
Napolitano F, Montuori N. Role of Plasminogen Activation System in Platelet Pathophysiology: Emerging Concepts for Translational Applications. Int J Mol Sci 2022; 23:ijms23116065. [PMID: 35682744 PMCID: PMC9181697 DOI: 10.3390/ijms23116065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Traditionally, platelets have been exclusively considered for their procoagulant and antifibrinolytic effects during normal activation of hemostasis. Effectively, activated platelets secrete coagulation factors, expose phosphatidylserine, and promote thrombin and fibrin production. In addition to procoagulant activities, platelets confer resistance of thrombi to fibrinolysis by inducing clot retraction of the fibrin network and release of huge amounts of plasminogen activator inhibitor-1, which is the major physiologic inhibitor of the fibrinolytic cascade. However, the discovery of multiple relations with the fibrinolytic system, also termed Plasminogen Activation System (PAS), has introduced new perspectives on the platelet role in fibrinolysis. Indeed, the activated membrane surface of platelets provides binding sites on which fibrinolytic enzymes can be activated. This review discusses the evidence of the profibrinolytic properties of platelets through the description of PAS components and related proteins that are contained in or bind to platelets. Our analyses of literature data lead to the conclusion that in the initial phase of the hemostatic process, antifibrinolytic effects prevail over profibrinolytic activity, but at later stages, platelets might enhance fibrinolysis through the engagement of PAS components. A better understanding of spatial and temporal characteristics of platelet-mediated fibrinolysis during normal hemostasis could improve therapeutic options for bleeding and thrombotic disorders.
Collapse
|
5
|
Multimerin-1 and cancer: a review. Biosci Rep 2022; 42:230760. [PMID: 35132992 PMCID: PMC8881648 DOI: 10.1042/bsr20211248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Multimerin-1 (MMRN1) is a platelet protein with a role in haemostasis and coagulation. It is also present in endothelial cells (ECs) and the extracellular matrix (ECM), where it may be involved in cell adhesion, but its molecular functions and protein–protein interactions in these cellular locations have not been studied in detail yet. In recent years, MMRN1 has been identified as a differentially expressed gene (DEG) in various cancers and it has been proposed as a possible cancer biomarker. Some evidence suggest that MMRN1 expression is regulated by methylation, protein interactions, and non-coding RNAs (ncRNAs) in different cancers. This raises the questions if a functional role of MMRN1 is being targeted during cancer development, and if MMRN1’s differential expression pattern correlates with cancer progression. As a result, it is timely to review the current state of what is known about MMRN1 to help inform future research into MMRN1’s molecular mechanisms in cancer.
Collapse
|
6
|
Abstract
Fibrinogen plays a fundamental role in coagulation through its support for platelet aggregation and its conversion to fibrin. Fibrin stabilizes clots and serves as a scaffold and immune effector before being broken down by the fibrinolytic system. Given its importance, abnormalities in fibrin(ogen) and fibrinolysis result in a variety of disorders with hemorrhagic and thrombotic manifestations. This review summarizes (i) the basic elements of fibrin(ogen) and its role in coagulation and the fibrinolytic system; (ii) the laboratory evaluation for fibrin(ogen) disorders, including the use of global fibrinolysis assays; and (iii) the management of congenital and acquired disorders of fibrinogen and fibrinolysis.
Collapse
Affiliation(s)
- Jori E May
- Division of Hematology/Oncology, University of Alabama at Birmingham, 1720 2nd Avenue South, NP 2503, Birmingham, AL 35294, USA
| | - Alisa S Wolberg
- UNC Department of Pathology and Laboratory Medicine, UNC Blood Research Center, 8018A Mary Ellen Jones Building, CB7035, Chapel Hill, NC 27599-7035, USA
| | - Ming Yeong Lim
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, 2000 Circle Hope Drive, Room 4126, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
Tsai FD, Battinelli EM. Inherited Platelet Disorders. Hematol Oncol Clin North Am 2021; 35:1069-1084. [PMID: 34391603 DOI: 10.1016/j.hoc.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bleeding disorders due to platelet dysfunction are a common hematologic complication affecting patients, and typically present with mucocutaneous bleeding or hemorrhage. An inherited platelet disorder should be suspected in individuals with a suggestive family history and no identified secondary causes of bleeding. Genetic defects have been described at all levels of platelet activation, including receptor binding, signaling, granule release, cytoskeletal remodeling, and platelet hematopoiesis. Management of these disorders is typically supportive, with an emphasis on awareness, patient education, and anticipatory guidance to prevent future episodes of bleeding.
Collapse
Affiliation(s)
- Frederick D Tsai
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA; Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Elisabeth M Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Enhancer-gene rewiring in the pathogenesis of Quebec platelet disorder. Blood 2021; 136:2679-2690. [PMID: 32663239 DOI: 10.1182/blood.2020005394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Quebec platelet disorder (QPD) is an autosomal dominant bleeding disorder with a unique, platelet-dependent, gain-of-function defect in fibrinolysis, without systemic fibrinolysis. The hallmark feature of QPD is a >100-fold overexpression of PLAU, specifically in megakaryocytes. This overexpression leads to a >100-fold increase in platelet stores of urokinase plasminogen activator (PLAU/uPA); subsequent plasmin-mediated degradation of diverse α-granule proteins; and platelet-dependent, accelerated fibrinolysis. The causative mutation is a 78-kb tandem duplication of PLAU. How this duplication causes megakaryocyte-specific PLAU overexpression is unknown. To investigate the mechanism that causes QPD, we used epigenomic profiling, comparative genomics, and chromatin conformation capture approaches to study PLAU regulation in cultured megakaryocytes from participants with QPD and unaffected controls. QPD duplication led to ectopic interactions between PLAU and a conserved megakaryocyte enhancer found within the same topologically associating domain (TAD). Our results support a unique disease mechanism whereby the reorganization of sub-TAD genome architecture results in a dramatic, cell-type-specific blood disorder phenotype.
