1
|
Travers RJ, Stepanian A, Jaffe I. Endothelium as a Source of Cardiovascular Toxicity From Antitumor Kinase Inhibitors. Arterioscler Thromb Vasc Biol 2024; 44:2143-2153. [PMID: 39145393 PMCID: PMC11424247 DOI: 10.1161/atvbaha.124.319864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Kinase inhibitors (KIs) targeting oncogenic molecular pathways have revolutionized cancer therapy. By directly targeting specific tumor-driving kinases, targeted therapies have fewer side effects compared with chemotherapy. Despite the enhanced specificity, cardiovascular side effects have emerged with many targeted cancer therapies that limit long-term outcomes in patients with cancer. Endothelial cells lining all blood vessels are critical to cardiovascular health and are also exposed to circulating levels of systemic anticancer therapies. Both on- and off-target perturbation of signaling pathways from KIs can cause endothelial dysfunction, resulting in cardiovascular toxicity. As such, the endothelium is a potential source, and also a therapeutic target for prevention, of cardiovascular toxicity. In this review, we examine the evidence for KI-induced endothelial cell dysfunction as a mechanism for the cardiovascular toxicities of vascular endothelial growth factor inhibitors, BCR-Abl (breakpoint cluster region-Abelson proto-oncogene) KIs, Bruton tyrosine inhibitors, and emerging information regarding endothelial toxicity of newer classes of KIs.
Collapse
Affiliation(s)
- Richard J Travers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
- Division of Hematology and Oncology, Tufts Medical Center, Boston MA
| | - Alec Stepanian
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
| | - Iris Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
| |
Collapse
|
2
|
Camarda ND, Lu Q, Meola DM, Man JJ, Song Z, Travers RJ, Lopez KE, Powers SN, Papanastasiou M, DeRuff KC, Mullahoo J, Egri SB, Davison D, Sebastiani P, Eblen ST, Buchsbaum R, Huggins GS, London CA, Jaffe JD, Upshaw JN, Yang VK, Jaffe IZ. Identifying mitigating strategies for endothelial cell dysfunction and hypertension in response to VEGF receptor inhibitors. Clin Sci (Lond) 2024; 138:1131-1150. [PMID: 39282930 DOI: 10.1042/cs20240537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 10/02/2024]
Abstract
Vascular endothelial growth factor receptor inhibitors (VEGFRis) improve cancer survival but are associated with treatment-limiting hypertension, often attributed to endothelial cell (EC) dysfunction. Using phosphoproteomic profiling of VEGFRi-treated ECs, drugs were screened for mitigators of VEGFRi-induced EC dysfunction and validated in primary aortic ECs, mice, and canine cancer patients. VEGFRi treatment significantly raised systolic blood pressure (SBP) and increased markers of endothelial and renal dysfunction in mice and canine cancer patients. α-Adrenergic-antagonists were identified as drugs that most oppose the VEGFRi proteomic signature. Doxazosin, one such α-antagonist, prevented EC dysfunction in murine, canine, and human aortic ECs. In mice with sorafenib-induced-hypertension, doxazosin mitigated EC dysfunction but not hypertension or glomerular endotheliosis, while lisinopril mitigated hypertension and glomerular endotheliosis without impacting EC function. Hence, reversing EC dysfunction was insufficient to mitigate VEGFRi-induced-hypertension in this mouse model. Canine cancer patients with VEGFRi-induced-hypertension were randomized to doxazosin or lisinopril and both agents significantly decreased SBP. The canine clinical trial supports safety and efficacy of doxazosin and lisinopril as antihypertensives for VEGFRi-induced-hypertension and the potential of trials in canines with spontaneous cancer to accelerate translation. The overall findings demonstrate the utility of phosphoproteomics to identify EC-protective agents to mitigate cardio-oncology side effects.
