1
|
Wiedemeyer SJA, Wu G, Lang‐Henkel H, Whisstock JC, Law RHP, Steinmetzer T. Macrocyclic Inhibitors Targeting the Prime Site of the Fibrinolytic Serine Protease Plasmin. ChemMedChem 2024; 19:e202400360. [PMID: 39118493 PMCID: PMC11617653 DOI: 10.1002/cmdc.202400360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Two series of macrocyclic inhibitors addressing the S1 pocket and the prime site of the fibrinolytic serine protease plasmin have been developed. In the first series, a P1 tranexamoyl residue was coupled to 4-aminophenylalanine in P1' position, which provided moderately potent inhibitors with inhibition constants around 1 μM. In the second series, a substituted biphenylalanine was incorporated as P1' residue leading to approximately 1000-fold stronger plasmin inhibitors, the best compounds possess subnanomolar inhibition constants. The most effective compounds already exhibit a certain selectivity as plasmin inhibitors compared to other trypsin-like serine proteases such as trypsin, plasma kallikrein, thrombin, activated protein Ca, as well as factors XIa and Xa. For inhibitor 28 of the second series, the co-crystal structure in complex with a Ser195Ala microplasmin mutant revealed that the P2' residue adopts multiple conformations. Most polar contacts to plasmin and surrounding water molecules are mediated through the P1 tranexamoyl residue, whereas the bound conformation of the macrocycle is mainly stabilized by two intramolecular hydrogen bonds.
Collapse
Affiliation(s)
- Simon J. A. Wiedemeyer
- Department of PharmacyInstitute of Pharmaceutical ChemistryPhilipps University MarburgMarbacher Weg 6D-35032MarburgGermany
| | - Guojie Wu
- Biomedicine Discovery InstituteDepartment of Biochemistry and Molecular BiologyMonash UniversityMelbourne3800Australia
| | - Heike Lang‐Henkel
- Department of PharmacyInstitute of Pharmaceutical ChemistryPhilipps University MarburgMarbacher Weg 6D-35032MarburgGermany
| | - James C Whisstock
- Biomedicine Discovery InstituteDepartment of Biochemistry and Molecular BiologyMonash UniversityMelbourne3800Australia
| | - Ruby H. P. Law
- Biomedicine Discovery InstituteDepartment of Biochemistry and Molecular BiologyMonash UniversityMelbourne3800Australia
| | - Torsten Steinmetzer
- Department of PharmacyInstitute of Pharmaceutical ChemistryPhilipps University MarburgMarbacher Weg 6D-35032MarburgGermany
| |
Collapse
|
2
|
Xie W, Donat A, Jiang S, Baranowsky A, Keller J. The emerging role of tranexamic acid and its principal target, plasminogen, in skeletal health. Acta Pharm Sin B 2024; 14:2869-2884. [PMID: 39027253 PMCID: PMC11252461 DOI: 10.1016/j.apsb.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
The worldwide burden of skeletal diseases such as osteoporosis, degenerative joint disease and impaired fracture healing is steadily increasing. Tranexamic acid (TXA), a plasminogen inhibitor and anti-fibrinolytic agent, is used to reduce bleeding with high effectiveness and safety in major surgical procedures. With its widespread clinical application, the effects of TXA beyond anti-fibrinolysis have been noticed and prompted renewed interest in its use. Some clinical trials have characterized the effects of TXA on reducing postoperative infection rates and regulating immune responses in patients undergoing surgery. Also, several animal studies suggest potential therapeutic effects of TXA on skeletal diseases such as osteoporosis and fracture healing. Although a direct effect of TXA on the differentiation and function of bone cells in vitro was shown, few mechanisms of action have been reported. Here, we summarize recent findings of the effects of TXA on skeletal diseases and discuss the underlying plasminogen-dependent and -independent mechanisms related to bone metabolism and the immune response. We furthermore discuss potential novel indications for TXA application as a treatment strategy for skeletal diseases.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
3
|
El Halawany M, Khashaba M, AbouGhaly MHH, Latif R. Tranexamic acid loaded in a physically crosslinked trilaminate dressing for local hemorrhage control: Preparation, characterization, and in-vivo assessment using two different animal models. Int J Pharm 2024; 659:124219. [PMID: 38734277 DOI: 10.1016/j.ijpharm.2024.124219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
This work aimed at formulating a trilaminate dressing loaded with tranexamic acid. It consisted of a layer of 3 % sodium hyaluronate to initiate hemostasis. It was followed by a mixed porous layer of 5 % polyvinyl alcohol and 2 % kappa-carrageenan. This layer acted as a drug reservoir that controlled its release. The third layer was 5 % ethyl cellulose backing layer for unidirectional release of tranexamic acid towards the wound. The 3 layers were physically crosslinked by hydrogen bonding as confirmed by Infrared spectroscopy. Swelling and release studies were performed, and results proposed that increasing number of layers decreased swelling properties and sustained release of tranexamic acid for 8 h. In vitro blood coagulation study was performed using human blood and showed that the dressing significantly decreased coagulation time by 70.5 % compared to the negative control. In vivo hemostatic activity was evaluated using tail amputation model in Wistar rats. Statistical analysis showed the dressing could stop bleeding in a punctured artery of the rat tail faster than the negative control by 59 %. Cranial bone defect model in New Zealand rabbits was performed to check for bone hemostasis and showed significant decrease in the hemostatic time by 80 % compared to the control.