Collapse
|
9
|
Al-Huniti A, Kahr WH. Inherited Platelet Disorders: Diagnosis and Management. Transfus Med Rev 2020; 34:277-285. [PMID: 33082057 DOI: 10.1016/j.tmrv.2020.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022]
Abstract
Inherited platelet disorders are rare but they can have considerable clinical impacts, and studies of their causes have advanced understanding of platelet formation and function. Effective hemostasis requires adequate circulating numbers of functional platelets. Quantitative, qualitative and combined platelet disorders with a bleeding phenotype have been linked to defects in platelet cytoskeletal elements, cell surface receptors, signal transduction pathways, secretory granules and other aspects. Inherited platelet disorders have variable clinical presentations, and diagnosis and management is often challenging. Evaluation begins with detailed patient and family histories, including a bleeding score. The physical exam identifies potential syndromic features of inherited platelet disorders and rules out other causes. Laboratory investigations include a complete blood count, blood film, coagulation testing and Von Willebrand factor assessment. A suspected platelet function disorder is further assessed by platelet aggregation, flow cytometry, platelet dense granule release and/or content, and genetic testing. The management of platelet function disorders aims to minimize the risk of bleeding and achieve adequate hemostasis when needed. Although not universal, platelet transfusion remains a crucial component in the management of many inherited platelet disorders.
Collapse
Affiliation(s)
- Ahmad Al-Huniti
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Walter Ha Kahr
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada; Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada; Departments of Paediatrics and Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Ibrahim-Kosta M, Alessi MC, Hezard N. Laboratory Techniques Used to Diagnose Constitutional Platelet Dysfunction. Hamostaseologie 2020; 40:444-459. [PMID: 32932546 DOI: 10.1055/a-1223-3306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Platelets play a major role in primary hemostasis, where activated platelets form plugs to stop hemorrhaging in response to vessel injuries. Defects in any step of the platelet activation process can cause a variety of platelet dysfunction conditions associated with bleeding. To make an accurate diagnosis, constitutional platelet dysfunction (CPDF) should be considered once von Willebrand disease and drug intake are ruled out. CPDF may be associated with thrombocytopenia or a genetic syndrome. CPDF diagnosis is complex, as no single test enables the analysis of all aspects of platelet function. Furthermore, the available tests lack standardization, and repeat tests must be performed in specialized laboratories especially for mild and moderate forms of the disease. In this review, we provide an overview of the laboratory tests used to diagnose CPDF, with a focus on light transmission platelet aggregation (LTA), flow cytometry (FC), and granules assessment. Global tests, mainly represented by LTA, are often initially performed to investigate the consequences of platelet activation on platelet aggregation in a single step. Global test results should be confirmed by additional analytical tests. FC represents an accurate, simple, and reliable test to analyze abnormalities in platelet receptors, and granule content and release. This technique may also be used to investigate platelet function by comparing resting- and activated-state platelet populations. Assessment of granule content and release also requires additional specialized analytical tests. High-throughput sequencing has become increasingly useful to diagnose CPDF. Advanced tests or external research laboratory techniques may also be beneficial in some cases.
Collapse
Affiliation(s)
- Manal Ibrahim-Kosta
- Aix Marseille University, INSERM, INRAE, Marseille Cedex 05, France.,Laboratory of Hematology, CHU Timone, Marseille Cedex 05, France
| | - Marie-Christine Alessi
- Aix Marseille University, INSERM, INRAE, Marseille Cedex 05, France.,Laboratory of Hematology, CHU Timone, Marseille Cedex 05, France
| | - Nathalie Hezard
- Laboratory of Hematology, CHU Timone, Marseille Cedex 05, France
| |
Collapse
|
11
|
Hayward CPM, Tasneem S, Rivard GE. Improved platelet counts during prolonged tranexamic therapy for Quebec platelet disorder implicate the underlying fibrinolytic defect as the cause of lower platelet counts. Int J Lab Hematol 2020; 42:e274-e276. [PMID: 33205919 PMCID: PMC7754410 DOI: 10.1111/ijlh.13311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/09/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Catherine P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Georges E Rivard
- Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada.,Centre Hospitalier Universitaire Sainte Justine, Montreal, QC, Canada
| |
Collapse
|
12
|
Brunet JG, Sharma T, Tasneem S, Liang M, Wilson MD, Rivard GE, Hayward CPM. Thrombin generation abnormalities in Quebec platelet disorder. Int J Lab Hematol 2020; 42:801-809. [PMID: 32761872 PMCID: PMC7754340 DOI: 10.1111/ijlh.13302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Calibrated automated thrombograms (CAT) with platelet-poor (PPP) and platelet-rich plasma (PRP) have provided useful insights on bleeding disorders. We used CAT to assess thrombin generation (TG) in Quebec platelet disorder (QPD)-a bleeding disorder caused by a PLAU duplication mutation that increases platelet (but not plasma) urokinase plasminogen activator (uPA), leading to intraplatelet (but not systemic) plasmin generation that degrades α-granule proteins and causes platelet (but not plasma) factor V (FV) deficiency. METHODS Calibrated automated thrombograms was used to test QPD (n = 7) and control (n = 22) PPP and PRP, with or without added tranexamic acid (TXA). TG endpoints were evaluated for relationships to platelet FV and uPA, plasma FV and tissue factor pathway inhibitor (TFPI) levels, and bleeding scores. RESULTS Quebec platelet disorder PPP TG was normal whereas QPD PRP had reduced endogenous thrombin potential and peak thrombin concentrations (P values < .01), proportionate to the platelet FV deficiency (R2 ≥ 0.81), but unrelated to platelet uPA, plasma FV, or bleeding scores. QPD TG abnormalities were not associated with TFPI abnormalities and were not reproduced by adding uPA to control PRP. TXA increased QPD and control PRP TG more than PPP TG, but it did not fully correct QPD PRP TG abnormalities or improve TG by plasminogen-deficient plasma. CONCLUSION Quebec platelet disorder results in a platelet-specific TG defect, proportionate to the loss of platelet FV, that is improved but not fully corrected by TXA. Our study provides an interesting example of why it is important to assess both PRP and PPP TG in bleeding disorders.
Collapse
Affiliation(s)
- Justin G Brunet
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Tanmya Sharma
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Minggao Liang
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Wilson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Georges E Rivard
- Centre Hospitalier Universitaire Sainte Justine, Montreal, QC, Canada
| | - Catherine P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| |
Collapse
|
13
|
Ilich A, Noubouossie DF, Henderson M, Ellsworth P, Betbadal KF, Campello E, Meeks S, Dunn A, Park MS, Pawlinski R, Simioni P, Shapiro A, Key NS. Development and application of global assays of hyper- and hypofibrinolysis. Res Pract Thromb Haemost 2020; 4:46-53. [PMID: 31989084 PMCID: PMC6971323 DOI: 10.1002/rth2.12275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023] Open
Abstract
Numerous methods for evaluation of global fibrinolytic activity in whole blood or plasma have been proposed, with the majority based on tissue-type plasminogen activator (t-PA) addition to initiate fibrinolysis. We propose that such an approach is useful to reveal hypofibrinolysis, but t-PA concentrations should be kept to a minimum. In this paper, we describe a low-concentration t-PA plasma turbidity assay to evaluate several congenital factor deficiencies, including plasminogen activator inhibitor-1 (PAI-1) and plasminogen deficiency, as well as hemophilia A and B. In addition, we demonstrate a threshold dependency on endogenous PAI-1 levels. To assess endogenous hyperfibrinolysis, we suggest that assays that avoid t-PA addition are preferable, with assays based on euglobulin fractionation remaining a viable choice. We describe a euglobulin fraction clot lysis time (ECLT) assay with spectrophotometric readout and other modifications, and evaluate it as a tool to measure hyperfibrinolysis in inherited clotting factor deficiency states. We demonstrate that the ECLT is predominantly driven by residual amounts of PAI-1, t-PA, and α2-antiplasmin. These assays should be further evaluated for the detection of hypo- or hyperfibrinolysis in acquired thrombotic or hemorrhagic disorders.
