1
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Lee DY, Song WH, Lim YS, Lee C, Rajbongshi L, Hwang SY, Kim BS, Lee D, Song YJ, Kim HG, Yoon S. Fish Collagen Peptides Enhance Thymopoietic Gene Expression, Cell Proliferation, Thymocyte Adherence, and Cytoprotection in Thymic Epithelial Cells via Activation of the Nuclear Factor-κB Pathway, Leading to Thymus Regeneration after Cyclophosphamide-Induced Injury. Mar Drugs 2023; 21:531. [PMID: 37888466 PMCID: PMC10608061 DOI: 10.3390/md21100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Prolonged thymic involution results in decreased thymopoiesis and thymic output, leading to peripheral T-cell deficiency. Since the thymic-dependent pathway is the only means of generating fully mature T cells, the identification of strategies to enhance thymic regeneration is crucial in developing therapeutic interventions to revert immune suppression in immunocompromised patients. The present study clearly shows that fish collagen peptides (FCPs) stimulate activities of thymic epithelial cells (TECs), including cell proliferation, thymocyte adhesion, and the gene expression of thymopoietic factors such as FGF-7, IGF-1, BMP-4, VEGF-A, IL-7, IL-21, RANKL, LTβ, IL-22R, RANK, LTβR, SDF-1, CCL21, CCL25, CXCL5, Dll1, Dll4, Wnt4, CD40, CD80, CD86, ICAM-1, VCAM-1, FoxN1, leptin, cathepsin L, CK5, and CK8 through the NF-κB signal transduction pathway. Furthermore, our study also revealed the cytoprotective effects of FCPs on TECs against cyclophosphamide-induced cellular injury through the NF-κB signaling pathway. Importantly, FCPs exhibited a significant capability to facilitate thymic regeneration in mice after cyclophosphamide-induced damage via the NF-κB pathway. Taken together, this study sheds light on the role of FCPs in TEC function, thymopoiesis, and thymic regeneration, providing greater insight into the development of novel therapeutic strategies for effective thymus repopulation for numerous clinical conditions in which immune reconstitution is required.
Collapse
Affiliation(s)
- Do Young Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Won Hoon Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Hwi-Gon Kim
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
3
|
Cao Y, Gong X, Feng Y, Wang M, Hu Y, Liu H, Liu X, Qi S, Ji Y, Liu F, Zhu H, Guo W, Shen Q, Zhang R, Zhao N, Zhai W, Song X, Chen X, Geng L, Chen X, Zheng X, Ma Q, Tang B, Wei J, Huang Y, Ren Y, Song K, Yang D, Pang A, Yao W, He Y, Shang Y, Wan X, Zhang W, Zhang S, Sun G, Feng S, Zhu X, Han M, Song Z, Guo Y, Sun Z, Jiang E, Chen J. The Composite Immune Risk Score predicts overall survival after allogeneic hematopoietic stem cell transplantation: A retrospective analysis of 1838 cases. Am J Hematol 2023; 98:309-321. [PMID: 36591789 PMCID: PMC10108217 DOI: 10.1002/ajh.26792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 01/03/2023]
Abstract
There has been little consensus on how to quantitatively assess immune reconstitution after hematopoietic stem cell transplantation (HSCT) as part of the standard of care. We retrospectively analyzed 11 150 post-transplant immune profiles of 1945 patients who underwent HSCT between 2012 and 2020. 1838 (94.5%) of the cases were allogeneic HSCT. Using the training set of patients (n = 729), we identified a composite immune signature (integrating neutrophil, total lymphocyte, natural killer, total T, CD4+ T, and B cell counts in the peripheral blood) during days 91-180 after allogeneic HSCT that was predictive of early mortality and moreover simplified it into a formula for a Composite Immune Risk Score. When we verified the Composite Immune Risk Score in the validation (n = 284) and test (n = 391) sets of patients, a high score value was found to be associated with hazard ratios (HR) of 3.64 (95% C.I. 1.55-8.51; p = .0014) and 2.44 (95% C.I., 1.22-4.87; p = .0087), respectively, for early mortality. In multivariate analysis, a high Composite Immune Risk Score during days 91-180 remained an independent risk factor for early mortality after allogeneic HSCT (HR, 1.80; 95% C.I., 1.28-2.55; p = .00085). In conclusion, the Composite Immune Risk Score is easy to compute and could identify the high-risk patients of allogeneic HSCT who require targeted effort for prevention and control of infection.
Collapse
Affiliation(s)
- Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huilan Liu
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Xueou Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yanping Ji
- Anhui Medical UniversityHefeiChina
- Department of HematologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Fang Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Huaiping Zhu
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Wenwen Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ningning Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaoqiang Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Liangquan Geng
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Xia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xuetong Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Baolin Tang
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yong Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yuanyuan Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Kaidi Song
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Wen Yao
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Yue Shang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiang Wan
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Song Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Guangyu Sun
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zhen Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Zimin Sun
- Department of HematologyThe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, Anhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiChina
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Tianjin Institutes of Health ScienceTianjinChina
| |
Collapse
|
4
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
5
|
Dekker L, Sanders E, Lindemans CA, de Koning C, Nierkens S. Naive T Cells in Graft Versus Host Disease and Graft Versus Leukemia: Innocent or Guilty? Front Immunol 2022; 13:893545. [PMID: 35795679 PMCID: PMC9250980 DOI: 10.3389/fimmu.2022.893545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
The outcome of allogeneic hematopoietic cell transplantation (allo-HCT) largely depends on the development and management of graft-versus-host disease (GvHD), infections, and the occurrence of relapse of malignancies. Recent studies showed a lower incidence of chronic GvHD and severe acute GvHD in patients receiving naive T cell depleted grafts compared to patients receiving complete T cell depleted grafts. On the other hand, the incidence of acute GvHD in patients receiving cord blood grafts containing only naive T cells is rather low, while potent graft-versus-leukemia (GvL) responses have been observed. These data suggest the significance of naive T cells as both drivers and regulators of allogeneic reactions. The naive T cell pool was previously thought to be a quiescent, homogenous pool of antigen-inexperienced cells. However, recent studies showed important differences in phenotype, differentiation status, location, and function within the naive T cell population. Therefore, the adequate recovery of these seemingly innocent T cells might be relevant in the imminent allogeneic reactions after allo-HCT. Here, an extensive review on naive T cells and their contribution to the development of GvHD and GvL responses after allo-HCT is provided. In addition, strategies specifically directed to stimulate adequate reconstitution of naive T cells while reducing the risk of GvHD are discussed. A better understanding of the relation between naive T cells and alloreactivity after allo-HCT could provide opportunities to improve GvHD prevention, while maintaining GvL effects to lower relapse risk.
Collapse
Affiliation(s)
- Linde Dekker
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Evy Sanders
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Coco de Koning
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
6
|
Gulla S, Reddy MC, Reddy VC, Chitta S, Bhanoori M, Lomada D. Role of thymus in health and disease. Int Rev Immunol 2022; 42:347-363. [PMID: 35593192 DOI: 10.1080/08830185.2022.2064461] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023]
Abstract
The thymus is a primary lymphoid organ, essential for the development of T-cells that will protect from invading pathogens, immune disorders, and cancer. The thymus decreases in size and cellularity with age referred to as thymus involution or atrophy. This involution causes decreased T-cell development and decreased naive T-cell emigration to the periphery, increased proportion of memory T cells, and a restricted, altered T-cell receptor (TCR) repertoire. The changes in composition and function of the circulating T cell pool as a result of thymic involution led to increased susceptibility to infectious diseases including the recent COVID and a higher risk for autoimmune disorders and cancers. Thymic involution consisting of both structural and functional loss of the thymus has a deleterious effect on T cell development, T cell selection, and tolerance. The mechanisms which act on the structural (cortex and medulla) matrix of the thymus, the gradual accumulation of genetic mutations, and altered gene expressions may lead to immunosenescence as a result of thymus involution. Understanding the molecular mechanisms behind thymic involution is critical for identifying diagnostic biomarkers and targets for treatment help to develop strategies to mitigate thymic involution-associated complications. This review is focused on the consequences of thymic involution in infections, immune disorders, and diseases, identifying potential checkpoints and potential approaches to sustain or restore the function of the thymus particularly in elderly and immune-compromised individuals.