Collapse
Affiliation(s)
- Nicholas D Camarda
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
- Genetics, Molecular, and Cellular Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, U.S.A
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
| | - Dawn M Meola
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, U.S.A
| | - Joshua J Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
- Genetics, Molecular, and Cellular Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, U.S.A
| | - Zeyuan Song
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, MA, U.S.A
| | - Richard J Travers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
- Division of Hematology Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, U.S.A
| | - Katherine E Lopez
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, U.S.A
| | - Sarah N Powers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
| | | | | | | | | | | | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, MA, U.S.A
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Rachel Buchsbaum
- Division of Hematology Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, U.S.A
| | - Gordon S Huggins
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
- Division of Cardiology, Tufts Medical Center, Boston, MA, U.S.A
| | - Cheryl A London
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, U.S.A
| | | | - Jenica N Upshaw
- Division of Cardiology, Tufts Medical Center, Boston, MA, U.S.A
| | - Vicky K Yang
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, U.S.A
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
- Genetics, Molecular, and Cellular Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, U.S.A
| |
Collapse
|
3
|
Krajcsir B, Pócsi M, Fejes Z, Nagy B, Kappelmayer J, Beke Debreceni I. Ponatinib Induces a Procoagulant Phenotype in Human Coronary Endothelial Cells via Inducing Apoptosis. Pharmaceutics 2024; 16:559. [PMID: 38675220 PMCID: PMC11055157 DOI: 10.3390/pharmaceutics16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BCR-ABL tyrosine kinase inhibitors (TKIs) are effective drugs in the treatment of patients with chronic myeloid leukemia. However, based on clinical studies, ponatinib was associated with the development of thrombotic complications. Since endothelial cells (ECs) regulate blood coagulation, their abnormal phenotype may play a role in the development of thrombotic events. We here aimed to investigate the effect of ponatinib on the procoagulant activity of cultured endothelial cells in vitro. Human coronary artery endothelial cells (HCAECs) were incubated with 50, 150, and 1000 nM of ponatinib. Subsequently, phosphatidylserine (PS) exposure and endothelial microvesicles (EMVs) were measured by flow cytometry. In addition, EC- and EMV-dependent thrombin generation was analyzed. To investigate pro-apoptotic effects of ponatinib, the level of Bax and Bcl-xL proteins were studied using Western blot and F3, THBD, and VCAM1 mRNAs were quantified by qPCR. Therapeutic concentrations of ponatinib significantly increased PS expression on ECs and the amount of EMVs which significantly shortened the time parameters of thrombin generation. In addition, these changes were associated with an increased ratio of Bax and Bcl-xL proteins in the presence of the decreased THBD mRNA level. Overall, ponatinib enhances the procoagulant activity of ECs via inducing apoptosis, which may contribute to thrombotic events.
Collapse
Affiliation(s)
- Bálint Krajcsir
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
- Laki Kálmán Doctoral School, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marianna Pócsi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Ildikó Beke Debreceni
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| |
Collapse
|
4
|
Aghel N, Gustafson D, Delgado D, Atenafu EG, Fish JE, Lipton JH. High sensitivity c-reactive protein and circulating biomarkers of endothelial dysfunction in patients with chronic myeloid leukemia receiving tyrosine kinase inhibitors. Leuk Lymphoma 2023; 64:2008-2017. [PMID: 37554059 DOI: 10.1080/10428194.2023.2242990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized the management of patients with chronic myelogenous leukemia (CML); however, they may cause cardiovascular (CV) toxicities. In this cross-sectional study, we explored whether high-sensitivity C-reactive protein (hsCRP) and novel markers of vascular dysfunction were associated with exposure to specific TKIs, in 262 CML patients. Hs-CRP level was not associated with CML disease activity or treatment with a specific TKI. Body mass index (OR: 1.15, 95% CI: 1.108-1.246; p < 0.001) and CML duration (OR: 1.004, 95% CI: 1.001-1.008; p = 0.024) were independently associated with higher hs-CRP. In exploratory analyses, novel endothelial-centric markers (e.g. ET-1 and VCAM-1) were differential across the various TKIs, particularly amongst nilotinib- and ponatinib-treated patients. While Levels of hs-CRP do not appear to be correlated with specific TKIs, circulating markers of vascular dysfunction were altered in patients treated with specific TKIs and should be explored as potential markers of TKI-associated CV risk.
