1
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Duong VT, Lee D, Kim YH, Oh SO. Functional role of UNC13D in immune diseases and its therapeutic applications. Front Immunol 2024; 15:1460882. [PMID: 39469717 PMCID: PMC11513310 DOI: 10.3389/fimmu.2024.1460882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
UNC13 family (also known as Munc13) proteins are evolutionarily conserved proteins involved in the rapid and regulated secretion of vesicles, including synaptic vesicles and cytotoxic granules. Fast and regulated secretion at the neuronal and immunological synapses requires multiple steps, from the biogenesis of vesicles to membrane fusion, and a complex array of proteins for each step. Defects at these steps can lead to various genetic disorders. Recent studies have shown multiple roles of UNC13D in the secretion of cytotoxic granules by immune cells. Here, the molecular structure and detailed roles of UNC13D in the biogenesis, tethering, and priming of cytotoxic vesicles and in endoplasmic reticulum are summarized. Moreover, its association with immune diseases, including familial hemophagocytic lymphohistiocytosis type 3, macrophage activation syndrome, juvenile idiopathic arthritis, and autoimmune lymphoproliferative syndrome, is reviewed. Finally, the therapeutic application of CRISPR/Cas9-based gene therapy for genetic diseases is introduced.
Collapse
Affiliation(s)
- Van-Thanh Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
3
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
4
|
Dettmer-Monaco V, Weißert K, Ammann S, Monaco G, Lei L, Gräßel L, Rhiel M, Rositzka J, Kaufmann MM, Geiger K, Andrieux G, Lao J, Thoulass G, Schell C, Boerries M, Illert AL, Cornu TI, Ehl S, Aichele P, Cathomen T. Gene editing of hematopoietic stem cells restores T-cell response in familial hemophagocytic lymphohistiocytosis. J Allergy Clin Immunol 2024; 153:243-255.e14. [PMID: 37595758 DOI: 10.1016/j.jaci.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disorder characterized by a life-threatening cytokine storm and immunopathology. Familial HLH type 3 (FHL3) accounts for approximately 30% of all inborn HLH cases worldwide. It is caused by mutations in the UNC13D gene that result in impaired degranulation of cytotoxic vesicles and hence compromised T-cell- and natural killer-cell-mediated killing. Current treatment protocols, including allogeneic hematopoietic stem cell (HSC) transplantation, still show high mortality. OBJECTIVE We sought to develop and evaluate a curative genome editing strategy in the preclinical FHL3 Jinx mouse model. Jinx mice harbor a cryptic splice donor site in Unc13d intron 26 and develop clinical symptoms of human FHL3 upon infection with lymphocytic choriomeningitis virus (LCMV). METHODS We employed clustered regularly interspaced short palindromic repeats (CRISPR)-Cas technology to delete the disease-causing mutation in HSCs and transplanted Unc13d-edited stem cells into busulfan-conditioned Jinx recipient mice. Safety studies included extensive genotyping and chromosomal aberrations analysis by single targeted linker-mediated PCR sequencing (CAST-Seq)-based off-target analyses. Cure from HLH predisposition was assessed by LCMV infection. RESULTS Hematopoietic cells isolated from transplanted mice revealed efficient gene editing (>95%), polyclonality of the T-cell receptor repertoire, and neither signs of off-target effects nor leukemogenesis. Unc13d transcription levels of edited and wild-type cells were comparable. While LCMV challenge resulted in acute HLH in Jinx mice transplanted with mock-edited HSCs, Jinx mice grafted with Unc13d-edited cells showed rapid virus clearance and protection from HLH. CONCLUSIONS Our study demonstrates that transplantation of CRISPR-Cas edited HSCs supports the development of a functional polyclonal T-cell response in the absence of genotoxicity-associated clonal outgrowth.