Collapse
Affiliation(s)
- Surendra Gulla
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Vajra C Reddy
- Katuri Medical College and Hospital, Chinnakondrupadu, Guntur, India
| | | | - Manjula Bhanoori
- Department of Biochemistry, Osmania University, Hyderabad, Telangana State, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|
7
|
Sottoriva K, Paik NY, White Z, Bandara T, Shao L, Sano T, Pajcini KV. A Notch/IL-21 signaling axis primes bone marrow T cell progenitor expansion. JCI Insight 2022; 7:e157015. [PMID: 35349492 PMCID: PMC9090257 DOI: 10.1172/jci.insight.157015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term impairment in T cell-mediated adaptive immunity is a major clinical obstacle following treatment of blood disorders with hematopoietic stem cell transplantation. Although T cell development in the thymus has been extensively characterized, there are significant gaps in our understanding of prethymic processes that influence early T cell potential. We have uncovered a Notch/IL-21 signaling axis in bone marrow common lymphoid progenitor (CLP) cells. IL-21 receptor expression was driven by Notch activation in CLPs, and in vivo treatment with IL-21 induced Notch-dependent CLP proliferation. Taking advantage of this potentially novel signaling axis, we generated T cell progenitors ex vivo, which improved repopulation of the thymus and peripheral lymphoid organs of mice in an allogeneic transplant model. Importantly, Notch and IL-21 activation were equally effective in the priming and expansion of human cord blood cells toward the T cell fate, confirming the translational potential of the combined treatment.
Collapse
Affiliation(s)
| | - Na Yoon Paik
- Department of Pharmacology and Regenerative Medicine and
| | - Zachary White
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | - Lijian Shao
- Department of Pharmacology and Regenerative Medicine and
| | - Teruyuki Sano
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
8
|
Broustas CG, Duval AJ, Amundson SA. Impact of aging on gene expression response to x-ray irradiation using mouse blood. Sci Rep 2021; 11:10177. [PMID: 33986387 PMCID: PMC8119453 DOI: 10.1038/s41598-021-89682-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
As a radiation biodosimetry tool, gene expression profiling is being developed using mouse and human peripheral blood models. The impact of dose, dose-rate, and radiation quality has been studied with the goal of predicting radiological tissue injury. In this study, we determined the impact of aging on the gene expression profile of blood from mice exposed to radiation. Young (2 mo) and old (21 mo) male mice were irradiated with 4 Gy x-rays, total RNA was isolated from whole blood 24 h later, and subjected to whole genome microarray analysis. Pathway analysis of differentially expressed genes revealed young mice responded to x-ray exposure by significantly upregulating pathways involved in apoptosis and phagocytosis, a process that eliminates apoptotic cells and preserves tissue homeostasis. In contrast, the functional annotation of senescence was overrepresented among differentially expressed genes from irradiated old mice without enrichment of phagocytosis pathways. Pathways associated with hematologic malignancies were enriched in irradiated old mice compared with irradiated young mice. The fibroblast growth factor signaling pathway was underrepresented in older mice under basal conditions. Similarly, brain-related functions were underrepresented in unirradiated old mice. Thus, age-dependent gene expression differences should be considered when developing gene signatures for use in radiation biodosimetry.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA.
| | - Axel J Duval
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| |
Collapse
|
9
|
Ishikawa T, Akiyama N, Akiyama T. In Pursuit of Adult Progenitors of Thymic Epithelial Cells. Front Immunol 2021; 12:621824. [PMID: 33717123 PMCID: PMC7946825 DOI: 10.3389/fimmu.2021.621824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral T cells capable of discriminating between self and non-self antigens are major components of a robust adaptive immune system. The development of self-tolerant T cells is orchestrated by thymic epithelial cells (TECs), which are localized in the thymic cortex (cortical TECs, cTECs) and medulla (medullary TECs, mTECs). cTECs and mTECs are essential for differentiation, proliferation, and positive and negative selection of thymocytes. Recent advances in single-cell RNA-sequencing technology have revealed a previously unknown degree of TEC heterogeneity, but we still lack a clear picture of the identity of TEC progenitors in the adult thymus. In this review, we describe both earlier and recent findings that shed light on features of these elusive adult progenitors in the context of tissue homeostasis, as well as recovery from stress-induced thymic atrophy.
Collapse
Affiliation(s)
- Tatsuya Ishikawa
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Nobuko Akiyama
- Laboratory for Immunogenetics, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Taishin Akiyama
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
10
|
Velardi E, Clave E, Arruda LCM, Benini F, Locatelli F, Toubert A. The role of the thymus in allogeneic bone marrow transplantation and the recovery of the peripheral T-cell compartment. Semin Immunopathol 2021; 43:101-117. [PMID: 33416938 DOI: 10.1007/s00281-020-00828-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
As the thymus represents the primary site of T-cell development, optimal thymic function is of paramount importance for the successful reconstitution of the adaptive immunity after allogeneic hematopoietic stem cell transplantation. Thymus involutes as part of the aging process and several factors, including previous chemotherapy treatments, conditioning regimen used in preparation to the allograft, occurrence of graft-versus-host disease, and steroid therapy that impair the integrity of the thymus, thus affecting its role in supporting T-cell neogenesis. Although the pathways governing its regeneration are still poorly understood, the thymus has a remarkable capacity to recover its function after damage. Measurement of both recent thymic emigrants and T-cell receptor excision circles is valuable tools to assess thymic output and gain insights on its function. In this review, we will extensively discuss available data on factors regulating thymic function after allogeneic hematopoietic stem cell transplantation, as well as the strategies and therapeutic approaches under investigation to promote thymic reconstitution and accelerate immune recovery in transplanted patients, including the use of cytokines, sex-steroid ablation, precursor T-cells, and thymus bioengineering. Although none of them is routinely used in the clinic, these approaches have the potential to enhance thymic function and immune recovery, not only in patients given an allograft but also in other conditions characterized by immune deficiencies related to a defective function of the thymus.
Collapse
Affiliation(s)
- Enrico Velardi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
| | - Emmanuel Clave
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, F-75010, Paris, France
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Benini
- Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.,Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, F-75010, Paris, France.,Laboratoire d'Immunologie et d'Histocompatibilité, AP-HP, Hopital Saint-Louis, F-75010, Paris, France
| |
Collapse
|
11
|
Yanir A, Schulz A, Lawitschka A, Nierkens S, Eyrich M. Immune Reconstitution After Allogeneic Haematopoietic Cell Transplantation: From Observational Studies to Targeted Interventions. Front Pediatr 2021; 9:786017. [PMID: 35087775 PMCID: PMC8789272 DOI: 10.3389/fped.2021.786017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Immune reconstitution (IR) after allogeneic haematopoietic cell transplantation (HCT) represents a central determinant of the clinical post-transplant course, since the majority of transplant-related outcome parameters such as graft-vs.-host disease (GvHD), infectious complications, and relapse are related to the velocity, quantity and quality of immune cell recovery. Younger age at transplant has been identified as the most important positive prognostic factor for favourable IR post-transplant and, indeed, accelerated immune cell recovery in children is most likely the pivotal contributing factor to lower incidences of GvHD and infectious complications in paediatric allogeneic HCT. Although our knowledge about the mechanisms of IR has significantly increased over the recent years, strategies to influence IR are just evolving. In this review, we will discuss different patterns of IR during various time points post-transplant and their impact on outcome. Besides IR patterns and cellular phenotypes, recovery of antigen-specific immune cells, for example virus-specific T cells, has recently gained increasing interest, as certain threshold levels of antigen-specific T cells seem to confer protection against severe viral disease courses. In contrast, the association between IR and a possible graft-vs. leukaemia effect is less well-understood. Finally, we will present current concepts of how to improve IR and how this could change transplant procedures in the near future.
Collapse
Affiliation(s)
- Asaf Yanir
- Bone Marrow Transplant Unit, Division of Haematology and Oncology, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anita Lawitschka
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University Medical Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Abstract
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.
Collapse
|
13
|
Alawam AS, Anderson G, Lucas B. Generation and Regeneration of Thymic Epithelial Cells. Front Immunol 2020; 11:858. [PMID: 32457758 PMCID: PMC7221188 DOI: 10.3389/fimmu.2020.00858] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
The thymus is unique in its ability to support the maturation of phenotypically and functionally distinct T cell sub-lineages. Through its combined production of MHC-restricted conventional CD4+ and CD8+, and Foxp3+ regulatory T cells, as well as non-conventional CD1d-restricted iNKT cells and invariant γδT cells, the thymus represents an important orchestrator of immune system development and control. It is now clear that thymus function is largely determined by the availability of stromal microenvironments. These specialized areas emerge during thymus organogenesis and are maintained throughout life. They are formed from both epithelial and mesenchymal components, and collectively they support a stepwise program of thymocyte development. Of these stromal cells, cortical, and medullary thymic epithelial cells represent functional components of thymic microenvironments in both the cortex and medulla. Importantly, a key feature of thymus function is that levels of T cell production are not constant throughout life. Here, multiple physiological factors including aging, stress and pregnancy can have either short- or long-term detrimental impact on rates of thymus function. Here, we summarize our current understanding of the development and function of thymic epithelial cells, and relate this to strategies to protect and/or restore thymic epithelial cell function for therapeutic benefit.
