1
|
Miao S, Liu H, Yang Q, Zhang Y, Chen T, Chen S, Mao X, Zhang Q. Cathelicidin peptide LL-37: A multifunctional peptide involved in heart disease. Pharmacol Res 2024; 210:107529. [PMID: 39615616 DOI: 10.1016/j.phrs.2024.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Heart disease is a common human disease with high morbidity and mortality. Timely and effective prevention and treatment is an urgent clinical problem. The pathogenesis of heart disease is complex and diverse, involving hypertension, diabetes, atherosclerosis, drug toxicity, thrombosis, infection and other aspects. LL-37, an endogenous peptide, is well known for its antimicrobial properties. In recent years, LL-37 has been found to have a variety of biological functions, including its role in the regulation of atherosclerosis, thrombosis, inflammatory responses, and cardiac hypertrophy. Engineered LL-37-related peptides were developed and proved to regulate the development of disease, which revealed its potential clinical application. A comprehensive review and summary of LL-37 is presented to clarify its role in heart disease and to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Houde Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingyu Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Chen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Ruipule Medical Technology Co., Ltd, China
| | - Shuai Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Dimayuga PC, Chyu KY, Zhao X, Zhou J, Lio NWM, Chernomordik F, Berman D, Shah PK, Cercek B. A Novel Pathway of Platelet Activation in ACS Mediated by LL-37 Immunoglobulin G Autoantibody Immune Complexes. JACC Basic Transl Sci 2024; 9:877-887. [PMID: 39170950 PMCID: PMC11334414 DOI: 10.1016/j.jacbts.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 08/23/2024]
Abstract
The cathelicidin antimicrobial peptide LL-37 is a self-antigen in neutrophil extracellular traps that provokes autoantibody responses in autoimmune/autoinflammatory conditions. LL-37 immunoglobulin (Ig) G autoantibody levels were measured in subjects with and without atherosclerotic cardiovascular disease assessed using the coronary artery calcium score, in patients who had a future myocardial infarction and in a cohort of acute coronary syndrome (ACS) patients. LL-37 IgG levels were not associated with coronary artery calcium score, but future myocardial infarction patients had significantly higher LL-37 IgG at baseline. Reduced LL-37 IgG in ACS was associated with increased LL-37 IgG-immune complex. ACS plasma increased activated CD62P+ platelets from healthy donors mediated in part by LL-37 IgG-immune complexes and platelet Fc gamma receptor 2a.
Collapse
Affiliation(s)
- Paul C. Dimayuga
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kuang-Yuh Chyu
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xiaoning Zhao
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jianchang Zhou
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nicole Wai Man Lio
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fernando Chernomordik
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daniel Berman
- Departments of Imaging and Medicine and Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Prediman K. Shah
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Bojan Cercek
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
3
|
Kim TS, Hong CY, Oh SJ, Choe YH, Hwang TS, Kim J, Lee SL, Yoon H, Bok EY, Cho AR, Do YJ, Kim E. RNA sequencing provides novel insights into the pathogenesis of naturally occurring myxomatous mitral valve disease stage B1 in beagle dogs. PLoS One 2024; 19:e0300813. [PMID: 38753730 PMCID: PMC11098313 DOI: 10.1371/journal.pone.0300813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024] Open
Abstract
Myxomatous mitral valve disease (MMVD) is the most common cardiovascular disorder in dogs with a high prevalence, accounting for approximately 75% of all canine heart disease cases. MMVD is a complex disease and shows variable progression from mild valve leakage to severe regurgitation, potentially leading to heart failure. However, the molecular mechanisms and age-related changes that govern disease progression, especially at the early stage (B1) before the development of discernable clinical signs, remain poorly understood. In this prospective study, we aimed to compare gene expression differences between blood samples of aged beagle dogs with stage B1 MMVD and those of healthy controls using RNA sequencing. Clinical evaluation was also conducted, which revealed minimal differences in radiographic and echocardiographic measurements despite distinct biomarker variations between the two groups. Comparative transcriptomics revealed differentially expressed genes associated with extracellular matrix remodeling, prostaglandin metabolism, immune modulation, and interferon-related pathways, which bear functional relevance for MMVD. In particular, the top 10 over- and under-expressed genes represent promising candidates for influencing pathogenic changes in MMVD stage B1. Our research findings, which include identified variations in clinical markers and gene expression, enhance our understanding of MMVD. Furthermore, they underscore the need for further research into early diagnosis and treatment strategies, as, to the best of our knowledge, no prior studies have explored the precise molecular mechanisms of stage B1 in MMVD through total RNA sequencing.