Collapse
Affiliation(s)
- Anton Ilich
- Department of MedicineUniversity of North CarolinaChapel HillNorth Carolina
| | | | - Michael Henderson
- Department of MedicineUniversity of North CarolinaChapel HillNorth Carolina
| | - Patrick Ellsworth
- Department of MedicineUniversity of North CarolinaChapel HillNorth Carolina
| | | | - Elena Campello
- Thrombotic and Hemorrhagic Diseases UnitDepartment of MedicineUniversity of PadovaPadovaItaly
| | - Shannon Meeks
- Department of PediatricsEmory UniversityAflac Cancer and Blood Disorders CenterChildren’s Healthcare of AtlantaAtlantaGeorgia
| | - Amy Dunn
- Nationwide Children’s HospitalColumbusOhio
| | - Myung S. Park
- Trauma, Critical Care and General SurgeryMayo ClinicRochesterMinnesota
| | - Rafal Pawlinski
- Department of MedicineUniversity of North CarolinaChapel HillNorth Carolina
| | - Paolo Simioni
- Thrombotic and Hemorrhagic Diseases UnitDepartment of MedicineUniversity of PadovaPadovaItaly
| | - Amy Shapiro
- Indiana Hemophilia and Thrombosis CenterIndianapolisIndiana
| | - Nigel S. Key
- Department of Pathology and Laboratory MedicineUniversity of North CarolinaChapel HillNorth Carolina
| |
Collapse
|
14
|
Abstract
Deficiencies or excessive activation of the fibrinolytic system can result in severe, lifelong bleeding disorders. The most severe clinical phenotype is caused by α2-Antiplasmin (α2-AP) deficiency which results in excess fibrinolysis due to the inability to inhibit plasmin. Another bleeding disorder due to a defect in the fibrinolytic pathway results from Plasminogen activator inhibitor-1 (PAI-1) deficiency causing enhanced fibrinolysis due to the decreased inhibition of plasminogen activators resulting in increased conversion of plasminogen to plasmin. Both these disorders are rare and have an autosomal recessive pattern of inheritance. They can remain undetected as routine coagulation and platelet function tests are normal. A unique gain-of-function defect in fibrinolysis causes the Quebec platelet disorder (QPD) which is characterized by profibrinolytic platelets containing increased urokinase-type plasminogen activator (uPA) in the α-granules. A high index of suspicion based on clinical phenotype along with the availability of specialized hemostasis testing is required for timely and accurate diagnosis. Antifibrinolytic agents, such as tranexamic acid or ε-aminocaproic acid, are the mainstays of treatment which inhibit fibrinolysis by preventing the binding of plasminogen to fibrin and thereby stabilizing the fibrin clot. The purpose of this review is to summarize the pathogenesis, clinical phenotype, approaches to diagnosis and treatment for these three major disorders of fibrinolysis.
Collapse
Affiliation(s)
- Shilpa Jain
- Division of Pediatric Hematology-Oncology, John R. Oishei Children's Hospital and Western New York BloodCare, Buffalo, NY, USA.
| | - Suchitra S Acharya
- Bleeding Disorders and Thrombosis Program, Cohen Children's Medical Center, New York, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
15
|
Mezzano D, Quiroga T. Diagnostic challenges of inherited mild bleeding disorders: a bait for poorly explored clinical and basic research. J Thromb Haemost 2019; 17:257-270. [PMID: 30562407 DOI: 10.1111/jth.14363] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 01/10/2023]
Abstract
The best-known inherited mild bleeding disorders (MBDs), i.e. type 1 von Willebrand disease (VWD), platelet function disorders (PFDs), and mild to moderate clotting factor deficiencies, are characterized clinically by mucocutaneous bleeding, and, although they are highly prevalent, still pose difficult diagnostic problems. These include establishing the pathological nature of bleeding, and the uncertainties surrounding the clinical relevance of laboratory results. Furthermore, the high frequency of bleeding symptoms in the normal population and the subjective appraisal of symptoms by patients or parents makes elucidating the pathological nature of bleeding difficult. Standardized bleeding assessment tools and semiquantitative bleeding scores (BSs) help to discriminate normal from abnormal bleeding. However, as most MBDs have similar bleeding patterns, for example, bleeding sites, frequency, and severity, BSs are of little help for diagnosing specific diseases. Global tests of primary hemostasis (bleeding time; PFA-100/200) lack sensitivity and, like BSs, are not disease-specific. Problems with the diagnosis of type 1 VWD and PFD include assay standardization, uncertain definition of von Willebrand factor cut-off levels, and the lack of universal diagnostic criteria for PFD. Regarding clotting factor deficiencies, the bleeding thresholds of some coagulation factors, such as factor VII and FXI, are highly variable, and may lead to misinterpretation of the clinical relevance of mild to moderate deficiencies. Remarkably, a large proportion of MBDs remain undiagnosed even after comprehensive and repeated laboratory testing. These are tentatively considered to represent bleeding of undefined cause, with clinical features indistinguishable from those of classical MBD; the pathogenesis of this is probably multifactorial, and unveiling these mechanisms should constitute a fertile source of translational research.