Collapse
Affiliation(s)
- Abdullah S Alawam
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Beth Lucas
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Kalhor H, Sadeghi S, Marashiyan M, Enssi M, Kalhor R, Ganji M, Rahimi H. In silico mutagenesis in recombinant human keratinocyte growth factor: Improvement of stability and activity in addition to decrement immunogenicity. J Mol Graph Model 2020; 97:107551. [PMID: 32032931 DOI: 10.1016/j.jmgm.2020.107551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
The recombinant human keratinocyte growth factor (rhKGF) is clinically applied to decrease the incidence and duration of cancer therapeutic agents. Particularly, it is extensively used for oral mucositis after chemotherapy-induced damage of different human cancers. However, the usage of rhKGF in treatment is limited owing to its short half-life, poor stability, immunogenicity, tendency to aggregate, and side effects. Therefore, there is a need to enhance the stability and to reduce immunogenicity of rhKGF for therapeutic applications. In this study, the stability, activity, and immunogenicity of rhKGF were improved using computational methods. The several mutations were generated based on sequence alignment, amino acids physic-chemical properties, and the structure simulation. The 3D structure of rhKGF and proposed mutants were predicted by Modeller v9.15 program, and then were evaluated using PROSESS, PROCHECK, and ProSA web tools. Afterwards, the effect of these mutants on rhKGF structure, stability, activity, and its interaction with fibroblast growth factor receptor2-IIb (FGFR2-IIb) was analyzed through utilizing GROMACS molecular dynamics simulations and docking tools, respectively. Also, binding free energies were calculated by the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. We found that F63Y, R121K, and combine1 (K38R, F63Y, K72E, N105S) mutants lead to reduction of the number of T-cell epitopes. However, all of the selected mutants, except for R121K, could considerably increase stability and affinity of the rhKGF to FGFR2-IIb, in silico. In conclusion, this study, for the first time, offered that the combine1 and F63Y mutants could highly improve the stability and activity of rhKGF and even reduce immunogenicity without having any significant effect on the biological functions of rhKGF.
Collapse
Affiliation(s)
- Hourieh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahya Marashiyan
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Maryam Enssi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, IR, Iran.
| | - Reyhaneh Kalhor
- Department of Genetics, Colleague of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran.
| | - Maziar Ganji
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
15
|
Cytotoxic Effects of Rabbit Anti-thymocyte Globulin Preparations on Primary Human Thymic Epithelial Cells. Transplantation 2019; 103:2234-2244. [DOI: 10.1097/tp.0000000000002799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
El-Kadiry AEH, Rafei M. Restoring thymic function: Then and now. Cytokine 2019; 120:202-209. [PMID: 31108430 DOI: 10.1016/j.cyto.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/21/2023]
Abstract
Thymic vulnerability, a leading cause of defective immunity, was discovered decades ago. To date, several strategies have been investigated to unveil any immunorestorative capacities they might confer. Studies exploiting castration, transplantation, adoptive cell therapies, hormones/growth factors, and cytokines have demonstrated enhanced in vitro and in vivo thymopoiesis, albeit with clinical restrictions. In this review, we will dissect the thymus on a physiological and pathological level and discuss the pros and cons of several strategies esteemed thymotrophic from a pre-clinical perspective. Finally, we will shed light on interleukin (IL)-21, a pharmacologically-promising cytokine with a significant thymotrophic nature, and elaborate on its potential clinical efficacy and safety in immune-deficient subjects.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada; Montreal Heart Institute, Montréal, Qc, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Qc, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montréal, Qc, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Qc, Canada.
| |
Collapse
|
17
|
Coles AJ, Azzopardi L, Kousin-Ezewu O, Mullay HK, Thompson SA, Jarvis L, Davies J, Howlett S, Rainbow D, Babar J, Sadler TJ, Brown JWL, Needham E, May K, Georgieva ZG, Handel AE, Maio S, Deadman M, Rota I, Holländer G, Dawson S, Jayne D, Seggewiss-Bernhardt R, Douek DC, Isaacs JD, Jones JL. Keratinocyte growth factor impairs human thymic recovery from lymphopenia. JCI Insight 2019; 5:125377. [PMID: 31063156 PMCID: PMC6629095 DOI: 10.1172/jci.insight.125377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The lymphocyte-depleting antibody alemtuzumab is a highly effective treatment of relapsing-remitting multiple sclerosis (RRMS); however 50% of patients develop novel autoimmunity post-treatment. Most at risk are individuals who reconstitute their T-cell pool by proliferating residual cells, rather than producing new T-cells in the thymus; raising the possibility that autoimmunity might be prevented by increasing thymopoiesis. Keratinocyte growth factor (palifermin) promotes thymopoiesis in non-human primates. METHODS Following a dose-tolerability sub-study, individuals with RRMS (duration ≤10 years; expanded disability status scale ≤5·0; with ≥2 relapses in the previous 2 years) were randomised to placebo or 180mcg/kg/day palifermin, given for 3 days immediately prior to and after each cycle of alemtuzumab, with repeat doses at M1 and M3. The interim primary endpoint was naïve CD4+ T-cell count at M6. Exploratory endpoints included: number of recent thymic-emigrants (RTEs) and signal-joint T-cell receptor excision circles (sjTRECs)/mL of blood. The trial primary endpoint was incidence of autoimmunity at M30. FINDINGS At M6, individuals receiving palifermin had fewer naïve CD4+T-cells (2.229x107/L vs. 7.733x107/L; p=0.007), RTEs (16% vs. 34%) and sjTRECs/mL (1100 vs. 3396), leading to protocol-defined termination of recruitment. No difference was observed in the rate of autoimmunity between the two groupsConclusion: In contrast to animal studies, palifermin reduced thymopoiesis in our patients. These results offer a note of caution to those using palifermin to promote thymopoiesis in other settings, particularly in the oncology/haematology setting where alemtuzumab is often used as part of the conditioning regime. TRIAL REGISTRATION ClinicalTrials.gov NCT01712945Funding: MRC and Moulton Charitable Foundation.
Collapse
Affiliation(s)
- Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Laura Azzopardi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Onajite Kousin-Ezewu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Harpreet Kaur Mullay
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sara Aj Thompson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lorna Jarvis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jessica Davies
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Howlett
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Rainbow
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Judith Babar
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Timothy J Sadler
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - J William L Brown
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Edward Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Karen May
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Zoya G Georgieva
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Stefano Maio
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mary Deadman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Ioanna Rota
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Georg Holländer
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Sarah Dawson
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,Medical Research Council (MRC) Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, United Kingdom
| | - David Jayne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Seggewiss-Bernhardt
- University Hospital of Würzburg, Würzburg, Germany.,Department of Hematology/Oncology, Soziastiftung Bamberg, Bamberg, Germany
| | - Daniel C Douek
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - John D Isaacs
- Institute of Cellular Medicine, Newcastle University, and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Thompson HL, Smithey MJ, Uhrlaub JL, Jeftić I, Jergović M, White SE, Currier N, Lang AM, Okoye A, Park B, Picker LJ, Surh CD, Nikolich-Žugich J. Lymph nodes as barriers to T-cell rejuvenation in aging mice and nonhuman primates. Aging Cell 2019; 18:e12865. [PMID: 30430748 PMCID: PMC6351843 DOI: 10.1111/acel.12865] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/04/2018] [Accepted: 09/27/2018] [Indexed: 01/16/2023] Open
Abstract
In youth, thymic involution curtails production of new naïve T cells, placing the onus of T-cell maintenance upon secondary lymphoid organs (SLO). This peripheral maintenance preserves the size of the T-cell pool for much of the lifespan, but wanes in the last third of life, leading to a dearth of naïve T cells in blood and SLO, and contributing to suboptimal immune defense. Both keratinocyte growth factor (KGF) and sex steroid ablation (SSA) have been shown to transiently increase the size and cellularity of the old thymus. It is less clear whether this increase can improve protection of old animals from infectious challenge. Here, we directly measured the extent to which thymic rejuvenation benefits the peripheral T-cell compartment of old mice and nonhuman primates. Following treatment of old animals with either KGF or SSA, we observed robust rejuvenation of thymic size and cellularity, and, in a reporter mouse model, an increase in recent thymic emigrants (RTE) in the blood. However, few RTE were found in the spleen and even fewer in the lymph nodes, and SSA-treated mice showed no improvement in immune defense against West Nile virus. In parallel, we found increased disorganization and fibrosis in old LN of both mice and nonhuman primates. These results suggest that SLO defects with aging can negate the effects of successful thymic rejuvenation in immune defense.
