1
|
Ross DM, Lane SW, Harrison CN. Identifying disease-modifying potential in myelofibrosis clinical trials. Blood 2024; 144:1679-1688. [PMID: 39172741 DOI: 10.1182/blood.2024024220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT The ultimate goal of bringing most new drugs to the clinic in hematologic malignancy is to improve overall survival. However, the use of surrogate end points for overall survival is increasingly considered standard practice, because a well validated surrogate end point can accelerate the outcome assessment and facilitate better clinical trial design. Established examples include monitoring minimal residual disease in chronic myeloid leukemia and acute leukemia, and metabolic response assessment in lymphoma. However, what happens when a clinical trial end point that is not a good surrogate for disease-modifying potential becomes ingrained as an expected outcome, and new agents are expected or required to meet this end point to demonstrate "efficacy"? Janus kinase (JAK) inhibitors for myelofibrosis (MF) have a specific impact on reducing symptom burden and splenomegaly but limited impact on the natural history of the disease. Since the introduction of ruxolitinib more than a decade ago there has been modest incremental success in clinical trials for MF but no major leap forward to alter the natural history of the disease. We argue that the clinical development of novel agents for MF will be accelerated by moving away from using end points that are specifically tailored to measure the beneficial effects of JAK inhibitors. We propose that specific measures of relevant disease burden, such as reduction in mutation burden as determined by molecular end points, should replace established end points. Careful reanalysis of existing data and trials in progress is needed to identify the most useful surrogate end points for future MF trials and better serve patient interest.
Collapse
Affiliation(s)
- David M Ross
- Department of Haematology, Royal Adelaide Hospital, Adelaide, Australia
| | - Steven W Lane
- Department of Haematology, Royal Brisbane and Women's Hospital and QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
2
|
Sabile JMG, Swords R, Tyner JW. Evaluating targeted therapies in older patients with TP53-mutated AML. Leuk Lymphoma 2024; 65:1201-1218. [PMID: 38646877 DOI: 10.1080/10428194.2024.2344057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Mutation of thetumor suppressor gene, TP53 (tumor protein 53), occurs in up to 15% of all patients with acute myeloid leukemia (AML) and is enriched within specific clinical subsets, most notably in older adults, and including secondary AML cases arising from preceding myeloproliferative neoplasm (MPN), myelodysplastic syndrome (MDS), patients exposed to prior DNA-damaging, cytotoxic therapies. In all cases, these tumors have remained difficult to effectively treat with conventional therapeutic regimens. Newer approaches fortreatmentofTP53-mutated AML have shifted to interventions that maymodulateTP53 function, target downstream molecular vulnerabilities, target non-p53 dependent molecular pathways, and/or elicit immunogenic responses. This review will describe the basic biology of TP53, the clinical and biological patterns of TP53 within myeloid neoplasms with a focus on elderly AML patients and will summarize newer therapeutic strategies and current clinical trials.
Collapse
Affiliation(s)
- Jean M G Sabile
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ronan Swords
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Chen D, Geyer J, Bagg A, Hasserjian R, Weinberg OK. A comparative analysis of the clinical and genetic profiles of blast phase BCR::ABL1-negative myeloproliferative neoplasm and acute myeloid leukemia, myelodysplasia-related. Int J Lab Hematol 2024; 46:687-694. [PMID: 38665121 DOI: 10.1111/ijlh.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/22/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION The classic Philadelphia chromosome-negative myeloproliferative neoplasms (Ph (-) MPNs), have variable potential for progression to the blast phase (MPN-BP) of the disease. Except initiated by distinct driver mutations, MPN-BP frequently carry similar genetic abnormalities defining acute myeloid leukemia myelodysplasia-related (AML-MR). Because of dissimilar initial pathogenesis, MPN-BP and AML-MR are retained under different disease categories. To determine if separately classifying these entities is justified, we compare MPN-BP with AML-MR patients based on mutational landscape and clinical parameters. METHODS 104 MPN-BP patients and 145 AML-MR patients were identified with available clinical, cytogenetic, and genetic data. RESULTS AML-MR patients presented with a higher blast count (median, 51% vs. 30%) while MPN-BP patients had higher WBC counts, platelet counts and bone marrow cellularity (all p<0.0001). Patients with MPN-BP showed similar genetic mutations with similar mutation pattern (functional domain, hotspot and locus involved by the mutations) but a different mutation rate from AML-MR, with more frequent JAK2, CALR, MPL, ASXL1, IDH2, SETBP1 and SRSF2 mutations and less frequent TP53 and DNMT3A mutations. The overall survival (OS) of MPN-BP (OS post-BP-progression) is comparable to that of AML-MR (median OS, 9.5 months vs. 13.1 months, p=0.20). In addition, the subgroups of MPN-BP show similar OS as AML-MR. When harboring certain mutation such as TP53, ASXL1, DNMT3A, TET2, RUNX1, IDH1, IDH2, EZH2, U2AF1, BCOR and SRSF2, MPN-BP and AML-MR patients carrying the same somatic mutation show no difference in OS. CONCLUSION MPN-BP and AML-MR harbor similar somatic mutations and clinical outcomes, suggesting a unified clinical disease entity.
Collapse
Affiliation(s)
- Dong Chen
- Department of Pathology and Laboratory Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Julia Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Hasserjian
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Patel AA, Yoon JJ, Johnston H, Davidson MB, Shallis RM, Chen EC, Burkart M, Oh TS, Iyer SG, Madarang E, Muthiah C, Gross I, Dean R, Kassner J, Viswabandya A, Madero-Marroquin R, Rampal RK, Guru Murthy GS, Bradley T, Abaza Y, Garcia JS, Gupta V, Pettit KM, Cursio JF, Odenike O. Treatment approach and outcomes of patients with accelerated/blast-phase myeloproliferative neoplasms in the current era. Blood Adv 2024; 8:3468-3477. [PMID: 38739724 PMCID: PMC11260843 DOI: 10.1182/bloodadvances.2024012880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
ABSTRACT Progression of myeloproliferative neoplasms (MPNs) to accelerated or blast phase is associated with poor survival outcomes. Since 2017 there have been several therapies approved for use in acute myeloid leukemia (AML); these therapies have been incorporated into the management of accelerated/blast-phase MPNs (MPN-AP/BP). We performed a multicenter analysis to investigate outcomes of patients diagnosed with MPN-AP/BP in 2017 or later. In total, 202 patients were identified; median overall survival (OS) was 0.86 years. We also analyzed patients based on first-line treatment; the 3 most common approaches were intensive chemotherapy (n = 65), DNA methyltransferase inhibitor (DNMTi)-based regimens (n = 65), and DNMTi + venetoclax-based regimens (n = 54). Median OS was not significantly different by treatment type. In addition, we evaluated response by 2017 European LeukemiaNet AML criteria and 2012 MPN-BP criteria in an effort to understand the association of response with survival outcomes. We also analyzed outcomes in 65 patients that received allogeneic hematopoietic stem cell transplant (allo-HSCT); median OS was 2.30 years from time of allo-HSCT. Our study demonstrates that survival among patients with MPN-AP/BP is limited in the absence of allo-HSCT even in the current era of therapeutics and underscores the urgent need for new agents and approaches.
Collapse
Affiliation(s)
- Anand A. Patel
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL
| | - James J. Yoon
- Division of Hematologic Malignancies, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Hannah Johnston
- Department of Medicine, Internal Medicine Residency, University of Chicago, Chicago, IL
| | - Marta B. Davidson
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Rory M. Shallis
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | - Evan C. Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Madelyn Burkart
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - Timothy S. Oh
- Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sunil G. Iyer
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Ellen Madarang
- University of Miami Sylvester Comprehensive Cancer Center, Miami, FL
| | | | - Iyana Gross
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Raven Dean
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | | | - Auro Viswabandya
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | - Raajit K. Rampal
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Terrence Bradley
- University of Miami Sylvester Comprehensive Cancer Center, Miami, FL
| | - Yasmin Abaza
- Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Vikas Gupta
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Kristen M. Pettit
- Division of Hematology and Medical Oncology, Department of Internal Medicine, University of Michigan Medical School, Michigan Medicine, Ann Arbor, MI
| | - John F. Cursio
- Department of Public Health Sciences, University of Chicago, Chicago, IL
| | - Olatoyosi Odenike
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL
| |
Collapse
|
5
|
Ushijima Y, Ishikawa Y, Nishiyama T, Kawashima N, Kanamori T, Sanada M, Kiyoi H. Clonal evolution process from essential thrombocythemia to acute myeloid leukemia in the original patient from whom the CALR-mutated Marimo cell line was established. NAGOYA JOURNAL OF MEDICAL SCIENCE 2024; 86:326-332. [PMID: 38962422 PMCID: PMC11219235 DOI: 10.18999/nagjms.86.2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/25/2023] [Indexed: 07/05/2024]
Abstract
We previously reported the Marimo cell line, which was established from the bone marrow cells of a patient with essential thrombocythemia (ET) at the last stage after transformation to acute myeloid leukemia (AML). This cell line is widely used for the biological analysis of ET because it harbors CALR mutation. However, genetic processes during disease progression in the original patient were not analyzed. We sequentially analyzed the genetic status in the original patient samples during disease progression. The ET clone had already acquired CALR and MPL mutations, and TP53 and NRAS mutations affected the disease progression from ET to AML in this patient. Particularly, the variant allele frequency of the NRAS mutation increased along with the disease progression after transformation, and the NRAS-mutated clone selectively proliferated in vitro, resulting in the establishment of the Marimo cell line. Although CALR and MPL mutations co-existed, MPL was not expressed in Marimo cells or any clinical samples. Furthermore, mitogen-activated protein kinase (MAPK) but not the JAK2-STAT pathway was activated. These results collectively indicate that MAPK activation is mainly associated with the proliferation ability of Marimo cells.
Collapse
Affiliation(s)
- Yoko Ushijima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Nishiyama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Hematology, Ichinomiya Municipal Hospital, Ichinomiya, Japan
| | - Naomi Kawashima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Kanamori
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Tashkandi H, Younes IE. Advances in Molecular Understanding of Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis: Towards Precision Medicine. Cancers (Basel) 2024; 16:1679. [PMID: 38730632 PMCID: PMC11083661 DOI: 10.3390/cancers16091679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs), including Polycythemia Vera (PV), Essential Thrombocythemia (ET), and Primary Myelofibrosis (PMF), are characterized by the clonal proliferation of hematopoietic stem cells leading to an overproduction of hematopoietic cells. The last two decades have seen significant advances in our understanding of the molecular pathogenesis of these diseases, with the discovery of key mutations in the JAK2, CALR, and MPL genes being pivotal. This review provides a comprehensive update on the molecular landscape of PV, ET, and PMF, highlighting the diagnostic, prognostic, and therapeutic implications of these genetic findings. We delve into the challenges of diagnosing and treating patients with prognostic mutations, clonal evolution, and the impact of emerging technologies like next-generation sequencing and single-cell genomics on the field. The future of MPN management lies in leveraging these molecular insights to develop personalized treatment strategies, aiming for precision medicine that optimizes outcomes for patients. This article synthesizes current knowledge on molecular diagnostics in MPNs, underscoring the critical role of genetic profiling in enhancing patient care and pointing towards future research directions that promise to further refine our approach to these complex disorders.