Collapse
Affiliation(s)
- D Mezzano
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - T Quiroga
- Clinical Laboratory, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Mutch NJ. Regulation of Fibrinolysis by Platelets. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
|
18
|
Cattaneo M. Inherited Disorders of Platelet Function. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Lee A, Poon MC. Inherited platelet functional disorders: General principles and practical aspects of management. Transfus Apher Sci 2018; 57:494-501. [PMID: 30031712 DOI: 10.1016/j.transci.2018.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Platelets are a critical component for effecting hemostasis and wound healing. Disorders affecting any platelet pathway mediating adhesion, activation, aggregation and procoagulant surface exposure can result in a bleeding diathesis. Specific diagnosis even with advanced techniques which are unavailable to most centers is often difficult. Inherited platelet function disorders therefore represent a heterogeneous and complex collection of disorders with a spectrum of bleeding severity, from relatively mild (and easily missed or misdiagnosed) to severe bleeding phenotype with salient diagnostic features. We advocate the use of bleeding assessment tools to help identification of patients and more importantly for assessment of individual patient bleeding phenotype to guide management decisions for treating and preventing bleeding. The complex management of these patients is best coordinated in a multidisciplinary comprehensive care clinic setting expert in managing bleeding disorders and associated complications, with particular attention to the physical and psychosocial health of patients and their families. Depending on the bleeding phenotype, the location and severity of bleeding, and the nature of an invasive procedure, available treatment modalities range from conservative measures using local pressure, topical thrombin, fibrin sealant, antifibrinolytics etc. to the use of systemic haemostatics such as desmopressin (DDAVP), platelets and recombinant human activated factor VII (rFVIIa). This review will provide opinions on the practical aspects and general management of inherited platelet function disorders, with discussion on the mechanism of action, and the pros and cons of various hemostatic agents. Finally, the prospect of curative treatment for patients with severe bleeding phenotype refractory to available treatments and with poor quality of life will be briefly discussed.
Collapse
Affiliation(s)
- Adrienne Lee
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada; Southern Alberta Rare Blood and Bleeding Disorders Comprehensive Care Program, Foothills Medical Centre, Alberta Health Services, Calgary, Canada.
| | - Man-Chiu Poon
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Pediatric, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Southern Alberta Rare Blood and Bleeding Disorders Comprehensive Care Program, Foothills Medical Centre, Alberta Health Services, Calgary, Canada.
| |
Collapse
|
20
|
Saes JL, Schols SEM, van Heerde WL, Nijziel MR. Hemorrhagic disorders of fibrinolysis: a clinical review. J Thromb Haemost 2018; 16:S1538-7836(22)02207-3. [PMID: 29847021 DOI: 10.1111/jth.14160] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 12/28/2022]
Abstract
Hyperfibrinolytic bleeding can be caused by a deficiency of one of the inhibitors of fibrinolysis (plasminogen activator inhibitor type 1 [PAI-1] or α2-antiplasmin [α2-AP]), or an excess of one of the activators of fibrinolysis: tissue-type plasminogen activator or urokinase-type plasminogen activator. This review focuses on the clinical implications of these disorders. The bleeding phenotype of fibrinolytic disorders is characterized by delayed bleeding after trauma, surgery and dental procedures. Bleeding in areas of high fibrinolytic activity is also common, such as menorrhagia and epistaxis. Patients with α2-AP deficiency present with the most severe bleeding episodes. Recently, it was discovered that hyperfibrinolytic disorders are associated with a high rate of obstetric complications such as miscarriage and preterm birth, especially in PAI-1 deficient patients. Hyperfibrinolytic disorders are probably underdiagnosed because of lack of knowledge and lack of accurate diagnostic tests. A substantial part of the large group of patients diagnosed as 'bleeding of unknown origin' could actually have a hyperfibrinolytic disorder. In the case of a high index of suspicion (i.e. because of a positive family history, recurrent bleeding or uncommon type of bleeding such as an intramedullary hematoma), further testing should not be withheld because of normal results of standard hemostatic screening assays. Timely diagnosis is important because these disorders can generally be treated well with antifibrinolytic agents.
Collapse
Affiliation(s)
- J L Saes
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
- Haemophilia Treatment Center, Nijmegen-Eindhoven-Maastricht, the Netherlands
| | - S E M Schols
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
- Haemophilia Treatment Center, Nijmegen-Eindhoven-Maastricht, the Netherlands
| | - W L van Heerde
- Haemophilia Treatment Center, Nijmegen-Eindhoven-Maastricht, the Netherlands
| | - M R Nijziel
- Department of Hematology, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
21
|
Hayward CPM, Tasneem S, Rivard GE. Thrombopoietin levels in Quebec platelet disorder-Implications for the mechanism of thrombocytopenia. Int J Lab Hematol 2018; 40:e33-e34. [PMID: 29388746 PMCID: PMC5873450 DOI: 10.1111/ijlh.12781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/09/2018] [Indexed: 10/28/2022]
Affiliation(s)
- C P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| | - S Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - G E Rivard
- Division of Hematology/Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
22
|
Hayward CPM, Liang M, Tasneem S, Soomro A, Waye JS, Paterson AD, Rivard GE, Wilson MD. The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes. PLoS One 2017; 12:e0173991. [PMID: 28301587 PMCID: PMC5354430 DOI: 10.1371/journal.pone.0173991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD in a megakaryocyte-specific manner.
Collapse
Affiliation(s)
- Catherine P. M. Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
- * E-mail: (CPMH); (MDW)
| | - Minggao Liang
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Asim Soomro
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - John S. Waye
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| | - Andrew D. Paterson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Dalla Lana School of Public Health and Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Georges E. Rivard
- Hematology/ Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
- * E-mail: (CPMH); (MDW)
| |
Collapse
|
23
|
Mišík M, Filipic M, Nersesyan A, Mišíková K, Knasmueller S, Kundi M. Analyses of combined effects of cytostatic drugs on micronucleus formation in the Tradescantia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14762-14770. [PMID: 26620864 DOI: 10.1007/s11356-015-5837-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Recent experiments showed that 5-fluorouracil (5FU), cisplatin (CDDP), etoposide (ET), and imatinib mesylate (IM), which are currently among the most widely used anticancer drugs, cause damage of the genetic material in higher plants. The aim of the present study was to determine whether mixtures of these drugs cause synergistic or antagonistic effects which may have an impact on their environmental safety. Therefore, the effects of binary mixtures of these anticancer drugs on the induction of micronuclei (MN) which reflect structural and numerical chromosomal aberrations were assessed in Tradescantia tetrads. Synergistic/antagonistic effects were determined by comparison with single exposures that would be equally effective in a reference model of independent action. This comparison was performed at two distinct effect sizes. We found clear evidence for synergisms in combination experiments with IM and antagonism in a high-dose experiment with ET and 5FU. Our findings indicate that IM increases the genotoxic effects of other anticancer drugs. The maximal effects which we found were in the range between 19 and 38 % in the excess of effect sizes predicted under independent action. These effects may have an impact on the overall genotoxic activities of untreated hospital waste waters but not on the environment in general as the predicted environmental concentrations of the studied drugs are several orders of magnitude lower as the levels which are required to cause induction of MN in higher plants.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Metka Filipic
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Armen Nersesyan
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Katarína Mišíková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Siegfried Knasmueller
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.