Collapse
Affiliation(s)
- Tae-Seok Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Chae-Yeon Hong
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Seong-Ju Oh
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Yong-Ho Choe
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Tae-Sung Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Jaemin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Hakyoung Yoon
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, Republic of Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| | - A-ra Cho
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| | - Eunju Kim
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
4
|
AlOmar S, Mitchell JL, AlZahrani E. Lipoxin A4 analogue, BML-111, reduces platelet activation and protects from thrombosis. Thromb J 2024; 22:39. [PMID: 38654303 PMCID: PMC11036777 DOI: 10.1186/s12959-024-00606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Formyl peptide receptors (FPRs) are members of seven transmembrane G protein-coupled receptors superfamily that exhibit different responses based on the nature of stimulating ligand type. FPRs have been shown to be present in platelets and regulate their function. However, the effect of formyl peptide receptor 2 (FPR2/ALX) lipid ligands on platelets has not yet been addressed. Hence, we sought to study the role of FPR2/ALX ligand and lipoxin A4 lipid analogue, BML-111, in the modulation of platelet function and thrombus formation. Immunofluorescence microscopy showed subcellular distribution and peripheral mobilisation of FPR2/ALX in stimulated platelets. This variation in distribution was further confirmed using flow cytometry. BML-111 inhibited a range of platelet activities in a dose-dependent manner in response to several platelet agonists. This included aggregation, fibrinogen binding to integrin αIIbβ3, α-granule secretion, dense granule secretion, Ca2 + mobilisation and integrin αIIbβ3-mediated outside-in signaling. The selectivity of BML-111 for FPR2/ALX was confirmed using FPR2/ALX deficient mice in flow cytometry assays. In vitro thrombus formation was also inhibited by various concentrations of BML-111. Moreover, the levels of vasodilator stimulated phosphorylation (VASP-S157) increased significantly after BML-111 treatment in resting and stimulated platelets via protein kinase A (PKA) independently of cyclic adenosine monophosphate (cAMP) signaling. Together, our findings demonstrate the significance of BML-111 as a modulator of platelet function via FPR2/ALX and unravel the thrombo-protective potentials of BML-111 induced signaling against thrombo-inflammatory diseases.
Collapse
Affiliation(s)
- Shatha AlOmar
- Department of Clinical Laboratory Sciences, King Saud University, Prince Turki Ibn Abdulaziz Al Awwal Rd, 12371, Riyadh, Saudi Arabia.
- School of Pharmacy, University of Reading, Reading, UK.
| | | | | |
Collapse
|
5
|
Abstract
The phenomenon of swarming has long been observed in nature as a strategic event that serves as a good offense toward prey and predators. Imaging studies have uncovered that neutrophils employ this swarm-like tactic within infected and inflamed tissues as part of the innate immune response. Much of our understanding of neutrophil swarming builds from observations during sterile inflammation and various bacterial, fungal, and parasitic infections of the skin. However, the architecture and function of the skin differ significantly from vital organs where highly specialized microenvironments carry out critical functions. Therefore, the detrimental extent this perturbation may have on organ function remains unclear. In this review, we examine organ-specific swarming within the skin, liver, and lungs, with a detailed focus on swarming within microvascular environments. In addition, we examine potential "swarmulants" that initiate both transient and persistent swarms that have been implicated in disease.
Collapse
Affiliation(s)
- Luke Brown
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Lu X, Yang M, Zhou S, Yang S, Chen X, Khalid M, Wang K, Fang Y, Wang C, Lai R, Duan Z. Identification and Characterization of RK22, a Novel Antimicrobial Peptide from Hirudinaria manillensis against Methicillin Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:13453. [PMID: 37686259 PMCID: PMC10487658 DOI: 10.3390/ijms241713453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus) infections are a leading cause of morbidity and mortality, which are compounded by drug resistance. By manipulating the coagulation system, S. aureus gains a significant advantage over host defense mechanisms, with hypercoagulation induced by S. aureus potentially aggravating infectious diseases. Recently, we and other researchers identified that a higher level of LL-37, one endogenous antimicrobial peptide with a significant killing effect on S. aureus infection, resulted in thrombosis formation through the induction of platelet activation and potentiation of the coagulation factor enzymatic activity. In the current study, we identified a novel antimicrobial peptide (RK22) from the salivary gland transcriptome of Hirudinaria manillensis (H. manillensis) through bioinformatic analysis, and then synthesized it, which exhibited good antimicrobial activity against S. aureus, including a clinically resistant strain with a minimal inhibitory concentration (MIC) of 6.25 μg/mL. The RK22 peptide rapidly killed S. aureus by inhibiting biofilm formation and promoting biofilm eradication, with good plasma stability, negligible cytotoxicity, minimal hemolytic activity, and no significant promotion of the coagulation system. Notably, administration of RK22 significantly inhibited S. aureus infection and the clinically resistant strain in vivo. Thus, these findings highlight the potential of RK22 as an ideal treatment candidate against S. aureus infection.