Collapse
Affiliation(s)
- Hammad Tashkandi
- Department of Pathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ismail Elbaz Younes
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
7
|
Mahmud M, Vasireddy S, Gowin K, Amaraneni A. Myeloproliferative Neoplasms: Contemporary Review and Molecular Landscape. Int J Mol Sci 2023; 24:17383. [PMID: 38139212 PMCID: PMC10744078 DOI: 10.3390/ijms242417383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Myelofibrosis (MF), Myeloproliferative neoplasms (MPNs), and MDS/MPN overlap syndromes have a broad range of clinical presentations and molecular abnormalities, making their diagnosis and classification complex. This paper reviews molecular aberration, epigenetic modifications, chromosomal anomalies, and their interactions with cellular and other immune mechanisms in the manifestations of these disease spectra, clinical features, classification, and treatment modalities. The advent of new-generation sequencing has broadened the understanding of the genetic factors involved. However, while great strides have been made in the pharmacological treatment of these diseases, treatment of advanced disease remains hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Muftah Mahmud
- Department of Medicine, Midwestern University Internal Medicine Residency Consortium, Cottonwood, AZ 86326, USA
| | - Swati Vasireddy
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ 85701, USA
| | - Krisstina Gowin
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85701, USA
| | - Akshay Amaraneni
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85701, USA
| |
Collapse
|
8
|
Chen D, Weinberg OK. Genomic alterations in blast phase of BCR::ABL1-negative myeloproliferative neoplasms. Int J Lab Hematol 2023; 45:839-844. [PMID: 37867386 DOI: 10.1111/ijlh.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023]
Abstract
The blast phase of BCR::ABL1-negative myeloproliferative neoplasm (MPN-BP) represents the final stage of the disease, which is complicated by complex genomic alterations. These alterations result from sequence changes in genetic material (DNA, RNA) and can lead to either a gain or loss of function of encoded proteins, such as adaptor proteins, enzymes, components of spliceosomes, cell cycle checkpoints regulators, transcription factors, or proteins in cell signaling pathways. Interference at various levels, including transcription, translation, and post-translational modification (such as methylation, dephosphorylation, or acetylation), can contribute to these alterations. Mutated genes such as ASXL1, EZH2, IDH1, IDH2, TET2, SRSF2, U2AF1, TP53, NRAS, KRAS, PTPN11, SH2B3/LNK, and RUNX1 play active roles at different stages of genetic material expression, modification, and protein function manipulation in MPNs. These mutations are also correlated with, and can contribute to, the progression of MPN-BP. In this review, we summarize their common mutational profiles, functions, and associations with progression of MPN-BP.
Collapse
Affiliation(s)
- Dong Chen
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, Connecticut, USA
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Gangat N, Ajufo H, Abdelmagid M, Karrar O, McCullough K, Badar T, Foran J, Palmer J, Alkhateeb H, Mangaonkar A, Kuykendall A, Rampal RK, Tefferi A. IDH1/2 inhibitor monotherapy in blast-phase myeloproliferative neoplasms: A multicentre experience. Br J Haematol 2023; 203:e87-e92. [PMID: 37537750 DOI: 10.1111/bjh.19027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Affiliation(s)
- Naseema Gangat
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Helen Ajufo
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering, New York, New York, USA
| | | | - Omer Karrar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Talha Badar
- Division of Hematology, Mayo Clinic, Jacksonville, Florida, USA
| | - James Foran
- Division of Hematology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jeanne Palmer
- Division of Hematology, Mayo Clinic, Scottsdale, Arizona, USA
| | | | | | | | - Raajit K Rampal
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering, New York, New York, USA
| | - Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Calabresi L, Carretta C, Romagnoli S, Rotunno G, Parenti S, Bertesi M, Bartalucci N, Rontauroli S, Chiereghin C, Castellano S, Gentili G, Maccari C, Vanderwert F, Mannelli F, Della Porta M, Manfredini R, Vannucchi AM, Guglielmelli P. Clonal dynamics and copy number variants by single-cell analysis in leukemic evolution of myeloproliferative neoplasms. Am J Hematol 2023; 98:1520-1531. [PMID: 37399248 DOI: 10.1002/ajh.27013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Transformation from chronic (CP) to blast phase (BP) in myeloproliferative neoplasm (MPN) remains poorly characterized, and no specific mutation pattern has been highlighted. BP-MPN represents an unmet need, due to its refractoriness to treatment and dismal outcome. Taking advantage of the granularity provided by single-cell sequencing (SCS), we analyzed paired samples of CP and BP in 10 patients to map clonal trajectories and interrogate target copy number variants (CNVs). Already at diagnosis, MPN present as oligoclonal diseases with varying ratio of mutated and wild-type cells, including cases where normal hematopoiesis was entirely surmised by mutated clones. BP originated from increasing clonal complexity, either on top or independent of a driver mutation, through acquisition of novel mutations as well as accumulation of clones harboring multiple mutations, that were detected at CP by SCS but were missed by bulk sequencing. There were progressive copy-number imbalances from CP to BP, that configured distinct clonal profiles and identified recurrences in genes including NF1, TET2, and BCOR, suggesting an additional level of complexity and contribution to leukemic transformation. EZH2 emerged as the gene most frequently affected by single nucleotide and CNVs, that might result in EZH2/PRC2-mediated transcriptional deregulation, as supported by combined scATAC-seq and snRNA-seq analysis of the leukemic clone in a representative case. Overall, findings provided insights into the pathogenesis of MPN-BP, identified CNVs as a hitherto poorly characterized mechanism and point to EZH2 dysregulation as target. Serial assessment of clonal dynamics might potentially allow early detection of impending disease transformation, with therapeutic implications.
Collapse
Affiliation(s)
- Laura Calabresi
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Carretta
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Simone Romagnoli
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giada Rotunno
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sandra Parenti
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Bertesi
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Niccolò Bartalucci
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Sara Castellano
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Gentili
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Maccari
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fiorenza Vanderwert
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Mannelli
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Rossella Manfredini
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Maria Vannucchi
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Guglielmelli
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Mahdi D, Spiers J, Rampotas A, Polverelli N, McLornan DP. Updates on accelerated and blast phase myeloproliferative neoplasms: Are we making progress? Br J Haematol 2023; 203:169-181. [PMID: 37527977 DOI: 10.1111/bjh.19010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Management approaches for accelerated and blast phase myeloproliferative neoplasms remain challenging for clinicians and patients alike. Despite many therapeutic advances, outcomes for those patients who are not allogeneic haematopoietic cell transplant eligible remain, in general, very poor. Estimated survival rates for such blast phase patients is frequently reported as less than 6 months. No specific immunological, genomic or clinicopathological signature currently exists that accurately predicts the risk and timing of transformation, which frequently induces a high degree of anxiety among patients and clinicians alike. Within this review article, we provide an up-to-date summary of current understanding of the underlying pathogenesis of accelerated and blast phase disease and discuss current therapeutic approaches and realistic outcomes. Finally, we discuss how the horizon may look with the introduction of more novel agents into the clinical arena.
Collapse
Affiliation(s)
- Dina Mahdi
- Department of Haematology, University College Hospital, London, UK
| | - Jessica Spiers
- Department of Haematology, University College Hospital, London, UK
| | | | - Nicola Polverelli
- Unit of Blood Diseases and Stem Cell Transplantation, University of Brescia, Brescia, Italy
| | - Donal P McLornan
- Department of Haematology, University College Hospital, London, UK
| |
Collapse
|
12
|
Mroczkowska-Bękarciak A, Wróbel T. BCR::ABL1-negative myeloproliferative neoplasms in the era of next-generation sequencing. Front Genet 2023; 14:1241912. [PMID: 37745842 PMCID: PMC10514516 DOI: 10.3389/fgene.2023.1241912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
The classical BCR::ABL1-negative myeloproliferative neoplasms such as polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF) are clonal diseases with the presence of characteristic "driver mutations" in one of the genes: JAK2, CALR, or MPL. The search for mutations in these three genes is required for the diagnosis of MPNs. Nevertheless, the progress that has been made in the field of molecular genetics has opened a new era in medicine. The search for additional mutations in MPNs is helpful in assessing the risk stratification, disease progression, transformation to acute myeloid leukemia (AML), or choosing the right treatment. In some cases, advanced technologies are needed to find a clonal marker of the disease and establish a diagnosis. This review focuses on how the use of new technologies like next-generation sequencing (NGS) helps in the diagnosis of BCR::ABL1-negative myeloproliferative neoplasms.
Collapse
|
13
|
Rodriguez-Meira A, Norfo R, Wen S, Chédeville AL, Rahman H, O'Sullivan J, Wang G, Louka E, Kretzschmar WW, Paterson A, Brierley C, Martin JE, Demeule C, Bashton M, Sousos N, Moralli D, Subha Meem L, Carrelha J, Wu B, Hamblin A, Guermouche H, Pasquier F, Marzac C, Girodon F, Vainchenker W, Drummond M, Harrison C, Chapman JR, Plo I, Jacobsen SEW, Psaila B, Thongjuea S, Antony-Debré I, Mead AJ. Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution. Nat Genet 2023; 55:1531-1541. [PMID: 37666991 PMCID: PMC10484789 DOI: 10.1038/s41588-023-01480-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/20/2023] [Indexed: 09/06/2023]
Abstract
Understanding the genetic and nongenetic determinants of tumor protein 53 (TP53)-mutation-driven clonal evolution and subsequent transformation is a crucial step toward the design of rational therapeutic strategies. Here we carry out allelic resolution single-cell multi-omic analysis of hematopoietic stem/progenitor cells (HSPCs) from patients with a myeloproliferative neoplasm who transform to TP53-mutant secondary acute myeloid leukemia (sAML). All patients showed dominant TP53 'multihit' HSPC clones at transformation, with a leukemia stem cell transcriptional signature strongly predictive of adverse outcomes in independent cohorts, across both TP53-mutant and wild-type (WT) AML. Through analysis of serial samples, antecedent TP53-heterozygous clones and in vivo perturbations, we demonstrate a hitherto unrecognized effect of chronic inflammation, which suppressed TP53 WT HSPCs while enhancing the fitness advantage of TP53-mutant cells and promoted genetic evolution. Our findings will facilitate the development of risk-stratification, early detection and treatment strategies for TP53-mutant leukemia, and are of broad relevance to other cancer types.