Collapse
Affiliation(s)
- Mai El Halawany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt.
| | - Mohamed Khashaba
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Cairo University, 12 Saray El Manial Street, Cairo 11562, Egypt
| | - Mohamed H H AbouGhaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt; Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University, Km. 22 Cairo-Alex Road, Giza P.O. Box 12577, Egypt
| | - Randa Latif
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
| |
Collapse
|
4
|
Banerjee S, Mahesh Y, Prabhu D, Sekar K, Sen P. Identification of potent anti-fibrinolytic compounds against plasminogen and tissue-type plasminogen activator employing in silico approaches. J Biomol Struct Dyn 2024; 42:3204-3222. [PMID: 37216286 DOI: 10.1080/07391102.2023.2213343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
The zymogen protease Plasminogen (Plg) and its active form plasmin (Plm) carry out important functions in the blood clot disintegration (breakdown of fibrin fibers) process. Inhibition of plasmin effectively reduces fibrinolysis to circumvent heavy bleeding. Currently, available Plm inhibitor tranexamic acid (TXA) used for treating severe hemorrhages is associated with an increased incidence of seizures which in turn were traced to gamma-aminobutyric acid antagonistic activity (GABAa) in addition to having multiple side effects. Fibrinolysis can be suppressed by targeting the three important protein domains: the kringle-2 domain of tissue plasminogen activator, the kringle-1 domain of plasminogen, and the serine protease domain of plasminogen. In the present study, one million molecules were screened from the ZINC database. These ligands were docked to their respective protein targets using Autodock Vina, Schrödinger Glide, and ParDOCK/BAPPL+. Thereafter, the drug-likeness properties of the ligands were evaluated using Discovery Studio 3.5. Subsequently, we subjected the protein-ligand complexes to molecular dynamics simulation of 200 ns in GROMACS. The identified ligands P76(ZINC09970930), C97(ZINC14888376), and U97(ZINC11839443) for each protein target are found to impart higher stability and greater compactness to the protein-ligand complexes. Principal component analysis (PCA) implicates, that the identified ligands occupy smaller phase space, form stable clusters, and provide greater rigidity to the protein-ligand complexes. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis reveals that P76, C97, and U97 exhibit better binding free energy (ΔG) when compared to that of the standard ligands. Thus, our findings can be useful for the development of promising anti-fibrinolytic agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suparna Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Yeshwanth Mahesh
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dhamodharan Prabhu
- Center for Drug Discovery, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Bosilah AH, Eldesouky E, Alghazaly MM, Farag E, Sultan EEK, Alazazy H, Mohamed A, Ali SMS, Elsror AGA, Mahmoud M, Abd Elhalim AEM, Kamel MA, Abd-ElGawad M, Sayed FM, Bakry MS. Comparative study between oxytocin and combination of tranexamic acid and ethamsylate in reducing intra-operative bleeding during emergency and elective cesarean section after 38 weeks of normal pregnancy. BMC Pregnancy Childbirth 2023; 23:433. [PMID: 37308871 PMCID: PMC10259003 DOI: 10.1186/s12884-023-05728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
OBJECTIVE Cesarean Section (CS) is associated with an increased risk of hemorrhage. Many drugs are used to decrease this risk. We aim to compare the combination of ethamsylate and tranexamic acid, oxytocin, and placebo in women undergoing CS. METHODS We conducted a double-blinded, randomized, placebo-controlled trial between October and December 2020 in four university hospitals in Egypt. The study included all pregnant women in labor without any complications who accepted to participate in the study between October and December 2020. The participants were divided into three groups. The subjects were randomly allocated to receive either oxytocin (30 IU in 500 ml normal saline during cesarean section), combined one gram of tranexamic acid with 250 mg of ethamsylate once before skin incision, or distilled water. Our main outcome was the amount of blood loss during the operation. The secondary outcomes were the need for blood transfusion, hemoglobin and hematocrit changes, hospital stay, operative complications, and the need for a hysterectomy. The one-way ANCOVA test was used to compare the quantitative variables between the three groups while the Chi-square test was used to compare the qualitative variables. Post hoc analysis then was performed to compare the difference between every two groups regarding the quantitative variables. RESULTS Our study included 300 patients who were divided equally into three groups. Tranexamic acid with ethamsylate showed the least intra-operative blood loss (605.34 ± 158.8 ml) compared to oxytocin (625.26 ± 144.06) and placebo (669.73 ± 170.69), P = 0.015. In post hoc analysis, only tranexamic acid with ethamsylate was effective in decreasing the blood loss compared to placebo (P = 0.013); however, oxytocin did not reduce blood loss compared to saline (P = 0.211) nor to tranexamic acid with ethamsylate (P = 1). Other outcomes and CS complications showed no significant difference between the three groups except for post-operative thrombosis which was significantly higher in the tranexamic and ethamsylate group, P < 0.00001 and the need for a hysterectomy which was significantly increased in the placebo group, P = 0.017. CONCLUSION The combination of tranexamic acid and ethamsylate was significantly associated with the least amount of blood loss. However, in pairwise comparisons, only tranexamic acid with ethamsylate was significantly better than saline but not with oxytocin. Both oxytocin and tranexamic acid with ethamsylate were equally effective in reducing intra-operative blood loss and the risk of hysterectomy; however, tranexamic acid with ethamsylate increased the risk of thrombotic events. Further research with a larger number of participants is needed. TRIAL REGISTRATION The study was registered on Pan African Clinical Trials Registry with the following number: PACTR202009736186159 and was approved on 04/09/2020.