| | - Michael Kundi
- Medical University of Vienna, Institute of Environmental Health, Medical University of Vienna, Wien, Austria
| |
Collapse
|
24
|
Fuentes RE, Zaitsev S, Ahn HS, Hayes V, Kowalska MA, Lambert MP, Wang Y, Siegel DL, Bougie DW, Aster RH, Myers DD, Stepanova V, Cines DB, Muzykantov VR, Poncz M. A chimeric platelet-targeted urokinase prodrug selectively blocks new thrombus formation. J Clin Invest 2016; 126:483-94. [PMID: 26690701 DOI: 10.1172/jci81470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/12/2015] [Indexed: 01/15/2023] Open
Abstract
The use of fibrinolytic agents to prevent new thrombus formation is limited by an increased risk of bleeding due to lysis of hemostatic clots that prevent hemorrhage in damaged blood vessels. We sought to develop an agent that provides thromboprophylaxis without carrying a significant risk of causing systemic fibrinolysis or disrupting hemostatic clots. We previously showed that platelet (PLT) α granule-delivered urokinase plasminogen activator (uPA) is highly effective in preventing thrombosis, while being associated with little systemic fibrinolysis or bleeding. Here, we generated a chimeric prodrug composed of a single-chain version of the variable region of an anti-αIIbβ3 mAb fused to a thrombin-activatable, low-molecular-weight pro-uPA (PLT/uPA-T). PLT/uPA-T recognizes human αIIbβ3 on both quiescent and activated platelets and is enzymatically activated specifically by thrombin. We found that this prodrug binds tightly to human platelets even after gel filtration, has a prolonged half-life in mice transgenic for human αIIb compared with that of uPA-T, and prevents clot formation in a microfluidic system. Importantly, in two murine injury models, PLT/uPA-T did not lyse preexisting clots, even when administration was delayed by as little as 10 minutes, while it concurrently prevented the development of nascent thrombi. Thus, PLT/uPA-T represents the prototype of a platelet-targeted thromboprophylactic agent that selectively targets nascent over preexisting thrombi.
Collapse
|
25
|
Coagulation factor XIIIa is inactivated by plasmin. Blood 2015; 126:2329-37. [PMID: 26359437 DOI: 10.1182/blood-2015-07-650713] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/28/2015] [Indexed: 11/20/2022] Open
Abstract
Coagulation factor XIIIa (FXIIIa) is a transglutaminase that covalently cross-links fibrin and other proteins to fibrin to stabilize blood clots and reduce blood loss. A clear mechanism to describe the physiological inactivation of FXIIIa has been elusive. Here, we show that plasmin can cleave FXIIIa in purified systems and in blood. Whereas zymogen FXIII was not readily cleaved by plasmin, FXIIIa was rapidly cleaved and inactivated by plasmin in solution (catalytic efficiency = 8.3 × 10(3) M(-1)s(-1)). The primary cleavage site identified by mass spectrometry was between K468 and Q469. Both plasma- and platelet-derived FXIIIa were susceptible to plasmin-mediated degradation. Inactivation of FXIIIa occurred during clot lysis and was enhanced both in plasma deficient in fibrinogen and in plasma treated with therapeutic levels of tissue plasminogen activator. These results indicate that FXIIIa activity can be modulated by fibrinolytic enzymes, and suggest that changes in fibrinolytic activity may influence cross-linking of blood proteins.
Collapse
|
26
|
Streif W, Knöfler R, Eberl W, Andres O, Bakchoul T, Bergmann F, Beutel K, Dittmer R, Gehrisch S, Gottstein S, Halimeh S, Haselböck J, Hassenpflug WA, Heine S, Holzhauer S, King S, Kirchmaier CM, Krause M, Kreuz W, Lösche W, Mahnel R, Maurer M, Nimtz-Talaska A, Olivieri M, Rott H, Schambeck CM, Schedel A, Schilling FH, Schmugge M, Schneppenheim R, Scholz U, Scholz T, Schulze H, Siegemund A, Strauß G, Sykora KW, Wermes C, Wiegering V, Wieland I, Zieger B, Zotz RB. [Therapy of inherited diseases of platelet function. Interdisciplinary S2K guideline of the Permanent Paediatric Committee of the Society of Thrombosis and Haemostasis Research (GTH e. V.)]. Hamostaseologie 2015; 34:269-75, quiz 276. [PMID: 25370176 DOI: 10.5482/hamo-2014040001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 11/05/2022] Open
Abstract
Inherited disorders of platelet function are a heterogeneous group. For optimal prevention and management of bleeding, classification and diagnosis of the underlying defect are highly recommended. An interdisciplinary guideline for a diagnostic approach has been published (AWMF # 086-003 S2K; Hämostaseologie 2014; 34: 201-212). Underlying platelet disorder, platelet count, age and clinical situation modify treatment. Exclusive transfusion of platelet concentrates may be inappropriate as potentially adverse effects can outweigh its benefit. A stepwise and individually adjusted approach for restitution and maintenance of haemostasis is recommended. Administration of antifibrinolytics is generally endorsed, but is of particular use in Quebec disease. Restricted to older children, desmopressin is favourable in storage pool disease and unclassified platelet disorders. Although licensed only for patients with Glanzmann thrombasthenia and alloantibodies, in clinical practice rFVIIa is widely used in inherited platelet disorders with severe bleeding tendency. This guideline aims at presenting the best available advice for the management of patients with inherited platelet function disorders.
Collapse
Affiliation(s)
| | - R Knöfler
- Priv.-Doz. Dr. med. Ralf Knöfler, Universitätsklinikum Carl Gustav Carus Dresden Klinik und Poliklinik für Kinder- und Jugendmedizin, Bereich Hämostaseologie, Fetscherstr. 74, 01307 Dresden, Tel. 03 51/458 47 99, Fax 03 51/458 57 88, E-Mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
We have proposed that modified platelets could potentially be used to correct intrinsic platelet defects as well as for targeted delivery of therapeutic molecules to sights of vascular injury. Ectopic expression of proteins within α-granules prior to platelet activation has been achieved for several proteins, including urokinase, factor (F) VIII, and partially for FIX. Potential uses of platelet-directed therapeutics will be discussed, focusing on targeted delivery of urokinase as a thromboprophylactic agent and FVIII for the treatment of hemophilia A patients with intractable inhibitors. This presentation will discuss new strategies that may be useful in the care of patients with vascular injury as well as remaining challenges and limitations of these approaches.