Collapse
Affiliation(s)
- Viviane Dettmer-Monaco
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg
| | - Kristoffer Weißert
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg
| | - Sandra Ammann
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg
| | - Gianni Monaco
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg
| | - Lei Lei
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg
| | - Linda Gräßel
- Department of Internal Medicine I, Medical Center-University of Freiburg, Freiburg; German Cancer Consortium, Partner Site Freiburg & German Cancer Research Center, Heidelberg
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg
| | - Julia Rositzka
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg
| | - Masako M Kaufmann
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg
| | - Kerstin Geiger
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Jessica Lao
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg
| | - Gudrun Thoulass
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg
| | - Christoph Schell
- Faculty of Medicine, University of Freiburg, Freiburg; Institute of Surgical Pathology, Medical Center-University of Freiburg, Freiburg
| | - Melanie Boerries
- German Cancer Consortium, Partner Site Freiburg & German Cancer Research Center, Heidelberg; Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Anna L Illert
- Department of Internal Medicine I, Medical Center-University of Freiburg, Freiburg; German Cancer Consortium, Partner Site Freiburg & German Cancer Research Center, Heidelberg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Tatjana I Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Peter Aichele
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Institute for Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg; Faculty of Medicine, University of Freiburg, Freiburg.
| |
Collapse
|
5
|
Ott de Bruin LM, Lankester AC, Staal FJ. Advances in gene therapy for inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:467-477. [PMID: 37846903 PMCID: PMC10621649 DOI: 10.1097/aci.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Provide an overview of the landmark accomplishments and state of the art of gene therapy for inborn errors of immunity (IEI). RECENT FINDINGS Three decades after the first clinical application of gene therapy for IEI, there is one market authorized product available, while for several others efficacy has been demonstrated or is currently being tested in ongoing clinical trials. Gene editing approaches using programmable nucleases are being explored preclinically and could be beneficial for genes requiring tightly regulated expression, gain-of-function mutations and dominant-negative mutations. SUMMARY Gene therapy by modifying autologous hematopoietic stem cells (HSCs) offers an attractive alternative to allogeneic hematopoietic stem cell transplantation (HSCT), the current standard of care to treat severe IEI. This approach does not require availability of a suitable allogeneic donor and eliminates the risk of graft versus host disease (GvHD). Gene therapy can be attempted by using a viral vector to add a copy of the therapeutic gene (viral gene addition) or by using programmable nucleases (gene editing) to precisely correct mutations, disrupt a gene or introduce an entire copy of a gene at a specific locus. However, gene therapy comes with its own challenges such as safety, therapeutic effectiveness and access. For viral gene addition, a major safety concern is vector-related insertional mutagenesis, although this has been greatly reduced with the introduction of safer vectors. For gene editing, the risk of off-site mutagenesis is a main driver behind the ongoing search for modified nucleases. For both approaches, HSCs have to be manipulated ex vivo, and doing this efficiently without losing stemness remains a challenge, especially for gene editing.
Collapse
Affiliation(s)
- Lisa M. Ott de Bruin
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan C. Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
| | - Frank J.T. Staal
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Arlabosse T, Booth C, Candotti F. Gene Therapy for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1592-1601. [PMID: 37084938 DOI: 10.1016/j.jaip.2023.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
In the early 1990s, gene therapy (GT) entered the clinical arena as an alternative to hematopoietic stem cell transplantation for forms of inborn errors of immunity (IEIs) that are not medically manageable because of their severity. In principle, the use of gene-corrected autologous hematopoietic stem cells presents several advantages over hematopoietic stem cell transplantation, including making donor searches unnecessary and avoiding the risks for graft-versus-host disease. In the past 30 years or more of clinical experience, the field has witnessed multiple examples of successful applications of GT to a number of IEIs, as well as some serious drawbacks, which have highlighted the potential genotoxicity of integrating viral vectors and stimulated important progress in the development of safer gene transfer tools. The advent of gene editing technologies promises to expand the spectrum of IEIs amenable to GT to conditions caused by mutated genes that require the precise regulation of expression or by dominant-negative variants. Here, we review the main concepts of GT as it applies to IEIs and the clinical results obtained to date. We also describe the challenges faced by this branch of medicine, which operates in the unprofitable sector of human rare diseases.
Collapse
Affiliation(s)
- Tiphaine Arlabosse
- Pediatric Immuno-Rheumatology of Western Switzerland, Division of Pediatrics, Women-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, United Kingdom.