Collapse
Affiliation(s)
- Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
| | - Ruggiero Norfo
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Regenerative Medicine 'Stefano Ferrari', Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sean Wen
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Agathe L Chédeville
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Haseeb Rahman
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jennifer O'Sullivan
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Guanlin Wang
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Eleni Louka
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Warren W Kretzschmar
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aimee Paterson
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Charlotte Brierley
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jean-Edouard Martin
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | | | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nikolaos Sousos
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | | | - Joana Carrelha
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bishan Wu
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Angela Hamblin
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Helene Guermouche
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service d'hématologie biologique, Paris, France
| | - Florence Pasquier
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Laboratoire d'Immuno-Hématologie, Gustave Roussy, Villejuif, France
| | - François Girodon
- Laboratoire d'Hématologie, CHU Dijon, Dijon, France
- INSERM, UMR 1231, Centre de Recherche, Dijon, France
| | - William Vainchenker
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | | | | | - J Ross Chapman
- Genome Integrity Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Isabelle Plo
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bethan Psaila
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Iléana Antony-Debré
- INSERM, UMR 1287, Villejuif, France.
- Gustave Roussy, Villejuif, France.
- Université Paris Saclay, Gif-sur-Yvette, France.
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Tefferi A, Alkhateeb H, Gangat N. Blast phase myeloproliferative neoplasm: contemporary review and 2024 treatment algorithm. Blood Cancer J 2023; 13:108. [PMID: 37460550 DOI: 10.1038/s41408-023-00878-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Leukemic transformation in myeloproliferative neoplasms (MPN), also referred to as "blast-phase MPN", is the most feared disease complication, with incidence estimates of 1-4% for essential thrombocythemia, 3-7% for polycythemia vera, and 9-13% for primary myelofibrosis. Diagnosis of MPN-BP requires the presence of ≥20% circulating or bone marrow blasts; a lower level of excess blasts (10-19%) constitutes "accelerated phase" disease (MPN-AP). Neither "intensive" nor "less intensive" chemotherapy, by itself, secures long-term survival in MPN-BP. Large-scale retrospective series have consistently shown a dismal prognosis in MPN-BP, with 1- and 3-year survival estimates of <20% and <5%, respectively. Allogeneic hematopoietic stem cell transplant (AHSCT) offers the possibility of a >30% 3-year survival rate and should be pursued, ideally, while the patient is still in chronic phase disease. The value of pre-transplant bridging chemotherapy is uncertain in MPN-AP while it is advised in MPN-BP; in this regard, we currently favor combination chemotherapy with venetoclax (Ven) and hypomethylating agent (HMA); response is more likely in the absence of complex/monosomal karyotype and presence of TET2 mutation. Furthermore, in the presence of an IDH mutation, the use of IDH inhibitors, either alone or in combination with Ven-HMA, can be considered. Pre-transplant clearance of excess blasts is desired but not mandated; in this regard, additional salvage chemotherapy is more likely to compromise transplant eligibility rather than improve post-transplant survival. Controlled studies are needed to determine the optimal pre- and post-transplant measures that target transplant-associated morbidity and post-transplant relapse.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| | - Hassan Alkhateeb
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naseema Gangat
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Andrews C, Conneally E, Langabeer SE. Molecular diagnostic criteria of myeloproliferative neoplasms. Expert Rev Mol Diagn 2023; 23:1077-1090. [PMID: 37999991 DOI: 10.1080/14737159.2023.2277370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
INTRODUCTION Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal hematopoietic stem cell neoplasms characterized by the driver mutations JAK2, CALR, and MPL. These mutations cause constitutive activation of JAK-STAT signaling, which is central to pathogenesis of MPNs. Next-generation sequencing has further expanded the molecular landscape allowing for improved diagnostics, prognostication, and targeted therapy. AREAS COVERED This review aims to address current understanding of the molecular diagnosis of MPN not only through improved awareness of the driver mutations but also the disease modifying mutations. In addition, other genetic factors such as clonal hematopoiesis of indeterminate potential (CHIP), order of mutation, and mutation co-occurrence are discussed and how these factors influence disease initiation and ultimately progression. How this molecular information is incorporated into risk stratification models allowing for earlier intervention and targeted therapy in the future will be addressed further. EXPERT OPINION The genomic landscape of the MPN has evolved in the last 15 years with integration of next-generation sequencing becoming the gold standard of MPN management. Although diagnostics and prognostication have become more personalized, additional studies are required to translate these molecular findings into targeted therapy therefore improving patient outcomes.
Collapse
Affiliation(s)
- Claire Andrews
- Department of Haematology, St. Vincent's University Hospital, Dublin, Ireland
| | | | | |
Collapse
|
16
|
Ajufo HO, Waksal JA, Mascarenhas JO, Rampal RK. Treating accelerated and blast phase myeloproliferative neoplasms: progress and challenges. Ther Adv Hematol 2023; 14:20406207231177282. [PMID: 37564898 PMCID: PMC10410182 DOI: 10.1177/20406207231177282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/03/2023] [Indexed: 08/12/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a group of clonal hematologic malignancies that include polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF). MPNs are characterized by activating mutations in the JAK/STAT pathway and an increased risk of transformation to an aggressive form of acute leukemia, termed MPN-blast phase (MPN-BP). MPN-BP is characterized by the presence of ⩾20% blasts in the blood or bone marrow and is almost always preceded by an accelerated phase (MPN-AP) defined as ⩾10-19% blasts in the blood or bone marrow. These advanced forms of disease are associated with poor prognosis with a median overall survival (mOS) of 3-5 months in MPN-BP and 13 months in MPN-AP. MPN-AP/BP has a unique molecular landscape characterized by increased intratumoral complexity. Standard therapies used in de novo acute myeloid leukemia (AML) have not demonstrated improvement in OS. Allogeneic hematopoietic stem cell transplant (HSCT) remains the only curative therapy but is associated with significant morbidity and mortality and infrequently utilized in clinical practice. Therefore, an urgent unmet need persists for effective therapies in this advanced phase patient population. Here, we review the current management and future directions of therapy in MPN-AP/BP.
Collapse
Affiliation(s)
- Helen O. Ajufo
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julian A. Waksal
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John O. Mascarenhas
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1079, New York, NY 10029, USA
| | | |
Collapse
|
17
|
Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood 2023; 141:1909-1921. [PMID: 36347013 PMCID: PMC10646774 DOI: 10.1182/blood.2022017578] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are clonal diseases originating from a single hematopoietic stem cell that cause excessive production of mature blood cells. The 3 subtypes, that is, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are diagnosed according to the World Health Organization (WHO) and international consensus classification (ICC) criteria. Acquired gain-of-function mutations in 1 of 3 disease driver genes (JAK2, CALR, and MPL) are the causative events that can alone initiate and promote MPN disease without requiring additional cooperating mutations. JAK2-p.V617F is present in >95% of PV patients, and also in about half of the patients with ET or PMF. ET and PMF are also caused by mutations in CALR or MPL. In ∼10% of MPN patients, those referred to as being "triple negative," none of the known driver gene mutations can be detected. The common theme between the 3 driver gene mutations and triple-negative MPN is that the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is constitutively activated. We review the recent advances in our understanding of the early events after the acquisition of a driver gene mutation. The limiting factor that determines the frequency at which MPN disease develops with a long latency is not the acquisition of driver gene mutations, but rather the expansion of the clone. Factors that control the conversion from clonal hematopoiesis to MPN disease include inherited predisposition, presence of additional mutations, and inflammation. The full extent of knowledge of the mutational landscape in individual MPN patients is now increasingly being used to predict outcome and chose the optimal therapy.
Collapse
Affiliation(s)
- Damien Luque Paz
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Chen EC, Johnston H, Patel AA. Targeted Therapy for MPNs: Going Beyond JAK Inhibitors. Curr Hematol Malig Rep 2023; 18:41-55. [PMID: 36705855 DOI: 10.1007/s11899-023-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW JAK inhibition is an effective means of controlling symptom burden and improving splenomegaly in patients with myeloproliferative neoplasms (MPNs). However, a majority of patients treated with JAK inhibition will have disease progression with long-term use. In In this review, we focus on the investigation of novel targeted agents beyond JAK inhibitors both in the chronic phase of disease and in the accelerated/blast phase of disease. RECENT FINDINGS Relevant targeted therapies in MPNs include BET inhibitors, BCL inhibitors, LSD1 inhibitors, PI3K inhibitors, IDH inhibitors, telomerase inhibitors, and MDM2 inhibitor. Agents within these classes have been investigated either as monotherapy or in combination with a JAK inhibitor. We summarize the prospective data for these agents along with detailing the ongoing phase III trials incorporating these agents. While JAK inhibition has been a mainstay of therapy in MPNs, a majority of patients will have disease of progression. JAK inhibitors also have limited anti-clonal effect and do not impact the rate of progression to the blast phase of disease. The novel therapies detailed in this review not only show promise in ameliorating the symptom burden of MPNs but may be able to alter the natural history of disease.
Collapse
Affiliation(s)
- Evan C Chen
- Division of Leukemia, Dana Farber Cancer Institute, Boston, MA, USA
| | - Hannah Johnston
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anand Ashwin Patel
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, MC 2115, Chicago, IL 60637, USA.
| |
Collapse
|
19
|
Patel AA, Odenike O. SOHO State of the Art Updates and Next Questions | Accelerated Phase of MPN: What It Is and What to Do About It. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:303-309. [PMID: 36907766 DOI: 10.1016/j.clml.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Progression of Philadelphia-chromosome negative myeloproliferative neoplasms (MPNs) to the accelerated phase (AP) or blast phase (BP) is associated with poor outcomes. As our understanding of the molecular drivers of MPN progression has grown, there has been increasing investigation into the use of novel targeted approaches in the treatment of these diseases. In this review we summarize the clinical and molecular risk factors for progression to MPN-AP/BP followed by discussion of treatment approach. We also highlight outcomes using conventional approaches such as intensive chemotherapy and hypomethylating agents along with considerations around allogeneic hematopoietic stem cell transplant. We then focus on novel targeted approaches in MPN-AP/BP including venetoclax-based regimens, IDH inhibition, and ongoing prospective clinical trials.