Collapse
Affiliation(s)
- Nazanin Aghel
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Ted Rogers Program in Cardiotoxicity Prevention University Health Network, Toronto, Canada
- Division of Cardiology, Cardio-Oncology Program, McMaster University, Hamilton, Canada
| | - Dakota Gustafson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Diego Delgado
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Ted Rogers Program in Cardiotoxicity Prevention University Health Network, Toronto, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, Ted Rogers Program in Cardiotoxicity Prevention University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jeffrey H Lipton
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Wang Y, Travers RJ, Farrell A, Lu Q, Bays JL, Stepanian A, Chen C, Jaffe IZ. Differential vascular endothelial cell toxicity of established and novel BCR-ABL tyrosine kinase inhibitors. PLoS One 2023; 18:e0294438. [PMID: 37983208 PMCID: PMC10659179 DOI: 10.1371/journal.pone.0294438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
BCR-ABL tyrosine kinase inhibitors (TKIs) have dramatically improved survival in Philadelphia chromosome-positive leukemias. Newer BCR-ABL TKIs provide superior cancer outcomes but with increased risk of acute arterial thrombosis, which further increases in patients with cardiovascular comorbidities and mitigates survival benefits compared to imatinib. Recent studies implicate endothelial cell (EC) damage in this toxicity by unknown mechanisms with few side-by-side comparisons of multiple TKIs and with no available data on endothelial impact of recently approved TKIs or novels TKIs being tested in clinical trials. To characterize BCR-ABL TKI induced EC dysfunction we exposed primary human umbilical vein ECs in 2D and 3D culture to clinically relevant concentrations of seven BCR-ABL TKIs and quantified their impact on EC scratch-wound healing, viability, inflammation, and permeability mechanisms. Dasatinib, ponatinib, and nilotinib, the TKIs associated with thrombosis in patients, all significantly impaired EC wound healing, survival, and proliferation compared to imatinib, but only dasatinib and ponatinib impaired cell migration and only nilotinib enhanced EC necrosis. Dasatinib and ponatinib increased leukocyte adhesion to ECs with upregulation of adhesion molecule expression in ECs (ICAM1, VCAM1, and P-selectin) and leukocytes (PSGL1). Dasatinib increased permeability and impaired cell junctional integrity in human engineered microvessels, consistent with its unique association with pleural effusions. Of the new agents, bafetinib decreased EC viability and increased microvessel permeability while asciminib and radotinib did not impact any EC function tested. In summary, the vasculotoxic TKIs (dasatinib, ponatinib, nilotinib) cause EC toxicity but with mechanistic differences, supporting the potential need for drug-specific vasculoprotective strategies. Asciminib and radotinib do not induce EC toxicity at clinically relevant concentrations suggesting a better safety profile.