Collapse
Affiliation(s)
- Heather L. Thompson
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
| | - Megan J. Smithey
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
| | - Jennifer L. Uhrlaub
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
| | - Ilija Jeftić
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
| | - Mladen Jergović
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
| | - Sarah E. White
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Honors College; University of Arizona; Tucson Arizona
| | - Noreen Currier
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Beaverton Oregon
- Oregon National Primate Research Center; Beaverton Oregon
| | - Anna M. Lang
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Beaverton Oregon
- Oregon National Primate Research Center; Beaverton Oregon
| | - Afam Okoye
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Beaverton Oregon
- Oregon National Primate Research Center; Beaverton Oregon
| | - Byung Park
- Knight Cancer Center; Oregon Health and Science University; Portland Oregon
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Beaverton Oregon
- Oregon National Primate Research Center; Beaverton Oregon
| | - Charles D. Surh
- Academy of Immunology and Microbiology; Institute for Basic Science; Pohang South Korea
- Department of Integrative Biosciences and Biotechnology; Pohang University of Science and Technology; Pohang South Korea
- Division of Developmental Immunology; La Jolla Institute for Allergy and Immunology; California
| | - Janko Nikolich-Žugich
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Oregon National Primate Research Center; Beaverton Oregon
| |
Collapse
|
19
|
Zhan Y, Wang L, Liu G, Zhang X, Yang J, Pan Y, Luo J. The Reparative Effects of Human Adipose-Derived Mesenchymal Stem Cells in the Chemotherapy-Damaged Thymus. Stem Cells Dev 2019; 28:186-195. [PMID: 30511904 DOI: 10.1089/scd.2018.0142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ying Zhan
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihua Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guangyang Liu
- Department of Research and Development, Stem Cell Biology and Regenerative Medicine Institution, Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Xiaohui Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingci Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuxia Pan
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianmin Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
20
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. Nonhuman Primate Models of Immunosenescence. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121907 DOI: 10.1007/978-3-319-99375-1_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Due to a dramatic increase in life expectancy, the number of individuals aged 65 and older is rapidly rising. This presents considerable challenges to our health care system since advanced age is associated with a higher susceptibility to infectious diseases due to immune senescence. However, the mechanisms underlying age-associated dysregulated immunity are still incompletely understood. Advancement in our comprehension of mechanisms of immune senescence and development of interventions to improve health span requires animal models that closely recapitulate the physiological changes that occur with aging in humans. Nonhuman primates (NHPs) are invaluable preclinical models to study the underlying causal mechanism of pathogenesis due to their outbred nature, high degree of genetic and physiological similarity to humans, and their susceptibility to human pathogens. In this chapter, we review NHP models available for biogerontology research, advantages and challenges they present, and advances they facilitated. Furthermore, we emphasize the utility of NHPs in characterizing immune senescence, evaluating interventions to reverse aging of the immune system, and development of vaccine strategies that are better suited for this vulnerable population.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics Research Center on Aging, University of Sherbrooke Department of Medicine, Sherbrooke, QC Canada
| | - Claudio Franceschi
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Abusarah J, Khodayarian F, Cui Y, El-Kadiry AEH, Rafei M. Thymic Rejuvenation: Are We There Yet? Gerontology 2018. [DOI: 10.5772/intechopen.74048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
22
|
Xiao S, Shterev ID, Zhang W, Young L, Shieh JH, Moore M, van den Brink M, Sempowski GD, Manley NR. Sublethal Total Body Irradiation Causes Long-Term Deficits in Thymus Function by Reducing Lymphoid Progenitors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2701-2712. [PMID: 28931604 PMCID: PMC5659725 DOI: 10.4049/jimmunol.1600934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/08/2017] [Indexed: 12/17/2022]
Abstract
Total body irradiation (TBI) damages hematopoietic cells in the bone marrow and thymus; however, the long-term effects of irradiation with aging remain unclear. In this study, we found that the impact of radiation on thymopoiesis in mice varied by sex and dose but, overall, thymopoiesis remained suppressed for ≥12 mo after a single exposure. Male and female mice showed a long-term dose-dependent reduction in thymic cKit+ lymphoid progenitors that was maintained throughout life. Damage to hematopoietic stem cells (HSCs) in the bone marrow was dose dependent, with as little as 0.5 Gy causing a significant long-term reduction. In addition, the potential for T lineage commitment was radiation sensitive with aging. Overall, the impact of irradiation on the hematopoietic lineage was more severe in females. In contrast, the rate of decline in thymic epithelial cell numbers with age was radiation-sensitive only in males, and other characteristics including Ccl25 transcription were unaffected. Taken together, these data suggest that long-term suppression of thymopoiesis after sublethal irradiation was primarily due to fewer progenitors in the BM combined with reduced potential for T lineage commitment. A single irradiation dose also caused synchronization of thymopoiesis, with a periodic thymocyte differentiation profile persisting for at least 12 mo postirradiation. This study suggests that the number and capability of HSCs for T cell production can be dramatically and permanently damaged after a single relatively low TBI dose, accelerating aging-associated thymic involution. Our findings may impact evaluation and therapeutic intervention of human TBI events.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602;
| | - Ivo D Shterev
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Wen Zhang
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602
| | - Lauren Young
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jae-Hung Shieh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
| | - Malcolm Moore
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Marcel van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Nancy R Manley
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602;
| |
Collapse
|
23
|
Dudakov JA, Mertelsmann AM, O'Connor MH, Jenq RR, Velardi E, Young LF, Smith OM, Boyd RL, van den Brink MRM, Hanash AM. Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood 2017; 130:933-942. [PMID: 28607133 PMCID: PMC5561900 DOI: 10.1182/blood-2017-01-762658] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/13/2017] [Indexed: 12/22/2022] Open
Abstract
Graft-versus-host disease (GVHD) and posttransplant immunodeficiency are frequently related complications of allogeneic hematopoietic transplantation. Alloreactive donor T cells can damage thymic epithelium, thus limiting new T-cell development. Although the thymus has a remarkable capacity to regenerate after injury, endogenous thymic regeneration is impaired in GVHD. The mechanisms leading to this regenerative failure are largely unknown. Here we demonstrate in experimental mouse models that GVHD results in depletion of intrathymic group 3 innate lymphoid cells (ILC3s) necessary for thymic regeneration. Loss of thymic ILC3s resulted in deficiency of intrathymic interleukin-22 (IL-22) compared with transplant recipients without GVHD, thereby inhibiting IL-22-mediated protection of thymic epithelial cells (TECs) and impairing recovery of thymopoiesis. Conversely, abrogating IL-21 receptor signaling in donor T cells and inhibiting the elimination of thymic ILCs improved thymopoiesis in an IL-22-dependent fashion. We found that the thymopoietic impairment in GVHD associated with loss of ILCs could be improved by restoration of IL-22 signaling. Despite uninhibited alloreactivity, exogenous IL-22 administration posttransplant resulted in increased recovery of thymopoiesis and development of new thymus-derived peripheral T cells. Our study highlights the role of innate immune function in thymic regeneration and restoration of adaptive immunity posttransplant. Manipulation of the ILC-IL-22-TEC axis may be useful for augmenting immune reconstitution after clinical hematopoietic transplantation and other settings of T-cell deficiency.
Collapse
Affiliation(s)
- Jarrod A Dudakov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| | - Anna M Mertelsmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Margaret H O'Connor
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert R Jenq
- Department of Genomic Medicine and
- Department of Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lauren F Young
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Odette M Smith
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia; and
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Alan M Hanash
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
24
|
Chaudhry MS, Velardi E, Malard F, van den Brink MRM. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation: Time To T Up the Thymus. THE JOURNAL OF IMMUNOLOGY 2017; 198:40-46. [PMID: 27994167 DOI: 10.4049/jimmunol.1601100] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/01/2016] [Indexed: 01/09/2023]
Abstract
The success of allogeneic hematopoietic stem cell transplantation, a key treatment for many disorders, is intertwined with T cell immune reconstitution. The thymus plays a key role post allogeneic hematopoietic stem cell transplantation in the generation of a broad but self-tolerant T cell repertoire, but it is exquisitely sensitive to a range of insults during the transplant period, including conditioning regimens, corticosteroids, infections, and graft-versus-host disease. Although endogenous thymic repair is possible it is often suboptimal, and there is a need to develop exogenous strategies to help regenerate the thymus. Therapies currently in clinical trials in the transplant setting include keratinocyte growth factor, cytokines (IL-7 and IL-22), and hormonal modulation including sex steroid inhibition and growth hormone administration. Such regenerative strategies may ultimately enable the thymus to play as prominent a role after transplant as it once did in early childhood, allowing a more complete restoration of the T cell compartment.