Collapse
Affiliation(s)
- Almandouh H Bosilah
- Department of Obstetrics and Gynecology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Elsayed Eldesouky
- Department of Obstetrics and Gynecology, Faculty of Medicine, Alazhar University, Cairo, Egypt
| | - Moatazza Mahdy Alghazaly
- Department of Obstetrics and Gynecology, Faculty of Medicine, Alazhar University for Girls, Cairo, Egypt
| | - Elsayed Farag
- Department of Obstetrics and Gynecology, Faculty of Medicine, Alazhar University, Cairo, Egypt
| | | | - Hosam Alazazy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Alazhar University, Cairo, Egypt
| | - Attia Mohamed
- Department of Obstetrics and Gynecology, Faculty of Medicine, Alazhar University, Cairo, Egypt
| | - Soliman Mohamed Said Ali
- Department of Obstetrics and Gynecology, Faculty of Medicine, Alazhar University, Domiata, Egypt
| | | | - Mohamed Mahmoud
- Department of Obstetrics and Gynecology, Faculty of Medicine, Alazhar University, Cairo, Egypt
| | | | | | | | | | - Mohamed Sobhy Bakry
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
6
|
Wiedemeyer SJA, Wu G, Pham TLP, Lang-Henkel H, Perez Urzua B, Whisstock JC, Law RHP, Steinmetzer T. Synthesis and Structural Characterization of Macrocyclic Plasmin Inhibitors. ChemMedChem 2023; 18:e202200632. [PMID: 36710259 DOI: 10.1002/cmdc.202200632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Two series of macrocyclic plasmin inhibitors with a C-terminal benzylamine group were synthesized. The substitution of the N-terminal phenylsulfonyl group of a previously described inhibitor provided two analogues with sub-nanomolar inhibition constants. Both compounds possess a high selectivity against all other tested trypsin-like serine proteases. Furthermore, a new approach was used to selectively introduce asymmetric linker segments. Two of these compounds inhibit plasmin with Ki values close to 2 nM. For the first time, four crystal structures of these macrocyclic inhibitors could be determined in complex with a Ser195Ala microplasmin mutant. The macrocyclic core segment of the inhibitors binds to the open active site of plasmin without any steric hindrance. This binding mode is incompatible with other trypsin-like serine proteases containing a sterically demanding 99-hairpin loop. The crystal structures obtained experimentally explain the excellent selectivity of this inhibitor type as previously hypothesized.
Collapse
Affiliation(s)
- Simon J A Wiedemeyer
- Department of Pharmacy Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Guojie Wu
- Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology, Monash University, Melbourne, 3800, Australia
| | - T L Phuong Pham
- Department of Pharmacy Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Heike Lang-Henkel
- Department of Pharmacy Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Benjamin Perez Urzua
- Department of Cellular and Molecular Biology Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - James C Whisstock
- Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology, Monash University, Melbourne, 3800, Australia
| | - Ruby H P Law
- Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology, Monash University, Melbourne, 3800, Australia
| | - Torsten Steinmetzer
- Department of Pharmacy Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| |
Collapse
|
7
|
Kolodziejczyk-Czepas J, Czepas J. Plant-Derived Compounds and Extracts as Modulators of Plasmin Activity-A Review. Molecules 2023; 28:molecules28041677. [PMID: 36838662 PMCID: PMC9965408 DOI: 10.3390/molecules28041677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Functionality of the fibrinolytic system is based on activity of its central enzyme, plasmin, responsible for the removal of fibrin clots. Besides the hemostasis, fibrinolytic proteins are also involved in many other physiological and pathological processes, including immune response, extracellular matrix degradation, cell migration, and tissue remodeling. Both the impaired and enhanced activity of fibrinolytic proteins may result in serious physiological consequences: prothrombotic state or excessive bleeding, respectively. However, current medicine offers very few options for treating fibrinolytic disorders, particularly in the case of plasmin inhibition. Although numerous attempts have been undertaken to identify natural or to develop engineered fibrinolytic system modulators, structural similarities within serine proteases of the hemostatic system and pleiotropic activity of fibrinolytic proteins constitute a serious problem in discovering anti- or profibrinolytic agents that could precisely affect the target molecules and reduce the risk of side effects. Therefore, this review aims to present a current knowledge of various classes of natural inhibitors and stimulators of the fibrinolytic system being well-defined low-molecular plant secondary metabolites or constituents of plant extracts as well as plant peptides. This work also discusses obstacles caused by low specificity of most of natural compounds and, hence, outlines recent trends in studies aimed at finding more efficient modulators of plasmin activity, including investigation of modifications of natural pharmacophore templates.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| | - Jan Czepas
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
8
|
The serine protease plasmin plays detrimental roles in epithelial sodium channel activation and podocyte injury in Dahl salt-sensitive rats. Hypertens Res 2023; 46:50-62. [PMID: 36241707 DOI: 10.1038/s41440-022-01064-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 02/03/2023]
Abstract
Salt-sensitive hypertension is associated with poor clinical outcomes. The epithelial sodium channel (ENaC) in the kidney plays pivotal roles in sodium reabsorption and blood pressure regulation, in which its γ subunit is activated by extracellular serine proteases. In proteinuric nephropathies, plasmin filtered through injured glomeruli reportedly activates γENaC in the distal nephron and causes podocyte injury. We previously reported that Dahl salt-sensitive (DS) rats fed a high-salt (HS) diet developed hypertension and proteinuria along with γENaC activation and that a synthetic serine protease inhibitor, camostat mesilate, mitigated these changes. However, the role of plasmin in DS rats remained unclear. In this study, we evaluated the relationship between plasmin and hypertension as well as podocyte injury and the effects of plasmin inhibitors in DS rats. Five-week-old DS rats were divided into normal-salt diet, HS diet, and HS+plasmin inhibitor (either tranexamic acid [TA] or synthetic plasmin inhibitor YO-2) groups. After blood pressure measurement and 24 h urine collection over 5 weeks, rats were sacrificed for biochemical analyses. The HS group displayed severe hypertension and proteinuria together with activation of plasmin in urine and γENaC in the kidney, which was significantly attenuated by YO-2 but not TA. YO-2 inhibited the attachment of plasmin(ogen) to podocytes and alleviated podocyte injury by inhibiting apoptosis and inflammatory/profibrotic cytokines. YO-2 also suppressed upregulation of protease-activated receptor-1 and phosphorylated ERK1/2. These results indicate an important role of plasmin in the development of salt-sensitive hypertension and related podocyte injury, suggesting plasmin inhibition as a potential therapeutic strategy.