Collapse
Affiliation(s)
- Xiaoyu Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China;
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
| | - Min Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shengwen Zhou
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuo Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiran Chen
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Mehwish Khalid
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kexin Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- School of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yaqun Fang
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
| | - Chaoming Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- National Resource for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zilei Duan
- Key Laboratory of Bioactive Peptides of Yunnan Province, National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (M.Y.); (S.Z.); (S.Y.); (X.C.); (M.K.); (K.W.); (Y.F.); (C.W.)
| |
Collapse
|
7
|
Jiang Z, Jiang X, Chen A, He W. Platelet activation: a promoter for psoriasis and its comorbidity, cardiovascular disease. Front Immunol 2023; 14:1238647. [PMID: 37654493 PMCID: PMC10465348 DOI: 10.3389/fimmu.2023.1238647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with a prevalence of 0.14% to 1.99%. The underlying pathology is mainly driven by the abnormal immune responses including activation of Th1, Th17, Th22 cells and secretion of cytokines. Patients with psoriasis are more likely to develop cardiovascular disease (CVD) which has been well recognized as a comorbidity of psoriasis. As mediators of hemostasis and thromboinflammation, platelets play an important part in CVD. However, less is known about their pathophysiological contribution to psoriasis and psoriasis-associated CVD. A comprehensive understanding of the role of platelet activation in psoriasis might pave the path for more accurate prediction of cardiovascular (CV) risk and provide new strategies for psoriasis management, which alleviates the increased CV burden associated with psoriasis. Here we review the available evidence about the biomarkers and mechanisms of platelet activation in psoriasis and the role of platelet activation in intriguing the common comorbidity, CVD. We further discussed the implications and efficacy of antiplatelet therapies in the treatment of psoriasis and prevention of psoriasis-associated CVD.
Collapse
Affiliation(s)
- Ziqi Jiang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoran Jiang
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Aijun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan He
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Zdanyte M, Borst O, Münzer P. NET-(works) in arterial and venous thrombo-occlusive diseases. Front Cardiovasc Med 2023; 10:1155512. [PMID: 37283578 PMCID: PMC10239889 DOI: 10.3389/fcvm.2023.1155512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Formation of Neutrophil Extracellular Traps (NETosis), accompanied by the release of extracellular decondensed chromatin and pro-inflammatory as well as pro-thrombotic factors, is a pivotal element in the development and progression of thrombo-occlusive diseases. While the process of NETosis is based on complex intracellular signalling mechanisms, it impacts a wide variety of cells including platelets, leukocytes and endothelial cells. Consequently, although initially mainly associated with venous thromboembolism, NETs also affect and mediate atherothrombosis and its acute complications in the coronary, cerebral and peripheral arterial vasculature. In this context, besides deep vein thrombosis and pulmonary embolism, NETs in atherosclerosis and especially its acute complications such as myocardial infarction and ischemic stroke gained a lot of attention in the cardiovascular research field in the last decade. Thus, since the effect of NETosis on platelets and thrombosis in general is extensively discussed in other review articles, this review focusses on the translational and clinical relevance of NETosis research in cardiovascular thrombo-occlusive diseases. Consequently, after a brief summary of the neutrophil physiology and the cellular and molecular mechanisms underlying NETosis are presented, the role of NETosis in atherosclerotic and venous thrombo-occlusive diseases in chronic and acute settings are discussed. Finally, potential prevention and treatment strategies of NET-associated thrombo-occlusive diseases are considered.
Collapse
Affiliation(s)
- Monika Zdanyte
- DFG Heisenberg Group Thrombocardiology, Eberhard Karl University Tübingen, Tübingen, Germany
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Oliver Borst
- DFG Heisenberg Group Thrombocardiology, Eberhard Karl University Tübingen, Tübingen, Germany
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Münzer
- DFG Heisenberg Group Thrombocardiology, Eberhard Karl University Tübingen, Tübingen, Germany
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Sowers A, Wang G, Xing M, Li B. Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology. Microorganisms 2023; 11:1129. [PMID: 37317103 PMCID: PMC10223199 DOI: 10.3390/microorganisms11051129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been investigated for their potential use as an alternative to antibiotics due to the increased demand for new antimicrobial agents. AMPs, widely found in nature and obtained from microorganisms, have a broad range of antimicrobial protection, allowing them to be applied in the treatment of infections caused by various pathogenic microorganisms. Since these peptides are primarily cationic, they prefer anionic bacterial membranes due to electrostatic interactions. However, the applications of AMPs are currently limited owing to their hemolytic activity, poor bioavailability, degradation from proteolytic enzymes, and high-cost production. To overcome these limitations, nanotechnology has been used to improve AMP bioavailability, permeation across barriers, and/or protection against degradation. In addition, machine learning has been investigated due to its time-saving and cost-effective algorithms to predict AMPs. There are numerous databases available to train machine learning models. In this review, we focus on nanotechnology approaches for AMP delivery and advances in AMP design via machine learning. The AMP sources, classification, structures, antimicrobial mechanisms, their role in diseases, peptide engineering technologies, currently available databases, and machine learning techniques used to predict AMPs with minimal toxicity are discussed in detail.
Collapse
Affiliation(s)
- Alexa Sowers
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
10
|
Zhang Q, Ul Ain Q, Schulz C, Pircher J. Role of antimicrobial peptide cathelicidin in thrombosis and thromboinflammation. Front Immunol 2023; 14:1151926. [PMID: 37090695 PMCID: PMC10114025 DOI: 10.3389/fimmu.2023.1151926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Thrombosis is a frequent cause of cardiovascular mortality and hospitalization. Current antithrombotic strategies, however, target both thrombosis and physiological hemostasis and thereby increase bleeding risk. In recent years the pathophysiological understanding of thrombus formation has significantly advanced and inflammation has become a crucial element. Neutrophils as most frequent immune cells in the blood and their released mediators play a key role herein. Neutrophil-derived cathelicidin next to its strong antimicrobial properties has also shown to modulates thrombosis and thus presents a potential therapeutic target. In this article we review direct and indirect (immune- and endothelial cell-mediated) effects of cathelicidin on platelets and the coagulation system. Further we discuss its implications for large vessel thrombosis and consecutive thromboinflammation as well as immunothrombosis in sepsis and COVID-19 and give an outlook for potential therapeutic prospects.
