1
|
Bogush D, Schramm J, Ding Y, He B, Singh C, Sharma A, Tukaramrao DB, Iyer S, Desai D, Nalesnik G, Hengst J, Bhalodia R, Gowda C, Dovat S. Signaling pathways and regulation of gene expression in hematopoietic cells. Adv Biol Regul 2023; 88:100942. [PMID: 36621151 DOI: 10.1016/j.jbior.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cellular functions are regulated by signal transduction pathway networks consisting of protein-modifying enzymes that control the activity of many downstream proteins. Protein kinases and phosphatases regulate gene expression by reversible phosphorylation of transcriptional factors, which are their direct substrates. Casein kinase II (CK2) is a serine/threonine kinase that phosphorylates a large number of proteins that have critical roles in cellular proliferation, metabolism and survival. Altered function of CK2 has been associated with malignant transformation, immunological disorders and other types of diseases. Protein phosphatase 1 (PP1) is a serine/threonine phosphatase, which regulates the phosphorylation status of many proteins that are essential for cellular functions. IKAROS is a DNA-binding protein, which functions as a regulator of gene transcription in hematopoietic cells. CK2 directly phosphorylates IKAROS at multiple phosphosites which determines IKAROS activity as a regulator of gene expression. PP1 binds to IKAROS via the PP1-consensus recognition site and dephosphorylates serine/threonine residues that are phosphorylated by CK2. Thus, the interplay between CK2 and PP1 signaling pathways have opposing effects on the phosphorylation status of their mutual substrate - IKAROS. This review summarizes the effects of CK2 and PP1 on IKAROS role in regulation of gene expression and its function as a tumor suppressor in leukemia.
Collapse
Affiliation(s)
- Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Bing He
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chingakham Singh
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | | | - Soumya Iyer
- University of Chicago, Chicago, IL, 60637, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Gregory Nalesnik
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Jeremy Hengst
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Riya Bhalodia
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| |
Collapse
|
2
|
Ikzf1 as a novel regulator of microglial homeostasis in inflammation and neurodegeneration. Brain Behav Immun 2023; 109:144-161. [PMID: 36702234 DOI: 10.1016/j.bbi.2023.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In the last two decades, microglia have emerged as key contributors to disease progression in many neurological disorders, not only by exerting their classical immunological functions but also as extremely dynamic cells with the ability to modulate synaptic and neural activity. This dynamic behavior, together with their heterogeneous roles and response to diverse perturbations in the brain parenchyma has raised the idea that microglia activation is more diverse than anticipated and that understanding the molecular mechanisms underlying microglial states is essential to unravel their role in health and disease from development to aging. The Ikzf1 (a.k.a. Ikaros) gene plays crucial roles in modulating the function and maturation of circulating monocytes and lymphocytes, but whether it regulates microglial functions and states is unknown. Using genetic tools, here we describe that Ikzf1 is specifically expressed in the adult microglia in brain regions such as cortex and hippocampus. By characterizing the Ikzf1 deficient mice, we observed that these mice displayed spatial learning deficits, impaired hippocampal CA3-CA1 long-term potentiation, and decreased spine density in pyramidal neurons of the CA1, which correlates with an increased expression of synaptic markers within microglia. Additionally, these Ikzf1 deficient microglia exhibited a severe abnormal morphology in the hippocampus, which is accompanied by astrogliosis, an aberrant composition of the inflammasome, and an altered expression of disease-associated microglia molecules. Interestingly, the lack of Ikzf1 induced changes on histone 3 acetylation and methylation levels in the hippocampus. Since the lack of Ikzf1 in mice appears to induce the internalization of synaptic markers within microglia, and severe gliosis we then analyzed hippocampal Ikzf1 levels in several models of neurological disorders. Ikzf1 levels were increased in the hippocampus of these neurological models, as well as in postmortem hippocampal samples from Alzheimer's disease patients. Finally, over-expressing Ikzf1 in cultured microglia made these cells hyporeactive upon treatment with lipopolysaccharide, and less phagocytic compared to control microglia. Altogether, these results suggest that altered Ikzf1 levels in the adult hippocampus are sufficient to induce synaptic plasticity and memory deficits via altering microglial state and function.
Collapse
|
3
|
Egeli DB, Hanfstein B, Lauseker M, Pfirrmann M, Saussele S, Baerlocher GM, Müller MC. SOCS-2 gene expression at diagnosis does not predict for outcome of chronic myeloid leukemia patients on imatinib treatment. Leuk Lymphoma 2021; 63:955-962. [PMID: 34872441 DOI: 10.1080/10428194.2021.2010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
SOCS-2 gene expression at diagnosis has been suggested as a predictor of clinical outcome in chronic myeloid leukemia (CML). In this study SOCS-2 and GUS expression levels were determined by real-time PCR in pretherapeutic samples at diagnosis. First, three patient groups were compared after assessment at 48 months: optimal molecular responders (n = 35), patients with resistance to imatinib (n = 28), and blast crisis patients (n = 27). A significant difference in SOCS-2 gene expression at diagnosis was observed comparing blast crisis vs. resistant patients (p = 0.042) and optimal responders (p = 0.010). Second, a validation sample of consecutively randomized patients (n = 123) was investigated. No discriminative SOCS-2 gene expression cutoff could be derived to predict molecular or cytogenetic response, progression-free or overall survival. Although SOCS-2 gene was differentially expressed at the time of diagnosis in blast crisis patients when compared to other groups, a prognostic impact in consecutively randomized patients was not observed.
Collapse
Affiliation(s)
- Damla Buket Egeli
- III. Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Benjamin Hanfstein
- III. Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Michael Lauseker
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Pfirrmann
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanne Saussele
- III. Medizinische Klinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Gabriela M Baerlocher
- Department of BioMedical Research and Department of Hematology and Central Hematology Department, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Martin C Müller
- Institute for Hematology and Oncology (IHO GmbH), Mannheim, Germany
| |
Collapse
|
4
|
Liu M, Jin J, Ji Y, Shan H, Zou Z, Cao Y, Yang L, Liu L, Zhou L, Lei H, Wu Y, Xu H, Wu Y. Hsp90/C terminal Hsc70-interacting protein regulates the stability of Ikaros in acute myeloid leukemia cells. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1481-1490. [PMID: 33439458 DOI: 10.1007/s11427-020-1860-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022]
Abstract
The stability of Ikaros family zinc finger protein 1 (Ikaros), a critical hematopoietic transcription factor, can be regulated by cereblon (CRBN) ubiquitin ligase stimulated by immunomodulatory drugs in multiple myeloma. However, other stabilization mechanisms of Ikaros have yet to be elucidated. In this study, we show that the pharmacologic inhibition or knockdown of Hsp90 downregulates Ikaros in acute myeloid leukemia (AML) cells. Proteasome inhibitor MG132 but not autophagy inhibitor chloroquine could suppress the Hsp90 inhibitor STA-9090-induced reduction of Ikaros, which is accompanied with the increased ubiquitination of Ikaros. Moreover, Ikaros interacts with E3 ubiquitin-ligase C terminal Hsc70 binding protein (CHIP), which mediates the STA-9090-induced ubiquitination of Ikaros. In addition, the knockdown of Ikaros effectively inhibits the proliferation of leukemia cells, but this phenomenon could be rescued by Ikaros overexpression. Collectively, our findings indicate that the interplay between HSP90 and CHIP regulates the stability of Ikaros in AML cells, which provides a novel strategy for AML treatment through targeting the HSP90/Ikaros/CHIP axis.
Collapse
Affiliation(s)
- Meng Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Jin
- Department of Ultrasound, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Yanjie Ji
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huizhuang Shan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhihui Zou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Cao
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunzhao Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Belluti S, Rigillo G, Imbriano C. Transcription Factors in Cancer: When Alternative Splicing Determines Opposite Cell Fates. Cells 2020; 9:E760. [PMID: 32244895 PMCID: PMC7140685 DOI: 10.3390/cells9030760] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Alternative splicing (AS) is a finely regulated mechanism for transcriptome and proteome diversification in eukaryotic cells. Correct balance between AS isoforms takes part in molecular mechanisms that properly define spatiotemporal and tissue specific transcriptional programs in physiological conditions. However, several diseases are associated to or even caused by AS alterations. In particular, multiple AS changes occur in cancer cells and sustain the oncogenic transcriptional program. Transcription factors (TFs) represent a key class of proteins that control gene expression by direct binding to DNA regulatory elements. AS events can generate cancer-associated TF isoforms with altered activity, leading to sustained proliferative signaling, differentiation block and apoptosis resistance, all well-known hallmarks of cancer. In this review, we focus on how AS can produce TFs isoforms with opposite transcriptional activities or antagonistic functions that severely impact on cancer biology. This summary points the attention to the relevance of the analysis of TFs splice variants in cancer, which can allow patients stratification despite the presence of interindividual genetic heterogeneity. Recurrent TFs variants that give advantage to specific cancer types not only open the opportunity to use AS transcripts as clinical biomarkers but also guide the development of new anti-cancer strategies in personalized medicine.