Collapse
|
9
|
El Halawany M, Latif R, AbouGhaly MHH. Hemostatic Alginate/Nano-Hydroxyapatite Composite Aerogel Loaded with Tranexamic Acid for the Potential Protection against Alveolar Osteitis. Pharmaceutics 2022; 14:pharmaceutics14102255. [PMID: 36297689 PMCID: PMC9608763 DOI: 10.3390/pharmaceutics14102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Wound control in patients on anticoagulants is challenging and often leads to poor hemostasis. They have a higher tendency to develop alveolar osteitis after tooth extraction. The application of a hemostatic dressing that has a high absorbing capacity and is loaded with an antifibrinolytic drug could help in controlling the bleeding. Alginate/nano-hydroxyapatite (SA/Nano-HA) composite aerogels loaded with tranexamic acid (TXA) were prepared. Nano-HA served as a reinforcing material for the alginate matrix and a source of calcium ions that helps in blood clotting. It influenced the porosity and the water uptake capacity. TXA release from SA/Nano-HA aerogels showed a biphasic profile for up to 4 h. Blood coagulation studies were performed on human whole blood. The TXA-loaded aerogel significantly reduced the clotting time by 69% compared to the control (p < 0.0001). Recalcification time was significantly reduced by 80% (p < 0.0001). Scanning electron microscopy analysis revealed the porous nature of the aerogels and the ability of the optimum aerogel to activate and adhere platelets to its porous surface. The cell migration assay showed that there was a delay in wound healing caused by the TXA aerogel compared to the control sample after treating human fibroblasts. Results suggest that the developed aerogel is a promising dressing that will help in hemostasis after tooth extraction.
Collapse
Affiliation(s)
- Mai El Halawany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Correspondence: ; Tel.: +20-10-0846-3596; Fax: +20-22-362-8246
| | - Randa Latif
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
| | - Mohamed H. H. AbouGhaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University, Km. 22 Cairo-Alex Road, Giza P.O. Box 12577, Egypt
| |
Collapse
|
10
|
Injectable adhesive self-healing biocompatible hydrogel for haemostasis, wound healing, and postoperative tissue adhesion prevention in nephron-sparing surgery. Acta Biomater 2022; 152:157-170. [PMID: 36100176 DOI: 10.1016/j.actbio.2022.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023]
Abstract
Nephron-sparing surgery is a well-established treatment in patients with T1a renal cell carcinoma; however, the complex suturing process prolongs warm ischaemia time, affects the preservation of normal renal parenchymal function, and causes avoidable postoperative tissue adhesion complications, including chronic abdominal pain, intestinal obstruction, and female infertility. Hence, the design of multifunctional biomaterials with haemostasis, postoperative wound management, and postoperative tissue adhesion prevention properties for nephron-sparing surgeries is urgently needed. In this study, a series of injectable adhesive multifunctional biocompatible hydrogels were designed based on the free-radical polymerisation of monomers acryloyl-6-aminocaproic acid (AA) and N-acryloyl 2-glycine (NAG), and the ionic coordination between Ca2+ and the abundant carboxyl groups in AA and NAG. AA/NAG/Ca (AA, NAG, and Ca refer to acryloyl-6-aminocaproic acid, N-acryloyl 2-glycine and calcium chloride, respectively) hydrogel exhibited good mechanical properties, swelling and adhesion properties, flexibility, in vitro blood-clotting ability, and cytocompatibility. In vivo experiments on liver injury models and rat/rabbit nephron-sparing surgery models elucidated that the AA/NAG/Ca hydrogel had haemostasis performance and wound healing properties that led to short bleeding time, reduced bleeding volume, and well-organised nephron structures. An abdomen-caecum adhesion model indicated that the AA/NAG/Ca hydrogel showed excellent anti-adhesion properties. In summary, this multifunctional hydrogel exhibited potential for improving haemostasis and wound management in nephron-sparing surgeries, showing potential for clinical application. STATEMENT OF SIGNIFICANCE: Extended warm ischemia time during nephron sparing surgery negatively affected postoperative renal function due to the need for hemostasis at the wound with abundant blood supply, and postoperative wound healing and additional adhesions caused by the surgical procedure deserve attention. Based on the efficient and stable adhesion properties of hydrogels and the ability to promote wound healing. Herein, a series of adhesive self-healing biocompatible hydrogels were prepared based on free-radical polymerization of acryloyl-6-aminocaproic acid (AA) and N-acryloyl 2-glycine (NAG) and the ionic coordination between Ca2+ with the abundant carboxyl groups in AA and NAG. AA/NAG/Ca hydrogel showed hemostasis property in nephron sparing surgery model, promote kidney wound healing, and could perform anti-postoperative adhesion efficacy in an abdomen-caecum adhesion model.