Collapse
Affiliation(s)
- Qing Zhang
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
| | - Qurrat Ul Ain
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- Universität, Munich, Germany
- Partner Site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), Munich, Germany
- *Correspondence: Joachim Pircher,
| |
Collapse
|
11
|
Zharkova O, Salamah MF, Babak MV, Rajan E, Lim LHK, Andrade F, Gil CD, Oliani SM, Moraes LA, Vaiyapuri S. Deletion of Annexin A1 in Mice Upregulates the Expression of Its Receptor, Fpr2/3, and Reactivity to the AnxA1 Mimetic Peptide in Platelets. Int J Mol Sci 2023; 24:ijms24043424. [PMID: 36834844 PMCID: PMC9962723 DOI: 10.3390/ijms24043424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Annexin A1 (ANXA1) is an endogenous protein, which plays a central function in the modulation of inflammation. While the functions of ANXA1 and its exogenous peptidomimetics, N-Acetyl 2-26 ANXA1-derived peptide (ANXA1Ac2-26), in the modulation of immunological responses of neutrophils and monocytes have been investigated in detail, their effects on the modulation of platelet reactivity, haemostasis, thrombosis, and platelet-mediated inflammation remain largely unknown. Here, we demonstrate that the deletion of Anxa1 in mice upregulates the expression of its receptor, formyl peptide receptor 2/3 (Fpr2/3, orthologue of human FPR2/ALX). As a result, the addition of ANXA1Ac2-26 to platelets exerts an activatory role in platelets, as characterised by its ability to increase the levels of fibrinogen binding and the exposure of P-selectin on the surface. Moreover, ANXA1Ac2-26 increased the development of platelet-leukocyte aggregates in whole blood. The experiments carried out using a pharmacological inhibitor (WRW4) for FPR2/ALX, and platelets isolated from Fpr2/3-deficient mice ascertained that the actions of ANXA1Ac2-26 are largely mediated through Fpr2/3 in platelets. Together, this study demonstrates that in addition to its ability to modulate inflammatory responses via leukocytes, ANXA1 modulates platelet function, which may influence thrombosis, haemostasis, and platelet-mediated inflammation under various pathophysiological settings.
Collapse
Affiliation(s)
- Olga Zharkova
- Immunology Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | | | - Maria V. Babak
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | | | - Lina H. K. Lim
- Immunology Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Frans Andrade
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04023-900, Brazil
| | - Cristiane D. Gil
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04023-900, Brazil
| | - Sonia M. Oliani
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04023-900, Brazil
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Leonardo A. Moraes
- Immunology Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
- Correspondence:
| |
Collapse
|
12
|
Abstract
BACKGROUND We investigated the effects and mechanism of swimming on platelet function in mice fed with a high-fat diet. MATERIAL AND METHODS Mice were randomly divided into the control group (NC), high-fat group (HF), and high-fat diet combined with swimming group (FE). The FE group swam for 60 min a day, 5 days a week, for 8 weeks. RESULTS Compared with the NC group, the HF group had significant weight gain, dyslipidemia, abbreviated bleeding time after tail breakage, increased clot retraction, increased platelet aggregation rate, increased spread of platelets on fibrinogen, and increased pAKT level in platelets. Compared with the HF group, the FE group had lower body weight, improved dyslipidemia, prolonged bleeding time, reduced clot retraction, reduced platelet aggregation rate, decreased spread of platelets on fibrinogen, and decreased pAKT level in platelets. CONCLUSIONS By inhibiting the level of pAKT in platelets, swimming improves platelet dysfunction in mice fed with a high-fat diet.
Collapse
Affiliation(s)
- Xinyong Su
- Department of Physical Education, Binzhou Medical University, Yantai, China
| | - Xiao Yu
- Department of Physical Education, Binzhou Medical University, Yantai, China
| | - Ruzhuan Chen
- Department of Physical Education, Harbin University of Science and Technology Rongcheng Campus, Weihai, China
| | - Weihua Bian
- Department of Cell Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
13
|
LL-37 Triggers Antimicrobial Activity in Human Platelets. Int J Mol Sci 2023; 24:ijms24032816. [PMID: 36769137 PMCID: PMC9917488 DOI: 10.3390/ijms24032816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Platelets play a crucial role in hemostasis and the immune response, mainly by recognizing signals associated with vascular damage. However, it has recently been discovered that the antimicrobial peptide LL-37 activates platelets in functions related to thrombus formation and inflammation. Therefore, this work aims to evaluate the effect of LL-37 on the activation of antimicrobial functions of human platelets. Our results show that platelets treated with LL-37 increase the surface expression of receptors (Toll-like receptors (TLRs) 2 and -4, CD32, CD206, Dectin-1, CD35, LOX-1, CD41, CD62P, and αIIbβ3 integrins) for the recognition of microorganisms, and molecules related to antigen presentation to T lymphocytes (CD80, CD86, and HLA-ABC) secrete the antimicrobial molecules: bactericidal/permeability-increasing protein (BPI), azurocidin, human neutrophil peptide (HNP) -1, and myeloperoxidase. They also translate azurocidin, and have enhanced binding to Escherichia coli, Staphylococcus aureus, and Candida albicans. Furthermore, the supernatant of LL-37-treated platelets can inhibit E. coli growth, or platelets can employ their LL-37 to inhibit microbial growth. In conclusion, these findings demonstrate that LL-37 participates in the antimicrobial function of human platelets.