Collapse
Affiliation(s)
- Mohammed S Chaudhry
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Enrico Velardi
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Florent Malard
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; .,Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021
| |
Collapse
|
25
|
Smith MJ, Reichenbach DK, Parker SL, Riddle MJ, Mitchell J, Osum KC, Mohtashami M, Stefanski HE, Fife BT, Bhandoola A, Hogquist KA, Holländer GA, Zúñiga-Pflücker JC, Tolar J, Blazar BR. T cell progenitor therapy-facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight 2017; 2:92056. [PMID: 28515359 PMCID: PMC5436538 DOI: 10.1172/jci.insight.92056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Infusion of in vitro-derived T cell progenitor (proT) therapy with hematopoietic stem cell transplant aids the recovery of the thymus damaged by total body irradiation. To understand the interaction between proTs and the thymic microenvironment, WT mice were lethally irradiated and given T cell-deficient (Rag1-/-) marrow with WT in vitro-generated proTs, limiting mature T cell development to infused proTs. ProTs within the host thymus led to a significant increase in thymic epithelial cells (TECs) by day 21 after transplant, increasing actively cycling TECs. Upon thymus egress (day 28), proT TEC effects were lost, suggesting that continued signaling from proTs is required to sustain TEC cycling and cellularity. Thymocytes increased significantly by day 21, followed by a significant improvement in mature T cell numbers in the periphery by day 35. This protective surge was temporary, receding by day 60. Double-negative 2 (DN2) proTs selectively increased thymocyte number, while DN3 proTs preferentially increased TECs and T cells in the spleen that persisted at day 60. These findings highlight the importance of the interaction between proTs and TECs in the proliferation and survival of TECs and that the maturation stage of proTs has unique effects on thymopoiesis and peripheral T cell recovery.
Collapse
Affiliation(s)
- Michelle J. Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Dawn K. Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Sarah L. Parker
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan J. Riddle
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason Mitchell
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kevin C. Osum
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mahmood Mohtashami
- Sunnybrook Research Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Heather E. Stefanski
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Georg A. Holländer
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Paediatrics and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| |
Collapse
|
26
|
Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology 2017; 25:403-413. [DOI: 10.1007/s10787-017-0332-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/19/2017] [Indexed: 02/07/2023]
|
27
|
Hamazaki Y, Sekai M, Minato N. Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution. Immunol Rev 2016; 271:38-55. [PMID: 27088906 DOI: 10.1111/imr.12412] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thymus consists of two distinct anatomical regions, the cortex and the medulla; medullary thymic epithelial cells (mTECs) play a crucial role in establishing central T-cell tolerance for self-antigens. Although the understanding of mTEC development in thymic organogenesis as well as the regulation of their differentiation and maturation has improved, the mechanisms of postnatal maintenance remain poorly understood. This issue has a central importance in immune homeostasis and physiological thymic involution as well as autoimmune disorders in various clinicopathological settings. Recently, several reports have demonstrated the existence of TEC stem or progenitor cells in the postnatal thymus, which are either bipotent or unipotent. We identified stem cells specified for mTEC-lineage that are generated in the thymic ontogeny and may sustain mTEC regeneration and lifelong central T-cell self-tolerance. This finding suggested that the thymic medulla is maintained autonomously by its own stem cells. Although several issues, including the relationship with other putative TEC stem/progenitors, remain unclear, further examination of mTEC stem cells (mTECSCs) and their regulatory mechanisms may contribute to the understanding of postnatal immune homeostasis. Possible relationships between decline of mTECSC activity and early thymic involution as well as various autoimmune disorders are discussed.
Collapse
Affiliation(s)
- Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Singh N, Perazzelli J, Grupp SA, Barrett DM. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Transl Med 2016; 8:320ra3. [PMID: 26738796 DOI: 10.1126/scitranslmed.aad5222] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered T cell therapies have begun to demonstrate impressive clinical responses in patients with B cell malignancies. Despite this efficacy, many patients are unable to receive T cell therapy because of failure of in vitro expansion, a necessary component of cell manufacture and a predictor of in vivo activity. To evaluate the biology underlying these functional differences, we investigated T cell expansion potential and memory phenotype during chemotherapy in pediatric patients with acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL). We found that patients with T cell populations enriched for early lineage cells expanded better in vitro and that patients with ALL had higher numbers of these cells with a corresponding enhancement in expansion as compared to cells from patients with NHL. We further demonstrated that early lineage cells were selectively depleted by cyclophosphamide and cytarabine chemotherapy and that culture with interleukin-7 (IL-7) and IL-15 enriched select early lineage cells and rescued T cell expansion capability. Thus, early lineage cells are essential to T cell fitness for expansion, and enrichment of this population either by timing of T cell collection or culture method can increase the number of patients eligible to receive highly active engineered cellular therapies.
Collapse
Affiliation(s)
- Nathan Singh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jessica Perazzelli
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephan A Grupp
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David M Barrett
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Strategies before, during, and after hematopoietic cell transplantation to improve T-cell immune reconstitution. Blood 2016; 128:2607-2615. [PMID: 27697775 DOI: 10.1182/blood-2016-06-724005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
T-cell immune reconstitution (IR) after allogeneic hematopoietic cell transplantation (allo-HCT) is highly variable between patients and may take several months to even years. Patients with delayed or unbalanced T-cell IR have a higher probability of developing transplantation-related morbidity, mortality, and relapse of disease. Hence, there is a need for strategies to better predict and improve IR to reduce these limitations of allo-HCT. In this review, we provide an update of current and in-near-future clinically relevant strategies before, during, and after transplantation to achieve successful T-cell IR. Potent strategies are choosing the right HCT source (eg, donor-recipient matching, cell dose, graft manipulation), individualized conditioning and serotherapy (eg, antithymocyte globulin), nutritional status, exercise, home care, modulation of microbiota, enhancing homeostatic peripheral expansion, promoting thymopoiesis, and the use of adjuvant-targeted cellular immunotherapies. Strategies to prevent graft-versus-host disease are important as well because this complication and the subsequent need for immunosuppression affects T-cell IR and function. These options aim for personalized precision transplantation, where allo-HCT therapy is designed to boost a well-balanced T-cell IR and limit complications in individual patients, resulting in overall lower morbidity and higher survival chances.
Collapse
|
30
|
Hu R, Liu Y, Su M, Song Y, Rood D, Lai L. Transplantation of Donor-Origin Mouse Embryonic Stem Cell-Derived Thymic Epithelial Progenitors Prevents the Development of Chronic Graft-versus-Host Disease in Mice. Stem Cells Transl Med 2016; 6:121-130. [PMID: 28170174 PMCID: PMC5442732 DOI: 10.5966/sctm.2016-0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/16/2016] [Indexed: 01/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many malignant and nonmalignant diseases. However, chronic graft-versus-host disease (cGVHD) remains a significant cause of late morbidity and mortality after allogeneic HSCT. cGVHD often manifests as autoimmune syndrome. Thymic epithelial cells (TECs) play a critical role in supporting negative selection and regulatory T-cell (Treg) generation. Studies have shown that damage in TECs is sufficient to induce cGVHD. We have previously reported that mouse embryonic stem cells (mESCs) can be selectively induced to generate thymic epithelial progenitors (TEPs) in vitro. When transplanted in vivo, mESC-TEPs further develop into TECs that support T-cell development. We show here that transplantation of donor-origin mESC-TEPs into cGVHD recipients induces immune tolerance to both donor and host antigens and prevents the development of cGVHD. This is associated with more TECs and Tregs. Our results suggest that embryonic stem cell-derived TEPs may offer a new tool to control cGVHD. Stem Cells Translational Medicine 2017;6:121-130.
Collapse
Affiliation(s)
- Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- Guizhou Medical University, Guizhou, People's Republic of China
| | - Yalan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- Guizhou Medical University, Guizhou, People's Republic of China
| | - Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Debra Rood
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
31
|
Vadija R, Mustyala KK, Nambigari N, Dulapalli R, Dumpati RK, Ramatenki V, Vellanki SP, Vuruputuri U. Homology modeling and virtual screening studies of FGF-7 protein-a structure-based approach to design new molecules against tumor angiogenesis. J Chem Biol 2016; 9:69-78. [PMID: 27493695 DOI: 10.1007/s12154-016-0152-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/09/2016] [Indexed: 01/10/2023] Open
Abstract
Keratinocyte growth factor (KGF) protein is a member of the fibroblast growth factor (FGF) family, which is also known as FGF-7. The FGF-7 plays an important role in tumor angiogenesis. In the present work, FGF-7 is treated as a potential therapeutic target to prevent angiogenesis in cancerous tissue. Computational techniques are applied to evaluate and validate the 3D structure of FGF-7 protein. The active site region of the FGF-7 protein is identified based on hydrophobicity calculations using CASTp and Q-site Finder active site prediction tools. The protein-protein docking study of FGF-7 with its natural receptor FGFR2b is carried out to confirm the active site region in FGF-7. The amino acid residues Asp34, Arg67, Glu116, and Thr194 in FGF-7 interact with the receptor protein (FGFR2b). A grid is generated at the active site region of FGF-7 using Glide module of Schrödinger suite. Subsequently, a virtual screening study is carried out at the active site using small molecular structural databases to identify the ligand molecules. The binding interactions of the ligand molecules, with piperazine moiety as a pharmacophore, are observed at Arg67 and Glu149 residues of the FGF-7 protein. The identified ligand molecules against the FGF-7 protein show permissible pharmacokinetic properties (ADME). The ligand molecules with good docking scores and satisfactory pharmacokinetic properties are prioritized and identified as novel ligands for the FGF-7 protein in cancer therapy.