Collapse
Affiliation(s)
- R Lyde
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - D Sabatino
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - S K Sullivan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - M Poncz
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Jurk K. Analysis of platelet function and dysfunction. Hamostaseologie 2014; 35:60-72. [PMID: 25482925 DOI: 10.5482/hamo-14-09-0047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/21/2014] [Indexed: 12/17/2022] Open
Abstract
Although platelets act as central players of haemostasis only their cross-talk with other blood cells, plasma factors and the vascular compartment enables the formation of a stable thrombus. Multiple activation processes and complex signalling networks are responsible for appropriate platelet function. Thus, a variety of platelet function tests are available for platelet research and diagnosis of platelet dysfunction. However, universal platelet function tests that are sensitive to all platelet function defects do not exist and therefore diagnostic algorithms for suspected platelet function disorders are still recommended in clinical practice. Based on the current knowledge of human platelet activation this review evaluates point-of-care related screening tests in comparison with specific platelet function assays and focuses on their diagnostic utility in relation to severity of platelet dysfunction. Further, systems biology-based platelet function methods that integrate global and specific analysis of platelet vessel wall interaction (advanced flow chamber devices) and post-translational modifications (platelet proteomics) are presented and their diagnostic potential is addressed.
Collapse
Affiliation(s)
- K Jurk
- Priv.-Doz. Dr. rer. nat. Kerstin Jurk, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany, E-mail:
| |
Collapse
|
29
|
Hinckley J, Di Paola J. Genetic basis of congenital platelet disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:337-342. [PMID: 25696876 DOI: 10.1182/asheducation-2014.1.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past 4 decades, a better understanding of the genetic origins of inherited platelet disorders has illuminated avenues of investigation in megakaryopoiesis and has identified targets of pharmacologic intervention. Many of these discoveries have been translated into clinical medicine. The success of inherited platelet disorder research is underpinned by broader advances in methodology through the biochemical and molecular revolution of the 20(th) and 21(st) centuries, respectively. Recently, modern genomics techniques have affected platelet and platelet disorders research, allowing for the discovery of several genes involved in platelet production and function and for a deeper understanding of the RNA and miRNA networks that govern platelet function. In this short review, we focus on recent developments in the genetic elucidation of several disorders of platelet number and in the molecular architecture that determines the "genetic makeup" of a platelet in health and disease.
Collapse
Affiliation(s)
- Jesse Hinckley
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Jorge Di Paola
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
30
|
Golebiewska EM, Poole AW. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev 2014; 29:153-62. [PMID: 25468720 PMCID: PMC4452143 DOI: 10.1016/j.blre.2014.10.003] [Citation(s) in RCA: 542] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/23/2014] [Indexed: 12/28/2022]
Abstract
Upon activation, platelets secrete more than 300 active substances from their intracellular granules. Platelet dense granule components, such as ADP and polyphosphates, contribute to haemostasis and coagulation, but also play a role in cancer metastasis. α-Granules contain multiple cytokines, mitogens, pro- and anti-inflammatory factors and other bioactive molecules that are essential regulators in the complex microenvironment of the growing thrombus but also contribute to a number of disease processes. Our understanding of the molecular mechanisms of secretion and the genetic regulation of granule biogenesis still remains incomplete. In this review we summarise our current understanding of the roles of platelet secretion in health and disease, and discuss some of the hypotheses that may explain how platelets may control the release of its many secreted components in a context-specific manner, to allow platelets to play multiple roles in health and disease.
Collapse
Affiliation(s)
- Ewelina M Golebiewska
- Medical Sciences Building, School of Physiology and Pharmacology, University of Bristol, University Walk, BS8 1TD Bristol, UK
| | - Alastair W Poole
- Medical Sciences Building, School of Physiology and Pharmacology, University of Bristol, University Walk, BS8 1TD Bristol, UK.
| |
Collapse
|
31
|
|
32
|
Cox K, Price V, Kahr WHA. Inherited platelet disorders: a clinical approach to diagnosis and management. Expert Rev Hematol 2014; 4:455-72. [DOI: 10.1586/ehm.11.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Hayward CPM. Improving blood disorder diagnosis: reflections on the challenges. Int J Lab Hematol 2013; 35:244-53. [DOI: 10.1111/ijlh.12074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 02/04/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. P. M. Hayward
- Departments of Pathology and Molecular Medicine, and Medicine; McMaster University and the Hamilton Regional Laboratory Medicine Program; Hamilton Ontario Canada
| |
Collapse
|
34
|
Cattaneo M. Congenital Disorders of Platelet Function. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
|
36
|
|
37
|
Abstract
Abstract
Congenital mild bleeding disorders (MBDs) are very prevalent and are the source of frequent diagnostic problems. Most MBDs are categorized as disorders of primary hemostasis (ie, type 1 VWD and platelet function disorders), but mild or moderate deficiencies of clotting factors and some rare hyperfibrinolytic disorders are also included. These patients have abnormal bleeding from the skin and mucous membranes, menorrhagia, and disproportionate hemorrhages after trauma, invasive procedures, and surgery. This review addresses the main problems that physicians and hemostasis laboratories confront with the diagnosis of these patients, including: discerning normal/appropriate from pathological bleeding, the role and yield of screening tests, the lack of distinctive bleeding pattern among the different diseases, the inherent difficulties in the diagnosis of type 1 VWD and the most common platelet functional disorders, improvements in assays to measure platelet aggregation and secretion, and the evidence that most of the patients with MBDs end up without a definite diagnosis after exhaustive and repeated laboratory testing. Much research is needed to determine the pathogenesis of bleeding in MBD patients. Better standardization of current laboratory assays, progress in the knowledge of fibrinolytic mechanisms and their laboratory evaluation, and new understanding of the factors contributing to platelet-vessel wall interaction, along with the corresponding development of laboratory tools, should improve our capacity to diagnose a greater proportion of patients with MBDs.