Collapse
|
14
|
Colicchia M, Perrella G, Gant P, Rayes J. Novel mechanisms of thrombo-inflammation during infection: spotlight on neutrophil extracellular trap-mediated platelet activation. Res Pract Thromb Haemost 2023; 7:100116. [PMID: 37063765 PMCID: PMC10099327 DOI: 10.1016/j.rpth.2023.100116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
A state-of-the-art lecture titled "novel mechanisms of thrombo-inflammation during infection" was presented at the ISTH Congress in 2022. Platelet, neutrophil, and endothelial cell activation coordinate the development, progression, and resolution of thrombo-inflammatory events during infection. Activated platelets and neutrophil extracellular traps (NETs) are frequently observed in patients with sepsis and COVID-19, and high levels of NET-derived damage-associated molecular patterns (DAMPs) correlate with thrombotic complications. NET-associated DAMPs induce direct and indirect platelet activation, which in return potentiates neutrophil activation and NET formation. These coordinated interactions involve multiple receptors and signaling pathways contributing to vascular and organ damage exacerbating disease severity. This state-of-the-art review describes the main mechanisms by which platelets support NETosis and the key mechanisms by which NET-derived DAMPs trigger platelet activation and the formation of procoagulant platelets leading to thrombosis. We report how these DAMPs act through multiple receptors and signaling pathways differentially regulating cell activation and disease outcome, focusing on histones and S100A8/A9 and their contribution to the pathogenesis of sepsis and COVID-19. We further discuss the complexity of platelet activation during NETosis and the potential benefit of targeting selective or multiple NET-associated DAMPs to limit thrombo-inflammation during infection. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Martina Colicchia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Poppy Gant
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, U.K
| |
Collapse
|
15
|
Vertebral Bone Marrow Clot towards the Routine Clinical Scenario in Spine Surgeries: What about the Antimicrobial Properties? Int J Mol Sci 2023; 24:ijms24021744. [PMID: 36675259 PMCID: PMC9865225 DOI: 10.3390/ijms24021744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Exploring innovative techniques and treatments to improve spinal fusion procedures is a global challenge. Here, we provide a scientific opinion on the ability of a vertebral bone marrow (vBM) clot to provide a local combined delivery system not only of stem cells, signaling biomolecules and anti-inflammatory factors but also of molecules and proteins endowed with antimicrobial properties. This opinion is based on the evaluation of the intrinsic basic properties of the vBM, that contains mesenchymal stem cells (MSCs), and on the coagulation process that led to the conversion of fibrinogen into fibrin fibers that enmesh cells, plasma but above all platelets, to form the clot. We emphasize that vBM clot, being a powerful source of MSCs and platelets, would allow the release of antimicrobial proteins and molecules, mainly cathelicidin LL- 37, hepcidin, kinocidins and cationic host defense peptides, that are per se gifted with direct and/or indirect antimicrobial effects. We additionally highlight that further studies are needed to deepen this knowledge and to propose vBM clot as multifunctional bioscaffold able to target all the main key challenges for spinal fusion surgery.
Collapse
|
16
|
Yuan B, Lu X, Yang M, He Q, Cha Z, Fang Y, Yang Y, Xu L, Yan J, Lai R, Wang A, Yu X, Duan Z. A designed antimicrobial peptide with potential ability against methicillin resistant Staphylococcus aureus. Front Microbiol 2022; 13:1029366. [PMID: 36299717 PMCID: PMC9589885 DOI: 10.3389/fmicb.2022.1029366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive pathogenic bacterium, which persistently colonizes the anterior nares of approximately 20-30% of the healthy adult population, and up to 60% is intermittently colonized. With the misuse and overuse of antibiotics, large-scale drug-resistant bacteria, including methicillin-resistant S. aureus (MRSA), have been appeared. MRSA is among the most prevalent pathogens causing community-associated infections. Once out of control, the number of deaths caused by antimicrobial resistance may exceed 10 million annually by 2050. Antimicrobial peptides (AMPs) are regarded as the best solution, for they are not easy to develop drug resistance. Based on our previous research, here we designed a new antimicrobial peptide named GW18, which showed excellent antimicrobial activity against S. aureus, even MRSA, with the hemolysis less than 5%, no cytotoxicity, and no acute toxicity. Notably, administration of GW18 significantly decreased S. aureus infection in mouse model. These findings identify GW18 as the ideal candidate against S. aureus infection.