Collapse
Affiliation(s)
| | | | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; (S.B.); (G.R.)
| |
Collapse
|
6
|
Regulation of Small GTPase Rab20 by Ikaros in B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21051718. [PMID: 32138279 PMCID: PMC7084408 DOI: 10.3390/ijms21051718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Ikaros is a DNA-binding protein that regulates gene expression and functions as a tumor suppressor in B-cell acute lymphoblastic leukemia (B-ALL). The full cohort of Ikaros target genes have yet to be identified. Here, we demonstrate that Ikaros directly regulates expression of the small GTPase, Rab20. Using ChIP-seq and qChIP we assessed Ikaros binding and the epigenetic signature at the RAB20 promoter. Expression of Ikaros, CK2, and RAB20 was determined by qRT-PCR. Overexpression of Ikaros was achieved by retroviral transduction, whereas shRNA was used to knockdown Ikaros and CK2. Regulation of transcription from the RAB20 promoter was analyzed by luciferase reporter assay. The results showed that Ikaros binds the RAB20 promoter in B-ALL. Gain-of-function and loss-of-function experiments demonstrated that Ikaros represses RAB20 transcription via chromatin remodeling. Phosphorylation by CK2 kinase reduces Ikaros’ affinity toward the RAB20 promoter and abolishes its ability to repress RAB20 transcription. Dephosphorylation by PP1 phosphatase enhances both Ikaros’ DNA-binding affinity toward the RAB20 promoter and RAB20 repression. In conclusion, the results demonstrated opposing effects of CK2 and PP1 on expression of Rab20 via control of Ikaros’ activity as a transcriptional regulator. A novel regulatory signaling network in B-cell leukemia that involves CK2, PP1, Ikaros, and Rab20 is identified.
Collapse
|
7
|
Gowda C, Song C, Ding Y, Iyer S, Dhanyamraju PK, McGrath M, Bamme Y, Soliman M, Kane S, Payne JL, Dovat S. Cellular signaling and epigenetic regulation of gene expression in leukemia. Adv Biol Regul 2019; 75:100665. [PMID: 31623972 PMCID: PMC7239353 DOI: 10.1016/j.jbior.2019.100665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Alterations in normal regulation of gene expression is one of the key features of hematopoietic malignancies. In order to gain insight into the mechanisms that regulate gene expression in these diseases, we dissected the role of the Ikaros protein in leukemia. Ikaros is a DNA-binding, zinc finger protein that functions as a transcriptional regulator and a tumor suppressor in leukemia. The use of ChIP-seq, RNA-seq, and ATAC-seq—coupled with functional experiments—revealed that Ikaros regulates both the global epigenomic landscape and epigenetic signature at promoter regions of its target genes. Casein kinase II (CK2), an oncogenic kinase that is overexpressed in leukemia, directly phosphorylates Ikaros at multiple, evolutionarily-conserved residues. Phosphorylation of Ikaros impairs the protein's ability to regulate both the transcription of its target genes and global epigenetic landscape in leukemia. Treatment of leukemia cells with a specific inhibitor of CK2 restores Ikaros function, resulting in cytotoxicity of leukemia cells. Here, we review the mechanisms through which the CK2-Ikaros signaling axis regulates the global epigenomic landscape and expression of genes that control cellular proliferation in leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Soumya Iyer
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Pavan K Dhanyamraju
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yevgeniya Bamme
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shriya Kane
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jonathon L Payne
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
8
|
Oliveira VCD, Lacerda MPD, Moraes BBM, Gomes CP, Maricato JT, Souza OF, Schenkman S, Pesquero JB, Moretti NS, Rodrigues CA, Popi AF. Deregulation of Ikaros expression in B-1 cells: New insights in the malignant transformation to chronic lymphocytic leukemia. J Leukoc Biol 2019; 106:581-594. [PMID: 31299112 DOI: 10.1002/jlb.ma1118-454r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/16/2019] [Accepted: 06/10/2019] [Indexed: 01/10/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a chronic form of leukemia that originates from an abnormal expansion of CD5+ B-1 cells. Deregulation in the BCR signaling is associated with B-cell transformation. Contrariwise to B-2 cells, BCR engagement in B-1 cells results in low proliferation rate and increased apoptosis population, whereas overactivation may be associated with lymphoproliferative disorders. It has been demonstrated that several transcription factors that are involved in the B cell development play a role in the regulation of BCR function. Among them, Ikaros is considered an essential regulator of lymphoid differentiation and activation. Several reports suggest that Ikaros expression is deregulated in different forms of leukemia. Herein, we demonstrated that CLL cells show decreased Ikaros expression and abnormal cytoplasmic cell localization. These alterations were also observed in radioresistant B-1 cells, which present high proliferative activity, suggesting that abnormal localization of Ikaros could determine its loss of function. Furthermore, Ikaros knockdown increased the expression of BCR pathway components in murine B-1 cells, such as Lyn, Blnk, and CD19. Additionally, in the absence of Ikaros, B-1 cells become responsive to BCR stimulus, increasing cell proliferation even in the absence of antigen stimulation. These results suggested that Ikaros is an important controller of B-1 cell proliferation by interfering with the BCR activity. Therefore, altered Ikaros expression in CLL or radioresistant B-1 cells could determine a responsive status of BCR to self-antigens, which would culminate in the clonal expansion of B-1 cells.
Collapse
Affiliation(s)
- Vivian Cristina de Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Marcelo Pitombeira de Lacerda
- Disciplina de Hematologia e Hemoterapia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Bárbara Bomfim Muniz Moraes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Caio Perez Gomes
- Departamento de Biologia Molecular, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Juliana Terzi Maricato
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Olivia Fonseca Souza
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - João Bosco Pesquero
- Departamento de Biologia Molecular, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Nilmar Silvio Moretti
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Celso Arrais Rodrigues
- Disciplina de Hematologia e Hemoterapia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Ana Flavia Popi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Wang H, Xu Z, Du W, Lin Z, Liu Z. N160 of Aiolos Determines its DNA-Binding Activity. Anat Rec (Hoboken) 2019; 302:2014-2019. [PMID: 31251838 DOI: 10.1002/ar.24213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023]
Abstract
Aiolos is a transcription factor of the Ikaros family. It is expressed in lymphocytes and plays a vital role in the development of lymphatic system. Recently, Aiolos has been found to be ectopically expressed in lung cancer cells and promotes cancer metastasis through repression of p66Shc expression. Blocking DNA-binding activity of Aiolos may benefit cancer patients by preventing further metastasis. However, it is not clear which sequence is essential for its DNA binding. In this study, we found that N160 is a key amino acid to determine the DNA-binding activity of Aiolos. Mutation of N160A resulted in loss of peripheral heterochromatin localization and dissociation with its target gene. Accordingly, Aiolos with N160A could not change the expression of its target genes. Thus, we identified the amino acid (N160) that is essential for Aiolos binding to DNA. Anat Rec, 302:2014-2019, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Hao Wang
- Department of Immunology, Tianjin Key Laboratory of Medical Epigenetics, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhao Xu
- Department of Immunology, Tianjin Key Laboratory of Medical Epigenetics, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Wei Du
- Department of Immunology, Tianjin Key Laboratory of Medical Epigenetics, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhenzhen Lin
- Department of Immunology, Tianjin Key Laboratory of Medical Epigenetics, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Department of Immunology, Tianjin Key Laboratory of Medical Epigenetics, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Spontaneous loss of B lineage transcription factors leads to pre-B leukemia in Ebf1 +/-Bcl-x LTg mice. Oncogenesis 2017; 6:e355. [PMID: 28692033 PMCID: PMC5541707 DOI: 10.1038/oncsis.2017.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022] Open
Abstract
Early B-cell factor 1 (EBF1) plays a central role in B-cell lineage specification and commitment. Loss of this critical transcription factor is strongly associated with high-risk, relapsed and therapy-resistant B–cell-acute lymphoblastic leukemia, especially in children. However, Ebf1 haploinsufficient mice exhibit a normal lifespan. To determine whether prolonged survival of B cells would enable tumorigenesis in Ebf1 haploinsufficient animals, we generated Ebf1+/–Bcl-xLTg mice, which express the anti-apoptotic factor Bcl-xL in B cells. Approximately half of Ebf1+/–Bcl-xLTg mice develop aggressive oligoclonal leukemia as they age, which engrafts in congenic wild-type recipients without prior conditioning. The neoplastic cells display a pre-B phenotype and express early developmental- and natural killer cell/myeloid-markers inappropriately. In addition, we found tumor cell-specific loss of several transcription factors critical for maintaining differentiation: EBF1, TCF3 and RUNX1. However, in the majority of tumors, loss of Ebf1 expression was not due to loss of heterozygosity. This is the first spontaneous mouse model of pre-B leukemia to demonstrate inappropriate expression of non-B-cell-specific genes associated with loss of Ebf1, Tcf3 and Runx1 expression.