Collapse
|
38
|
The VPS33B-binding protein VPS16B is required in megakaryocyte and platelet α-granule biogenesis. Blood 2012; 120:5032-40. [PMID: 23002115 DOI: 10.1182/blood-2012-05-431205] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Patients with platelet α or dense δ-granule defects have bleeding problems. Although several proteins are known to be required for δ-granule development, less is known about α-granule biogenesis. Our previous work showed that the BEACH protein NBEAL2 and the Sec1/Munc18 protein VPS33B are required for α-granule biogenesis. Using a yeast two-hybrid screen, mass spectrometry, coimmunoprecipitation, and bioinformatics studies, we identified VPS16B as a VPS33B-binding protein. Immunoblotting confirmed VPS16B expression in various human tissues and cells including megakaryocytes and platelets, and also in megakaryocytic Dami cells. Characterization of platelets from a patient with arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome containing mutations in C14orf133 encoding VPS16B revealed pale-appearing platelets in blood films and electron microscopy revealed a complete absence of α-granules, whereas δ-granules were observed. Soluble and membrane-bound α-granule proteins were reduced or undetectable, suggesting that both releasable and membrane-bound α-granule constituents were absent. Immunofluorescence microscopy of Dami cells stably expressing GFP-VPS16B revealed that similar to VPS33B, GFP-VPS16B colocalized with markers of the trans-Golgi network, late endosomes and α-granules. We conclude that VPS16B, similar to its binding partner VPS33B, is essential for megakaryocyte and platelet α-granule biogenesis.
Collapse
|
39
|
Lacroix R, Plawinski L, Robert S, Doeuvre L, Sabatier F, Martinez de Lizarrondo S, Mezzapesa A, Anfosso F, Leroyer AS, Poullin P, Jourde N, Njock MS, Boulanger CM, Anglés-Cano E, Dignat-George F. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica 2012; 97:1864-72. [PMID: 22733025 DOI: 10.3324/haematol.2012.066167] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. DESIGN AND METHODS Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. RESULTS Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. CONCLUSIONS Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium.
Collapse
Affiliation(s)
- Romaric Lacroix
- Aix Marseille Université, INSERM UMR-S1076, UFR de Pharmacie, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Harrison P, Mackie I, Mumford A, Briggs C, Liesner R, Winter M, Machin S. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br J Haematol 2011; 155:30-44. [DOI: 10.1111/j.1365-2141.2011.08793.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Israels SJ, Kahr WHA, Blanchette VS, Luban NLC, Rivard GE, Rand ML. Platelet disorders in children: A diagnostic approach. Pediatr Blood Cancer 2011; 56:975-83. [PMID: 21294245 DOI: 10.1002/pbc.22988] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/29/2010] [Indexed: 01/23/2023]
Abstract
The investigation of children with suspected inherited platelet disorders is challenging. The causes of mucocutaneous bleeding are many, and specialized testing for platelet disorders can be difficult to access or interpret. An algorithm developed for the investigation of suspected platelet disorders provides a sequential approach to evaluating both platelet function abnormalities and thrombocytopenia. Investigation begins with a clinical evaluation and laboratory testing that is generally available, including platelet counting, peripheral blood cell morphology, and aggregometry. Based on results of initial investigations, the algorithm recommends specialized testing for specific diagnoses, including flow cytometry, immunofluorescence microscopy, electron microscopy, and mutational analysis.
Collapse
Affiliation(s)
- Sara J Israels
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Fuentes R, Wang Y, Hirsch J, Wang C, Rauova L, Worthen GS, Kowalska MA, Poncz M. Infusion of mature megakaryocytes into mice yields functional platelets. J Clin Invest 2010; 120:3917-22. [PMID: 20972336 DOI: 10.1172/jci43326] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 09/02/2010] [Indexed: 11/17/2022] Open
Abstract
Thrombopoiesis, the process by which circulating platelets arise from megakaryocytes, remains incompletely understood. Prior studies suggest that megakaryocytes shed platelets in the pulmonary vasculature. To better understand thrombopoiesis and to develop a potential platelet transfusion strategy that is not dependent upon donors, of which there remains a shortage, we examined whether megakaryocytes infused into mice shed platelets. Infused megakaryocytes led to clinically relevant increases in platelet numbers. The released platelets were normal in size, displayed appropriate surface markers, and had a near-normal circulating half-life. The functionality of the donor-derived platelets was also demonstrated in vivo. The infused megakaryocytes mostly localized to the pulmonary vasculature, where they appeared to shed platelets. These data suggest that it may be unnecessary to generate platelets from ex vivo grown megakaryocytes to achieve clinically relevant increases in platelet numbers.
Collapse
Affiliation(s)
- Rudy Fuentes
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kirchmaier CM, Pillitteri D. Diagnosis and Management of Inherited Platelet Disorders. ACTA ACUST UNITED AC 2010; 37:237-246. [PMID: 21113246 DOI: 10.1159/000320257] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/17/2010] [Indexed: 12/14/2022]
Abstract
In clinical daily practice the definition of a bleeding tendency is rather subjective. Clinical manifestations usually include hematoma, epistaxis, menorrhagia, and severe bleeding episodes after surgery or injuries. The most common causes are disorders of primary hemostasis that occur sometimes due to platelet function disorders. Inherited thrombocytopathies are much less frequent in comparison to acquired platelet function disorders. However, congenital disorders can lead to severe bleeding tendency and are often not diagnosed. They are induced by different platelet defects based on disorders of platelet adhesion, receptors, secretion, and signal transduction. In some cases, they are associated with thrombocytopenias, giant platelets, and various comorbidities. This article gives an overview of the different defects, their diagnosis, and treatment options.
Collapse
Affiliation(s)
- Carl Maximilian Kirchmaier
- Deutsche Klinik für Diagnostik, Sektion Innere Medizin I, Arbeitsgruppe: «Thrombose, Hämostase und vaskuläre Medizin», Wiesbaden, Germany
| | | |
Collapse
|
44
|
Sandrock K, Zieger B. Current Strategies in Diagnosis of Inherited Storage Pool Defects. ACTA ACUST UNITED AC 2010; 37:248-258. [PMID: 21113247 DOI: 10.1159/000320279] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/17/2010] [Indexed: 01/24/2023]
Abstract
Inherited platelet defects lead to bleeding symptoms of varying severity. Typically, easy bruising, petechiae, epistaxis, and mucocutaneous bleeding are observed in affected patients. The platelet defects are classified into disorders affecting either platelet surface receptors or intracellular organelles of platelets. The latter are represented by platelet storage pool diseases (SPD) which share a defect of platelet granules. Platelet α-granules, δ-granules, or both may be affected resulting in the clinical picture of α-SPD (e.g. Gray platelet syndrome, Quebec platelet disorder, arthrogryposis, renal dysfunction, and cholestasis syndrome), δ-SPD (e.g. Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, Griscelli syndrome), or αδ-SPD (e.g. X-linked thrombocytopenia, Wiskott-Aldrich syndrome). Diagnosis of SPD is very extensive and requires platelet aggregation and flow cytometry analyses with interpretation from a specialist. Many of these disorders share common treatments, however, efficacy can vary between different patients. Therapy regiments with tranexamic acid, DDAVP, activated FVIIa, and platelet transfusions have been published. Stem cell or bone marrow transplantations are preserved for severe defects. Here, we describe the pathophysiology, clinical manifestations, and diagnosis of the major human SPDs.