Collapse
Affiliation(s)
- Yihua Wang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America
- Tufts University, Medford, MA, United States of America
| | - Richard J. Travers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Alanna Farrell
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America
| | - Jennifer L. Bays
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Alec Stepanian
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America
| | - Christopher Chen
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America
| |
Collapse
|
6
|
Ibarrola J, Kim SK, Lu Q, DuPont JJ, Creech A, Sun Z, Hill MA, Jaffe JD, Jaffe IZ. Smooth muscle mineralocorticoid receptor as an epigenetic regulator of vascular ageing. Cardiovasc Res 2023; 118:3386-3400. [PMID: 35020830 PMCID: PMC10060709 DOI: 10.1093/cvr/cvac007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/07/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Vascular stiffness increases with age and independently predicts cardiovascular disease risk. Epigenetic changes, including histone modifications, accumulate with age but the global pattern has not been elucidated nor are the regulators known. Smooth muscle cell-mineralocorticoid receptor (SMC-MR) contributes to vascular stiffness in ageing mice. Thus, we investigated the regulatory role of SMC-MR in vascular epigenetics and stiffness. METHODS AND RESULTS Mass spectrometry-based proteomic profiling of all histone modifications completely distinguished 3 from 12-month-old mouse aortas. Histone-H3 lysine-27 (H3K27) methylation (me) significantly decreased in ageing vessels and this was attenuated in SMC-MR-KO littermates. Immunoblotting revealed less H3K27-specific methyltransferase EZH2 with age in MR-intact but not SMC-MR-KO vessels. These ageing changes were examined in primary human aortic (HA)SMC from adult vs. aged donors. MR, H3K27 acetylation (ac), and stiffness gene (connective tissue growth factor, integrin-α5) expression significantly increased, while H3K27me and EZH2 decreased, with age. MR inhibition reversed these ageing changes in HASMC and the decline in stiffness genes was prevented by EZH2 blockade. Atomic force microscopy revealed that MR antagonism decreased intrinsic stiffness and the probability of fibronectin adhesion of aged HASMC. Conversely, ageing induction in young HASMC with H2O2; increased MR, decreased EZH2, enriched H3K27ac and MR at stiffness gene promoters by chromatin immunoprecipitation, and increased stiffness gene expression. In 12-month-old mice, MR antagonism increased aortic EZH2 and H3K27 methylation, increased EZH2 recruitment and decreased H3K27ac at stiffness genes promoters, and prevented ageing-induced vascular stiffness and fibrosis. Finally, in human aortic tissue, age positively correlated with MR and stiffness gene expression and negatively correlated with H3K27me3 while MR and EZH2 are negatively correlated. CONCLUSION These data support a novel vascular ageing model with rising MR in human SMC suppressing EZH2 expression thereby decreasing H3K27me, promoting MR recruitment and H3K27ac at stiffness gene promoters to induce vascular stiffness and suggests new targets for ameliorating ageing-associated vascular disease.
Collapse
Affiliation(s)
- Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA 02111, USA
| | - Seung Kyum Kim
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA 02111, USA
- Department of Sports Science, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, 01811 Republic of Korea, Seoul, South Korea
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA 02111, USA
| | - Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA 02111, USA
| | - Amanda Creech
- Broad Institute, Proteomics Platform, Cambridge, MA 02142, USA
| | - Zhe Sun
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65203, USA
| | - Michael A Hill
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65203, USA
| | - Jacob D Jaffe
- Broad Institute, Proteomics Platform, Cambridge, MA 02142, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Box 80, Boston, MA 02111, USA
| |
Collapse
|
7
|
Upshaw JN, Travers R, Jaffe IZ. ROCK and Rolling Towards Predicting BCR-ABL Kinase Inhibitor-Induced Vascular Toxicity. JACC CardioOncol 2022; 4:384-386. [PMID: 36213362 PMCID: PMC9537067 DOI: 10.1016/j.jaccao.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Jenica N. Upshaw
- Division of Cardiology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Richard Travers
- Division of Hematology Oncology, Tufts Medical Center, Boston, Massachusetts, USA
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Iris Z. Jaffe
- Division of Cardiology, Tufts Medical Center, Boston, Massachusetts, USA