Collapse
|
11
|
Ausen K, Fossmark R, Spigset O, Pleym H. Safety and Efficacy of Local Tranexamic Acid for the Prevention of Surgical Bleeding in Soft-Tissue Surgery: A Review of the Literature and Recommendations for Plastic Surgery. Plast Reconstr Surg 2022; 149:774-787. [PMID: 35196701 PMCID: PMC8860217 DOI: 10.1097/prs.0000000000008884] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/13/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although high-bleed surgery routinely utilizes the antifibrinolytic drug tranexamic acid, most plastic surgical procedures are conducted in soft tissue with low-volume bleeding. Unease regarding possible systemic adverse effects prevents widespread systemic use, but local use of tranexamic acid is gaining popularity among plastic surgeons. Randomized controlled trials on topical use of tranexamic acid are mainly from high-bleed surgeries, and few studies address the effect in soft tissue. This article reviews the scientific evidence regarding local use of tranexamic acid in soft-tissue surgery, discusses pharmacological effects and possible adverse reactions, and presents recommendations for use in plastic surgery. METHODS A systematic search of databases for studies on local use of tranexamic acid in soft-tissue surgery was performed. Randomized controlled trials were included for a systematic review on effect; a narrative review regarding other clinically relevant aspects is based on extensive literature searches combined with the authors' own research. RESULTS Fourteen randomized controlled trials, including 1923 patients, were included in the systematic review on local use of tranexamic acid in soft-tissue surgery. CONCLUSIONS Local use of tranexamic acid may reduce blood loss comparably to intravenous prophylactic use with negligible risk of systemic adverse effects, but high-quality randomized controlled trials are few. Prolonged exposure to high local concentrations is discouraged, and direct contact with the central nervous system may cause seizures. No single superior means of administration or dosage is supported in the literature, and lowest effective dose is unknown. There may not be one single ideal dosing regimen, but rather many possibilities adaptable for different surgical situations.
Collapse
Affiliation(s)
- Kjersti Ausen
- From the Section for Plastic and Reconstructive Surgery, Clinic of Surgery, Department of Clinical Pharmacology, and Clinic of Anesthesia and Intensive Care, St. Olav’s University Hospital; and Departments of Circulation and Medical Imaging and Clinical and Molecular Medicine, Norwegian University of Science and Technology
| | - Reidar Fossmark
- From the Section for Plastic and Reconstructive Surgery, Clinic of Surgery, Department of Clinical Pharmacology, and Clinic of Anesthesia and Intensive Care, St. Olav’s University Hospital; and Departments of Circulation and Medical Imaging and Clinical and Molecular Medicine, Norwegian University of Science and Technology
| | - Olav Spigset
- From the Section for Plastic and Reconstructive Surgery, Clinic of Surgery, Department of Clinical Pharmacology, and Clinic of Anesthesia and Intensive Care, St. Olav’s University Hospital; and Departments of Circulation and Medical Imaging and Clinical and Molecular Medicine, Norwegian University of Science and Technology
| | - Hilde Pleym
- From the Section for Plastic and Reconstructive Surgery, Clinic of Surgery, Department of Clinical Pharmacology, and Clinic of Anesthesia and Intensive Care, St. Olav’s University Hospital; and Departments of Circulation and Medical Imaging and Clinical and Molecular Medicine, Norwegian University of Science and Technology
| |
Collapse
|
12
|
El Salamouni NS, Buckley BJ, Ranson M, Kelso MJ, Yu H. Urokinase plasminogen activator as an anti-metastasis target: inhibitor design principles, recent amiloride derivatives, and issues with human/mouse species selectivity. Biophys Rev 2022; 14:277-301. [PMID: 35340592 PMCID: PMC8921380 DOI: 10.1007/s12551-021-00921-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/18/2021] [Indexed: 01/09/2023] Open
Abstract
The urokinase plasminogen activator (uPA) is a widely studied anticancer drug target with multiple classes of inhibitors reported to date. Many of these inhibitors contain amidine or guanidine groups, while others lacking these groups show improved oral bioavailability. Most of the X-ray co-crystal structures of small molecule uPA inhibitors show a key salt bridge with the side chain carboxylate of Asp189 in the S1 pocket of uPA. This review summarises the different classes of uPA inhibitors, their binding interactions and experimentally measured inhibitory potencies and highlights species selectivity issues with attention to recently described 6-substituted amiloride and 5‑N,N-(hexamethylene)amiloride (HMA) derivatives.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Benjamin J. Buckley
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Michael J. Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| |
Collapse
|
13
|
Kasinathan G, Sathar J. Blood management strategies in congenital Glanzmann thrombasthenia at a hematology referral center. Blood Res 2021; 56:315-321. [PMID: 34916340 PMCID: PMC8721450 DOI: 10.5045/br.2021.2021165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background Glanzmann thrombasthenia is associated with abnormalities in the glycoprotein IIb/IIIa receptor. This study, conducted at Ampang Hospital, Malaysia, aimed to assess outcomes of blood management strategies for Glanzmann thrombasthenia. Methods Ten patients with Glanzmann thrombasthenia aged 9 years (2009‒2018) were examined. Data on clinical characteristics, transfusion practices, and patient blood management were obtained from medical records. Patient blood management methods included parenteral iron, erythropoietin, hormonal pills, intrauterine progesterone contraceptive devices, tranexamic acid, and recombinant factor VIIa. Primary outcomes were hemoglobin levels and the proportion of patients who received blood transfusion. Secondary outcomes were morbidity and mortality. Results The median age at diagnosis was 8.2 years (range, 1‒15 yr). The female-to-male ratio was 9:1. Eight patients had type 2 disease (5‒20% of normal GPIIb/IIIa), and two patients had type 1 disease (normal GPIIb/IIIa <5%). All patients had iron deficiency. All female patients presented with significant menorrhagia. Other bleeding symptoms included epistaxis, spontaneous skin bruising, hemoptysis, gingival bleeding, knee hemarthrosis, and pelvic hematoma. No patient experienced life-threatening bleeding. Our patients had a mean hemoglobin level of 5.6 g/dL at diagnosis. All patients were optimized using non-transfusion methods as described above. Our patient had a current mean hemoglobin level of 11 g/dL. Approximately 70% (7/10) of patients did not experience receiving blood transfusions in the last 5 years. No patient experienced non-transfusion-related morbidities such as sepsis, thromboembolism, or cardiorespiratory events. Conclusion High cost, transfusion-related adverse events, and immunomodulation could be effectively prevented by avoiding unnecessary blood transfusions.