Collapse
Affiliation(s)
- Kirstin Sandrock
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany
| | | |
Collapse
|
45
|
Zonder JA, Schiffer CA. Update on practical aspects of the treatment of chronic myeloid leukemia with imatinib mesylate. Curr Hematol Malig Rep 2010; 1:141-51. [PMID: 20425345 DOI: 10.1007/s11899-996-0002-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Imatinib (imatinib mesylate, Gleevec(R) [formerly known as STI571], Novartis Pharmaceuticals, Basel, Switzerland) is a protein tyrosine kinase inhibitor that is approved by the US Food and Drug Administration for patients with all phases of chronic myeloid leukemia (CML). Imatinib is remarkably effective as treatment for CML in the chronic phase (at a dosage of 400 mg/d) and the accelerated phase (at 600 mg/d). At this time, it remains to be seen whether the chronic phase of CML can be extended sufficiently in some patients so that they are functionally "cured," and also whether the increased rate of major molecular response induced by doses of imatinib higher than 400 mg/d will further improve overall survival of patients with CML in the chronic phase. The value of molecular monitoring of response in patients with CML in the chronic phase is examined. Although imatinib 800 mg/d can induce dramatic responses in patients with myeloid blast crisis, lymphoid blast crisis, and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL), the responses are usually incomplete and of short duration. We discuss the role of imatinib in relation to allogeneic stem cell transplantation (particularly in younger patients), recognizing that the data upon which any decisions can be made are relatively immature. Finally, recent data on new tyrosine kinase inhibitors capable of overcoming primary or acquired resistance to imatinib are reviewed.
Collapse
Affiliation(s)
- Jeffrey A Zonder
- Division of Hematology/Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R., Detroit, MI 48201, USA.
| | | |
Collapse
|
46
|
Korycka A, Robak T. The Influence of Imatinib Mesylate (STI571) used alone or in Combination with Purine Nucleoside Analogues on the Normal and Chronic Myelogenous Leukaemia Progenitor CellsIn Vitro. Leuk Lymphoma 2010; 44:1549-55. [PMID: 14565659 DOI: 10.3109/10428190309178779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Imatinib mesylate (STI571, Glivec), a signal transduction inhibitor used as a single agent demonstrates significant activity in patients with chronic myelogenous leukaemia (CML). Nevertheless, the interaction between STI571 and other antileukaemic drugs such as hydroxyurea, interferon alpha or cytarabine have also been investigated in order to further improve its effectiveness. In this study we have tried to answer the question if the combination of STI571 with purine nucleoside analogues (PNAs)- cladribine (2-CdA) and fludarabine (F-ara-A) intensifies the antiproliferative effect on granulocyte-macrophage progenitor cells (CFU-GM) from patients with CML as well as from normal persons. Our studies were based on the method of semisolid CFU-GM cultures in vitro. We added STI571 or PNAs singly to the culture, each of the drugs at three concentrations, as well as in combinations of the concentrations used. We showed that STI571 (0.5, 1.0 and 2.0 microM) used alone inhibited the colony growth of CML CFU-GM, as compared to CFU-GM derived from normal donors (p = 0.03; p = 0.0004; p = 0.0001). We also observed that STI571 used together with 2-CdA (5,10 and 20 microM) or F-ara-A (0.2, 0.4 and 0.8 microM) at all the combinations significantly inhibited the colony growth of CML CFU-GM, as compared either to the control or to STI571 used alone (p < 0.05). In addition, the differences between CML and normal CFU-GM colony growth inhibition after the use of the combination of the highest concentrations of STI571 either with 2-CdA or F-ara-A were statistically significant (p = 0.03 and p = 0.01, respectively). In conclusion, STI571 used together with both the PNAs had an additive effect on CML CFU-GM cells. However, further experimental and clinical studies concerning the usefulness of these combinations in the treatment of CML patients seem warranted.
Collapse
Affiliation(s)
- Anna Korycka
- Department of Haematology, Medical University of Lodz, Copernicus Memorial Hospital, 62 Pabianicka Str, 93-513 Lodz, Poland
| | | |
Collapse
|
47
|
|
48
|
Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene. Blood 2009; 115:1264-6. [PMID: 20007542 DOI: 10.1182/blood-2009-07-233965] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Quebec platelet disorder (QPD) is an autosomal dominant bleeding disorder linked to a region on chromosome 10 that includes PLAU, the urokinase plasminogen activator gene. QPD increases urokinase plasminogen activator mRNA levels, particularly during megakaryocyte differentiation, without altering expression of flanking genes. Because PLAU sequence changes were excluded as the cause of this bleeding disorder, we investigated whether the QPD mutation involved PLAU copy number variation. All 38 subjects with QPD had a direct tandem duplication of a 78-kb genomic segment that includes PLAU. This mutation was specific to QPD as it was not present in any unaffected family members (n = 114), unrelated French Canadians (n = 221), or other persons tested (n = 90). This new information on the genetic mutation will facilitate diagnostic testing for QPD and studies of its pathogenesis and prevalence. QPD is the first bleeding disorder to be associated with a gene duplication event and a PLAU mutation.
Collapse
|
49
|
D’Andrea G, Chetta M, Margaglione M. Inherited platelet disorders: thrombocytopenias and thrombocytopathies. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2009; 7:278-92. [PMID: 20011639 PMCID: PMC2782805 DOI: 10.2450/2009.0078-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/20/2009] [Indexed: 01/19/2023]
Affiliation(s)
- Giovanna D’Andrea
- Genetica Medica, Dipartimento di Scienze Biomediche, Università di Foggia
| | | | - Maurizio Margaglione
- Genetica Medica, Dipartimento di Scienze Biomediche, Università di Foggia
- Unità di Emostasi e Trombosi, I.R.C.C.S. “Casa Sollievo della S offerenza”, S. Giovanni Rotondo, Italy
| |
Collapse
|
50
|
Duckers C, Simioni P, Rosing J, Castoldi E. Advances in understanding the bleeding diathesis in factor V deficiency. Br J Haematol 2009; 146:17-26. [DOI: 10.1111/j.1365-2141.2009.07708.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|