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Topal J, Panchal N, Barroeta A, Roppelt A, Mudde A, Gaspar HB, Thrasher AJ, Houghton BC, Booth C. Lentiviral Gene Transfer Corrects Immune Abnormalities in XIAP Deficiency. J Clin Immunol 2023; 43:440-451. [PMID: 36329240 PMCID: PMC9892131 DOI: 10.1007/s10875-022-01389-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND X-linked inhibitor of apoptosis protein (XIAP) deficiency is a severe immunodeficiency with clinical features including hemophagocytic lymphohistiocytosis (HLH) and inflammatory bowel disease (IBD) due to defective NOD2 responses. Management includes immunomodulatory therapies and hematopoietic stem cell transplant (HSCT). However, this cohort is particularly susceptible to the chemotherapeutic regimens and acutely affected by graft-vs-host disease (GvHD), driving poor long-term survival in transplanted patients. Autologous HSC gene therapy could offer an alternative treatment option and would abrogate the risks of alloreactivity. METHODS Hematopoietic progenitor (Lin-ve) cells from XIAPy/- mice were transduced with a lentiviral vector encoding human XIAP cDNA before transplantation into irradiated XIAP y/- recipients. After 12 weeks animals were challenged with the dectin-1 ligand curdlan and recovery of innate immune function was evaluated though analysis of inflammatory cytokines, body weight, and splenomegaly. XIAP patient-derived CD14+ monocytes were transduced with the same vector and functional recovery was demonstrated using in vitro L18-MDP/NOD2 assays. RESULTS In treated XIAPy/- mice, ~40% engraftment of gene-corrected Lin-ve cells led to significant recovery of weight loss, splenomegaly, and inflammatory cytokine responses to curdlan, comparable to wild-type mice. Serum IL-6, IL-10, MCP-1, and TNF were significantly reduced 2-h post-curdlan administration in non-corrected XIAPy/- mice compared to wild-type and gene-corrected animals. Appropriate reduction of inflammatory responses was observed in gene-corrected mice, whereas non-corrected mice developed an inflammatory profile 9 days post-curdlan challenge. In gene-corrected patient CD14+ monocytes, TNF responses were restored following NOD2 activation with L18-MDP. CONCLUSION Gene correction of HSCs recovers XIAP-dependent immune defects and could offer a treatment option for patients with XIAP deficiency.
Collapse
Affiliation(s)
- Joseph Topal
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Neelam Panchal
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Amairelys Barroeta
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anna Roppelt
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Annelotte Mudde
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - H Bobby Gaspar
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Orchard Therapeutics, London, UK
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Benjamin C Houghton
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK.
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.
| |
Collapse
|
8
|
Mudde A, Booth C. Gene therapy for inborn error of immunity - current status and future perspectives. Curr Opin Allergy Clin Immunol 2023; 23:51-62. [PMID: 36539381 DOI: 10.1097/aci.0000000000000876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Development of hematopoietic stem cell (HSC) gene therapy (GT) for inborn errors of immunity (IEIs) continues to progress rapidly. Although more patients are being treated with HSC GT based on viral vector mediated gene addition, gene editing techniques provide a promising new approach, in which transgene expression remains under the control of endogenous regulatory elements. RECENT FINDINGS Many gene therapy clinical trials are being conducted and evidence showing that HSC GT through viral vector mediated gene addition is a successful and safe curative treatment option for various IEIs is accumulating. Gene editing techniques for gene correction are, on the other hand, not in clinical use yet, despite rapid developments during the past decade. Current studies are focussing on improving rates of targeted integration, while preserving the primitive HSC population, which is essential for future clinical translation. SUMMARY As HSC GT is becoming available for more diseases, novel developments should focus on improving availability while reducing costs of the treatment. Continued follow up of treated patients is essential for providing information about long-term safety and efficacy. Editing techniques have great potential but need to be improved further before the translation to clinical studies can happen.