Collapse
Affiliation(s)
- Bingqian Yuan
- School of Life Sciences, Tianjin University, Tianjin, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaoyu Lu
- School of Life Sciences, Tianjin University, Tianjin, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Min Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyi He
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Zhuocen Cha
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yaqun Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
| | - Yan Yang
- Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Lei Xu
- Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Jingting Yan
- Yunnan Provincial Academy of Science and Technology, Kunming, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaodong Yu
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Zilei Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
| |
Collapse
|
17
|
Ren Z, Mo W, Yang L, Wang J, Zhang Q, Zhong Z, Wei W, Liu Z, Wu Z, Yao Y, Yang J. Cord blood antimicrobial peptide LL37 levels in preterm neonates and association with preterm complications. Ital J Pediatr 2022; 48:111. [PMID: 35804392 PMCID: PMC9270758 DOI: 10.1186/s13052-022-01295-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cathelicidin/LL-37 plays a significant role in the human immune defense reaction. Preterm human immature organs being exposed to inflammation-induced injury was the critical denominator leading to the common preterm associated complications. Previous study showed LL37 concentration in preterm neonates was lower in tracheal aspirates and breast milk as compared to term infants. An adults study showed decreased LL-37 levels was a risk factor for patients in developing severe chronic obstructive pulmonary disease (COPD). However, little is known about the regulation of human cord blood LL37 in preterm neonates and the association with preterm complications. This study was designed to investigate the concentration of LL37 in cord blood of preterm infants and correlation with preterm complications. METHODS Singleton infants born in June 2017 to August 2021 in the study hospital were enrolled. Maternal and neonatal clinical characteristics were collected. LL37 levels, pro-inflammatory factor interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a) in cord blood and LL37 levels in serum 48-72 hours after birth were measured by enzyme-linked immunosorbent assay. The serum level of LL37 in preterm and term neonates were compared, the perinatal factors possibly affecting the LL37 levels were investigated and the relationship between LL37 level and preterm outcomes were analyzed. RESULTS Cord blood LL37 levels in preterm infants were lower than that in term neonates. Cord blood LL37 level was positively correlated with gestational age in preterm. Prenatal steroid administration in preterm neonates decreased cord blood LL37 level. LL37 level was obviously lower in patients with bronchopulmonary dysplasia (BPD). Multiple line regression analysis showed higher LL37 level in cord blood was an independent protective factor for BPD. The concentration of pro-inflammatory factor IL-6 was negatively correlated with LL37. CONCLUSION Cord blood LL37 levels increased during gestation and decreased after perinatal steroid usage. Very preterm infants who displayed higher cord blood LL37 level had reduced risk of developing BPD. Regulation of pro-inflammatory cytokine IL-6 may be associated with the protective effect of LL37 on BPD.
Collapse
Affiliation(s)
- Zhuxiao Ren
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wenhui Mo
- Department of Neonatology, Foshan fosun chancheng hospital, Foshan, China.
| | - Liling Yang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianlan Wang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qi Zhang
- Clinical Genetic Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhicheng Zhong
- Clinical Genetic Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou, China
| | | | - Zhiping Wu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Regeneration and Biological Therapies, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Yang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China. .,Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Margraf A, Perretti M. Immune Cell Plasticity in Inflammation: Insights into Description and Regulation of Immune Cell Phenotypes. Cells 2022; 11:cells11111824. [PMID: 35681519 PMCID: PMC9180515 DOI: 10.3390/cells11111824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammation is a life-saving immune reaction occurring in response to invading pathogens. Nonetheless, inflammation can also occur in an uncontrolled, unrestricted manner, leading to chronic disease and organ damage. Mechanisms triggering an inflammatory response, hindering such a response, or leading to its resolution are well-studied but so far insufficiently elucidated with regard to precise therapeutic interventions. Notably, as an immune reaction evolves, requirements and environments for immune cells change, and thus cellular phenotypes adapt and shift, leading to the appearance of distinct cellular subpopulations with new functional features. In this article, we aim to highlight properties of, and overarching regulatory factors involved in, the occurrence of immune cell phenotypes with a special focus on neutrophils, macrophages and platelets. Additionally, we point out implications for both diagnostics and therapeutics in inflammation research.