Collapse
Affiliation(s)
| | - Jameela Sathar
- Department of Hematology, Ampang Hospital, Selangor, Malaysia
| |
Collapse
|
14
|
Osorio-Aguilar Y, Gonzalez-Vazquez MC, Hernandez-Ceron DE, Lozano-Zarain P, Martinez-Laguna Y, Gonzalez-Bonilla CR, Rocha-Gracia RDC, Carabarin-Lima A. Structural Characterization of Haemophilus influenzae Enolase and Its Interaction with Human Plasminogen by In Silico and In Vitro Assays. Pathogens 2021; 10:pathogens10121614. [PMID: 34959569 PMCID: PMC8707213 DOI: 10.3390/pathogens10121614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Haemophilus influenzae is the causal agent of invasive pediatric diseases, such as meningitis, epiglottitis, pneumonia, septic arthritis, pericarditis, cellulitis, and bacteremia (serotype b). Non-typeable H. influenzae (NTHi) strains are associated with localized infections, such as otitis media, conjunctivitis, sinusitis, bronchitis, and pneumonia, and can cause invasive diseases, such as as meningitis and sepsis in immunocompromised hosts. Enolase is a multifunctional protein and can act as a receptor for plasminogen, promoting its activation to plasmin, which leads to the degradation of components of the extracellular matrix, favoring host tissue invasion. In this study, using molecular docking, three important residues involved in plasminogen interaction through the plasminogen-binding motif (251EFYNKENGMYE262) were identified in non-typeable H. influenzae enolase (NTHiENO). Interaction with the human plasminogen kringle domains is conformationally stable due to the formation of four hydrogen bonds corresponding to enoTYR253-plgGLU1 (K2), enoTYR253-plgGLY310 (K3), and enoLYS255-plgARG471/enoGLU251-plgLYS468 (K5). On the other hand, in vitro assays, such as ELISA and far-western blot, showed that NTHiENO is a plasminogen-binding protein. The inhibition of this interaction using polyclonal anti-NTHiENO antibodies was significant. With these results, we can propose that NTHiENO–plasminogen interaction could be one of the mechanisms used by H. influenzae to adhere to and invade host cells.
Collapse
Affiliation(s)
- Yesenia Osorio-Aguilar
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Maria Cristina Gonzalez-Vazquez
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | | | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Ygnacio Martinez-Laguna
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | | | - Rosa del Carmen Rocha-Gracia
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
| | - Alejandro Carabarin-Lima
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (M.C.G.-V.); (P.L.-Z.); (Y.M.-L.); (R.d.C.R.-G.)
- Licenciatura en Biotecnología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Correspondence: ; Tel.: +52-(222)-229-5500 (ext. 3965)
| |
Collapse
|
15
|
Perskin CR, Littlefield CP, Wang C, Umeh U, Egol KA. The Efficacy and Safety of Tranexamic Acid Treatment in Orthopaedic Trauma Surgery. JBJS Rev 2021; 9:01874474-202107000-00009. [PMID: 34270510 DOI: 10.2106/jbjs.rvw.20.00292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
» Tranexamic acid (TXA) is a drug used to control hemorrhage by preventing the breakdown of fibrin. » TXA is a cost-effective treatment for trauma patients across a variety of economic settings. » Concerns of TXA causing thromboembolic events (TEEs) in orthopaedic trauma patients are not supported by evidence. » TXA has been shown to reduce blood loss in hip fracture surgery.
Collapse
|
16
|
Abboud M, Geeroms M, El Hajj H, Abboud N. Improving the Female Silhouette and Gluteal Projection: An Anatomy-Based, Safe, and Harmonious Approach Through Liposuction, Suspension Loops, and Moderate Lipofilling. Aesthet Surg J 2021; 41:474-489. [PMID: 32506115 DOI: 10.1093/asj/sjaa157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Liposuction is the main technique to improve body contour, emphasize appealing curves, and highlight one's muscular definition. The number of procedures in which the harvested fat is utilized for gluteal augmentation has greatly increased. OBJECTIVES The authors aim to demonstrate their technique in order to obtain a sculpted harmonious body through a safe procedure, as well as review their 101 consecutive cases between 2014 and 2018. METHODS Anatomical guidelines and preoperative markings were provided to guide the 3-step procedure: zones of maximal and mild liposuction, barbed wire suspension, and moderate fat grafting. Novel concepts are introduced as the anterior body diagonal, posterior body diagonal as well as other specific axes the pubic unit, and a vertical ratio for the buttock, which are the basic foundations for sculpting the female body into a pleasing hourglass shape with a well projected buttock. Recommendations for location of sacral diamond, sacral dimples, and the maximally projected point of the buttock are given. The authors explain their philosophy through 4 principles: knowledge of anatomy, the relationship between specific body areas and surrounding zones, a balanced gluteal augmentation is not achieved through large volume fat grafting alone, and grafting in the subcutaneous layer. RESULTS A total of 101 patients were treated following the described technique and examples are shown. The complication rate was low. No serious adverse effects were recorded apart from 1 ruptured suspension loop. CONCLUSIONS The described anatomy-based approach, including liposuction, suspension loops, and fat grafting, is a novel and safe technique leading to a desirable, long-lasting outcome. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Marwan Abboud
- Plastic and Reconstructive Surgery Department, Centre Hospitalier Universitaire de Tivoli, La Louvière, Belgium
| | - Maxim Geeroms
- Plastic and Reconstructive Surgery Department, Centre Hospitalier Universitaire de Tivoli, La Louvière, Belgium
| | - Hiba El Hajj
- Plastic and Reconstructive Surgery Department, Centre Hospitalier Universitaire de Tivoli, La Louvière, Belgium
| | - Nicolas Abboud