Collapse
Affiliation(s)
- Anne Mudde
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital, London, UK
| |
Collapse
|
9
|
Pinto MV, Neves JF. Precision medicine: The use of tailored therapy in primary immunodeficiencies. Front Immunol 2022; 13:1029560. [PMID: 36569887 PMCID: PMC9773086 DOI: 10.3389/fimmu.2022.1029560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PID) are rare, complex diseases that can be characterised by a spectrum of phenotypes, from increased susceptibility to infections to autoimmunity, allergy, auto-inflammatory diseases and predisposition to malignancy. With the introduction of genetic testing in these patients and wider use of next-Generation sequencing techniques, a higher number of pathogenic genetic variants and conditions have been identified, allowing the development of new, targeted treatments in PID. The concept of precision medicine, that aims to tailor the medical interventions to each patient, allows to perform more precise diagnosis and more importantly the use of treatments directed to a specific defect, with the objective to cure or achieve long-term remission, minimising the number and type of side effects. This approach takes particular importance in PID, considering the nature of causative defects, disease severity, short- and long-term complications of disease but also of the available treatments, with impact in life-expectancy and quality of life. In this review we revisit how this approach can or is already being implemented in PID and provide a summary of the most relevant treatments applied to specific diseases.
Collapse
Affiliation(s)
- Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- Centro de Investigação Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Quinta da Granja, Monte da Caparica, Caparica, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- CHRC, Comprehensive Health Research Centre, Nova Medical School, Lisbon, Portugal
| |
Collapse
|
10
|
Weißert K, Ammann S, Kögl T, Dettmer‐Monaco V, Schell C, Cathomen T, Ehl S, Aichele P. Adoptive T cell therapy cures mice from active hemophagocytic lymphohistiocytosis (HLH). EMBO Mol Med 2022; 14:e16085. [PMID: 36278424 PMCID: PMC9728053 DOI: 10.15252/emmm.202216085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022] Open
Abstract
Primary hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome caused by impaired lymphocyte cytotoxicity. First-line therapeutic regimens directed against activated immune cells or secreted cytokines show limited efficacy since they do not target the underlying immunological problem: defective lymphocyte cytotoxicity causing prolonged immune stimulation. A potential rescue strategy would be the adoptive transfer of ex vivo gene-corrected autologous T cells. However, transfusion of cytotoxicity-competent T cells under conditions of hyperinflammation may cause more harm than benefit. As a proof-of-concept for adoptive T cell therapy (ATCT) under hyperinflammatory conditions, we transferred syngeneic, cytotoxicity-competent T cells into mice with virally triggered active primary HLH. ATCT with functional syngeneic trigger-specific T cells cured Jinx mice from active HLH without life-threatening side effects and protected Perforin-deficient mice from lethal HLH progression by reconstituting cytotoxicity. Cured mice were protected long-term from HLH relapses. A threshold frequency of transferred T cells with functional differentiation was identified as a predictive biomarker for long-term survival. This study is the first proof-of-concept for ATCT in active HLH.
Collapse
Affiliation(s)
- Kristoffer Weißert
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Faculty of BiologyAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | - Sandra Ammann
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Tamara Kögl
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Immunology, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Viviane Dettmer‐Monaco
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Transfusion Medicine and Gene Therapy, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Toni Cathomen
- Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Institute for Transfusion Medicine and Gene Therapy, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Stephan Ehl
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Integrative Biological Signalling StudiesAlbert‐Ludwigs‐University of FreiburgFreiburgGermany
| | - Peter Aichele
- Institute for Immunodeficiency, Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Center for Chronic Immunodeficiency (CCI), Medical Center ‐ University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
11
|
Fox TA, Houghton BC, Booth C. Gene Edited T Cell Therapies for Inborn Errors of Immunity. Front Genome Ed 2022; 4:899294. [PMID: 35783679 PMCID: PMC9244397 DOI: 10.3389/fgeed.2022.899294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Inborn errors of immunity (IEIs) are a heterogeneous group of inherited disorders of the immune system. Many IEIs have a severe clinical phenotype that results in progressive morbidity and premature mortality. Over 450 IEIs have been described and the incidence of all IEIs is 1/1,000–10,000 people. Current treatment options are unsatisfactory for many IEIs. Allogeneic haematopoietic stem cell transplantation (alloHSCT) is curative but requires the availability of a suitable donor and carries a risk of graft failure, graft rejection and graft-versus-host disease (GvHD). Autologous gene therapy (GT) offers a cure whilst abrogating the immunological complications of alloHSCT. Gene editing (GE) technologies allow the