Collapse
|
11
|
Zhao S, Liu W, Li Y, Liu P, Li S, Dou D, Wang Y, Yang R, Xiang R, Liu F. Alternative Splice Variants Modulates Dominant-Negative Function of Helios in T-Cell Leukemia. PLoS One 2016; 11:e0163328. [PMID: 27681508 PMCID: PMC5040427 DOI: 10.1371/journal.pone.0163328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
The molecular defects which lead to multistep incidences of human T-cell leukemia have yet to be identified. The DNA-binding protein Helios (known as IKZF2), a member of the Ikaros family of Krüppel-like zinc-finger proteins, functions pivotally in T-cell differentiation and activation. In this study, we identify three novel short Helios splice variants which are T-cell leukemic specific, and demonstrate their dominant-negative function. We then test the cellular localization of distinct Helios isoforms, as well as their capability to form heterodimer with Ikaros, and the association with complexes comprising histone deacetylase (HDAC). In addition, the ectopic expression of T-cell leukemic Helios isoforms interferes with T-cell proliferation and apoptosis. The gene expression profiling and pathway analysis indicated the enrichment of signaling pathways essential for gene expression, translation, cell cycle checkpoint, and response to DNA damage stimulus. These data indicate the molecular function of Helios to be involved in the leukemogenesis and phenotype of T-cell leukemia, and also reveal Helios deregulation as a novel marker for T-cell leukemia.
Collapse
Affiliation(s)
- Shaorong Zhao
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Liu
- Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, China
| | - Yinghui Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Pengjiang Liu
- Department of Hematology, First-Central Hospital, Tianjin 300060, China
| | - Shufang Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Daolei Dou
- State Key Laboratory of Medical Chemical Biology, Tianjin 300070, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin 300071, China
- * E-mail: (FL); (RX)
| | - Feifei Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
- * E-mail: (FL); (RX)
| |
Collapse
|
12
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Wang H, Song C, Ding Y, Pan X, Ge Z, Tan BH, Gowda C, Sachdev M, Muthusami S, Ouyang H, Lai L, Francis OL, Morris CL, Abdel-Azim H, Dorsam G, Xiang M, Payne KJ, Dovat S. Transcriptional Regulation of JARID1B/KDM5B Histone Demethylase by Ikaros, Histone Deacetylase 1 (HDAC1), and Casein Kinase 2 (CK2) in B-cell Acute Lymphoblastic Leukemia. J Biol Chem 2015; 291:4004-18. [PMID: 26655717 DOI: 10.1074/jbc.m115.679332] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 12/26/2022] Open
Abstract
Impaired function of the Ikaros (IKZF1) protein is associated with the development of high-risk B-cell precursor acute lymphoblastic leukemia (B-ALL). The mechanisms of Ikaros tumor suppressor activity in leukemia are unknown. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. Here, we report that Ikaros represses transcription of the histone H3K4 demethylase, JARID1B (KDM5B). Transcriptional repression of JARID1B is associated with increased global levels of H3K4 trimethylation. Ikaros-mediated repression of JARID1B is dependent on the activity of the histone deacetylase, HDAC1, which binds to the upstream regulatory element of JARID1B in complex with Ikaros. In leukemia, JARID1B is overexpressed, and its inhibition results in cellular growth arrest. Ikaros-mediated repression of JARID1B in leukemia is impaired by pro-oncogenic casein kinase 2 (CK2). Inhibition of CK2 results in increased binding of the Ikaros-HDAC1 complex to the promoter of JARID1B, with increased formation of trimethylated histone H3 lysine 27 and decreased histone H3 Lys-9 acetylation. In cases of high-risk B-ALL that carry deletion of one Ikaros (IKZF1) allele, targeted inhibition of CK2 restores Ikaros binding to the JARID1B promoter and repression of JARID1B. In summary, the presented data suggest a mechanism through which Ikaros and HDAC1 regulate the epigenetic signature in leukemia: via regulation of JARID1B transcription. The presented data identify JARID1B as a novel therapeutic target in B-ALL and provide a rationale for the use of CK2 inhibitors in the treatment of high-risk B-ALL.
Collapse
Affiliation(s)
- Haijun Wang
- From the Department of Pathology, Xinxiang Medical University, Xinxiang 453003, Henan, China, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Chunhua Song
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Xiaokang Pan
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Zheng Ge
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Bi-Hua Tan
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Mansi Sachdev
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Sunil Muthusami
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Hongsheng Ouyang
- From the Department of Pathology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Liangxue Lai
- From the Department of Pathology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | | | | | - Hisham Abdel-Azim
- the Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California 90027
| | - Glenn Dorsam
- North Dakota State University, Fargo, North Dakota 58108, and
| | - Meixian Xiang
- the College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
| | | | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
14
|
Zhang L, Li H, Ge C, Li M, Zhao FY, Hou HL, Zhu MX, Tian H, Zhang LX, Chen TY, Jiang GP, Xie HY, Cui Y, Yao M, Li JJ. Inhibitory effects of transcription factor Ikaros on the expression of liver cancer stem cell marker CD133 in hepatocellular carcinoma. Oncotarget 2015; 5:10621-35. [PMID: 25301737 PMCID: PMC4279398 DOI: 10.18632/oncotarget.2524] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022] Open
Abstract
CD133 is a cellular surface glycoprotein that has been reported as a marker for the enrichment of cancer stem cells (CSCs). However, the regulatory mechanism of CD133 remains unknown. CSCs have been proposed to contribute to radioresistance and multi-drug resistance. The elucidation of key regulators of CD133 and CSCs is critical for the development of CSC-targeted therapy. In this study, we showed that Ikarosinhibited the expression of CD133 via direct binding to the CD133 P1 promoter and repressed the tumorigenic and self-renewal capacity of CD133(+) cancer stem-like cells in hepatocellular carcinoma (HCC). We found that Ikaros interacted with CtBP as a transcription repressor complex, which inhibited CD133 expression in HCC. We also demonstrated that Ikaros expression was up-regulated by ETS1 which activity was regulated by MAPKs pathway. Furthermore, decreased expression of Ikaroswas significantly associated with poor survival in HCC patients. Overall, our study identifies that Ikaros plays a role as a transcription repressor in HCC and is a new reactivated therapeutic target for the treatment of HCC. Meanwhile, our findings provide evidence that Ikaros could be an attractive inhibitor of the target gene CD133, which reactivates anticancer mechanisms in targeted CSC therapy.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meng Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang-yu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - He-lei Hou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Miao-xin Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li-xing Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Guo-ping Jiang
- Department of General Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hai-yang Xie
- Department of General Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Cui
- Cancer Institute of Guangxi, Nanning, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin-jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Ikaros could be a key factor in the maintenance of "B-side" of B-1 cells. Immunobiology 2015; 220:1232-9. [PMID: 26141488 DOI: 10.1016/j.imbio.2015.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/14/2015] [Accepted: 06/05/2015] [Indexed: 01/01/2023]
Abstract
Ikaros, a zinc finger transcription factor, is an important regulator of the hematopoietic system. Several studies have suggested the role of Ikaros in the development, maturation, activation and differentiation of lymphocytes. To elucidate this mechanism, it is important to understand how this transcription factor works in the dichotomy of the hematopoietic system, a topic that remains uncertain. Herein, we investigated the role of Ikaros in the control of the lymphomyeloid phenotype of B-1 lymphocytes. We found that Ikaros, as well as its target genes, are expressed in B-1 cells,. Moreover, Ikaros positively regulates the expression of Flt3, Gfi and Il7r, while it down-regulates PU.1. During the induction of differentiation of B-1 cells toward phagocytes, Ikaros transcription was reduced. Taken together, these data pointed to the relevance of Ikaros in the maintenance of the promiscuous gene profile of B-1 cells. It could be suggested that Ikaros functions as a guardian of B-1 lymphoid pattern, and that its absence directs the differentiation of B-1 cells into phagocytes.
Collapse
|
16
|
Chen WL, Luo DF, Gao C, Ding Y, Wang SY. The consensus sequence of FAMLF alternative splice variants is overexpressed in undifferentiated hematopoietic cells. ACTA ACUST UNITED AC 2015; 48:603-9. [PMID: 26083996 PMCID: PMC4512098 DOI: 10.1590/1414-431x20154430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 01/01/2023]
Abstract
The familial acute myeloid leukemia related factor gene (FAMLF) was previously identified from a familial AML subtractive cDNA library and shown to undergo alternative splicing. This study used real-time quantitative PCR to investigate the expression of the FAMLF alternative-splicing transcript consensus sequence (FAMLF-CS) in peripheral blood mononuclear cells (PBMCs) from 119 patients with de novo acute leukemia (AL) and 104 healthy controls, as well as in CD34+ cells from 12 AL patients and 10 healthy donors. A 429-bp fragment from a novel splicing variant of FAMLF was obtained, and a 363-bp consensus sequence was targeted to quantify total FAMLF expression. Kruskal-Wallis, Nemenyi, Spearman's correlation, and Mann-Whitney U-tests were used to analyze the data. FAMLF-CS expression in PBMCs from AL patients and CD34+ cells from AL patients and controls was significantly higher than in control PBMCs (P < 0.0001). Moreover, FAMLF-CS expression in PBMCs from the AML group was positively correlated with red blood cell count (rs =0.317, P=0.006), hemoglobin levels (rs = 0.210, P = 0.049), and percentage of peripheral blood blasts (rs = 0.256, P = 0.027), but inversely correlated with hemoglobin levels in the control group (rs = -0.391, P < 0.0001). AML patients with high CD34+ expression showed significantly higher FAMLF-CS expression than those with low CD34+ expression (P = 0.041). Our results showed that FAMLF is highly expressed in both normal and malignant immature hematopoietic cells, but that expression is lower in normal mature PBMCs.