Collapse
Affiliation(s)
- Rajender Vadija
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Hyderabad, Telangana State 500007 India
| | - Kiran Kumar Mustyala
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Hyderabad, Telangana State 500007 India
| | - Navaneetha Nambigari
- Department of Chemistry, University College of Science Saifabad, Osmania University, Saifabad, Hyderabad, Telangana State 500004 India
| | - Ramasree Dulapalli
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Hyderabad, Telangana State 500007 India
| | - Rama Krishna Dumpati
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Hyderabad, Telangana State 500007 India
| | - Vishwanath Ramatenki
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Hyderabad, Telangana State 500007 India
| | - Santhi Prada Vellanki
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Hyderabad, Telangana State 500007 India
| | - Uma Vuruputuri
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Hyderabad, Telangana State 500007 India
| |
Collapse
|
32
|
Abstract
As the primary site of T-cell development, the thymus plays a key role in the generation of a strong yet self-tolerant adaptive immune response, essential in the face of the potential threat from pathogens or neoplasia. As the importance of the role of the thymus has grown, so too has the understanding that it is extremely sensitive to both acute and chronic injury. The thymus undergoes rapid degeneration following a range of toxic insults, and also involutes as part of the aging process, albeit at a faster rate than many other tissues. The thymus is, however, capable of regenerating, restoring its function to a degree. Potential mechanisms for this endogenous thymic regeneration include keratinocyte growth factor (KGF) signaling, and a more recently described pathway in which innate lymphoid cells produce interleukin-22 (IL-22) in response to loss of double positive thymocytes and upregulation of IL-23 by dendritic cells. Endogenous repair is unable to fully restore the thymus, particularly in the aged population, and this paves the way toward the need for exogenous strategies to help regenerate or even replace thymic function. Therapies currently in clinical trials include KGF, use of the cytokines IL-7 and IL-22, and hormonal modulation including growth hormone administration and sex steroid inhibition. Further novel strategies are emerging in the preclinical setting, including the use of precursor T cells and thymus bioengineering. The use of such strategies offers hope that for many patients, the next regeneration of their thymus is a step closer.
Collapse
Affiliation(s)
- Mohammed S Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jarrod A Dudakov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
33
|
van den Broek T, Delemarre EM, Janssen WJM, Nievelstein RAJ, Broen JC, Tesselaar K, Borghans JAM, Nieuwenhuis EES, Prakken BJ, Mokry M, Jansen NJG, van Wijk F. Neonatal thymectomy reveals differentiation and plasticity within human naive T cells. J Clin Invest 2016; 126:1126-36. [PMID: 26901814 DOI: 10.1172/jci84997] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022] Open
Abstract
The generation of naive T cells is dependent on thymic output, but in adults, the naive T cell pool is primarily maintained by peripheral proliferation. Naive T cells have long been regarded as relatively quiescent cells; however, it was recently shown that IL-8 production is a signatory effector function of naive T cells, at least in newborns. How this functional signature relates to naive T cell dynamics and aging is unknown. Using a cohort of children and adolescents who underwent neonatal thymectomy, we demonstrate that the naive CD4+ T cell compartment in healthy humans is functionally heterogeneous and that this functional diversity is lost after neonatal thymectomy. Thymic tissue regeneration later in life resulted in functional restoration of the naive T cell compartment, implicating the thymus as having functional regenerative capacity. Together, these data shed further light on functional differentiation within the naive T cell compartment and the importance of the thymus in human naive T cell homeostasis and premature aging. In addition, these results affect and alter our current understanding on the identification of truly naive T cells and recent thymic emigrants.
Collapse
|
34
|
Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proc Natl Acad Sci U S A 2016; 113:1026-31. [PMID: 26755598 DOI: 10.1073/pnas.1514511113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Age-related thymic degeneration is associated with loss of naïve T cells, restriction of peripheral T-cell diversity, and reduced healthspan due to lower immune competence. The mechanistic basis of age-related thymic demise is unclear, but prior evidence suggests that caloric restriction (CR) can slow thymic aging by maintaining thymic epithelial cell integrity and reducing the generation of intrathymic lipid. Here we show that the prolongevity ketogenic hormone fibroblast growth factor 21 (FGF21), a member of the endocrine FGF subfamily, is expressed in thymic stromal cells along with FGF receptors and its obligate coreceptor, βKlotho. We found that FGF21 expression in thymus declines with age and is induced by CR. Genetic gain of FGF21 function in mice protects against age-related thymic involution with an increase in earliest thymocyte progenitors and cortical thymic epithelial cells. Importantly, FGF21 overexpression reduced intrathymic lipid, increased perithymic brown adipose tissue, and elevated thymic T-cell export and naïve T-cell frequencies in old mice. Conversely, loss of FGF21 function in middle-aged mice accelerated thymic aging, increased lethality, and delayed T-cell reconstitution postirradiation and hematopoietic stem cell transplantation (HSCT). Collectively, FGF21 integrates metabolic and immune systems to prevent thymic injury and may aid in the reestablishment of a diverse T-cell repertoire in cancer patients following HSCT.
Collapse
|
35
|
Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, Zhang H, Ding P, Sun X, Qin Z, Zhao Y. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci Rep 2015; 5:14871. [PMID: 26445893 PMCID: PMC4597222 DOI: 10.1038/srep14871] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022] Open
Abstract
Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45(-)FSP1(+) cells represent a unique Fibroblast specific protein 1 (FSP1)(-)fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCII(high), CD80(+) and Aire(+)). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45(-)FSP1(+) fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1(+) fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1(-) counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45(-)FSP1(+) cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chenming Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongran Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haiying Luo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongmei Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengbo Ding
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Khan IS, Park CY, Mavropoulos A, Shariat N, Pollack JL, Barczak AJ, Erle DJ, McManus MT, Anderson MS, Jeker LT. Identification of MiR-205 As a MicroRNA That Is Highly Expressed in Medullary Thymic Epithelial Cells. PLoS One 2015; 10:e0135440. [PMID: 26270036 PMCID: PMC4535774 DOI: 10.1371/journal.pone.0135440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/22/2015] [Indexed: 11/30/2022] Open
Abstract
Thymic epithelial cells (TECs) support T cell development in the thymus. Cortical thymic epithelial cells (cTECs) facilitate positive selection of developing thymocytes whereas medullary thymic epithelial cells (mTECs) facilitate the deletion of self-reactive thymocytes in order to prevent autoimmunity. The mTEC compartment is highly dynamic with continuous maturation and turnover, but the genetic regulation of these processes remains poorly understood. MicroRNAs (miRNAs) are important regulators of TEC genetic programs since miRNA-deficient TECs are severely defective. However, the individual miRNAs important for TEC maintenance and function and their mechanisms of action remain unknown. Here, we demonstrate that miR-205 is highly and preferentially expressed in mTECs during both thymic ontogeny and in the postnatal thymus. This distinct expression is suggestive of functional importance for TEC biology. Genetic ablation of miR-205 in TECs, however, neither revealed a role for miR-205 in TEC function during homeostatic conditions nor during recovery from thymic stress conditions. Thus, despite its distinct expression, miR-205 on its own is largely dispensable for mTEC biology.
Collapse
Affiliation(s)
- Imran S. Khan
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Chong Y. Park
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- WM Keck Center for Noncoding RNAs, University of California San Francisco, San Francisco, California, United States of America
| | - Anastasia Mavropoulos
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nikki Shariat
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- WM Keck Center for Noncoding RNAs, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Joshua L. Pollack
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Andrea J. Barczak
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - David J. Erle
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Michael T. McManus
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- WM Keck Center for Noncoding RNAs, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Mark S. Anderson
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MSA); (LTJ)
| | - Lukas T. Jeker
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MSA); (LTJ)
| |
Collapse
|
37
|
Velardi E, Tsai JJ, Holland AM, Wertheimer T, Yu VWC, Zakrzewski JL, Tuckett AZ, Singer NV, West ML, Smith OM, Young LF, Kreines FM, Levy ER, Boyd RL, Scadden DT, Dudakov JA, van den Brink MRM. Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. ACTA ACUST UNITED AC 2014; 211:2341-9. [PMID: 25332287 PMCID: PMC4235646 DOI: 10.1084/jem.20131289] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Velardi et al. show that sex steroids regulate thymopoiesis by directly modulating Notch signaling, and provide a novel clinical strategy to boost immune regeneration. Paradoxical to its importance for generating a diverse T cell repertoire, thymic function progressively declines throughout life. This process has been at least partially attributed to the effects of sex steroids, and their removal promotes enhanced thymopoiesis and recovery from immune injury. We show that one mechanism by which sex steroids influence thymopoiesis is through direct inhibition in cortical thymic epithelial cells (cTECs) of Delta-like 4 (Dll4), a Notch ligand crucial for the commitment and differentiation of T cell progenitors in a dose-dependent manner. Consistent with this, sex steroid ablation (SSA) led to increased expression of Dll4 and its downstream targets. Importantly, SSA induced by luteinizing hormone-releasing hormone (LHRH) receptor antagonism bypassed the surge in sex steroids caused by LHRH agonists, the gold standard for clinical ablation of sex steroids, thereby facilitating increased Dll4 expression and more rapid promotion of thymopoiesis. Collectively, these findings not only reveal a novel mechanism underlying improved thymic regeneration upon SSA but also offer an improved clinical strategy for successfully boosting immune function.