precise modification of an organisms’ DNA at a base-pair level. In the context of genetic disease, this enables correction of genetic defects whilst preserving the endogenous gene control machinery. Gene editing technologies have the potential to transform the treatment landscape of IEIs. In contrast to gene addition techniques, gene editing using the CRISPR system repairs or replaces the mutation in the DNA. Many IEIs are limited to the lymphoid compartment and may be amenable to T cell correction alone (rather than haematopoietic stem cells). T cell Gene editing has the advantages of higher editing efficiencies, reduced risk of deleterious off-target edits in terminally differentiated cells and less toxic conditioning required for engraftment of lymphocytes. Although most T cells lack the self-renewing property of HSCs, a population of T cells, the T stem cell memory compartment has long-term multipotent and self-renewal capacity. Gene edited T cell therapies for IEIs are currently in development and may offer a less-toxic curative therapy to patients affected by certain IEIs. In this review, we discuss the history of T cell gene therapy, developments in T cell gene editing cellular therapies before detailing exciting pre-clinical studies that demonstrate gene editing T cell therapies as a proof-of-concept for several IEIs.
Collapse
Affiliation(s)
- T. A. Fox
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - B. C. Houghton
- Molecular and Cellular Immunology Section, UCL GOS Institute of Child Health, London, United Kingdom
| | - C. Booth
- Molecular and Cellular Immunology Section, UCL GOS Institute of Child Health, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, United Kingdom
- *Correspondence: C. Booth,
| |
Collapse
|
12
|
Takushi SE, Paik NY, Fedanov A, Prince C, Doering CB, Spencer HT, Chandrakasan S. Lentiviral Gene Therapy for Familial Hemophagocytic Lymphohistiocytosis Type 3, Caused by UNC13D Genetic Defects. Hum Gene Ther 2021; 31:626-638. [PMID: 32253931 DOI: 10.1089/hum.2019.329] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) is a rare disease caused by mutations to the UNC13D gene and the subsequent absence or decreased activity of the Munc13-4 protein. Munc13-4 is essential for the exocytosis of perforin and granzyme containing granules from cytotoxic cells. Without it, these cells are able to recognize an immunological insult but are unable to execute their cytotoxic functions. The result is a hyperinflammatory state that, if left untreated, is fatal. At present, the only curative treatment is hematopoietic stem cell transplantation (HSCT), but eligibility and response to this treatment are largely dependent on the ability to control inflammation before HSCT. In this study, we describe an optimized lentiviral vector that can restore Munc13-4 expression and degranulation capacity in both transduced FHL3 patient T cells and transduced hematopoietic stem cells from the FHL3 (Jinx) disease model.
Collapse
Affiliation(s)
- Sarah E Takushi
- Department of Immunology and Molecular Pathogenesis, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA.,Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Na Yoon Paik
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Andrew Fedanov
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Chengyu Prince
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Christopher B Doering
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Department of Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - H Trent Spencer
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Department of Molecular and Systems Pharmacology, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shanmuganathan Chandrakasan
- Cell and Gene Therapy Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Pediatrics, Emory University, Atlanta, Georgia, USA.,Bone Marrow Transplant Program, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Ponnatt TS, Lilley CM, Mirza KM. Hemophagocytic Lymphohistiocytosis. Arch Pathol Lab Med 2021; 146:507-519. [PMID: 34347856 DOI: 10.5858/arpa.2020-0802-ra] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening disorder of immune regulation that can eventually result in end-organ damage and death. HLH is characterized by uncontrolled activation of cytotoxic T lymphocytes, natural killer cells, and macrophages that can lead to a cytokine storm. The diagnosis of HLH is often challenging due to the diverse clinical manifestations and the presence of several diagnostic mimics. The prognosis is generally poor, warranting rapid diagnosis and aggressive management. OBJECTIVE.— To provide a comprehensive review of the pathogenesis, clinical features, diagnosis, and management of HLH. DATA SOURCES.— Peer-reviewed literature. CONCLUSIONS.— HLH is a condition where a complete understanding of the pathogenesis, early diagnosis, and proper management has an important role in determining patient outcome. Genetic mutations causing impairment in the function of cytotoxic T lymphocytes and natural killer cells have been identified as the root cause of familial HLH; however, the specific pathogenesis of acquired HLH is unclear. The HLH-2004 protocol used in the diagnosis of HLH was originally developed for the pediatric population. The HLH-2004 protocol still forms the basis of the diagnosis of HLH in adults, although its use in adults has not been formally validated yet. Treatment of HLH is primarily based on the HLH-94 protocol, which involves suppressing the inflammatory response, but the treatment needs to be modified in adults depending on the underlying cause and comorbidities.