Collapse
|
19
|
de Buhr N, Baumann T, Werlein C, Fingerhut L, Imker R, Meurer M, Götz F, Bronzlik P, Kühnel MP, Jonigk DD, Ernst J, Leotescu A, Gabriel MM, Worthmann H, Lichtinghagen R, Tiede A, von Köckritz-Blickwede M, Falk CS, Weissenborn K, Schuppner R, Grosse GM. Insights Into Immunothrombotic Mechanisms in Acute Stroke due to Vaccine-Induced Immune Thrombotic Thrombocytopenia. Front Immunol 2022; 13:879157. [PMID: 35619694 PMCID: PMC9128407 DOI: 10.3389/fimmu.2022.879157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 12/29/2022] Open
Abstract
During the COVID-19 pandemic, vaccination is the most important countermeasure. Pharmacovigilance concerns however emerged with very rare, but potentially disastrous thrombotic complications following vaccination with ChAdOx1. Platelet factor-4 antibody mediated vaccine-induced immune thrombotic thrombocytopenia (VITT) was described as an underlying mechanism of these thrombotic events. Recent work moreover suggests that mechanisms of immunothrombosis including neutrophil extracellular trap (NET) formation might be critical for thrombogenesis during VITT. In this study, we investigated blood and thrombus specimens of a female patient who suffered severe stroke due to VITT after vaccination with ChAdOx1 in comparison to 13 control stroke patients with similar clinical characteristics. We analyzed cerebral thrombi using histological examination, staining of complement factors, NET-markers, DNase and LL-37. In blood samples at the hyper-acute phase of stroke and 7 days later, we determined cell-free DNA, myeloperoxidase-histone complexes, DNase activity, myeloperoxidase activity, LL-37 and inflammatory cytokines. NET markers were identified in thrombi of all patients. Interestingly, the thrombus of the VITT-patient exclusively revealed complement factors and high amounts of DNase and LL-37. High DNase activity was also measured in blood, implying a disturbed NET-regulation. Furthermore, serum of the VITT-patient inhibited reactive oxygen species-dependent NET-release by phorbol-myristate-acetate to a lesser degree compared to controls, indicating either less efficient NET-inhibition or enhanced NET-induction in the blood of the VITT-patient. Additionally, the changes in specific cytokines over time were emphasized in the VITT-patient as well. In conclusion, insufficient resolution of NETs, e.g. by endogenous DNases or protection of NETs against degradation by embedded factors like the antimicrobial peptide LL-37 might thus be an important factor in the pathology of VITT besides increased NET-formation. On the basis of these findings, we discuss the potential implications of the mechanisms of disturbed NETs-degradation for diagnostic and therapeutic approaches in VITT-related thrombogenesis, other auto-immune disorders and beyond.
Collapse
Affiliation(s)
- Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tristan Baumann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Leonie Fingerhut
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.,Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rabea Imker
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Friedrich Götz
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Paul Bronzlik
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Mark P Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Danny D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Johanna Ernst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Andrei Leotescu
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Maria M Gabriel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Ramona Schuppner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Gerrit M Grosse
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Napolitano F, Montuori N. Role of Plasminogen Activation System in Platelet Pathophysiology: Emerging Concepts for Translational Applications. Int J Mol Sci 2022; 23:ijms23116065. [PMID: 35682744 PMCID: PMC9181697 DOI: 10.3390/ijms23116065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Traditionally, platelets have been exclusively considered for their procoagulant and antifibrinolytic effects during normal activation of hemostasis. Effectively, activated platelets secrete coagulation factors, expose phosphatidylserine, and promote thrombin and fibrin production. In addition to procoagulant activities, platelets confer resistance of thrombi to fibrinolysis by inducing clot retraction of the fibrin network and release of huge amounts of plasminogen activator inhibitor-1, which is the major physiologic inhibitor of the fibrinolytic cascade. However, the discovery of multiple relations with the fibrinolytic system, also termed Plasminogen Activation System (PAS), has introduced new perspectives on the platelet role in fibrinolysis. Indeed, the activated membrane surface of platelets provides binding sites on which fibrinolytic enzymes can be activated. This review discusses the evidence of the profibrinolytic properties of platelets through the description of PAS components and related proteins that are contained in or bind to platelets. Our analyses of literature data lead to the conclusion that in the initial phase of the hemostatic process, antifibrinolytic effects prevail over profibrinolytic activity, but at later stages, platelets might enhance fibrinolysis through the engagement of PAS components. A better understanding of spatial and temporal characteristics of platelet-mediated fibrinolysis during normal hemostasis could improve therapeutic options for bleeding and thrombotic disorders.
Collapse
|
21
|
Duan Z, Zhang J, Chen X, Liu M, Zhao H, Jin L, Zhang Z, Luan N, Meng P, Wang J, Tan Z, Li Y, Deng G, Lai R. Role of LL-37 in thrombotic complications in patients with COVID-19. Cell Mol Life Sci 2022; 79:309. [PMID: 35596804 PMCID: PMC9123294 DOI: 10.1007/s00018-022-04309-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Blood clot formation induced by dysfunctional coagulation is a frequent complication of coronavirus disease 2019 (COVID-19) and a high-risk factor for severe illness and death. Neutrophil extracellular traps (NETs) are implicated in COVID-19-induced immunothrombosis. Furthermore, human cathelicidin, a NET component, can perturb the interaction between the SARS-CoV-2 spike protein and its ACE2 receptor, which mediates viral entry into cells. At present, however, the levels of cathelicidin antimicrobial peptides after SARS-CoV-2 infection and their role in COVID-19 thrombosis formation remain unclear. In the current study, we analyzed coagulation function and found a decrease in thrombin time but an increase in fibrinogen level, prothrombin time, and activated partial thromboplastin time in COVID-19 patients. In addition, the cathelicidin antimicrobial peptide LL-37 was upregulated by the spike protein and significantly elevated in the plasma of patients. Furthermore, LL-37 levels were negatively correlated with thrombin time but positively correlated with fibrinogen level. In addition to platelet activation, cathelicidin peptides enhanced the activity of coagulation factors, such as factor Xa (FXa) and thrombin, which may induce hypercoagulation in diseases with high cathelicidin peptide levels. Injection of cathelicidin peptides promoted the formation of thrombosis, whereas deletion of cathelicidin inhibited thrombosis in vivo. These results suggest that cathelicidin antimicrobial peptide LL-37 is elevated during SARS-CoV-2 infection, which may induce hypercoagulation in COVID-19 patients by activating coagulation factors.