Collapse
Affiliation(s)
- W L Chen
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - D F Luo
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - C Gao
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Y Ding
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - S Y Wang
- Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Vitali C, Bassani C, Chiodoni C, Fellini E, Guarnotta C, Miotti S, Sangaletti S, Fuligni F, De Cecco L, Piccaluga PP, Colombo MP, Tripodo C. SOCS2 Controls Proliferation and Stemness of Hematopoietic Cells under Stress Conditions and Its Deregulation Marks Unfavorable Acute Leukemias. Cancer Res 2015; 75:2387-99. [PMID: 25858143 DOI: 10.1158/0008-5472.can-14-3625] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/04/2015] [Indexed: 11/16/2022]
Abstract
Hematopoietic stem cells (HSC) promptly adapt hematopoiesis to stress conditions, such as infection and cancer, replenishing bone marrow-derived circulating populations, while preserving the stem cell reservoir. SOCS2, a feedback inhibitor of JAK-STAT pathways, is expressed in most primitive HSC and is upregulated in response to STAT5-inducing cytokines. We demonstrate that Socs2 deficiency unleashes HSC proliferation in vitro, sustaining STAT5 phosphorylation in response to IL3, thrombopoietin, and GM-CSF. In vivo, SOCS2 deficiency leads to unrestricted myelopoietic response to 5-fluorouracil (5-FU) and, in turn, induces exhaustion of long-term HSC function along serial bone marrow transplantations. The emerging role of SOCS2 in HSC under stress conditions prompted the investigation of malignant hematopoiesis. High levels of SOCS2 characterize unfavorable subsets of acute myeloid and lymphoblastic leukemias, such as those with MLL and BCR/ABL abnormalities, and correlate with the enrichment of genes belonging to hematopoietic and leukemic stemness signatures. In this setting, SOCS2 and its correlated genes are part of regulatory networks fronted by IKZF1/Ikaros and MEF2C, two transcriptional regulators involved in normal and leukemic hematopoiesis that have never been linked to SOCS2. Accordingly, a comparison of murine wt and Socs2(-/-) HSC gene expression in response to 5-FU revealed a significant overlap with the molecular programs that correlate with SOCS2 expression in leukemias, particularly with the oncogenic pathways and with the IKZF1/Ikaros and MEF2C-predicted targets. Lentiviral gene transduction of murine hematopoietic precursors with Mef2c, but not with Ikzf1, induces Socs2 upregulation, unveiling a direct control exerted by Mef2c over Socs2 expression.
Collapse
|
18
|
Gorzkiewicz A, Walczewska A. Functions of the Ikaros transcription factor and the role of IKZF1 gene defects in hematological malignancies. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.achaem.2014.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Xu XH, Huang XW, Qun L, Li YN, Wang Y, Liu C, Ma Y, Liu QM, Sun K, Qian F, Jin L, Wang J. Two functional loci in the promoter of EPAS1 gene involved in high-altitude adaptation of Tibetans. Sci Rep 2014; 4:7465. [PMID: 25501874 PMCID: PMC4264014 DOI: 10.1038/srep07465] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022] Open
Abstract
EPAS1 involves in the hypoxic response and is suggested to be responsible for the genetic adaptation of high-altitude hypoxia in Tibetans. However, the detailed molecular mechanism remains unknown. In this study, a single nucleotide polymorphism rs56721780:G>C and an insertion/deletion (indel) polymorphism -742 indel in the promoter region showed divergence between Tibetans and non-Tibetan lowlanders. rs56721780:G>C regulated the transcription of EPAS1 by IKAROS family zinc finger 1 (IKZF1), which was identified as a new transcriptional repressor for EPAS1 gene. It demonstrated that the C allele of rs56721780:G>C decreased the binding of IKZF1, leading to the attenuated transcriptional repression of EPAS1 gene. The insertion at -742 indel provided a new binding site for Sp1 and was related to the activation of EPAS1 promoter. Further functional analysis revealed that lysyl oxidase (LOX) gene, which was reported to be responsible for extracellular matrix protein cross-linking of amnion previously, was a direct target of EPAS1. The CC genotype at rs56721780:G>C and the insertion genotype at -742 indel were found associated with higher EPAS1 and LOX expression levels in amnion, as well as higher birth weight of Tibetan newborns, suggesting that EPAS1 gene might play important roles in the development of amnion, fetus growth and high-altitude adaptation of Tibetans.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University Jiangwan Campus, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Xue-Wen Huang
- 1] Clinical laboratory of Huadong Sanatorium, Dajishan, Meiyuan Garden, Wuxi, Jiangsu 214065, P.R. China [2] Public Health Bureau for Shigatse District, 5 Keji Road, Shigatse District, Tibet 857000, P.R. China
| | - Li Qun
- Department of Gynecology and Obstetrics, The People's Hospital of Shigatse District, 28 Shanghai Middle Road, Shigatse District, Tibet 857000, P.R. China
| | - Ya-Nan Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University Jiangwan Campus, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University Jiangwan Campus, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Chao Liu
- School of Life Sciences, Fudan University Jiangwan Campus, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University Jiangwan Campus, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Qing-Mei Liu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University Jiangwan Campus, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Kang Sun
- 1] School of Life Sciences, Fudan University Jiangwan Campus, 2005 Songhu Road, Shanghai 200438, P.R. China [2] Center for Reproductive Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200135, P.R. China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University Jiangwan Campus, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University Jiangwan Campus, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University Jiangwan Campus, 2005 Songhu Road, Shanghai 200438, P.R. China
| |
Collapse
|
20
|
Disruption of IKAROS activity in primitive chronic-phase CML cells mimics myeloid disease progression. Blood 2014; 125:504-15. [PMID: 25370416 DOI: 10.1182/blood-2014-06-581173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Without effective therapy, chronic-phase chronic myeloid leukemia (CP-CML) evolves into an acute leukemia (blast crisis [BC]) that displays either myeloid or B-lymphoid characteristics. This transition is often preceded by a clinically recognized, but biologically poorly characterized, accelerated phase (AP). Here, we report that IKAROS protein is absent or reduced in bone marrow blasts from most CML patients with advanced myeloid disease (AP or BC). This contrasts with primitive CP-CML cells and BCR-ABL1-negative acute myeloid leukemia blasts, which express readily detectable IKAROS. To investigate whether loss of IKAROS contributes to myeloid disease progression in CP-CML, we examined the effects of forced expression of a dominant-negative isoform of IKAROS (IK6) in CP-CML patients' CD34(+) cells. We confirmed that IK6 disrupts IKAROS activity in transduced CP-CML cells and showed that it confers on them features of AP-CML, including a prolonged increased output in vitro and in xenografted mice of primitive cells with an enhanced ability to differentiate into basophils. Expression of IK6 in CD34(+) CP-CML cells also led to activation of signal transducer and activator of transcription 5 and transcriptional repression of its negative regulators. These findings implicate loss of IKAROS as a frequent step and potential diagnostic harbinger of progressive myeloid disease in CML patients.
Collapse
|
21
|
Dominant-negative Ikaros cooperates with BCR-ABL1 to induce human acute myeloid leukemia in xenografts. Leukemia 2014; 29:177-87. [PMID: 24791856 DOI: 10.1038/leu.2014.150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/06/2014] [Accepted: 04/09/2014] [Indexed: 12/25/2022]
Abstract
Historically, our understanding of mechanisms underlying human leukemogenesis are inferred from genetically engineered mouse models. Relatively, few models that use primary human cells recapitulate the full leukemic transformation as assayed in xenografts and myeloid transformation is infrequent. We report a humanized experimental leukemia model where xenografts develop aggressive acute myeloid leukemia (AML) with disseminated myeloid sarcomas within 4 weeks following transplantation of cord blood transduced with vectors expressing BCR-ABL1 and a dominant-negative isoform of IKAROS, Ik6. Ik6 induced transcriptional programs in BCR-ABL1-transduced progenitors that contained repressed B-cell progenitor programs, along with strong stemness, proliferation and granulocyte-monocytic progenitor (GMP) signatures-a novel combination not induced in control groups. Thus, wild-type IKAROS restrains stemness properties and has tumor suppressor activity in BCR-ABL1-initiated leukemia. Although IKAROS mutations/deletions are common in lymphoid transformation, they are found also at low frequency in AML that progress from a prior myeloproliferative neoplasm (MPN) state. Our experimental system provides an excellent model to gain insight into these rare cases of AML transformation and the properties conferred by IKAROS loss of function as a secondary mutation. More generally, our data points to the importance of deregulated stemness/lineage commitment programs in human myeloid leukemogenesis.