Collapse
Affiliation(s)
- Enrico Velardi
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Clinical and Experimental Medicine, University of Perugia, 06122 Perugia, Italy
| | - Jennifer J Tsai
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021
| | - Amanda M Holland
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021 MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Tobias Wertheimer
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Division of Hematology and Oncology, Department of Medicine, Freiburg University Medical Center, Albert-Ludwigs-University, 79106 Freiburg, Germany
| | - Vionnie W C Yu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114 Harvard Stem Cell Institute, Cambridge, MA 02138 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Johannes L Zakrzewski
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Andrea Z Tuckett
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Natalie V Singer
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Mallory L West
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Odette M Smith
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Lauren F Young
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Fabiana M Kreines
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Emily R Levy
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3800, Australia
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114 Harvard Stem Cell Institute, Cambridge, MA 02138 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Jarrod A Dudakov
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Anatomy and Developmental Biology, Monash University, Melbourne 3800, Australia
| | - Marcel R M van den Brink
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021
| |
Collapse
|
38
|
Muyal JP, Kotnala S, Bhardwaj H, Tyagi A. Effect of recombinant human keratinocyte growth factor in inducing Ras-Raf-Erk pathway-mediated cell proliferation in emphysematous mice lung. Inhal Toxicol 2014; 26:761-71. [PMID: 25296878 DOI: 10.3109/08958378.2014.957426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Pulmonary emphysema is resulted due to destruction of the structure of the alveoli. Recently, exogenous recombinant human Keratinocyte growth factor (rHuKGF) has been reported to induce the regeneration of gas exchange structures. However, the molecular mechanisms governing this process are so far unknown. OBJECTIVE The objective of this study was to investigate the effect of rHuKGF in the lungs of emphysema-challenged mice on Ras-Raf-Erk (Erk, extracellular signal-regulated kinase) mediated signaling pathway that regulates alveolar epithelial cell proliferation. METHODS Three experimental groups (i.e. emphysema, therapy and control group) were prepared. Lungs of mice were therapeutically treated at three occasions by oropharyngeal instillation of 10 mg rHuKGF per kg body weight after induction of emphysema by porcine pancreatic elastase (PPE). Subsequently, lung tissues from each mouse were collected for histopathology and molecular biology studies. RESULTS AND DISCUSSION Histopathology photomicrographs and Destructive Index analysis have shown that elastase induced airspace enlargement and loss of alveoli were recovered in therapy group. Moreover, proliferating cell nuclear antigen (PCNA) at mRNA and protein expression level was markedly increased in therapy group than emphysema group. Upon validation at mRNA level, expressions of FGF-7, FGF-R, Ras, c-Raf, Erk-1, Erk-2, c-Myc and were significantly increased, whereas Elk-1 was notably decreased in therapy group when compared with emphysema group and were well comparable with the control group. CONCLUSION Therapeutic supplementation of rHuKGF rectifies the deregulated Ras-Raf-Erk pathway in emphysema condition, resulting in alveolar epithelium regeneration. Hence, rHuKGF may prove to be a potential drug in the treatment of emphysema.
Collapse
Affiliation(s)
- Jai Prakash Muyal
- School of Biotechnology, Gautam Buddha University , Greater Noida, Uttar Pradesh , India and
| | | | | | | |
Collapse
|
39
|
The role of the thymus in T-cell immune reconstitution after umbilical cord blood transplantation. Blood 2014; 124:3201-11. [PMID: 25287708 DOI: 10.1182/blood-2014-07-589176] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord blood (UCB) is an alternative source of hematopoietic stem cells for patients without HLA-matched adult donors. UCB contains a low number of nucleated cells and mostly naive T cells, resulting in prolonged time to engraftment and lack of transferred T-cell memory. Although the first phase of T-cell reconstitution after UCB transplantation (UCBT) depends on peripheral expansion of transferred T cells, permanent T-cell reconstitution is mediated via a central mechanism, which depends on de novo production of naive T lymphocytes by the recipient's thymus from donor-derived lymphoid-myeloid progenitors (LMPs). Thymopoiesis can be assessed by quantification of recent thymic emigrants, T-cell receptor excision circle levels, and T-cell receptor repertoire diversity. These assays are valuable tools for monitoring posttransplantation thymic recovery, but more importantly they have shown the significant prognostic value of thymic reconstitution for clinical outcomes after UCBT, including opportunistic infections, disease relapse, and overall survival. Strategies to improve thymic entry and differentiation of LMPs and to accelerate recovery of the thymic stromal microenvironment may improve thymic lymphopoiesis. Here, we discuss the mechanisms and clinical implications of thymic recovery and new approaches to improve reconstitution of the T-cell repertoire after UCBT.
Collapse
|
40
|
A randomized controlled trial of palifermin (recombinant human keratinocyte growth factor) for the treatment of inadequate CD4+ T-lymphocyte recovery in patients with HIV-1 infection on antiretroviral therapy. J Acquir Immune Defic Syndr 2014; 66:399-406. [PMID: 24815851 DOI: 10.1097/qai.0000000000000195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Poor CD4 lymphocyte recovery on antiretroviral therapy (ART) is associated with reduced function of the thymus. Palifermin (keratinocyte growth factor), by providing support to the thymic epithelium, promotes lymphopoiesis in animal models of bone marrow transplantation and graft-versus-host disease. METHODS In AIDS Clinical Trials Group A5212, a randomized, double-blind, placebo-controlled study, 99 HIV-infected patients on ART with plasma HIV-1 RNA levels ≤200 copies per milliliter for ≥6 months and CD4 lymphocyte counts <200 cells per cubic milliliter were randomized 1:1:1:1 to receive once daily intravenous administration of placebo or 20, 40, or 60 μg/kg of palifermin on 3 consecutive days. RESULTS The median change in the CD4 T-cell count from baseline to week 12 was not significantly different between the placebo arm [15 (-16, 23) cells/mm] and the 20-μg/kg dose [11 (2, 32) cells/mm], the 40-μg/kg dose [12 (-2, 25) cells/mm], or the 60-μg/kg dose arm [8 (-13, 35) cells/mm] of palifermin. No significant changes were observed in thymus size or in the number of naive T cells or recent thymic emigrants. CONCLUSIONS Palifermin in the doses studied was not effective in improving thymic function and did not raise CD4 lymphocyte counts in HIV-infected patients with low CD4 cell counts despite virologically effective ART.
Collapse
|
41
|
Zhang SL, Wang X, Manna S, Zlotoff DA, Bryson JL, Blazar BR, Bhandoola A. Chemokine treatment rescues profound T-lineage progenitor homing defect after bone marrow transplant conditioning in mice. Blood 2014; 124:296-304. [PMID: 24876562 PMCID: PMC4093685 DOI: 10.1182/blood-2014-01-552794] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/22/2014] [Indexed: 12/13/2022] Open
Abstract
Development of T cells in the thymus requires continuous importation of T-lineage progenitors from the bone marrow via the circulation. Following bone marrow transplant, recovery of a normal peripheral T-cell pool depends on production of naïve T cells in the thymus; however, delivery of progenitors to the thymus limits T-lineage reconstitution. Here, we examine homing of intravenously delivered progenitors to the thymus following irradiation and bone marrow reconstitution. Surprisingly, following host conditioning by irradiation, we find that homing of lymphoid-primed multipotent progenitors and common lymphoid progenitors to the thymus decreases more than 10-fold relative to unirradiated mice. The reduction in thymic homing in irradiated mice is accompanied by a significant reduction in CCL25, an important chemokine ligand for thymic homing. We show that pretreatment of bone marrow progenitors with CCL25 and CCL21 corrects the defect in thymic homing after irradiation and promotes thymic reconstitution. These data suggest new therapeutic approaches to promote T-cell regeneration.
Collapse
Affiliation(s)
- Shirley L Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Xinxin Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Sugata Manna
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Daniel A Zlotoff
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Jerrod L Bryson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | - Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| |
Collapse
|
42
|
Jung WS, Han SM, Kim SM, Kim ME, Lee JS, Seo KW, Youn HY, Lee HW. Stimulatory effect of HGF-overexpressing adipose tissue-derived mesenchymal stem cells on thymus regeneration in a rat thymus involution model. Cell Biol Int 2014; 38:1106-17. [DOI: 10.1002/cbin.10306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 04/14/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Woo-Sung Jung
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| | - Sei-Myoung Han
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| | - Sung-Min Kim
- Division of Magnetic Resonance Research; Korea Basic Science Institute; Ochang Chungbuk Republic of Korea
| | - Mi-Eun Kim
- Department of Biology, College of Natural Sciences; Chosun University; Gwangju Republic of Korea
| | - Jun-Sik Lee
- Department of Biology, College of Natural Sciences; Chosun University; Gwangju Republic of Korea
| | - Kyoung-Won Seo
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Chungnam National University; 99 Daehakro Yuseoung gu Daejon 305-764 Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| | - Hee-Woo Lee
- Research Institute for Veterinary Science, College of Veterinary Medicine; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-742 Republic of Korea
| |
Collapse
|
43
|
Finch PW, Mark Cross LJ, McAuley DF, Farrell CL. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models. J Cell Mol Med 2014; 17:1065-87. [PMID: 24151975 PMCID: PMC4118166 DOI: 10.1111/jcmm.12091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 02/06/2023] Open
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin.