Collapse
Affiliation(s)
- Anand A Patel
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Olatoyosi Odenike
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL.
| |
Collapse
|
20
|
Abbou N, Piazzola P, Gabert J, Ernest V, Arcani R, Couderc AL, Tichadou A, Roche P, Farnault L, Colle J, Ouafik L, Morange P, Costello R, Venton G. Impact of Molecular Biology in Diagnosis, Prognosis, and Therapeutic Management of BCR::ABL1-Negative Myeloproliferative Neoplasm. Cells 2022; 12:cells12010105. [PMID: 36611899 PMCID: PMC9818322 DOI: 10.3390/cells12010105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) include three major subgroups-polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF)-which are characterized by aberrant hematopoietic proliferation with an increased risk of leukemic transformation. Besides the driver mutations, which are JAK2, CALR, and MPL, more than twenty additional mutations have been identified through the use of next-generation sequencing (NGS), which can be involved with pathways that regulate epigenetic modifications, RNA splicing, or DNA repair. The aim of this short review is to highlight the impact of molecular biology on the diagnosis, prognosis, and therapeutic management of patients with PV, ET, and PMF.
Collapse
Affiliation(s)
- Norman Abbou
- Molecular Biology Laboratory, North University Hospital, 13015 Marseille, France
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
| | - Pauline Piazzola
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Jean Gabert
- Molecular Biology Laboratory, North University Hospital, 13015 Marseille, France
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
| | - Vincent Ernest
- Hematology Laboratory, Timone University Hospital, 13005 Marseille, France
| | - Robin Arcani
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
- Department of Internal Medicine, Timone University Hospital, 13005 Marseille, France
| | - Anne-Laure Couderc
- Department of Geriatrics, South University Hospital, 13005 Marseille, France
| | - Antoine Tichadou
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Pauline Roche
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Laure Farnault
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Julien Colle
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - L’houcine Ouafik
- CNRS, INP, Institute of Neurophysiopathol, Aix-Marseille Université, 13005 Marseille, France
- APHM, CHU Nord, Service d’Onco-Biologie, Aix-Marseille Université, 13005 Marseille, France
| | - Pierre Morange
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
- Hematology Laboratory, Timone University Hospital, 13005 Marseille, France
| | - Régis Costello
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
- TAGC, INSERM, UMR1090, Aix-Marseille University, 13005 Marseille, France
| | - Geoffroy Venton
- INSERM, INRAE, C2VN, Aix-Marseille University, 13005 Marseille, France
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
- TAGC, INSERM, UMR1090, Aix-Marseille University, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-91-38-41-52
| |
Collapse
|
21
|
Hitting the brakes on accelerated and blast-phase myeloproliferative neoplasms: current and emerging concepts. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:218-224. [PMID: 36485103 PMCID: PMC9820986 DOI: 10.1182/hematology.2022000341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The BCR-ABL-negative myeloproliferative neoplasms (MPNs) have a variable risk of progressing to accelerated- or blast-phase MPN (MPN-AP/MPN-BP), defined by the presence of 10% to 19% and more than or equal to 20% myeloid blasts in the peripheral blood or bone marrow, respectively. The molecular processes underlying the progression to MPN-AP/MPN-BP are becoming increasingly understood with the acquisition of additional mutations in epigenetic modifiers (eg, ASXL1, EZH2, TET2), TP53, the Ras pathway, or splicing factors (eg, SRSF2, U2AF1), having been described as important steps in this evolutionary process. At least partially driven by the enrichment of these high-risk molecular features, the prognosis of patients with MPN-BP remains inferior to other patients with acute myeloid leukemia, with a median overall survival of 3 to 6 months. Allogeneic hematopoietic cell transplantation remains the only potentially curative therapeutic modality, but only a minority of patients are eligible. In the absence of curative intent, therapeutic strategies or palliative treatment with hypomethylating agents as monotherapy or in combination with ruxolitinib or venetoclax can be considered. Several novel agents are in various stages of clinical development but are not available for routine use at this point, highlighting the need for ongoing research and the prioritization of clinical trial enrollment when feasible.
Collapse
|
22
|
Novel Molecular Insights into Leukemic Evolution of Myeloproliferative Neoplasms: A Single Cell Perspective. Int J Mol Sci 2022; 23:ijms232315256. [PMID: 36499582 PMCID: PMC9740017 DOI: 10.3390/ijms232315256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal disorders originated by the serial acquisition of somatic mutations in hematopoietic stem/progenitor cells. The major clinical entities are represented by polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), that are caused by driver mutations affecting JAK2, MPL or CALR. Disease progression is related to molecular and clonal evolution. PV and ET can progress to secondary myelofibrosis (sMF) but can also evolve to secondary acute myeloid leukemia (sAML). PMF is associated with the highest frequency of leukemic transformation, which represents the main cause of death. sAML is associated with a dismal prognosis and clinical features that differ from those of de novo AML. The molecular landscape distinguishes sAML from de novo AML, since the most frequent hits involve TP53, epigenetic regulators, spliceosome modulators or signal transduction genes. Single cell genomic studies provide novel and accurate information about clonal architecture and mutation acquisition order, allowing the reconstruction of clonal dynamics and molecular events that accompany leukemic transformation. In this review, we examine our current understanding of the genomic heterogeneity in MPNs and how it affects disease progression and leukemic transformation. We focus on molecular events elicited by somatic mutations acquisition and discuss the emerging findings coming from single cell studies.
Collapse
|
23
|
Saliba AN, Gangat N. Accelerated and blast phase myeloproliferative neoplasms. Best Pract Res Clin Haematol 2022; 35:101379. [DOI: 10.1016/j.beha.2022.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
|
24
|
Pastor-Galán I, Martín I, Ferrer B, Hernández-Boluda JC. Impact of molecular profiling on the management of patients with myelofibrosis. Cancer Treat Rev 2022; 109:102435. [PMID: 35839532 DOI: 10.1016/j.ctrv.2022.102435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
Myelofibrosis (MF) is a chronic myeloproliferative neoplasm (MPN) characterized by a highly heterogeneous clinical course, which can be complicated by severe constitutional symptoms, massive splenomegaly, progressive bone marrow failure, cardiovascular events, and development of acute leukemia. Constitutive signaling through the JAK-STAT pathway plays a fundamental role in its pathogenesis, generally due to activating mutations of JAK2, CALR and MPL genes (i.e., the MPN driver mutations), present in most MF patients. Next Generation Sequencing (NGS) panel testing has shown that additional somatic mutations can already be detected at the time of diagnosis in more than half of patients, and that they accumulate along the disease course. These mutations, mostly affecting epigenetic modifiers or spliceosome components, may cooperate with MPN drivers to favor clonal dominance or influence the clinical phenotype, and some, such as high molecular risk mutations, correlate with a more aggressive clinical course with poor treatment response. The current main role of molecular profiling in clinical practice is prognostication, principally for selecting high-risk patients who may be candidates for transplantation, the only curative treatment for MF to date. To this end, contemporary prognostic models incorporating molecular data are useful tools to discriminate different risk categories. Aside from certain clinical situations, decisions regarding medical treatment are not based on patient molecular profiling, yet this approach may become more relevant in novel treatment strategies, such as the use of vaccines against the mutant forms of JAK2 or CALR, or drugs directed against actionable molecular targets.
Collapse
Affiliation(s)
| | - Iván Martín
- Hospital Clínico Universitario-INCLIVA, Valencia, Spain
| | - Blanca Ferrer
- Hospital Clínico Universitario-INCLIVA, Valencia, Spain
| | | |
Collapse
|
25
|
Castillo Tokumori F, Al Ali N, Chan O, Sallman D, Yun S, Sweet K, Padron E, Lancet J, Komrokji R, Kuykendall AT. Comparison of Different Treatment Strategies for Blast-Phase Myeloproliferative Neoplasms. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e521-e525. [PMID: 35241387 PMCID: PMC10766145 DOI: 10.1016/j.clml.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Up to 20% of patients with myeloproliferative neoplasms (MPN) will progress to blast phase (MPN-BP). Outcomes are dismal, with intensive chemotherapy providing little benefit. Low-intensity therapy is preferred due to better tolerability, but the prognosis remains poor. Allogeneic stem cell transplant (AHSCT) is still the only potential for long term survival. PATIENTS AND METHODS To better evaluate the initial treatment approach in MPN-BP, we performed a single-institution retrospective analysis of 75 patients with MPN-BP treated at Moffitt Cancer Center between 2001 and 2021. Patients were stratified by initial treatment: best supportive care (BSC), hypomethylating agent (HMA)-based therapy or intensive chemotherapy (IC). RESULTS Median overall survival (mOS) for the entire cohort was 4.8 months (BSC 0.8 months, HMA 4.7 months, and IC 11.4 months). Among IC patients, improved survival was evident in those that received AHSCT (mOS 40.8 months vs. 4.9 months, p < .01). Most patients that underwent AHSCT were initially treated with IC (p < .01). All patients that underwent AHSCT had achieved complete response (CR) or CR with incomplete hematological recovery (CRi). On multivariate analysis, factors associated with improved survival were receipt of therapy (HMA or IC) (P = .017), CR/CRi (P = .037) and receipt of AHSCT (p < .001). CONCLUSION We show that active treatment with IC improves survival, but it is mostly tied to receipt of AHSCT. IC is a reasonable approach in appropriate patients as it can provide an effective bridge to AHSCT. Other treatment strategies such as molecularly targeted therapy and novel agents are desperately needed.
Collapse
Affiliation(s)
- Franco Castillo Tokumori
- University of South Florida, Morsani College of Medicine, Department of Internal Medicine. Tampa, FL; H. Lee Moffitt Cancer Center & Research Institute, Department of Malignant Hematology. Tampa, FL.
| | - Najla Al Ali
- H. Lee Moffitt Cancer Center & Research Institute, Department of Malignant Hematology. Tampa, FL
| | - Onyee Chan
- H. Lee Moffitt Cancer Center & Research Institute, Department of Malignant Hematology. Tampa, FL
| | - David Sallman
- H. Lee Moffitt Cancer Center & Research Institute, Department of Malignant Hematology. Tampa, FL
| | - Seongseok Yun
- H. Lee Moffitt Cancer Center & Research Institute, Department of Malignant Hematology. Tampa, FL
| | - Kendra Sweet
- H. Lee Moffitt Cancer Center & Research Institute, Department of Malignant Hematology. Tampa, FL
| | - Eric Padron
- H. Lee Moffitt Cancer Center & Research Institute, Department of Malignant Hematology. Tampa, FL
| | - Jeffrey Lancet
- H. Lee Moffitt Cancer Center & Research Institute, Department of Malignant Hematology. Tampa, FL
| | - Rami Komrokji
- H. Lee Moffitt Cancer Center & Research Institute, Department of Malignant Hematology. Tampa, FL
| | - Andrew T Kuykendall
- H. Lee Moffitt Cancer Center & Research Institute, Department of Malignant Hematology. Tampa, FL
| |
Collapse
|
26
|
Maslah N, Verger E, Giraudier S, Chea M, Hoffman R, Mascarenhas J, Cassinat B, Kiladjian JJ. Single-cell analysis reveals selection of TP53-mutated clones after MDM2 inhibition. Blood Adv 2022; 6:2813-2823. [PMID: 35030630 PMCID: PMC9092407 DOI: 10.1182/bloodadvances.2021005867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
The mechanisms of transformation of chronic myeloproliferative neoplasms (MPN) to leukemia are largely unknown, but TP53 mutations acquisition is considered a key event in this process. p53 is a main tumor suppressor, but mutations in this protein per se do not confer a proliferative advantage to the cells, and a selection process is needed for the expansion of mutant clones. MDM2 inhibitors may rescue normal p53 from degradation and have been evaluated in a variety of cancers with promising results. However, the impact of these drugs on TP53-mutated cells is underexplored. We report herein evidence of a direct effect of MDM2 inhibition on the selection of MPN patients' cells harboring TP53 mutations. To decipher whether these mutations can arise in a specific molecular context, we used a DNA single-cell approach to determine the clonal architecture of TP53-mutated cells. We observed that TP53 mutations are late events in MPN, mainly occurring in the driver clone, whereas clonal evolution frequently consists of sequential branching instead of linear consecutive acquisition of mutations in the same clone. At the single-cell level, the presence of additional mutations does not influence the selection of TP53 mutant cells by MDM2 inhibitor treatment. Also, we describe an in vitro test allowing to predict the emergence of TP53 mutated clones. Altogether, this is the first demonstration that a drug treatment can directly favor the emergence of TP53-mutated subclones in MPN.