Collapse
|
22
|
Ikaros transcripts Ik6/10 and levels of full-length transcript are critical for chronic myeloid leukaemia blast crisis transformation. Leukemia 2014; 28:1745-7. [PMID: 24618732 DOI: 10.1038/leu.2014.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Orozco CA, Acevedo A, Cortina L, Cuellar GE, Duarte M, Martín L, Mesa NM, Muñoz J, Portilla CA, Quijano SM, Quintero G, Rodriguez M, Saavedra CE, Groot H, Torres MM, López-Segura V. The combined expression patterns of Ikaros isoforms characterize different hematological tumor subtypes. PLoS One 2013; 8:e82411. [PMID: 24324784 PMCID: PMC3855751 DOI: 10.1371/journal.pone.0082411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
A variety of genetic alterations are considered hallmarks of cancer development and progression. The Ikaros gene family, encoding for key transcription factors in hematopoietic development, provides several examples as genetic defects in these genes are associated with the development of different types of leukemia. However, the complex patterns of expression of isoforms in Ikaros family genes has prevented their use as clinical markers. In this study, we propose the use of the expression profiles of the Ikaros isoforms to classify various hematological tumor diseases. We have standardized a quantitative PCR protocol to estimate the expression levels of the Ikaros gene exons. Our analysis reveals that these levels are associated with specific types of leukemia and we have found differences in the levels of expression relative to five interexonic Ikaros regions for all diseases studied. In conclusion, our method has allowed us to precisely discriminate between B-ALL, CLL and MM cases. Differences between the groups of lymphoid and myeloid pathologies were also identified in the same way.
Collapse
Affiliation(s)
- Carlos A. Orozco
- Laboratory of Human Genetics, Los Andes University, Bogotá, Colombia
| | - Andrés Acevedo
- Pathology and Laboratories, Santa Fe de Bogotá Fundation, Bogotá, Colombia
| | - Lazaro Cortina
- Pediatric Hemato-Oncology Unit, University Hospital del Valle, Cali, Colombia
| | - Gina E. Cuellar
- Pathology and Laboratories, Santa Fe de Bogotá Fundation, Bogotá, Colombia
| | - Mónica Duarte
- Pathology and Laboratories, Santa Fe de Bogotá Fundation, Bogotá, Colombia
| | - Liliana Martín
- Pathology and Laboratories, Santa Fe de Bogotá Fundation, Bogotá, Colombia
| | - Néstor M. Mesa
- Pathology and Laboratories, Santa Fe de Bogotá Fundation, Bogotá, Colombia
| | - Javier Muñoz
- Pathology and Laboratories, Santa Fe de Bogotá Fundation, Bogotá, Colombia
| | - Carlos A. Portilla
- Pediatric Hemato-Oncology Unit, University Hospital del Valle, Cali, Colombia
| | - Sandra M. Quijano
- Pathology and Laboratories, Santa Fe de Bogotá Fundation, Bogotá, Colombia
| | - Guillermo Quintero
- Pathology and Laboratories, Santa Fe de Bogotá Fundation, Bogotá, Colombia
| | - Miriam Rodriguez
- Pathology and Laboratories, Santa Fe de Bogotá Fundation, Bogotá, Colombia
| | - Carlos E. Saavedra
- Pathology and Laboratories, Santa Fe de Bogotá Fundation, Bogotá, Colombia
| | - Helena Groot
- Laboratory of Human Genetics, Los Andes University, Bogotá, Colombia
| | - María M. Torres
- Laboratory of Human Genetics, Los Andes University, Bogotá, Colombia
| | | |
Collapse
|
24
|
Abstract
The Ikaros gene (Ikzf1) encodes a family of zinc-finger transcription factors implicated in hematopoietic cell differentiation. Here we show that Ikaros suppresses the development of basophils, which are proinflammatory cells of the myeloid lineage. In the absence of extrinsic basophil-inducing signals, Ikaros(-/-) (Ik(-/-)) mice exhibit increases in basophil numbers in blood and bone marrow and in their direct precursors in bone marrow and the spleen, as well as decreased numbers of intestinal mast cells. In vitro culture of Ik(-/-) bone marrow under mast cell differentiation conditions also results in predominance of basophils. Basophil expansion is associated with an increase in basophil progenitors, increased expression of Cebpa and decreased expression of mast cell-specifying genes Hes1 and microphthalmia-associated transcription factor (Mitf). Ikaros directly associates with regulatory sites within Cebpa and Hes1 and regulates the acquisition of permissive H3K4 tri-methylation marks at the Cebpa locus and reduces H3K4 tri-methylation at the Hes1 promoter. Ikaros blockade in cultured cells or transfer of Ik(-/-) bone marrow into irradiated Ik(+/+) recipients also results in increased basophils confirming a cell-intrinsic effect of Ikaros on basophil development. We conclude that Ikaros is a suppressor of basophil differentiation under steady-state conditions and that it acts by regulating permissive chromatin modifications of Cebpa.
Collapse
|
25
|
Mu Q, Wang Y, Chen B, Qian W, Meng H, Tong H, Chen F, Ma Q, Ni W, Chen S, Jin J. High expression of Musashi-2 indicates poor prognosis in adult B-cell acute lymphoblastic leukemia. Leuk Res 2013; 37:922-7. [DOI: 10.1016/j.leukres.2013.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/20/2013] [Accepted: 05/12/2013] [Indexed: 12/18/2022]
|
26
|
A novel, non-canonical splice variant of the Ikaros gene is aberrantly expressed in B-cell lymphoproliferative disorders. PLoS One 2013; 8:e68080. [PMID: 23874502 PMCID: PMC3706598 DOI: 10.1371/journal.pone.0068080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/26/2013] [Indexed: 01/01/2023] Open
Abstract
The Ikaros gene encodes a Krüppel-like zinc-finger transcription factor involved in hematopoiesis regulation. Ikaros has been established as one of the most clinically relevant tumor suppressors in several hematological malignancies. In fact, expression of dominant negative Ikaros isoforms is associated with adult B-cell acute lymphoblastic leukemia, myelodysplastic syndrome, acute myeloid leukemia and adult and juvenile chronic myeloid leukemia. Here, we report the isolation of a novel, non-canonical Ikaros splice variant, called Ikaros 11 (Ik11). Ik11 is structurally related to known dominant negative Ikaros isoforms, due to the lack of a functional DNA-binding domain. Interestingly, Ik11 is the first Ikaros splice variant missing the transcriptional activation domain. Indeed, we demonstrated that Ik11 works as a dominant negative protein, being able to dimerize with Ikaros DNA-binding isoforms and inhibit their functions, at least in part by retaining them in the cytoplasm. Notably, we demonstrated that Ik11 is the first dominant negative Ikaros isoform to be aberrantly expressed in B-cell lymphoproliferative disorders, such as chronic lymphocytic leukemia. Aberrant expression of Ik11 interferes with both proliferation and apoptotic pathways, providing a mechanism for Ik11 involvement in tumor pathogenesis. Thus, Ik11 could represent a novel marker for B-cell lymphoproliferative disorders.
Collapse
|
27
|
Abstract
Ikaros is the founding member of a family of zinc finger transcription factors whose function during early hematopoietic development is required for differentiation into the three major hematopoietic lineages. Ikaros deletions have been described in human malignancies, particularly precursor B-cell leukemia. Deletions of this transcription factor appear to mediate leukemogenesis, although the exact mechanism is unclear. This article reviews the structure and function of Ikaros proteins in chromatin remodeling and gene expression as well as the current knowledge of Ikaros deletions in human malignancies. A new proteomic platform, mass cytometry, is introduced which allows measurements of greater than 30 parameters at the single-cell level and should thus provide a greater level of detail to unravel the mechanistic consequences of Ikaros dysfunction in leukemia.
Collapse
|
28
|
Goldman F, Gurel Z, Al-Zubeidi D, Freed A, Icardi M, Song C, Dovat S. Congenital pancytopenia and absence of B lymphocytes in a neonate with a mutation in the Ikaros gene. Pediatr Blood Cancer 2012; 58:591-7. [PMID: 21548011 PMCID: PMC3161153 DOI: 10.1002/pbc.23160] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Congenital pancytopenia is a rare and often lethal condition. Current knowledge of lymphoid and hematopoietic development in mice, as well as understanding regulators of human hematopoiesis, have led to the recent discovery of genetic causes of bone marrow failure disorders. However, in the absence of mutations of specific genes or a distinct clinical phenotype, many cases of aplastic anemia are labeled as idiopathic, while congenital immune deficiencies are described as combined immune deficiency. PROCEDURE We describe the case of a 33-week gestation age male with severe polyhydramnios, hydrops, and ascites who was noted to be pancytopenic at birth. Bone marrow examination revealed a hypocellular marrow with absent myelopoiesis. An immune workup demonstrated profound B lymphopenia, near absent NK cells, and normal T cell number. Due to the similarity of the patient's phenotype with the IKAROS knockout mouse, studies were performed on bone marrow and peripheral blood to assess a potential pathogenic role of Ikaros. RESULTS DNA studies revealed a point mutation in one allele of the IKAROS gene, resulting in an amino acid substitution in the DNA-binding zinc finger domain. Functional studies demonstrated that the observed mutation decreased Ikaros DNA-binding affinity, and immunofluorescence microscopy revealed aberrant Ikaros pericentromeric localization. CONCLUSIONS Our report describes a novel case of congenital pancytopenia associated with mutation of the IKAROS gene. Furthermore, these data suggest a critical role of IKAROS in human hematopoiesis and immune development.