- Plastic and Reconstructive Surgery Department, Centre Hospitalier Universitaire de Tivoli, La Louvière, Belgium
| |
Collapse
|
17
|
He J, Zhang Z, Yang Y, Ren F, Li J, Zhu S, Ma F, Wu R, Lv Y, He G, Guo B, Chu D. Injectable Self-Healing Adhesive pH-Responsive Hydrogels Accelerate Gastric Hemostasis and Wound Healing. NANO-MICRO LETTERS 2021; 13:80. [PMID: 34138263 PMCID: PMC8187506 DOI: 10.1007/s40820-020-00585-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 05/09/2023]
Abstract
Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are well-established therapeutics for gastrointestinal neoplasias, but complications after EMR/ESD, including bleeding and perforation, result in additional treatment morbidity and even threaten the lives of patients. Thus, designing biomaterials to treat gastric bleeding and wound healing after endoscopic treatment is highly desired and remains a challenge. Herein, a series of injectable pH-responsive self-healing adhesive hydrogels based on acryloyl-6-aminocaproic acid (AA) and AA-g-N-hydroxysuccinimide (AA-NHS) were developed, and their great potential as endoscopic sprayable bioadhesive materials to efficiently stop hemorrhage and promote the wound healing process was further demonstrated in a swine gastric hemorrhage/wound model. The hydrogels showed a suitable gelation time, an autonomous and efficient self-healing capacity, hemostatic properties, and good biocompatibility. With the introduction of AA-NHS as a micro-cross-linker, the hydrogels exhibited enhanced adhesive strength. A swine gastric hemorrhage in vivo model demonstrated that the hydrogels showed good hemostatic performance by stopping acute arterial bleeding and preventing delayed bleeding. A gastric wound model indicated that the hydrogels showed excellent treatment effects with significantly enhanced wound healing with type I collagen deposition, α-SMA expression, and blood vessel formation. These injectable self-healing adhesive hydrogels exhibited great potential to treat gastric wounds after endoscopic treatment.
Collapse
Affiliation(s)
- Jiahui He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zixi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yutong Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fenggang Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jipeng Li
- Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shaojun Zhu
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Feng Ma
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Gang He
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Baolin Guo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
18
|
Exploration of Active Site-Directed Plasmin Inhibitors: Beyond Tranexamic Acid. Processes (Basel) 2021. [DOI: 10.3390/pr9020329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Plasmin (Plm), a trypsin-like serine protease, is responsible for fibrinolysis pathway and pathologic events, such as angiogenesis, tumor invasion, and metastasis, and alters the expression of cytokines. A growing body of data indicates that a Plm inhibitor is a potential candidate as an anti-inflammatory and anti-cancer agent. A class of active site-directed plasmin inhibitors containing tranexamic acid residue has been designed. As evidenced by docking studies, the inhibitor binds to the active site not to the lysine binding site (LBS) in plasmin, thus preventing plasmin from digesting the substrate. Further optimization of the series, concerning both activity and selectivity, led to the second generation of inhibitors. This review focuses on the Plm inhibitory activity-structure relationship of Plm inhibitors with the goal of realizing their design and clinical application.
Collapse
|
19
|
Varshosaz J, Choopannejad Z, Minaiyan M, Kharazi AZ. Rapid hemostasis by nanofibers of polyhydroxyethyl methacrylate/polyglycerol sebacic acid: An in vitro
/
in vivo study. J Appl Polym Sci 2020. [DOI: 10.1002/app.49785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Zahra Choopannejad
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials, Tissue Engineering and Nanotechnology School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
20
|
Tranexamic acid is an active site inhibitor of urokinase plasminogen activator. Blood Adv 2020; 3:729-733. [PMID: 30814058 DOI: 10.1182/bloodadvances.2018025429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/20/2019] [Indexed: 11/20/2022] Open
Abstract
Key Points
TXA is an active-site inhibitor of uPA. TXA attenuates MDA-MB-231 BAG cell migration and inhibits endogenous uPA activity.
Collapse
|
21
|
Steinmetzer T, Pilgram O, Wenzel BM, Wiedemeyer SJA. Fibrinolysis Inhibitors: Potential Drugs for the Treatment and Prevention of Bleeding. J Med Chem 2019; 63:1445-1472. [PMID: 31658420 DOI: 10.1021/acs.jmedchem.9b01060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyperfibrinolytic situations can lead to life-threatening bleeding, especially during cardiac surgery. The approved antifibrinolytic agents such as tranexamic acid, ε-aminocaproic acid, 4-aminomethylbenzoic acid, and aprotinin were developed in the 1960s without the structural insight of their respective targets. Crystal structures of the main antifibrinolytic targets, the lysine binding sites on plasminogen's kringle domains, and plasmin's serine protease domain greatly contributed to the structure-based drug design of novel inhibitor classes. Two series of ligands targeting the lysine binding sites have been recently described, which are more potent than the most-widely used antifibrinolytic agent, tranexamic acid. Furthermore, four types of promising active site inhibitors of plasmin have been developed: tranexamic acid conjugates targeting the S1 pocket and primed sites, substrate-analogue linear homopiperidylalanine-containing 4-amidinobenzylamide derivatives, macrocyclic inhibitors addressing nonprimed binding regions, and bicyclic 14-mer SFTI-1 analogues blocking both, primed and nonprimed binding sites of plasmin. Furthermore, several allosteric plasmin inhibitors based on heparin mimetics have been developed.