Collapse
Affiliation(s)
- Nabih Maslah
- Assistance Publique – Hôpitaux de Paris (AP-HP), Hopital Saint-Louis, laboratoire de Biologie Cellulaire, Paris, France
- Université de Paris, U1131 INSERM, Institut de Recherche Saint-Louis (IRSL), Paris, France
| | - Emmanuelle Verger
- Assistance Publique – Hôpitaux de Paris (AP-HP), Hopital Saint-Louis, laboratoire de Biologie Cellulaire, Paris, France
- Université de Paris, U1131 INSERM, Institut de Recherche Saint-Louis (IRSL), Paris, France
| | - Stéphane Giraudier
- Assistance Publique – Hôpitaux de Paris (AP-HP), Hopital Saint-Louis, laboratoire de Biologie Cellulaire, Paris, France
- Université de Paris, U1131 INSERM, Institut de Recherche Saint-Louis (IRSL), Paris, France
| | - Mathias Chea
- Université de Paris, U1131 INSERM, Institut de Recherche Saint-Louis (IRSL), Paris, France
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; and
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; and
| | - Bruno Cassinat
- Assistance Publique – Hôpitaux de Paris (AP-HP), Hopital Saint-Louis, laboratoire de Biologie Cellulaire, Paris, France
- Université de Paris, U1131 INSERM, Institut de Recherche Saint-Louis (IRSL), Paris, France
| | - Jean-Jacques Kiladjian
- Université de Paris, U1131 INSERM, Institut de Recherche Saint-Louis (IRSL), Paris, France
- Assistance Publique – Hôpitaux de Paris (AP-HP), Hopital Saint-Louis, Centre d’Investigations Cliniques, INSERM CIC1427, Paris, France
| |
Collapse
|
27
|
Pasca S, Chifotides HT, Verstovsek S, Bose P. Mutational landscape of blast phase myeloproliferative neoplasms (MPN-BP) and antecedent MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 366:83-124. [PMID: 35153007 DOI: 10.1016/bs.ircmb.2021.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myeloproliferative neoplasms (MPN) have an inherent tendency to evolve to the blast phase (BP), characterized by ≥20% myeloblasts in the blood or bone marrow. MPN-BP portends a dismal prognosis and currently, effective treatment modalities are scarce, except for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in selected patients, particularly those who achieve complete/partial remission. The mutational landscape of MPN-BP differs from de novo acute myeloid leukemia (AML) in several key aspects, such as significantly lower frequencies of FLT3 and DNMT3A mutations, and higher incidence of IDH1/2 and TP53 in MPN-BP. Herein, we comprehensively review the impact of the three signaling driver mutations (JAK2 V617F, CALR exon 9 indels, MPL W515K/L) that constitutively activate the JAK/STAT pathway, and of the other somatic non-driver mutations (epigenetic, mRNA splicing, transcriptional regulators, and mutations in signal transduction genes) that cooperatively or independently promote MPN progression and leukemic transformation. The MPN subtype, harboring two or more high-molecular risk (HMR) mutations (epigenetic regulators and mRNA splicing factors) and "triple-negative" PMF are among the critical factors that increase risk of leukemic transformation and shorten survival. Primary myelofibrosis (PMF) is the most aggressive MPN; and polycythemia vera (PV) and essential thrombocythemia (ET) are relatively indolent subtypes. In PV and ET, mutations in splicing factor genes are associated with progression to myelofibrosis (MF), and in ET, TP53 mutations predict risk for leukemic transformation. The advent of targeted next-generation sequencing and improved prognostic scoring systems for PMF inform decisions regarding allo-HSCT. The emergence of treatments targeting mutant enzymes (e.g., IDH1/2 inhibitors) or epigenetic pathways (BET and LSD1 inhibitors) along with new insights into the mechanisms of leukemogenesis will hopefully lead the way to superior management strategies and outcomes of MPN-BP patients.
Collapse
Affiliation(s)
- Sergiu Pasca
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Helen T Chifotides
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Srdan Verstovsek
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Prithviraj Bose
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
28
|
Chauvet P, Nibourel O, Berthon C, Goursaud L, Carpentier B, Lionne-Huyghe P, Wemeau M, Quesnel B. Resurgence of myeloproliferative neoplasm in patients in remission from blast transformation after treatment with hypomethylating agents. Leuk Res 2022; 118:106871. [DOI: 10.1016/j.leukres.2022.106871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
|
29
|
Wang X, Rampal RK, Hu CS, Tripodi J, Farnoud N, Petersen B, Rossi MR, Patel M, McGovern E, Najfeld V, Iancu-Rubin C, Lu M, Davis A, Kremyanskaya M, Weinberg RS, Mascarenhas J, Hoffman R. Characterization of disease-propagating stem cells responsible for myeloproliferative neoplasm-blast phase. JCI Insight 2022; 7:e156534. [PMID: 35259128 PMCID: PMC9089790 DOI: 10.1172/jci.insight.156534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic myeloproliferative neoplasms (MPN) frequently evolve to a blast phase (BP) that is almost uniformly resistant to induction chemotherapy or hypomethylating agents. We explored the functional properties, genomic architecture, and cell of origin of MPN-BP initiating cells (IC) using a serial NSG mouse xenograft transplantation model. Transplantation of peripheral blood mononuclear cells (MNC) from 7 of 18 patients resulted in a high degree of leukemic cell chimerism and recreated clinical characteristics of human MPN-BP. The function of MPN-BP ICs was not dependent on the presence of JAK2V617F, a driver mutation associated with the initial underlying MPN. By contrast, multiple MPN-BP IC subclones coexisted within MPN-BP MNCs characterized by different myeloid malignancy gene mutations and cytogenetic abnormalities. MPN-BP ICs in 4 patients exhibited extensive proliferative and self-renewal capacity, as demonstrated by their ability to recapitulate human MPN-BP in serial recipients. These MPN-BP IC subclones underwent extensive continuous clonal competition within individual xenografts and across multiple generations, and their subclonal dynamics were consistent with functional evolution of MPN-BP IC. Finally, we show that MPN-BP ICs originate from not only phenotypically identified hematopoietic stem cells, but also lymphoid-myeloid progenitor cells, which were each characterized by differences in MPN-BP initiating activity and self-renewal capacity.
Collapse
Affiliation(s)
- Xiaoli Wang
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Raajit K. Rampal
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cing Siang Hu
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Joseph Tripodi
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Noushin Farnoud
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Bruce Petersen
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Michael R. Rossi
- Genetics and Genomic Sciences, ISMMS, New York, New York
- Sema4, Stamford, Connecticut, USA
| | - Minal Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Erin McGovern
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vesna Najfeld
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Camelia Iancu-Rubin
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Min Lu
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Andrew Davis
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Marina Kremyanskaya
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | | | - John Mascarenhas
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| | - Ronald Hoffman
- Division of Hematology/Medical Oncology/Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, New York, USA
| |
Collapse
|
30
|
Molecular Pathogenesis of Myeloproliferative Neoplasms: From Molecular Landscape to Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23094573. [PMID: 35562964 PMCID: PMC9100530 DOI: 10.3390/ijms23094573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022] Open
Abstract
Despite distinct clinical entities, the myeloproliferative neoplasms (MPN) share morphological similarities, propensity to thrombotic events and leukemic evolution, and a complex molecular pathogenesis. Well-known driver mutations, JAK2, MPL and CALR, determining constitutive activation of JAK-STAT signaling pathway are the hallmark of MPN pathogenesis. Recent data in MPN patients identified the presence of co-occurrence somatic mutations associated with epigenetic regulation, messenger RNA splicing, transcriptional mechanism, signal transduction, and DNA repair mechanism. The integration of genetic information within clinical setting is already improving patient management in terms of disease monitoring and prognostic information on disease progression. Even the current therapeutic approaches are limited in disease-modifying activity, the expanding insight into the genetic basis of MPN poses novel candidates for targeted therapeutic approaches. This review aims to explore the molecular landscape of MPN, providing a comprehensive overview of the role of drive mutations and additional mutations, their impact on pathogenesis as well as their prognostic value, and how they may have future implications in therapeutic management.
Collapse
|
31
|
Genetic Background of Polycythemia Vera. Genes (Basel) 2022; 13:genes13040637. [PMID: 35456443 PMCID: PMC9027017 DOI: 10.3390/genes13040637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Polycythemia vera belongs to myeloproliferative neoplasms, essentially by affecting the erythroblastic lineage. JAK2 alterations have emerged as major driver mutations triggering PV-phenotype with the V617F mutation detected in nearly 98% of cases. That’s why JAK2 targeting therapeutic strategies have rapidly emerged to counter the aggravation of the disease. Over decades of research, to go further in the understanding of the disease and its evolution, a wide panel of genetic alterations affecting multiple genes has been highlighted. These are mainly involved in alternative splicing, epigenetic, miRNA regulation, intracellular signaling, and transcription factors expression. If JAK2 mutation, irrespective of the nature of the alteration, is known to be a crucial event for the disease to initiate, additional mutations seem to be markers of progression and poor prognosis. These discoveries have helped to characterize the complex genomic landscape of PV, resulting in potentially new adapted therapeutic strategies for patients concerning all the genetic interferences.