Collapse
Affiliation(s)
- Frederick Goldman
- Department of Pediatrics, Division of Hematology Oncology, Children's Hospital of Alabama, Birmingham, AL
| | - Zafer Gurel
- Department of Pediatrics, Division of Hematology/Oncology, University of Wisconsin, Madison, WI
| | - Duha Al-Zubeidi
- Department of Pediatrics, University of Iowa Children's Hospital, Iowa City, IA
| | - Ari Freed
- Department of Allergy/Immunology, Children's Hospital Boston, MA
| | - Michael Icardi
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Chunhua Song
- Department of Pediatrics, Division of Hematology/Oncology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Sinisa Dovat
- Department of Pediatrics, Division of Hematology/Oncology, Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
29
|
Abstract
The Ikzf1 gene encodes Ikaros-a DNA-binding zinc finger protein. Ikaros functions as a regulator of gene expression and chromatin remodeling. The biological roles of Ikaros include regulating the development and function of the immune system and acting as a master regulator of hematopoietic differentiation. Genomic profiling studies identified Ikzf1 as an important tumor suppressor in acute lymphoblastic leukemia (ALL), particularly in ALL that is associated with poor prognosis. This review summarizes currently available data regarding the structure and function of Ikaros, the clinical relevance of genetic inactivation of Ikzf1, and signal transduction pathways that regulate Ikaros function.
Collapse
|
30
|
Liu P, Lin Z, Qian S, Qiao C, Qiu H, Wu Y, Li J, Ge Z. Expression of dominant-negative Ikaros isoforms and associated genetic alterations in Chinese adult patients with leukemia. Ann Hematol 2012; 91:1039-49. [PMID: 22323189 DOI: 10.1007/s00277-012-1415-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/19/2012] [Indexed: 01/29/2023]
Abstract
Dominant-negative (DN) Ikaros isoforms, having important roles in pathogenesis of leukemia, are mainly studied in pediatric patients, but little is known about Chinese adult patients. We examined 339 Chinese adult patients with leukemia and demonstrated the different findings between our results and those in several previous studies showing that DN isoforms overexpressed in Philadelphia chromosome positive acute lymphoblastic leukemia (Ph(+)ALL) and lymphoid/mixed blast crisis of chronic myelogenous leukemia. We confirmed that deletion of IKZF1 gene exons 4-7 is responsible for the generation of Ikaros 6 (Ik6). Moreover, we observed that expression of DN isoforms was dynamically consistent with BCR-ABL1 transcript levels, associated with higher incidence of relapse within 3 months or poor response to induction chemotherapy in Ph(+)ALL, correlated with high white blood cell, blast cells, CD34 positive cells, and delayed achieving complete hematological remission in ALL patients. In conclusion, this study provides a rationale for the integration of aberrant Ikaros isoforms, notably Ik6 and Ik10, in the evaluation of adult ALL, particularly in Ph(+)ALL patients.
Collapse
Affiliation(s)
- Ping Liu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zarnegar MA, Rothenberg EV. Ikaros represses and activates PU.1 cell-type-specifically through the multifunctional Sfpi1 URE and a myeloid specific enhancer. Oncogene 2012; 31:4647-54. [PMID: 22231443 DOI: 10.1038/onc.2011.597] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Generation of myeloid and lymphoid cells from progenitors involves dynamic changes in transcription factor expression and use, and disruption of hematopoietic transcription factor function and expression can contribute to leukemic transformation. PU.1 and Ikaros are pivotal factors whose expression and utilization are dynamically altered during hematopoietic development. Here, we demonstrate that expression of PU.1, encoded by the Sfpi1 gene, is divergently regulated by Ikaros in distinct cell type-specific contexts. Chromatin immune precipitation analysis and functional perturbations revealed that Ikaros can directly repress or activate Sfpi1 transcription via different PU.1 cis-elements, with PU.1 and Ikaros collaborating at myeloid-specific elements but not at other elements. Our results thus shed light on how PU.1 and Ikaros can act as lineage competency factors to facilitate both myeloid and lymphoid developmental programs.
Collapse
Affiliation(s)
- M A Zarnegar
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
32
|
Ikaros, CK2 kinase, and the road to leukemia. Mol Cell Biochem 2011; 356:201-7. [PMID: 21750978 DOI: 10.1007/s11010-011-0964-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 01/25/2023]
Abstract
Ikaros encodes a zinc finger protein that is essential for hematopoiesis and that acts as a tumor suppressor in leukemia. Ikaros function depends on its ability to localize to pericentromeric-heterochromatin (PC-HC). Ikaros protein binds to the upstream regulatory elements of target genes, aids in their recruitment to PC-HC, and regulates their transcription via chromatin remodeling. We identified four novel Ikaros phosphorylation sites that are phosphorylated by CK2 kinase. Using Ikaros phosphomimetic and phosphoresistant mutants of the CK2 phosphorylation sites, we demonstrate that (1) CK2-mediated phosphorylation inhibits Ikaros' localization to PC-HC; (2) dephosphorylation of Ikaros at CK2 sites increases its binding to the promoter of the terminal deoxynucleotidetransferase (TdT) gene, leading to TdT repression during thymocyte differentiation; and (3) hyperphosphorylation of Ikaros promotes its degradation by the ubiquitin/proteasome pathway. We show that Ikaros is dephosphorylated by Protein Phosphatase 1 (PP1) via interaction at a consensus PP1-binding motif, RVXF. Point mutations that abolish Ikaros-PP1 interaction result in functional changes in DNA-binding affinity and subcellular localization, similar to those observed in hyperphosphorylated Ikaros and/or Ikaros phosphomimetic mutants. Phosphoresistant Ikaros mutations at CK2 sites restored Ikaros' DNA-binding activity and localization to PC-HC and prevented accelerated Ikaros degradation. These results demonstrate the role of CK2 kinase in lymphocyte differentiation and in regulation of Ikaros' function, and suggest that CK2 promotes leukemogenesis by inhibiting the tumor suppressor activity of Ikaros. We propose a model whereby a balance between CK2 kinase and PP1 phosphatase is essential for normal lymphocyte differentiation and for the prevention of malignant transformation.
Collapse
|
33
|
Li Z, Perez-Casellas LA, Savic A, Song C, Dovat S. Ikaros isoforms: The saga continues. World J Biol Chem 2011; 2:140-5. [PMID: 21765980 PMCID: PMC3135861 DOI: 10.4331/wjbc.v2.i6.140] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 02/05/2023] Open
Abstract
Through alternate splicing, the Ikaros gene produces multiple proteins. Ikaros is essential for normal hematopoiesis and possesses tumor suppressor activity. Ikaros isoforms interact to form dimers and potentially multimeric complexes. Diverse Ikaros complexes produced by the presence of different Ikaros isoforms are hypothesized to confer distinct functions. Small dominant-negative Ikaros isoforms have been shown to inhibit the tumor suppressor activity of full-length Ikaros. Here, we describe how Ikaros activity is regulated by the coordinated expression of the largest Ikaros isoforms IK-1 and IK-H. Although IK-1 is described as full-length Ikaros, IK-H is the longest Ikaros isoform. IK-H, which includes residues coded by exon 3B (60 bp that lie between exons 3 and 4), is abundant in human but not murine hematopoietic cells. Specific residues that lie within the 20 amino acids encoded by exon 3B give IK-H DNA-binding characteristics that are distinct from those of IK-1. Moreover, IK-H can potentiate or inhibit the ability of IK-1 to bind DNA. IK-H binds to the regulatory regions of genes that are upregulated by Ikaros, but not genes that are repressed by Ikaros. Although IK-1 localizes to pericentromeric heterochromatin, IK-H can be found in both pericentromeric and non-pericentromeric locations. Anti-silencing activity of gamma satellite DNA has been shown to depend on the binding of IK-H, but not other Ikaros isoforms. The unique features of IK-H, its influence on Ikaros activity, and the lack of IK-H expression in mice suggest that Ikaros function in humans may be more complex and possibly distinct from that in mice.