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Cui Z, Li B, Zhang Y, He J, Shi X, Wang H, Zhao Y, Yao L, Ai D, Zhang X, Zhu Y. Inhibition of Soluble Epoxide Hydrolase Attenuates Bosutinib-Induced Blood Pressure Elevation. Hypertension 2021; 78:1527-1540. [PMID: 34601968 PMCID: PMC8516812 DOI: 10.1161/hypertensionaha.121.17548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Supplemental Digital Content is available in the text. Endothelial cells play a critical role in maintaining homeostasis of vascular function, and endothelial activation is involved in the initial step of atherogenesis. Previously, we reported that Abl kinase mediates shear stress–induced endothelial activation. Bosutinib, a dual inhibitor of Src and Abl kinases, exerts an atheroprotective effect; however, recent studies have demonstrated an increase in the incidence of side effects associated with bosutinib, including increased arterial blood pressure (BP). To understand the effects of bosutinib on BP regulation and the mechanistic basis for novel treatment strategies against vascular dysfunction, we generated a line of mice conditionally lacking c-Abl in endothelial cells (endothelial cell-AblKO). Knockout mice and their wild-type littermates (Ablf/f) were orally administered a clinical dose of bosutinib, and their BP was monitored. Bosutinib treatment increased BP in both endothelial cell-AblKO and Ablf/f mice. Furthermore, acetylcholine-evoked endothelium-dependent relaxation of the mesenteric arteries was impaired by bosutinib treatment. RNA sequencing of mesenteric arteries revealed that the CYP (cytochrome P450)-dependent metabolic pathway was involved in regulating BP after bosutinib treatment. Additionally, bosutinib treatment led to an upregulation of soluble epoxide hydrolase in the arteries and a lower plasma content of eicosanoid metabolites in the CYP pathway in mice. Treatment with 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea, a soluble epoxide hydrolase inhibitor, reversed the bosutinib-induced changes to the eicosanoid metabolite profile, endothelium-dependent vasorelaxation, and BP. Thus, the present study demonstrates that upregulation of soluble epoxide hydrolase mediates bosutinib-induced elevation of BP, independent of c-Abl. The addition of soluble epoxide hydrolase inhibitor in patients treated with bosutinib may aid in preventing vascular side effects.
Collapse
Affiliation(s)
- Zhen Cui
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China
| | - Bochuan Li
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China
| | - Yanhong Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China
| | - Xuelian Shi
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China
| | - Hui Wang
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China
| | - Yinjiao Zhao
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China
| | - Liu Yao
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, China
| |
Collapse
|
9
|
Alkebsi L, Wang X, Ohkawara H, Fukatsu M, Mori H, Ikezoe T. Dasatinib induces endothelial-to-mesenchymal transition in human vascular-endothelial cells: counteracted by cotreatment with bosutinib. Int J Hematol 2021; 113:441-455. [PMID: 33392972 DOI: 10.1007/s12185-020-03034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022]
Abstract
Adverse vascular events have become a serious clinical problem in chronic myeloid leukemia (CML) patients who receive certain BCR/ABL1 tyrosine kinase inhibitors (TKIs). Studies have shown that endothelial-to-mesenchymal transition (EndMT) can contribute to various vascular diseases. We investigated the effects of TKIs on the development of EndMT in human vascular-endothelial cells (VECs). Exposure of VECs to dasatinib, but not to other TKIs, produced a significant increase in the formation of spindle-shaped cells. This effect was accompanied by a significant increase in expression of the EndMT inducer transforming growth factor-β (TGF-β) and mesenchymal markers vimentin, smooth muscle alpha-actin, and fibronectin, as well as a significant decrease in expression of vascular-endothelial markers CD31 and VE-cadherin attributable at least in part to activation of ERK signaling. Inhibitors of TGF-β and ERK partially attenuated dasatinib-induced EndMT. Interestingly, bosutinib efficiently counteracted dasatinib-induced EndMT and attenuated dasatinib-induced phosphorylation of ERK. Taken together, these results show that dasatinib induces EndMT, which might contribute to the development of vascular toxicity, such as the pulmonary hypertension observed in CML patients receiving dasatinib. Bosutinib could play a distinct role in protecting VECs from EndMT.
Collapse
Affiliation(s)
- Lobna Alkebsi
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan.