Collapse
|
32
|
Saha C, Attwell L, Harrison CN, McLornan DP. Addressing the challenges of accelerated and blast phase myeloproliferative neoplasms in 2022 and beyond. Blood Rev 2022; 55:100947. [DOI: 10.1016/j.blre.2022.100947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
|
33
|
Cattaneo D, Iurlo A. Immune Dysregulation and Infectious Complications in MPN Patients Treated With JAK Inhibitors. Front Immunol 2021; 12:750346. [PMID: 34867980 PMCID: PMC8639501 DOI: 10.3389/fimmu.2021.750346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BCR-ABL1-negative myeloproliferative neoplasms are burdened by a reduced life expectancy mostly due to an increased risk of thrombo-hemorrhagic events, fibrotic progression/leukemic evolution, and infectious complications. In these clonal myeloid malignancies, JAK2V617F is the main driver mutation, leading to an aberrant activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. Therefore, its inhibition represents an attractive therapeutic strategy for these disorders. Several JAK inhibitors have entered clinical trials, including ruxolitinib, the first JAK1/2 inhibitor to become commercially available for the treatment of myelofibrosis and polycythemia vera. Due to interference with the JAK-STAT pathway, JAK inhibitors affect several components of the innate and adaptive immune systems such as dendritic cells, natural killer cells, T helper cells, and regulatory T cells. Therefore, even though the clinical use of these drugs in MPN patients has led to a dramatic improvement of symptoms control, organ involvement, and quality of life, JAK inhibitors–related loss of function in JAK-STAT signaling pathway can be a cause of different adverse events, including those related to a condition of immune suppression or deficiency. This review article will provide a comprehensive overview of the current knowledge on JAK inhibitors’ effects on immune cells as well as their clinical consequences, particularly with regards to infectious complications.
Collapse
Affiliation(s)
- Daniele Cattaneo
- Hematology Division, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
34
|
Crispino J, Rampal R. Can molecular insights guide treatment of AML evolved from MPNs? Best Pract Res Clin Haematol 2021; 34:101323. [PMID: 34865695 DOI: 10.1016/j.beha.2021.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leukemic transformation of myeloproliferative neoplasms (MPNs) is associated with dismal outcomes. The genetic complexity of leukemic transformation of MPNs is being deciphered and will likely result in targeted therapy approaches. Ongoing trials are investigating the efficacy of emerging treatments for this high-risk patient population. This review has outlined recent progress in the understanding and treatment of leukemia arising from MPNs.
Collapse
Affiliation(s)
- John Crispino
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA.
| | - Raajit Rampal
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 443, New York, NY, 10022, USA
| |
Collapse
|
35
|
Brune MM, Rau A, Overkamp M, Flaadt T, Bonzheim I, Schürch CM, Federmann B, Dirnhofer S, Fend F, Tzankov A. Molecular Progression of Myeloproliferative and Myelodysplastic/Myeloproliferative Neoplasms: A Study on Sequential Bone Marrow Biopsies. Cancers (Basel) 2021; 13:5605. [PMID: 34830756 PMCID: PMC8615857 DOI: 10.3390/cancers13225605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) both harbor the potential to undergo myelodysplastic progression or acceleration and can transform into blast-phase MPN or MDS/MPN, a form of secondary acute myeloid leukemia (AML). Although the initiating transforming events are yet to be determined, current concepts suggest a stepwise acquisition of (additional) somatic mutations-apart from the initial driver mutations-that trigger disease evolution. In this study we molecularly analyzed paired bone marrow samples of MPN and MDS/MPN patients with known progression and compared them to a control cohort of patients with stable disease course. Cases with progression displayed from the very beginning a higher number of mutations compared to stable ones, of which mutations in five (ASXL1, DNMT3A, NRAS, SRSF2 and TP53) strongly correlated with progression and/or transformation, even if only one of these genes was mutated, and this particularly applied to MPN. TET2 mutations were found to have a higher allelic frequency than the putative driver mutation in three progressing cases ("TET2-first"), whereas two stable cases displayed a TET2-positive subclone ("TET2-second"), supporting the hypothesis that not only the sum of mutations but also their order of appearance matters in the course of disease. Our data emphasize the importance of genetic testing in MPN and MDS/MPN patients in terms of risk stratification and identification of imminent disease progression.
Collapse
Affiliation(s)
- Magdalena M. Brune
- Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland; (M.M.B.); (S.D.)
| | - Achim Rau
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Mathis Overkamp
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Tim Flaadt
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Christian M. Schürch
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
- Institute of Pathology, University of Bern, Murtenstrasse 8, CH-3008 Bern, Switzerland
| | - Birgit Federmann
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland; (M.M.B.); (S.D.)
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.R.); (M.O.); (T.F.); (I.B.); (C.M.S.); (B.F.)
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland; (M.M.B.); (S.D.)
| |
Collapse
|
36
|
Sabattini E, Pizzi M, Agostinelli C, Bertuzzi C, Sagramoso Sacchetti CA, Palandri F, Gianelli U. Progression in Ph-Chromosome-Negative Myeloproliferative Neoplasms: An Overview on Pathologic Issues and Molecular Determinants. Cancers (Basel) 2021; 13:5531. [PMID: 34771693 PMCID: PMC8583143 DOI: 10.3390/cancers13215531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Progression in Ph-chromosome-negative myeloproliferative neoplasms (MPN) develops with variable incidence and time sequence in essential thrombocythemia, polycythemia vera, and primary myelofibrosis. These diseases show different clinic-pathologic features and outcomes despite sharing deregulated JAK/STAT signaling due to mutations in either the Janus kinase 2 or myeloproliferative leukemia or CALReticulin genes, which are the primary drivers of the diseases, as well as defined diagnostic criteria and biomarkers in most cases. Progression is defined by the development or worsening of marrow fibrosis or the progressive increase in the marrow blast percentage. Progression is often related to additional genetic aberrations, although some can already be detected during the chronic phase. Detailed scoring systems for clinical usage that are mostly applied in patients with primary myelofibrosis have been defined, and the most recent ones include cytogenetic and molecular parameters with prognostic significance. Additional different clinic-pathologic changes have been reported that may occur during the course of the disease and that are, at present, classified as WHO-defined types of progression, although they likely represent such an event. The present review is meant to provide an updated overview on progression in Ph-chromosome-negative MPN, with a major focus on the pathologic side.
Collapse
Affiliation(s)
- Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine—DIMED, University of Padua, 35121 Padua, Italy;
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Clara Bertuzzi
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
| | | | - Francesca Palandri
- Istituto di Ematologia “Seragnoli” IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Umberto Gianelli
- Pathology Unit, Department of Pathophysiology and Transplantation, University of Milan and IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| |
Collapse
|
37
|
Sabattini E, Pizzi M, Agostinelli C, Bertuzzi C, Sagramoso Sacchetti CA, Palandri F, Gianelli U. Progression in Ph-Chromosome-Negative Myeloproliferative Neoplasms: An Overview on Pathologic Issues and Molecular Determinants. Cancers (Basel) 2021. [PMID: 34771693 DOI: 10.3390/cancers13215531.pmid:34771693;pmcid:pmc8583143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Progression in Ph-chromosome-negative myeloproliferative neoplasms (MPN) develops with variable incidence and time sequence in essential thrombocythemia, polycythemia vera, and primary myelofibrosis. These diseases show different clinic-pathologic features and outcomes despite sharing deregulated JAK/STAT signaling due to mutations in either the Janus kinase 2 or myeloproliferative leukemia or CALReticulin genes, which are the primary drivers of the diseases, as well as defined diagnostic criteria and biomarkers in most cases. Progression is defined by the development or worsening of marrow fibrosis or the progressive increase in the marrow blast percentage. Progression is often related to additional genetic aberrations, although some can already be detected during the chronic phase. Detailed scoring systems for clinical usage that are mostly applied in patients with primary myelofibrosis have been defined, and the most recent ones include cytogenetic and molecular parameters with prognostic significance. Additional different clinic-pathologic changes have been reported that may occur during the course of the disease and that are, at present, classified as WHO-defined types of progression, although they likely represent such an event. The present review is meant to provide an updated overview on progression in Ph-chromosome-negative MPN, with a major focus on the pathologic side.
Collapse
Affiliation(s)
- Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, 35121 Padua, Italy
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Clara Bertuzzi
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Francesca Palandri
- Istituto di Ematologia "Seragnoli" IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Umberto Gianelli
- Pathology Unit, Department of Pathophysiology and Transplantation, University of Milan and IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
38
|
Cross NCP, Godfrey AL, Cargo C, Garg M, Mead AJ. The use of genetic tests to diagnose and manage patients with myeloproliferative and myeloproliferative/myelodysplastic neoplasms, and related disorders. Br J Haematol 2021; 195:338-351. [PMID: 34409596 DOI: 10.1111/bjh.17766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Nicholas C P Cross
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anna L Godfrey
- Haematopathology & Oncology Diagnostics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Catherine Cargo
- Haematological Malignancy Diagnostic Service, Leeds Cancer Centre, St James's University Hospital, Leeds, UK
| | - Mamta Garg
- Leicester Royal Infirmary, Infirmary Square, Leicester, UK
| | - Adam J Mead
- MRC Molecular Haematology Unit, NIHR Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
39
|
Impact of alternative splicing on mechanisms of resistance to anticancer drugs. Biochem Pharmacol 2021; 193:114810. [PMID: 34673012 DOI: 10.1016/j.bcp.2021.114810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
A shared characteristic of many tumors is the lack of response to anticancer drugs. Multiple mechanisms of pharmacoresistance (MPRs) are involved in permitting cancer cells to overcome the effect of these agents. Pharmacoresistance can be primary (intrinsic) or secondary (acquired), i.e., triggered or enhanced in response to the treatment. Moreover, MPRs usually result in the lack of sensitivity to several agents, which accounts for diverse multidrug-resistant (MDR) phenotypes. MPRs are based on the dynamic expression of more than one hundred genes, constituting the so-called resistome. Alternative splicing (AS) during pre-mRNA maturation results in changes affecting proteins involved in the resistome. The resulting splicing variants (SVs) reduce the efficacy of anticancer drugs by lowering the intracellular levels of active agents, altering molecular targets, enhancing both DNA repair ability and defensive mechanism of tumors, inducing changes in the balance between pro-survival and pro-apoptosis signals, modifying interactions with the tumor microenvironment, and favoring malignant phenotypic transitions. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the impact of AS on MPR in cancer cells.