Collapse
Affiliation(s)
- Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University Marburg , Marbacher Weg 6 , D-35032 Marburg , Germany
| | - Oliver Pilgram
- Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University Marburg , Marbacher Weg 6 , D-35032 Marburg , Germany
| | - Benjamin M Wenzel
- Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University Marburg , Marbacher Weg 6 , D-35032 Marburg , Germany
| | - Simon J A Wiedemeyer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry , Philipps University Marburg , Marbacher Weg 6 , D-35032 Marburg , Germany
| |
Collapse
|
22
|
Structural studies of plasmin inhibition. Biochem Soc Trans 2019; 47:541-557. [DOI: 10.1042/bst20180211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Plasminogen (Plg) is the zymogen form of the serine protease plasmin (Plm), and it plays a crucial role in fibrinolysis as well as wound healing, immunity, tissue remodeling and inflammation. Binding to the targets via the lysine-binding sites allows for Plg activation by plasminogen activators (PAs) present on the same target. Cellular uptake of fibrin degradation products leads to apoptosis, which represents one of the pathways for cross-talk between fibrinolysis and tissue remodeling. Therapeutic manipulation of Plm activity plays a vital role in the treatments of a range of diseases, whereas Plm inhibitors are used in trauma and surgeries as antifibrinolytic agents. Plm inhibitors are also used in conditions such as angioedema, menorrhagia and melasma. Here, we review the rationale for the further development of new Plm inhibitors, with a particular focus on the structural studies of the active site inhibitors of Plm. We compare the binding mode of different classes of inhibitors and comment on how it relates to their efficacy, as well as possible future developments.
Collapse
|
23
|
Swedberg JE, Wu G, Mahatmanto T, Durek T, Caradoc-Davies TT, Whisstock JC, Law RHP, Craik DJ. Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma. J Med Chem 2018; 62:552-560. [DOI: 10.1021/acs.jmedchem.8b01139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Guojie Wu
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tunjung Mahatmanto
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - James C. Whisstock
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ruby H. P. Law
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
24
|
Li CY, de Veer SJ, Law RHP, Whisstock JC, Craik DJ, Swedberg JE. Characterising the Subsite Specificity of Urokinase-Type Plasminogen Activator and Tissue-Type Plasminogen Activator using a Sequence-Defined Peptide Aldehyde Library. Chembiochem 2018; 20:46-50. [PMID: 30225958 DOI: 10.1002/cbic.201800395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/05/2018] [Indexed: 01/08/2023]
Abstract
Urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are two serine proteases that contribute to initiating fibrinolysis by activating plasminogen. uPA is also an important tumour-associated protease due to its role in extracellular matrix remodelling. Overexpression of uPA has been identified in several different cancers and uPA inhibition has been reported as a promising therapeutic strategy. Although several peptide-based uPA inhibitors have been developed, the extent to which uPA tolerates different tetrapeptide sequences that span the P1-P4 positions remains to be thoroughly explored. In this study, we screened a sequence-defined peptide aldehyde library against uPA and tPA. Preferred sequences from the library screen yielded potent inhibitors for uPA, led by Ac-GTAR-H (Ki =18 nm), but not for tPA. Additionally, synthetic peptide substrates corresponding to preferred inhibitor sequences were cleaved with high catalytic efficiency by uPA but not by tPA. These findings provide new insights into the binding specificity of uPA and tPA and the relative activity of tetrapeptide inhibitors and substrates against these enzymes.
Collapse
Affiliation(s)
- Choi Yi Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Simon J de Veer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Biomedical Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Biomedical Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
25
|
Bravo D, Josephson AM, Bradaschia-Correa V, Wong MZ, Yim NL, Neibart SS, Lee SN, Huo J, Coughlin T, Mizrahi MM, Leucht P. Temporary inhibition of the plasminogen activator inhibits periosteal chondrogenesis and promotes periosteal osteogenesis during appendicular bone fracture healing. Bone 2018; 112:97-106. [PMID: 29680264 PMCID: PMC5970081 DOI: 10.1016/j.bone.2018.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/11/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Aminocaproic acid is approved as an anti-fibrinolytic for use in joint replacement and spinal fusion surgeries to limit perioperative blood loss. Previous animal studies have demonstrated a pro-osteogenic effect of aminocaproic acid in spine fusion models. Here, we tested if aminocaproic acid enhances appendicular bone healing and we sought to uncover the effect of aminocaproic acid on osteoprogenitor cells (OPCs) during bone regeneration. METHODS We employed a well-established murine femur fracture model in adult C57BL/6J mice after receiving two peri-operative injections of aminocaproic acid. Routine histological assays, biomechanical testing and micro-CT analyses were utilized to assess callus volume, and strength, progenitor cell proliferation, differentiation, and remodeling in vivo. Two disparate ectopic transplantation models were used to study the effect of the growth factor milieu within the early fracture hematoma on osteoprogenitor cell fate decisions. RESULTS Aminocaproic acid treated femur fractures healed with a significantly smaller cartilaginous callus, and this effect was also observed in the ectopic transplantation assays. We hypothesized that aminocaproic acid treatment resulted in a stabilization of the early fracture hematoma, leading to a change in the growth factor milieu created by the early hematoma. Gene and protein expression analysis confirmed that aminocaproic acid treatment resulted in an increase in Wnt and BMP signaling and a decrease in TGF-β-signaling, resulting in a shift from chondrogenic to osteogenic differentiation in this model of endochondral bone formation. CONCLUSION These experiments demonstrate for the first time that inhibition of the plasminogen activator during fracture healing using aminocaproic acid leads to a change in cell fate decision of periosteal osteoprogenitor cells, with a predominance of osteogenic differentiation, resulting in a larger and stronger bony callus. These findings may offer a promising new use of aminocaproic acid, which is already FDA-approved and offers a very safe risk profile.
Collapse
Affiliation(s)
- D Bravo
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - A M Josephson
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - V Bradaschia-Correa
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - M Z Wong
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - N L Yim
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - S S Neibart
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - S N Lee
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - J Huo
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - T Coughlin
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - M M Mizrahi
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - P Leucht
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, United States; Department of Cell Biology, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|