Collapse
Affiliation(s)
- Tanya Sajan Ponnatt
- From the Department of Pathology, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois
| | - Cullen M Lilley
- From the Department of Pathology, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois
| | - Kamran M Mirza
- From the Department of Pathology, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois
| |
Collapse
|
14
|
Houghton BC, Booth C. Gene Therapy for Primary Immunodeficiency. Hemasphere 2021; 5:e509. [PMID: 33403354 PMCID: PMC7773329 DOI: 10.1097/hs9.0000000000000509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Over the past 3 decades, there has been significant progress in refining gene therapy technologies and procedures. Transduction of hematopoietic stem cells ex vivo using lentiviral vectors can now create a highly effective therapeutic product, capable of reconstituting many different immune system dysfunctions when reinfused into patients. Here, we review the key developments in the gene therapy landscape for primary immune deficiency, from an experimental therapy where clinical efficacy was marred by adverse events, to a commercialized product with enhanced safety and efficacy. We also discuss progress being made in preclinical studies for challenging disease targets and emerging gene editing technologies that are showing promising results, particularly for conditions where gene regulation is important for efficacy.
Collapse
Affiliation(s)
- Benjamin C. Houghton
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
15
|
Abstract
Primary immunodeficiencies (PIDs) are a group of rare inherited disorders of the immune system. Many PIDs are devastating and require a definitive therapy to prevent progressive morbidity and premature mortality. Allogeneic haematopoietic stem cell transplantation (alloHSCT) is curative for many PIDs, and while advances have resulted in improved outcomes, the procedure still carries a risk of mortality and morbidity from graft failure or graft-versus-host disease (GvHD). Autologous haematopoietic stem cell gene therapy (HSC GT) has the potential to correct genetic defects across haematopoietic lineages without the complications of an allogeneic approach. HSC GT for PID has been in development for the last two decades and the first licensed HSC-GT product for adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is now available. New gene editing technologies have the potential to circumvent some of the problems associated with viral gene-addition. HSC GT for PID shows great promise, but requires a unique approach for each disease and carries risks, notably insertional mutagenesis from gamma-retroviral gene addition approaches and possible off-target toxicities from gene-editing techniques. In this review, we discuss the development of HSC GT for PID and outline the current state of clinical development before discussing future developments in the field.