Collapse
|
40
|
Morris R, Zhang Y, Ellyard JI, Vinuesa CG, Murphy JM, Laktyushin A, Kershaw NJ, Babon JJ. Structural and functional analysis of target recognition by the lymphocyte adaptor protein LNK. Nat Commun 2021; 12:6110. [PMID: 34671038 PMCID: PMC8528861 DOI: 10.1038/s41467-021-26394-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023] Open
Abstract
The SH2B family of adaptor proteins, SH2-B, APS, and LNK are key modulators of cellular signalling pathways. Whilst SH2-B and APS have been partially structurally and biochemically characterised, to date there has been no such characterisation of LNK. Here we present two crystal structures of the LNK substrate recognition domain, the SH2 domain, bound to phosphorylated motifs from JAK2 and EPOR, and biochemically define the basis for target recognition. The LNK SH2 domain adopts a canonical SH2 domain fold with an additional N-terminal helix. Targeted analysis of binding to phosphosites in signalling pathways indicated that specificity is conferred by amino acids one- and three-residues downstream of the phosphotyrosine. Several mutations in LNK showed impaired target binding in vitro and a reduced ability to inhibit signalling, allowing an understanding of the molecular basis of LNK dysfunction in variants identified in patients with myeloproliferative disease.
Collapse
Affiliation(s)
- Rhiannon Morris
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Yaoyuan Zhang
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - Julia I. Ellyard
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - Carola G. Vinuesa
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - James M. Murphy
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Artem Laktyushin
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Nadia J. Kershaw
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Jeffrey J. Babon
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| |
Collapse
|
41
|
Bose P, Verstovsek S. SOHO State of the Art Updates and Next Questions: Identifying and Treating "Progression" in Myelofibrosis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2021; 21:641-649. [PMID: 34272171 PMCID: PMC8565615 DOI: 10.1016/j.clml.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 01/19/2023]
Abstract
Over the last decade, the Janus kinase (JAK) 1/2 inhibitor ruxolitinib has become widely established as the cornerstone of pharmacologic therapy for most patients with myelofibrosis (MF), providing dramatic and durable benefits in terms of splenomegaly and symptoms, and prolonging survival. Ruxolitinib does not address all aspects of the disease, however; notably cytopenias, and its ability to modify the underlying biology of the disease remains in question. Furthermore, patients eventually lose response to ruxolitinib. Multiple groups have reported the median overall survival of MF patients after ruxolitinib discontinuation to be 13 to 14 months. While consensus criteria only recognize splenic and blast progression as "progressive disease" in patients with MF, disease progression can occur in a variety of ways. Besides increasing splenomegaly and progression to accelerated phase/leukemic transformation, patients may develop worsening disease-related symptoms, cytopenias, progressive leukocytosis, extramedullary hematopoiesis, etc. As in the frontline setting, treatment needs to be tailored to the clinical needs of the patient. Current treatment options for patients with MF who fail ruxolitinib remain unsatisfactory, and this continues to represent an area of major unmet medical need. The regulatory approval of fedratinib has introduced an important option in the postruxolitinib setting. Fortunately, a plethora of novel agents, both new JAK inhibitors and drugs from other classes, eg, bromodomain and extraterminal (BET), murine double minute 2 (MDM2) and telomerase inhibitors, activin receptor ligand traps, BH3-mimetics and more, are poised to greatly expand the therapeutic armamentarium for patients with MF if successful in pivotal trials.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
42
|
Caprioli C, Lussana F, Salmoiraghi S, Cavagna R, Buklijas K, Elidi L, Zanghi' P, Michelato A, Delaini F, Oldani E, Intermesoli T, Grassi A, Gianfaldoni G, Mannelli F, Ferrero D, Audisio E, Terruzzi E, De Paoli L, Cattaneo C, Borlenghi E, Cavattoni I, Tajana M, Scattolin AM, Mattei D, Corradini P, Campiotti L, Ciceri F, Bernardi M, Todisco E, Cortelezzi A, Falini B, Pavoni C, Bassan R, Spinelli O, Rambaldi A. Clinical significance of chromatin-spliceosome acute myeloid leukemia: a report from the Northern Italy Leukemia Group (NILG) randomized trial 02/06. Haematologica 2021; 106:2578-2587. [PMID: 32855275 PMCID: PMC8485674 DOI: 10.3324/haematol.2020.252825] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Indexed: 12/05/2022] Open
Abstract
Secondary acute myeloid leukemia (sAML) after myelodysplastic or myeloproliferative disorders is a high-risk category currently identified by the clinical history or specific morphological and cytogenetic abnormalities. However, in the absence of these features, uncertainties to identify the secondary nature of some cases, otherwise defined as de novo AML, remain. In order to test whether a chromatinspliceosome (CS) mutational signature might better define the de novo AML group, we analyzed a prospective cohort of 413 newly diagnosed AML patients who were enrolled in a randomized clinical trial (NILG AML 02/06) and who provided samples for accurate cytogenetic and molecular characterization. Among clinically defined de novo AML, 17.6% carried CS mutations (CS-AML) and showed clinical characteristics closer to sAML (older age, lower white blood cell counts and higher rate of multilineage dysplasia). Outcomes in this group were adverse, more similar to those of sAML as compared to de novo AML (overall survival, 30% in CS-AML and 17% in sAML vs. 61% in de novo AML, P<0.0001; disease-free survival, 26% in CS-AML and 22% in sAML vs. 54% of de novo AML, P<0.001) and independently confirmed by multivariable analysis. Allogeneic transplant in first complete remission improved survival in both sAML and CS-AML patients. In conclusion, these findings highlight the clinical significance of identifying CS-AML for improved prognostic prediction and potential therapeutic implications. (NILG AML 02/06; clinicaltrials gov. Identifier: NCT00495287).
Collapse
Affiliation(s)
| | | | - Silvia Salmoiraghi
- ASST Ospedale Papa Giovanni XXIII and FROM Research Foundation, Bergamo, Italy
| | | | | | - Lara Elidi
- ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | | | | | | | - Elena Oldani
- ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | | | - Anna Grassi
- ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Dario Ferrero
- AOU Città della Salute e della Scienza, Torino, Italy
| | | | | | - Lorella De Paoli
- Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Renato Bassan
- Ospedale dell'Angelo e SS. Giovanni e Paolo, Venezia Mestre, Italy
| | | | | |
Collapse
|
43
|
Giai V, Secreto C, Freilone R, Pregno P. Philadelphia-Negative MPN: A Molecular Journey, from Hematopoietic Stem Cell to Clinical Features. MEDICINA-LITHUANIA 2021; 57:medicina57101043. [PMID: 34684081 PMCID: PMC8537741 DOI: 10.3390/medicina57101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Philadelphia negative Myeloproliferative Neoplasms (MPN) are a heterogeneous group of hematopoietic stem cell diseases. MPNs show different risk grades of thrombotic complications and acute myeloid leukemia evolution. In the last couple of decades, from JAK2 mutation detection in 2005 to the newer molecular trademarks studied through next generation sequencing, we are learning to approach MPNs from a deeper perspective. Here, we intend to elucidate the important factors affecting MPN clonal advantage and the reasons why some patients progress to more aggressive disease. Understanding these mechanisms is the key to developing new treatment approaches and targeted therapies for MPN patients.
Collapse
|
44
|
Coltro G, Loscocco GG, Vannucchi AM. Classical Philadelphia-negative myeloproliferative neoplasms (MPNs): A continuum of different disease entities. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 365:1-69. [PMID: 34756241 DOI: 10.1016/bs.ircmb.2021.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Classical Philadelphia-negative myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell-derived disorders characterized by uncontrolled proliferation of differentiated myeloid cells and close pathobiologic and clinical features. According to the 2016 World Health Organization (WHO) classification, MPNs include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The 2016 revision aimed in particular at strengthening the distinction between masked PV and JAK2-mutated ET, and between prefibrotic/early (pre-PMF) and overt PMF. Clinical manifestations in MPNs include constitutional symptoms, microvascular disorders, thrombosis and bleeding, splenomegaly secondary to extramedullary hematopoiesis, cytopenia-related symptoms, and progression to overt MF and acute leukemia. A dysregulation of the JAK/STAT pathway is the unifying mechanistic hallmark of MPNs, and is guided by somatic mutations in driver genes including JAK2, CALR and MPL. Additional mutations in myeloid neoplasm-associated genes have been also identified, with established prognostic relevance, particularly in PMF. Prognostication of MPN patients relies on disease-specific clinical models. The increasing knowledge of MPN biology led to the development of integrated clinical and molecular prognostic scores that allow a more refined stratification. Recently, the therapeutic landscape of MPNs has been revolutionized by the introduction of potent, selective JAK inhibitors (ruxolitinib, fedratinib), that proved effective in controlling disease-related symptoms and splenomegaly, yet leaving unmet critical needs, owing the lack of disease-modifying activity. In this review, we will deal with molecular, clinical, and therapeutic aspects of the three classical MPNs aiming at highlighting either shared characteristics, that overall define a continuum within a single disease family, and uniqueness, at the same time.
Collapse
Affiliation(s)
- Giacomo Coltro
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giuseppe G Loscocco
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro M Vannucchi
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, AOU Careggi, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
45
|
Ferrone CK, Wong H, Semenuk L, Werunga B, Snetsinger B, Zhang X, Zhang G, Lui J, Richard-Carpentier G, Crocker S, Good D, Hay AE, Quest G, Carson N, Feilotter HE, Rauh MJ. Validation, Implementation, and Clinical Impact of the Oncomine Myeloid Targeted-Amplicon DNA and RNA Ion Semiconductor Sequencing Assay. J Mol Diagn 2021; 23:1292-1305. [PMID: 34365012 DOI: 10.1016/j.jmoldx.2021.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/04/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
The identification of clinically significant genes recurrently mutated in myeloid malignancies necessitates expanding diagnostic testing with higher throughput, such as targeted next-generation sequencing. We present validation of the Thermo Fisher Oncomine Myeloid Next-Generation Sequencing Panel (OMP), targeting 40 genes and 29 fusion drivers recurrently mutated in myeloid malignancies. The study includes data from a sample exchange between two Canadian hospitals demonstrating high concordance for detection of DNA and RNA aberrations. Clinical validation demonstrates high accuracy, sensitivity, and specificity of the OMP, with a lower limit of detection of 5% for single-nucleotide variants and 10% for insertions/deletions. Prospective sequencing was performed for 187 samples from 168 unique patients presenting with suspected or confirmed myeloid malignancy and other hematological conditions to assess clinical impact of identifying variants. Of detected variants, 48% facilitated or clarified diagnoses, 29% affected prognoses, and 25% had the potential to influence clinical management. Of note, OMP was essential to identifying patients with premalignant clonal states likely contributing to cytopenias. We also found that the detection of even a single variant by the OMP assay, versus 0 variants, was predictive of overall survival, independent of age, sex, or diagnosis (P = 0.03). This study demonstrates that molecular profiling of myeloid malignancies with the OMP represents a promising strategy to advance molecular diagnostics.