Collapse
|
44
|
Danby R, Rocha V. Improving engraftment and immune reconstitution in umbilical cord blood transplantation. Front Immunol 2014; 5:68. [PMID: 24605111 PMCID: PMC3932655 DOI: 10.3389/fimmu.2014.00068] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/07/2014] [Indexed: 12/31/2022] Open
Abstract
Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSC) for allogeneic transplantation when HLA-matched sibling and unrelated donors (MUD) are unavailable. Although the overall survival results for UCB transplantation are comparable to the results with MUD, UCB transplants are associated with slow engraftment, delayed immune reconstitution, and increased opportunistic infections. While this may be a consequence of the lower cell dose in UCB grafts, it also reflects the relative immaturity of cord blood. Furthermore, limited cell numbers and the non-availability of donor lymphocyte infusions currently prevent the use of post-transplant cellular immunotherapy to boost donor-derived immunity to treat infections, mixed chimerism, and disease relapse. To further develop UCB transplantation, many strategies to enhance engraftment and immune reconstitution are currently under investigation. This review summarizes our current understanding of engraftment and immune recovery following UCB transplantation and why this differs from allogeneic transplants using other sources of HSC. It also provides a comprehensive overview of promising techniques being used to improve myeloid and lymphoid recovery, including expansion, homing, and delivery of UCB HSC; combined use of UCB with third-party donors; isolation and expansion of natural killer cells, pathogen-specific T cells, and regulatory T cells; methods to protect and/or improve thymopoiesis. As many of these strategies are now in clinical trials, it is anticipated that UCB transplantation will continue to advance, further expanding our understanding of UCB biology and HSC transplantation.
Collapse
Affiliation(s)
- Robert Danby
- Department of Haematology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK ; NHS Blood and Transplant, John Radcliffe Hospital , Oxford , UK ; Eurocord, Hôpital Saint Louis APHP, University Paris VII IUH , Paris , France
| | - Vanderson Rocha
- Department of Haematology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK ; NHS Blood and Transplant, John Radcliffe Hospital , Oxford , UK ; Eurocord, Hôpital Saint Louis APHP, University Paris VII IUH , Paris , France
| |
Collapse
|
45
|
Thymic epithelial cell development and its dysfunction in human diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:206929. [PMID: 24672784 PMCID: PMC3929497 DOI: 10.1155/2014/206929] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 11/28/2013] [Indexed: 12/01/2022]
Abstract
Thymic epithelial cells (TECs) are the key components in thymic microenvironment for T cells development. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor and undergo a stepwise development controlled by multiple levels of signals to be functionally mature for supporting thymocyte development. Tumor necrosis factor receptor (TNFR) family members including the receptor activator for NFκB (RANK), CD40, and lymphotoxin β receptor (LTβR) cooperatively control the thymic medullary microenvironment and self-tolerance establishment. In addition, fibroblast growth factors (FGFs), Wnt, and Notch signals are essential for establishment of functional thymic microenvironment. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful modulators of TEC development, differentiation, and self-tolerance. Dysfunction in thymic microenvironment including defects of TEC and thymocyte development would cause physiological disorders such as tumor, infectious diseases, and autoimmune diseases. In the present review, we will summarize our current understanding on TEC development and the underlying molecular signals pathways and the involvement of thymus dysfunction in human diseases.
Collapse
|
46
|
Hakim FT, Gress RE. Immunosenescence: immune deficits in the elderly and therapeutic strategies to enhance immune competence. Expert Rev Clin Immunol 2014; 1:443-58. [DOI: 10.1586/1744666x.1.3.443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Chidgey A. Effects of growth hormone in enhancing thymic regrowth and T-cell reconstitution. Expert Rev Clin Immunol 2014; 4:433-9. [DOI: 10.1586/1744666x.4.4.433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Shen S, Klamer G, Xu N, O'Brien TA, Dolnikov A. GSK-3β inhibition preserves naive T cell phenotype in bone marrow reconstituted mice. Exp Hematol 2013; 41:1016-27.e1. [PMID: 24018603 DOI: 10.1016/j.exphem.2013.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 11/15/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) is used in the treatment of hematologic and nonhematologic disorders. PostHSCT immunologic reconstitution is a critical component for successful outcome. Pretransplant conditioning impairs thymic function, leading to delayed T cell regeneration. Thymus-independent T cell expansion is associated with defective generation of naive T cells and memory T cell skewing, resulting in decreased diversity in the T cell repertoire, thus attenuating the immune responses and increasing the risk of opportunistic infections and leukemia relapse. Wingless (Wnt) signaling has been identified as an important regulator of T cell development and function. Activated Wnt signaling inhibited differentiation of mature T cells in transgenic mouse models. The effect of Wnt activation on T cell regeneration following HSCT was not investigated. In this study, we demonstrate that the GSK-3β inhibitor 6-bromoindirubin 3'-oxime (BIO) activates Wnt/β-catenin signaling, elevates the proportion of naive T cells, and delays T cell differentiation during homeostatic T cell expansion in lymphodepleted mice transplanted with human hematopoietic stem cells. In vitro BIO-treatment promoted naive T cell expansion following mitogenic stimulation and improved proliferative responses of T cells to allogeneic stimuli. Treatment with BIO acts to expand the IL7Rα(+) subset of naive T cells, suggesting the potential mechanism driving T cell expansion during IL-7-dependent T cell proliferation. BIO downregulated expression of genes activated during effector cell differentiation and preserved naive T cell gene expression. We propose that administration of GSK-3β inhibitor increases the potency of T cells in recipients of HSCT by expansion of naive T cell subsets with a diverse T cell receptor repertoire.
Collapse
Affiliation(s)
- Sylvie Shen
- Sydney Cord and Marrow Transplant Facility, Centre for Children's Cancer and Blood Disorders, Sydney Children's Hospital, Sydney, Australia; School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
49
|
Velardi E, Dudakov JA, van den Brink MR. Clinical strategies to enhance thymic recovery after allogeneic hematopoietic stem cell transplantation. Immunol Lett 2013; 155:31-5. [PMID: 24120996 PMCID: PMC3871183 DOI: 10.1016/j.imlet.2013.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The thymus is particularly sensitive to injury caused by cytoreductive chemo- or radiation therapy, shock, infection and graft versus host disease. Insufficient thymic recovery has been directly correlated with increased risk of opportunistic infections and poor clinical outcomes in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Prolonged immune deficiency is particularly pronounced in older patients whose thymi are already significantly impaired due to age-related thymic involution. Preclinical and clinical studies have revealed several strategies that can enhance thymic function and immune reconstitution after transplant, including sex steroid ablation, growth factors (growth hormone, keratinocyte growth factor, insulin-like growth factor 1, interleukin-7) and ex vivo generated precursor T cells. In addition, recent studies have shown that other approaches, such as interleukein-22 and nutritional changes, may represent additional candidates to enhance thymic regeneration. In this review we provide updates on these strategies and comment on their potential to be translated into clinical therapies.
Collapse
Affiliation(s)
- Enrico Velardi
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Department of Clinical and Experimental Medicine, University of Perugia, 06122 Perugia, Italy
| | - Jarrod A. Dudakov
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Melbourne, Australia 3800
| | - Marcel R.M. van den Brink
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
50
|
Sun L, Luo H, Li H, Zhao Y. Thymic epithelial cell development and differentiation: cellular and molecular regulation. Protein Cell 2013; 4:342-55. [PMID: 23589020 DOI: 10.1007/s13238-013-3014-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/11/2013] [Indexed: 11/26/2022] Open
Abstract
Thymic epithelial cells (TECs) are one of the most important components in thymic microenvironment supporting thymocyte development and maturation. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor, mediating thymocyte positive and negative selections. Multiple levels of signals including intracellular signaling networks and cell-cell interaction are required for TEC development and differentiation. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful regulators promoting TEC development and differentiation. Crosstalks with thymocytes and other stromal cells for extrinsic signals like RANKL, CD40L, lymphotoxin, fibroblast growth factor (FGF) and Wnt are also definitely required to establish a functional thymic microenvironment. In this review, we will summarize our current understanding about TEC development and differentiation, and its underlying multiple signal pathways.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|