Collapse
Affiliation(s)
- Zhanjun Li
- Zhanjun Li, Chunhua Song, Sinisa Dovat, Department of Pediatrics, Pennsylvania State University,College of Medicine, H085, Division of Pediatric Hematology/Oncology, Hershey, PA 17033-0850, United States
| | | | | | | | | |
Collapse
|
34
|
Francis OL, Payne JL, Su RJ, Payne KJ. Regulator of myeloid differentiation and function: The secret life of Ikaros. World J Biol Chem 2011; 2:119-25. [PMID: 21765977 PMCID: PMC3135858 DOI: 10.4331/wjbc.v2.i6.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/02/2011] [Accepted: 05/09/2011] [Indexed: 02/05/2023] Open
Abstract
Ikaros (also known as Lyf-1) was initially described as a lymphoid-specific transcription factor. Although Ikaros has been shown to regulate hematopoietic stem cell renewal, as well as the development and function of cells from multiple hematopoietic lineages, including the myeloid lineage, Ikaros has primarily been studied in context of lymphoid development and malignancy. This review focuses on the role of Ikaros in myeloid cells. We address the importance of post-transcriptional regulation of Ikaros function; the emerging role of Ikaros in myeloid malignancy; Ikaros as a regulator of myeloid differentiation and function; and the selective expression of Ikaros isoform-x in cells with myeloid potential. We highlight the challenges of dissecting Ikaros function in lineage commitment decisions among lymphoid-myeloid progenitors that have emerged as a major myeloid differentiation pathway in recent studies, which leads to reconstruction of the traditional map of murine and human hematopoiesis.
Collapse
Affiliation(s)
- Olivia L Francis
- Olivia L Francis, Rui-Jun Su, Kimberly J Payne, Department of Pathology and Human Anatomy, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 1st Floor, 11085 Campus St, Loma Linda, CA 9350, United States
| | | | | | | |
Collapse
|
35
|
Song C, Li Z, Erbe AK, Savic A, Dovat S. Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1. World J Biol Chem 2011; 2:126-31. [PMID: 21765978 PMCID: PMC3135859 DOI: 10.4331/wjbc.v2.i6.126] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/29/2011] [Accepted: 05/06/2011] [Indexed: 02/05/2023] Open
Abstract
The Ikaros gene encodes a zinc finger, DNA-binding protein that regulates gene transcription and chromatin remodeling. Ikaros is a master regulator of hematopoiesis and an established tumor suppressor. Moderate alteration of Ikaros activity (e.g. haploinsufficiency) appears to be sufficient to promote malignant transformation in human hematopoietic cells. This raises questions about the mechanisms that normally regulate Ikaros function and the potential of these mechanisms to contribute to the development of leukemia. The focus of this review is the regulation of Ikaros function by phosphorylation/dephosphorylation. Site-specific phosphorylation of Ikaros by casein kinase 2 (CK2) controls Ikaros DNA-binding ability and subcellular localization. As a consequence, the ability of Ikaros to regulate cell cycle progression, chromatin remodeling, target gene expression, and thymocyte differentiation are controlled by CK2. In addition, hyperphosphorylation of Ikaros by CK2 leads to decreased Ikaros levels due to ubiquitin-mediated degradation. Dephosphorylation of Ikaros by protein phosphatase 1 (PP1) acts in opposition to CK2 to increase Ikaros stability and restore Ikaros DNA binding ability and pericentromeric localization. Thus, the CK2 and PP1 pathways act in concert to regulate Ikaros activity in hematopoiesis and as a tumor suppressor. This highlights the importance of these signal transduction pathways as potential mediators of leukemogenesis via their role in regulating the activities of Ikaros.
Collapse
Affiliation(s)
- Chunhua Song
- Chunhua Song, Zhanjun Li, Sinisa Dovat, Department of Pediatrics, Pennsylvania State University, College of Medicine, Hershey, PA 17033-0850, United States
| | | | | | | | | |
Collapse
|
36
|
He LC, Xu HZ, Gu ZM, Liu CX, Chen GQ, Wang YF, Wen DH, Wu YL. Ikaros is degraded by proteasome-dependent mechanism in the early phase of apoptosis induction. Biochem Biophys Res Commun 2011; 406:430-4. [PMID: 21329675 DOI: 10.1016/j.bbrc.2011.02.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 02/10/2011] [Indexed: 11/27/2022]
Abstract
Ikaros is an important transcription factor involved in the development and differentiation of hematopoietic cells. In this work, we found that chemotherapeutic drugs or ultraviolet radiation (UV) treatment could reduce the expression of full-length Ikaros (IK1) protein in less than 3h in leukemic NB4, Kasumi-1 and Jurkat cells, prior to the activation of caspase-3. Etoposide treatment could not alter the mRNA level of IK1 but it could shorten the half-life of IK1. Co-treatment with the proteasome inhibitor MG132 or epoxomicin but not calpain inhibitor calpeptin inhibited etoposide-induced Ikaros downregulation. Overexpression of IK1 could accelerate etoposide-induced apoptosis in NB4 cells, as evidenced by the increase of Annexin V positive cells and the more early activation of caspase 3. To our knowledge, this is the first report to show that upon chemotherapy drugs or UV treatment, IK1 could be degraded via the proteasome system in the early phase of apoptosis induction. These data might shed new insight on the role of IK1 in apoptosis and the post-translational regulation of IK1.
Collapse
Affiliation(s)
- Li-Cai He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
LDOC1 mRNA is differentially expressed in chronic lymphocytic leukemia and predicts overall survival in untreated patients. Blood 2011; 117:4076-84. [PMID: 21310924 DOI: 10.1182/blood-2010-09-304881] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously identified LDOC1 as one of the most significantly differentially expressed genes in untreated chronic lymphocytic leukemia (CLL) patients with respect to the somatic mutation status of the immunoglobulin heavy-chain variable region genes. However, little is known about the normal function of LDOC1, its contribution to the pathophysiology of CLL, or its prognostic significance. In this study, we have investigated LDOC1 mRNA expression in a large cohort of untreated CLL patients, as well as in normal peripheral blood B-cell (NBC) subsets and primary B-cell lymphoma samples. We have confirmed that LDOC1 is dramatically down-regulated in mutated CLL cases compared with unmutated cases, and have identified a new splice variant, LDOC1S. We show that LDOC1 is expressed in NBC subsets (naive > memory), suggesting that it may play a role in normal B-cell development. It is also expressed in primary B-cell lymphoma samples, in which its expression is associated with somatic mutation status. In CLL, we show that high levels of LDOC1 correlate with biomarkers of poor prognosis, including cytogenetic markers, unmutated somatic mutation status, and ZAP70 expression. Finally, we demonstrate that LDOC1 mRNA expression is an excellent predictor of overall survival in untreated CLL patients.
Collapse
|
38
|
Deregulation of Aiolos expression in chronic lymphocytic leukemia is associated with epigenetic modifications. Blood 2010; 117:1917-27. [PMID: 21139082 DOI: 10.1182/blood-2010-09-307140] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a clonal accumulation of mature neoplastic B cells that are resistant to apoptosis. Aiolos, a member of the Ikaros family of zinc-finger transcription factors, plays an important role in the control of mature B lymphocyte differentiation and maturation. In this study, we showed that Aiolos expression is up-regulated in B-CLL cells. This overexpression does not implicate isoform imbalance or disturb Aiolos subcellular localization. The chromatin status at the Aiolos promoter in CLL is defined by the demethylation of DNA and an enrichment of euchromatin associated histone markers, such as the dimethylation of the lysine 4 on histone H3. These epigenetic modifications should allow its upstream effectors, such as nuclear factor-κB, constitutively activated in CLL, to gain access to promoter, resulting up-regulation of Aiolos. To determine the consequences of Aiolos deregulation in CLL, we analyzed the effects of Aiolos overexpression or down-regulation on apoptosis. Aiolos is involved in cell survival by regulating the expression of some Bcl-2 family members. Our results strongly suggest that Aiolos deregulation by epigenetic modifications may be a hallmark of CLL.
Collapse
|
39
|
Mizushima Y, Taki T, Shimada A, Yui Y, Hiraumi Y, Matsubara H, Watanabe M, Watanabe KI, Kamitsuji Y, Hayashi Y, Tsukimoto I, Kobayashi R, Horibe K, Tawa A, Nakahata T, Adachi S. Prognostic significance of the BAALC isoform pattern and CEBPA mutations in pediatric acute myeloid leukemia with normal karyotype: a study by the Japanese Childhood AML Cooperative Study Group. Int J Hematol 2010; 91:831-7. [DOI: 10.1007/s12185-010-0585-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 01/18/2023]
|
40
|
Dovat S, Payne KJ. Tumor suppression in T cell leukemia--the role of Ikaros. Leuk Res 2009; 34:416-7. [PMID: 19892402 DOI: 10.1016/j.leukres.2009.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 12/24/2022]
|
41
|
Matulic M, Paradzik M, Cicin-Sain L, Kapitanovic S, Dubravcic K, Batinic D, Antica M. Ikaros family transcription factors in chronic and acute leukemia. Am J Hematol 2009; 84:375-7. [PMID: 19384937 DOI: 10.1002/ajh.21401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ, Dovat S. Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem 2009; 284:13869-13880. [PMID: 19282287 DOI: 10.1074/jbc.m900209200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ikaros encodes a zinc finger protein that is involved in gene regulation and chromatin remodeling. The majority of Ikaros localizes at pericentromeric heterochromatin (PC-HC) where it regulates expression of target genes. Ikaros function is controlled by posttranslational modification. Phosphorylation of Ikaros by CK2 kinase determines its ability to bind DNA and exert cell cycle control as well as its subcellular localization. We report that Ikaros interacts with protein phosphatase 1 (PP1) via a conserved PP1 binding motif, RVXF, in the C-terminal end of the Ikaros protein. Point mutations of the RVXF motif abolish Ikaros-PP1 interaction and result in decreased DNA binding, an inability to localize to PC-HC, and rapid degradation of the Ikaros protein. The introduction of alanine mutations at CK2-phosphorylated residues increases the half-life of the PP1-nonbinding Ikaros mutant. This suggests that dephosphorylation of these sites by PP1 stabilizes the Ikaros protein and prevents its degradation. In the nucleus, Ikaros forms complexes with ubiquitin, providing evidence that Ikaros degradation involves the ubiquitin/proteasome pathway. In vivo, Ikaros can target PP1 to the nucleus, and a fraction of PP1 colocalizes with Ikaros at PC-HC. These data suggest a novel function for the Ikaros protein; that is, the targeting of PP1 to PC-HC and other chromatin structures. We propose a model whereby the function of Ikaros is controlled by the CK2 and PP1 pathways and that a balance between these two signal transduction pathways is essential for normal cellular function and for the prevention of malignant transformation.