Collapse
Affiliation(s)
- Thomas A Fox
- University College London (UCL) Institute of Immunity and Transplantation, UCL, London, UK.,Department of Clinical Haematology, UCL Hospitals NHS Foundation Trust, London, UK.,Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK.,Department of Paediatric Immunology, GOS Hospital for Sick Children NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Galgano D, Soheili T, Voss M, Torralba-Raga L, Tesi B, Cichocki F, Andre I, Rettig J, Cavazzana M, Bryceson Y. Alternative UNC13D Promoter Encodes a Functional Munc13-4 Isoform Predominantly Expressed in Lymphocytes and Platelets. Front Immunol 2020; 11:1154. [PMID: 32582217 PMCID: PMC7296141 DOI: 10.3389/fimmu.2020.01154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Autosomal recessive mutations in genes required for cytotoxicity are causative of a life-threatening, early-onset hyperinflammatory syndrome termed familial hemophagocytic lymphohistiocytosis (FHL). Mutations in UNC13D cause FHL type 3. UNC13D encodes Munc13-4, a member of the Unc13 protein family which control SNARE complex formation and vesicle fusion. We have previously identified FHL3-associated mutations in the first intron of UNC13D which control transcription from an alternative transcriptional start site. Using isoform specific antibodies, we demonstrate that this alternative Munc13-4 isoform with a unique N-terminus is preferentially expressed in human lymphocytes and platelets, as compared to the conventional isoform that was mostly expressed in monocytes and neutrophils. The distinct N-terminal of the two isoforms did not impact on Munc13-4 localization or trafficking to the immunological synapse of cytotoxic T cells. Moreover, ectopic expression of both isoforms efficiently restored exocytosis by FHL3 patient-derived Munc13-4 deficient T cells. Thus, we demonstrate that the conventional and alternative Munc13-4 isoforms have different expression pattern in hematopoietic cell subsets, but display similar localization and contribution to T cell exocytosis. The use of an alternative transcriptional starting site (TSS) in lymphocytes and platelets could be selected for increasing the overall levels of Munc13-4 expression for efficient secretory granule release.
Collapse
Affiliation(s)
- Donatella Galgano
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tayebeh Soheili
- Human Lymphohematopoiesis Laboratory, INSERM UMR 1163, IMAGINE Institute, Paris, France
| | - Matthias Voss
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lamberto Torralba-Raga
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bianca Tesi
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Frank Cichocki
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Isabelle Andre
- Human Lymphohematopoiesis Laboratory, INSERM UMR 1163, IMAGINE Institute, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Jens Rettig
- Cellular Neurophysiology Laboratory, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Marina Cavazzana
- Human Lymphohematopoiesis Laboratory, INSERM UMR 1163, IMAGINE Institute, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Biotherapy Department, Hôpital Necker-Enfants malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Yenan Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Wegehaupt O, Wustrau K, Lehmberg K, Ehl S. Cell Versus Cytokine - Directed Therapies for Hemophagocytic Lymphohistiocytosis (HLH) in Inborn Errors of Immunity. Front Immunol 2020; 11:808. [PMID: 32457750 PMCID: PMC7225316 DOI: 10.3389/fimmu.2020.00808] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a heterogeneous hyperinflammatory syndrome with different pathways of pathogenesis resulting in similar clinical presentations. It is best defined and understood if presenting in the context of genetic immunodeficiencies associated with defects of lymphocyte cytotoxicity. In these "primary" forms of HLH, cellular and soluble immune effectors are relatively well characterized. While etoposide-based broad cell-directed therapies remain standard of care, more specific therapies targeting these effectors individually are increasingly available. Anti-CD52 as a cell-directed therapy and anti-IFN-gamma, IL-18BP, and JAK-inhibition as cytokine-directed therapies are expected to broaden the therapeutic options, but the precise role of these drugs in first-line and rescue treatment indications remains to be defined. A number of additional inborn errors of immunity are associated with episodes of immune activation fulfilling the clinical criteria of HLH. Impaired pathogen control is a key driver of hyperinflammation in some conditions, while others are characterized by a strong autoinflammatory component. This heterogeneity of disease-driving factors and the variable severity in disease progression in these conditions do not allow a simple adaptation of protocols established for "primary" HLH to HLH in the context of other inborn errors of immunity. Cytokine-directed therapies hold significant promise in these increasingly recognized disorders.