Collapse
Affiliation(s)
- Christina K Ferrone
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Henry Wong
- Molecular Genetics Laboratory, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Laura Semenuk
- Molecular Genetics Laboratory, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Barnaba Werunga
- Division of Genetics, Department of Lab Medicine and Pathology, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Brooke Snetsinger
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Xiao Zhang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Grace Zhang
- Division of Hematology, Department of Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Janet Lui
- Division of Hematology, Department of Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | | | - Susan Crocker
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada; Cytogenetics Laboratory, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - David Good
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Annette E Hay
- Division of Hematology, Department of Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Graeme Quest
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Nancy Carson
- Division of Genetics, Department of Lab Medicine and Pathology, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| | - Harriet E Feilotter
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada; Molecular Genetics Laboratory, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
46
|
Integration of Molecular Information in Risk Assessment of Patients with Myeloproliferative Neoplasms. Cells 2021; 10:cells10081962. [PMID: 34440731 PMCID: PMC8391705 DOI: 10.3390/cells10081962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are clonal disorders of a hematopoietic stem cell, characterized by an abnormal proliferation of largely mature cells driven by mutations in JAK2, CALR, and MPL. All these mutations lead to a constitutive activation of the JAK-STAT signaling, which represents a target for therapy. Beyond driver ones, most patients, especially with myelofibrosis, harbor mutations in an array of "myeloid neoplasm-associated" genes that encode for proteins involved in chromatin modification and DNA methylation, RNA splicing, transcription regulation, and oncogenes. These additional mutations often arise in the context of clonal hematopoiesis of indeterminate potential (CHIP). The extensive characterization of the pathologic genome associated with MPN highlighted selected driver and non-driver mutations for their clinical informativeness. First, driver mutations are enlisted in the WHO classification as major diagnostic criteria and may be used for monitoring of residual disease after transplantation and response to treatment. Second, mutation profile can be used, eventually in combination with cytogenetic, histopathologic, hematologic, and clinical variables, to risk stratify patients regarding thrombosis, overall survival, and rate of transformation to secondary leukemia. This review outlines the molecular landscape of MPN and critically interprets current information for their potential impact on patient management.
Collapse
|
47
|
Gangat N, Guglielmelli P, Szuber N, Begna KH, Patnaik MM, Litzow MR, Al‐Kali A, Foran JM, Palmer JM, Alkhateeb H, Elliott MA, Hanson CA, Pardanani A, Mannelli F, Vannucchi AM, Tefferi A. Venetoclax with azacitidine or decitabine in blast-phase myeloproliferative neoplasm: A multicenter series of 32 consecutive cases. Am J Hematol 2021; 96:781-789. [PMID: 33844862 PMCID: PMC8251544 DOI: 10.1002/ajh.26186] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Venetoclax (Ven) combined with a hypomethylating agent (HMA) has now emerged as an effective treatment regimen for acute myeloid leukemia, in both de novo and relapsed/refractory setting. The current multicenter study retrospectively examined Ven + HMA treatment outcome among 32 patients (median age 69 years; 59% males) with blast‐phase myeloproliferative neoplasm (MPN‐BP). Pre‐leukemic phenotype included essential thrombocythemia (ET)/post‐ET myelofibrosis (34%), polycythemia vera (PV)/post‐PV myelofibrosis (38%) and primary myelofibrosis (28%). Twenty‐nine study patients were fully annotated cytogenetically and molecularly (NGS): 69% harbored complex karyotype and/or mutations, including TP53 (41%), IDH1/2 (21%), ASXL1 (21%), N/KRAS (14%), SRSF2 (10%), EZH2 (10%) and U2AF1 (7%). All patients received Ven combined with either azacitidine (n = 12) or decitabine (n = 20); either up front (n = 23) or after failing another induction therapy (n = 9). Complete remission with (CR) or without (CRi) count recovery was achieved in 14 (44%) patients and was more likely to occur in the absence of pre‐leukemic PV/post‐PV myelofibrosis phenotype (p < .01), complex karyotype (p < .01) or K/NRAS (p = .03) mutations; seven of eight patients (88%) without vs four of 21 (19%) with complex karyotype or K/NRAS mutation achieved CR/CRi (p < .01); all 11 informative patients with pre‐leukemic PV/post‐PV myelofibrosis phenotype displayed complex karyotype (p < .01). In contrast, neither TP53 (p = .45) nor IDH1/2 (p = .63) mutations affected response. Compared to historical controls treated with HMA alone (n = 26), the CR/CRi rate (44% vs 4%) and median survival (8 vs 5.5 months) were more favorable with Ven + HMA, but without significant difference in overall survival. Importantly, six patients with CR/CRi subsequently received allogeneic hematopoietic stem cell transplant (AHSCT). Note, Ven + HMA produces robust CR/CRi rates in MPN‐BP, especially in the absence of RAS mutations and complex karyotype, thus enabling AHSCT, in some patients.
Collapse
Affiliation(s)
- Naseema Gangat
- Division of Hematology Mayo Clinic Rochester Minnesota USA
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi University of Florence Florence Italy
| | - Natasha Szuber
- Department of Hematology Université de Montréal Quebec Canada
| | | | | | - Mark R. Litzow
- Division of Hematology Mayo Clinic Rochester Minnesota USA
| | - Aref Al‐Kali
- Division of Hematology Mayo Clinic Rochester Minnesota USA
| | - James M. Foran
- Division of Hematology Mayo Clinic Jacksonville Florida USA
| | | | | | | | | | | | - Francesco Mannelli
- Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi University of Florence Florence Italy
| | - Alessandro M. Vannucchi
- Department of Experimental and Clinical Medicine, CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi University of Florence Florence Italy
| | - Ayalew Tefferi
- Division of Hematology Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
48
|
Comparison of outcomes of HCT in blast phase of BCR-ABL1- MPN with de novo AML and with AML following MDS. Blood Adv 2021; 4:4748-4757. [PMID: 33007075 DOI: 10.1182/bloodadvances.2020002621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023] Open
Abstract
Comparative outcomes of allogeneic hematopoietic cell transplantation (HCT) for BCR-ABL1- myeloproliferative neoplasms (MPNs) in blast phase (MPN-BP) vs de novo acute myeloid leukemia (AML), and AML with prior myelodysplastic syndromes (MDSs; post-MDS AML), are unknown. Using the Center for International Blood and Marrow Transplant Research (CIBMTR) database, we compared HCT outcomes in 177 MPN-BP patients with 4749 patients with de novo AML, and 1104 patients with post-MDS AML, using multivariate regression analysis in 2 separate comparisons. In a multivariate Cox model, no difference in overall survival (OS) or relapse was observed in patients with MPN-BP vs de novo AML with active leukemia at HCT. Patients with MPN-BP in remission had inferior OS in comparison with de novo AML in remission (hazard ratio [HR], 1.40 [95% confidence interval [CI], 1.12-1.76]) due to higher relapse rate (HR, 2.18 [95% CI, 1.69-2.80]). MPN-BP patients had inferior OS (HR, 1.19 [95% CI, 1.00-1.43]) and increased relapse (HR, 1.60 [95% CI, 1.31-1.96]) compared with post-MDS AML. Poor-risk cytogenetics were associated with increased relapse in both comparisons. Peripheral blood grafts were associated with decreased relapse in MPN-BP and post-MDS AML (HR, 0.70 [95% CI, 0.57-0.86]). Nonrelapse mortality (NRM) was similar between MPN-BP vs de novo AML, and MPN-BP vs post-MDS AML. Total-body irradiation-based myeloablative conditioning was associated with higher NRM in both comparisons. Survival of MPN-BP after HCT is inferior to de novo AML in remission and post-MDS AML due to increased relapse. Relapse-prevention strategies are required to optimize HCT outcomes in MPN-BP.
Collapse
|
49
|
Genetic factors rather than blast reduction determine outcomes of allogeneic HCT in BCR-ABL-negative MPN in blast phase. Blood Adv 2021; 4:5562-5573. [PMID: 33170935 DOI: 10.1182/bloodadvances.2020002727] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
There is a limited understanding of the clinical and molecular factors associated with outcomes of hematopoietic cell transplantation (HCT) in patients with BCR-ABL-negative myeloproliferative neoplasms in blast phase (MPN-BP). Using the Center for International Blood and Marrow Transplant Research database, we evaluated HCT outcomes in 177 patients with MPN-BP. Ninety-five (54%) had sufficient DNA for targeted next-generation sequencing of 49 genes clinically relevant in hematologic malignancies. At 5 years, overall survival (OS), cumulative incidence of relapse, and nonrelapse mortality of the study cohort was 18%, 61%, and 25%, respectively. In a multivariable model, poor-risk cytogenetics was associated with inferior OS (hazard ratio [HR], 1.71; 95% CI, 1.21-2.41) due to increased relapse (HR, 1.93; 95% CI, 1.32-2.82). Transplants using mobilized peripheral blood (PB) were associated with better OS (HR, 0.60; 95% CI, 0.38-0.96). No difference in outcomes was observed in patients undergoing HCT with PB/BM blasts <5% vs those with active leukemia. Among the 95 patients with molecular data, mutation of TP53, present in 23%, was the only genetic alteration associated with outcomes. In a multivariate model, TP53-mutant patients had inferior OS (HR, 1.99; 95% CI, 1.14-3.49) and increased incidence of relapse (HR, 2.59; 95% CI, 1.41-4.74). There were no differences in the spectrum of gene mutations, number of mutations, or variant allele frequency between patients undergoing HCT with PB/BM blasts <5% vs those with active leukemia. Genetic factors, namely cytogenetic alterations and TP53 mutation status, rather than degree of cytoreduction predict outcomes of HCT in MPN-BP. No meaningful benefit of conventional HCT was observed in patients with MPN-BP and mutated TP53.
Collapse
|
50
|
Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation. Blood Adv 2021; 4:4887-4897. [PMID: 33035330 DOI: 10.1182/bloodadvances.2020002271] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Among myeloproliferative neoplasms, polycythemia vera (PV) and essential thrombocythemia (ET) are the 2 entities associated with the most chronic disease course. Leukemic evolution occurs rarely but has a grim prognosis. The interval between diagnosis and leukemic evolution is highly variable, from a few years to >20 years. We performed a molecular evaluation of 49 leukemic transformations of PV and ET by targeted next-generation sequencing. Using a hierarchical classification, we identified 3 molecular groups associated with a distinct time to leukemic transformation. Short-term transformations were mostly characterized by a complex molecular landscape and mutations in IDH1/2, RUNX1, and U2AF1 genes, whereas long-term transformations were associated with mutations in TP53, NRAS, and BCORL1 genes. Studying paired samples from chronic phase and transformation, we detected some mutations already present during the chronic phase, either with a significant allele burden (short-term transformation) or with a very low allele burden (especially TP53 mutations). However, other mutations were not detected even 1 year before leukemic transformation. Our results suggest that the leukemic transformation of PV and ET may be driven by distinct time-dependent molecular mechanisms.
Collapse
|