Collapse
Affiliation(s)
- Marcela Popescu
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Zafer Gurel
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Tapani Ronni
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Chunhua Song
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Ka Ying Hung
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Kimberly J Payne
- Center for Health Disparities and Molecular Medicine and Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Sinisa Dovat
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108.
| |
Collapse
|
43
|
Meleshko AN, Movchan LV, Belevtsev MV, Savitskaja TV. Relative expression of different Ikaros isoforms in childhood acute leukemia. Blood Cells Mol Dis 2008; 41:278-83. [PMID: 18675565 DOI: 10.1016/j.bcmd.2008.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 06/23/2008] [Indexed: 11/25/2022]
Abstract
Ikaros is a zinc-finger transcriptional factor playing an essential role in lymphoid lineage commitment and differentiation. Animal models and analysis of human Ikaros in leukemic cells demonstrate deregulation of Ikaros expression. Short isoforms with a truncated DNA-binding domain suppress functions of Ikaros in a dominant-negative manner. Previous studies demonstrated that human leukemias are heterogeneous for Ikaros expression. We estimate the relative level of Ikaros mRNA transcripts in 80 childhood ALL cases in comparison with AML and healthy donor groups. We detected eight major isoforms and several minor mutant isoforms in most patients with acute lymphoblastic and myeloid leukemia and in healthy donors, but the relative level of expression varied. The relatively high level of Ik4A isoform, rarely mentioned in previous reports, was detected in all analyzed groups. The ratio between functional and all isoforms was used to determine functional activity of Ikaros. The ratio was significantly less in AML (p=0.027) and BCR-ABL positive ALL (p=0.0028) than in healthy bone marrow. We found a negative association between the Ikaros ratio and myeloid coexpression in B-cell ALL, the most prominent was for CD15. The Ikaros ratio positively correlates with CD5 and negatively with CD7 expression in T-ALL. We suggest that an anti-proliferation and anti-activation effect of full-length Ikaros may be mediated through regulation of CD5 and CD7.
Collapse
Affiliation(s)
- Alexander N Meleshko
- Belarusian Research Center for Pediatric Oncology and Hematology, Minsk, Belarus.
| | | | | | | |
Collapse
|
44
|
Ruiz A, Williams O, Brady HJM. The Ikaros splice isoform, Ikaros 6, immortalizes murine haematopoietic progenitor cells. Int J Cancer 2008; 123:1240-5. [PMID: 18623087 DOI: 10.1002/ijc.23706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative pre-mRNA splicing is emerging as a major control point in both the initiation and progression of tumourigenesis. Overexpression of the dominant negative Ikaros splice isoform, Ik6, is found in many human cancers particularly leukaemias. Ik6 has been demonstrated to have a role in cell survival in both myeloid- and lymphoid cytokine-dependent cell lines. To investigate the oncogenic potential of Ik6, we retrovirally transduced murine haematopoietic progenitor cells with Ik6 and have analysed the effects on proliferation and differentiation of these precursors using myeloid and lymphoid in vitro colony formation assays. We found that Ik6 can immortalize haematopoietic progenitor cells in myeloid conditions. Using an in vivo transplantation assay, we found that Ik6 favours reconstitution by haematopoietic precursors. These findings suggest that Ik6 may play an important role in the generation of the leukaemic phenotype.
Collapse
Affiliation(s)
- Anna Ruiz
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | | | | |
Collapse
|
45
|
Kano G, Morimoto A, Takanashi M, Hibi S, Sugimoto T, Inaba T, Yagi T, Imashuku S. Ikaros dominant negative isoform (Ik6) induces IL-3-independent survival of murine pro-B lymphocytes by activating JAK-STAT and up-regulating Bcl-xl levels. Leuk Lymphoma 2008; 49:965-73. [PMID: 18464116 DOI: 10.1080/10428190801993462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ikaros is an essential regulator of lymphocyte differentiation. Mice transgenic for the Ikaros dominant negative (DN) mutation rapidly develop lymphoid malignancies. Various human leukemias have also been reported to express Ikaros DN isoforms, but its role in leukemogenesis is yet to be defined. We demonstrate that overexpressed Ikaros DN (Ik6) prolonged the survival of two different murine pro-B cell lines in cytokine deprived condition, and this was associated with increased expression of Bcl-xl. A survey of the upstream controller(s) of Bcl-xl expression revealed Ik6 overexpression enhanced the phosphorylation of JAK2 and STAT5. Interestingly, the Ik6 expressing cell lines showed reduced expression of B-cell differentiation surface marker CD45R (B220), which is also known as a JAK2 inhibitor. Although further evaluation with human clinical materials are required, these results propose a putative role of Ik6 in the development of B-lineage acute lymphoblastic leukemia, by activating the JAK2-STAT5 pathway and thus stimulating the production of Bcl-xl.
Collapse
Affiliation(s)
- Gen Kano
- Department of Paediatrics, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood 2008; 112:3847-55. [PMID: 18650450 DOI: 10.1182/blood-2007-09-112631] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ikaros plays an important role in the control of differentiation and proliferation of all lymphoid lineages. The expression of short isoforms lacking DNA-binding motifs alters the differentiation capacities of hematopoietic progenitors, arresting lineage commitment. We sought to determine whether molecular abnormalities involving the IKZF1 gene were associated with resistance to tyrosine kinase inhibitors (TKIs) in Ph+ acute lymphoblastic leukemia (ALL) patients. Using reverse-transcribed polymerase chain reaction, cloning, and nucleotide sequencing, only the non-DNA-binding Ik6 isoform was detected in 49% of Ph+ ALL patients. Ik6 was predominantly localized to the cytoplasm versus DNA-binding Ik1 or Ik2 isoforms, which showed nuclear localization. There was a strong correlation between nonfunctional Ikaros isoforms and BCR-ABL transcript level. Furthermore, patient-derived leukemia cells expressed oncogenic Ikaros isoforms before TKI treatment, but not during response to TKIs, and predominantly at the time of relapse. In vitro overexpression of Ik6 strongly increased DNA synthesis and inhibited apoptosis in TKI-sensitive cells. Genomic sequence and computational analyses of exon splice junction regions of IKZF1 in Ph+ ALL patients predicted several mutations that may alter alternative splicing. These results establish a previously unknown link between specific molecular defects that involve alternative splicing of the IKZF1 gene and the resistance to TKIs in Ph+ ALL patients.
Collapse
|
47
|
|
48
|
Abstract
Abstract
The Aiolos transcription factor, member of the Ikaros family of zinc finger proteins, plays an important role in the control of mature B lymphocyte differentiation and proliferation, and its function appears to be modulated through alternative splicing. To assess Aiolos isoform role in humans' pathologies, we studied Aiolos variant distribution and expression in mature B lymphoproliferative disorders (chronic lymphocytic leukemia [CLL] and other B-cell lymphomas). We demonstrated that more than 80% of expressed Aiolos in normal as well as in malignant B cells is of the hAio1 type, and we showed for the first time a homogeneous overexpression of the total amounts of Aiolos transcripts in the B cells of CLL patients, independently of ZAP-70 and IgVH mutational status prognosis factors. This up-regulation of Aiolos, confirmed at protein level, seems independent of Aiolos promoter H3K9 acetylation and H3K4 trimethylation.
Collapse
|
49
|
Affiliation(s)
- Patrick A Zweidler-McKay
- The Children's Cancer Hospital at the University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
50
|
Tsuzuki S, Hong D, Gupta R, Matsuo K, Seto M, Enver T. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. PLoS Med 2007; 4:e172. [PMID: 17503961 PMCID: PMC1868041 DOI: 10.1371/journal.pmed.0040172] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 03/19/2007] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo. METHODS AND FINDINGS The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo. CONCLUSIONS These data demonstrate that the "a" isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood transplantation in adults, in whom stem and progenitor cell numbers are often limiting.
Collapse
Affiliation(s)
- Shinobu Tsuzuki
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|