Collapse
Affiliation(s)
- Oliver Wegehaupt
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany
- Center for Pediatrics, Faculty of Medicine, Medical Center – University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Katharina Wustrau
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany
- Center for Pediatrics, Faculty of Medicine, Medical Center – University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Dettmer V, Bloom K, Gross M, Weissert K, Aichele P, Ehl S, Cathomen T. Retroviral UNC13D Gene Transfer Restores Cytotoxic Activity of T Cells Derived from Familial Hemophagocytic Lymphohistiocytosis Type 3 Patients In Vitro. Hum Gene Ther 2019; 30:975-984. [PMID: 31032638 DOI: 10.1089/hum.2019.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) is a group of life-threatening, autosomal recessive disorders of severe hyperinflammation. FHL type 3 (FHL-3) accounts for about 30% of FHL cases. It is characterized by mutations in the UNC13D gene that give rise to functionally impaired or absent Munc13-4 protein, resulting in impaired secretion of lytic granules by cytotoxic lymphocytes. Etoposide-based therapy is currently used as the standard of care that results in around 60% 5-year survival, illustrating the need for novel treatment approaches. Key problems include treatment toxicity and failure to induce or maintain remission of the hyperinflammation. Instead of immunosuppression, transplantation of autologous gene-corrected T cells can be envisaged as an approach to restore the impaired immune reaction. This study established a protocol that enabled hyperactivated, FHL-3 patient-derived T cells to be cultured and a codon-optimized UNC13D expression cassette to be delivered by either alpha- or gamma-retroviral gene transfer. The data demonstrate that the established protocol can be applied to FHL-3 patient cells with various genetic backgrounds and that gamma-retroviral UNC13D transfer restored expression of functional Munc13-4, as well as degranulation capacity and cell-mediated cytotoxicity of those patient-derived CD8+ T cells. Furthermore, the study shows that the co-introduction of a truncated low-affinity nerve growth factor receptor coding sequence enabled the therapeutic effect to be optimized by enriching transduced cells in a Good Manufacturing Practice-compliant manner. In conclusion, this study lays the foundation for an adaptive immune cell therapy approach aiming at immunological stabilization of FHL-3 patients with autologous, immune-competent T cells prior to hematopoietic stem-cell transplantation.
Collapse
Affiliation(s)
- Viviane Dettmer
- 1Institute for Transfusion Medicine and Gene Therapy, University of Freiburg, Freiburg, Germany.,2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,3Institute for Immunodeficiency, and University of Freiburg, Freiburg, Germany
| | - Kristie Bloom
- 1Institute for Transfusion Medicine and Gene Therapy, University of Freiburg, Freiburg, Germany.,2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany
| | - Miriam Gross
- 2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,3Institute for Immunodeficiency, and University of Freiburg, Freiburg, Germany.,4Institute of Immunology, Medical Center-University of Freiburg, Freiburg, Germany; University of Freiburg, Freiburg, Germany
| | - Kristoffer Weissert
- 2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,3Institute for Immunodeficiency, and University of Freiburg, Freiburg, Germany.,5Faculty of Biology and University of Freiburg, Freiburg, Germany
| | - Peter Aichele
- 2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,5Faculty of Biology and University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- 2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,4Institute of Immunology, Medical Center-University of Freiburg, Freiburg, Germany; University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- 1Institute for Transfusion Medicine and Gene Therapy, University of Freiburg, Freiburg, Germany.,2Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Lehmberg K, Moshous D, Booth C. Haematopoietic Stem Cell Transplantation for Primary Haemophagocytic Lymphohistiocytosis. Front Pediatr 2019; 7:435. [PMID: 31709205 PMCID: PMC6823612 DOI: 10.3389/fped.2019.00435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
Haematopoietic stem cell transplantation currently remains the only curative treatment of primary forms of haemophagocytic lymphohistiocytosis (HLH). Rapid diagnosis, efficient primary treatment of hyperinflammation, and conditioning regimens tailored to this demanding condition have substantially improved prognosis in the past 40 years. However, refractory hyperinflammation, central nervous system (CNS) involvement, unavailability of matched donors, susceptibility to conditioning-related toxicities, and a high frequency of mixed chimaerism remain a challenge in a substantial proportion of patients. Gene therapeutic approaches for several genetic defects of primary HLH are being developed at pre-clinical and translational levels.
Collapse
Affiliation(s)
- Kai Lehmberg
- Division of Paediatric Stem Cell Transplantation and Immunology, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | - Despina Moshous
- Department of Immunohematology, Necker-Enfants Malades Hospital, APHP, and Imagine Institute, Inserm U 1163, Descartes University, Paris Sorbonne Cité, Paris, France
| | - Claire Booth
- Department of Paediatric Immunology, Great Ormond Street Hospital, London, United Kingdom.,Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|