| | - Xintao Wang
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan
| | - Hiroshi Ohkawara
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan
| | - Masahiko Fukatsu
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan
| | - Hirotaka Mori
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Hikariga-oka 1, Fukushima, 960-1295, Japan
| |
Collapse
|
10
|
Roberts KE, Deininger MW, Hildebrandt GC, Gackenbach BK, Krem MM. Use of dasatinib dose-reduction periods to remedy poor surgical wound healing in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leuk Lymphoma 2020; 61:3507-3510. [PMID: 32835547 DOI: 10.1080/10428194.2020.1808210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kandice E Roberts
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Gerhard C Hildebrandt
- Division of Hematology and Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Brian K Gackenbach
- Division of Blood and Marrow Transplantation, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maxwell M Krem
- Division of Hematology and Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
11
|
Abstract
OPINION STATEMENT Moderate-level evidence suggests that cardiac troponin and natriuretic peptides are useful for risk stratification and early identification of anthracycline cardiotoxicity; however, many of these studies used older chemotherapy regimens, and thus, the applicability to current anthracycline treatment regimens is uncertain. Further research is needed to determine optimal timing and thresholds for troponin and natriuretic peptides in anthracycline-treated patients and evaluate these and other promising biomarkers for anti-HER2 therapies, thoracic radiation, anti-VEGF therapy, and fluoropyrimidine therapy-related cardiotoxicity. Risk tools that combine cardiac risk factors, cancer treatment variables, biomarkers, and imaging parameters are most likely to accurately identify individuals at highest risk for cancer therapy cardiotoxicity. Clinical trials focusing cardioprotective strategies on high-risk individuals are more likely to result in clinically significant results compared with primary prevention cardioprotective approaches.
Collapse
Affiliation(s)
- Jenica N Upshaw
- Division of Cardiology, Tufts Medical Center, 800 Washington St, Box 5931, Boston, MA, 02111, USA.
| |
Collapse
|
12
|
Vascular events may predict the prognosis of patients with chronic myeloid leukemia. Int J Hematol 2020; 112:263. [PMID: 32533516 DOI: 10.1007/s12185-020-02889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
|
13
|
Mechanisms of Cardiovascular Toxicity of BCR-ABL1 Tyrosine Kinase Inhibitors in Chronic Myelogenous Leukemia. Curr Hematol Malig Rep 2020; 15:20-30. [DOI: 10.1007/s11899-020-00560-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Roewenstrunk J, Di Vona C, Chen J, Borras E, Dong C, Arató K, Sabidó E, Huen MSY, de la Luna S. A comprehensive proteomics-based interaction screen that links DYRK1A to RNF169 and to the DNA damage response. Sci Rep 2019; 9:6014. [PMID: 30979931 PMCID: PMC6461666 DOI: 10.1038/s41598-019-42445-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of the DYRK1A protein kinase has been associated with human disease. On the one hand, its overexpression in trisomy 21 has been linked to certain pathological traits of Down syndrome, while on the other, inactivating mutations in just one allele are responsible for a distinct yet rare clinical syndrome, DYRK1A haploinsufficiency. Moreover, altered expression of this kinase may also provoke other human pathologies, including cancer and diabetes. Although a few DYRK1A substrates have been described, its upstream regulators and downstream targets are still poorly understood, an information that could shed light on the functions of DYRK1A in the cell. Here, we carried out a proteomic screen using antibody-based affinity purification coupled to mass spectrometry to identify proteins that directly or indirectly bind to endogenous DYRK1A. We show that the use of a cell line not expressing DYRK1A, generated by CRISPR/Cas9 technology, was needed in order to discriminate between true positives and non-specific interactions. Most of the proteins identified in the screen are novel candidate DYRK1A interactors linked to a variety of activities in the cell. The in-depth characterization of DYRK1A's functional interaction with one of them, the E3 ubiquitin ligase RNF169, revealed a role for this kinase in the DNA damage response. We found that RNF169 is a DYRK1A substrate and we identified several of its phosphorylation sites. In particular, one of these sites appears to modify the ability of RNF169 to displace 53BP1 from sites of DNA damage. Indeed, DYRK1A depletion increases cell sensitivity to ionizing irradiation. Therefore, our unbiased proteomic screen has revealed a novel activity of DYRK1A, expanding the complex role of this kinase in controlling cell homeostasis.
Collapse
Affiliation(s)
- Julia Roewenstrunk
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Chiara Di Vona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Jie Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, S.A.R., Hong Kong, China
| | - Eva Borras
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Chao Dong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, S.A.R., Hong Kong, China
| | - Krisztina Arató
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Michael S Y Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, S.A.R., Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, S.A.R., Hong Kong, China
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|