Collapse
Affiliation(s)
- Zilei Duan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Juan Zhang
- Southwest Hospital, Third Military Medical University (Army Medical University, 29 Gaotanyan Street, Shapingba, Chongqing, 400038, China
| | - Xue Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Ming Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Hongwen Zhao
- Southwest Hospital, Third Military Medical University (Army Medical University, 29 Gaotanyan Street, Shapingba, Chongqing, 400038, China
| | - Lin Jin
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Zhiye Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Ning Luan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Ping Meng
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, 650041, Yunnan, China
| | - Jing Wang
- Department of Laboratory Diagnosis, Chongqing Public Health Medical Center, Public Health Hospital of Southwest University, 109 Baoyu Rd. Shapingba, Chongqing, 400038, China
| | - Zhaoxia Tan
- Southwest Hospital, Third Military Medical University (Army Medical University, 29 Gaotanyan Street, Shapingba, Chongqing, 400038, China
| | - Yaxiong Li
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, 650041, Yunnan, China.
| | - Guohong Deng
- Southwest Hospital, Third Military Medical University (Army Medical University, 29 Gaotanyan Street, Shapingba, Chongqing, 400038, China.
| | - Ren Lai
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China.
| |
Collapse
|
22
|
Human Platelets Contain, Translate, and Secrete Azurocidin; A Novel Effect on Hemostasis. Int J Mol Sci 2022; 23:ijms23105667. [PMID: 35628475 PMCID: PMC9144465 DOI: 10.3390/ijms23105667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Platelets play a significant role in hemostasis and perform essential immune functions, evidenced by the extensive repertoire of antimicrobial molecules. Currently, there is no clear description of the presence of azurocidin in human platelets. Azurocidin is a 37 kDa cationic protein abundant in neutrophils, with microbicidal, opsonizing, and vascular permeability-inducing activity. Therefore, this work aimed to characterize the content, secretion, translation, and functions of azurocidin in platelets. Our results show the presence of azurocidin mRNA and protein in α-granules of platelet and megakaryoblasts, and stimulation with thrombin, ADP, and LPS leads to the secretion of free azurocidin as well as within extracellular vesicles. In addition, platelets can translate azurocidin in a basal or thrombin-induced manner. Finally, we found that the addition of low concentrations of azurocidin prevents platelet aggregation and activation. In conclusion, we demonstrate that platelets contain, secrete, and translate azurocidin, and this protein may have important implications for hemostasis.
Collapse
|
23
|
Panigrahi S, Ghosh SK, Ferrari B, Wyrick JM, Podrez EA, Weinberg A, Sieg SF. Human β-Defensin-3 is Associated With Platelet-Derived Extracellular Vesicles and is a Potential Contributor to Endothelial Dysfunction. Front Mol Biosci 2022; 9:824954. [PMID: 35355507 PMCID: PMC8959671 DOI: 10.3389/fmolb.2022.824954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
While platelets are the essential mediators of hemostasis, they are being increasingly recognized for their potential of contributing to host defenses. Here, using immunofluorescent microscopy, western blot, and ELISA, we found that human β-defensin 3 (hBD-3), an important antimicrobial peptide produced by epithelial cells, can be detected in human platelets and megakaryocytes. Flow cytometry and immuno-electron microscopy revealed hBD-3 on the surface of thrombin activated platelets. Moreover, hBD-3 was also found in platelet derived extracellular vesicles (p-EVs), isolated from platelet poor plasma and from platelet supernatants following thrombin stimulation. Incubation of platelets with hBD-3 peptide resulted in modest platelet activation and pre-incubation of platelets with synthetic hBD-3 prior to exposure to thrombin appeared to increase hBD-3 content in platelet lysates as well as in p-EVs, suggesting that hBD-3 can be initially taken up by platelets, perhaps via their open canalicular system. Interestingly, in vitro exposure of primary human endothelial cells to either hBD-3 peptide or purified p-EVs, caused significant endothelial dysfunction as documented by diminished levels of phosphorylated endothelial nitric oxide synthase (eNOS), Krüppel like factor-2 (KLF-2), and elevated relative expression of von Willebrand Factor (vWF). Pre-incubation of platelets with hBD-3 appeared to augment endothelial dysfunction caused by p-EVs. Overall, the current study provides evidence that hBD-3 enriched EVs can be released by activated platelets and may play a role in positive feedback of platelet activation as well as in endothelial dysfunction. Theoretically, these effects could contribute to both cellular recruitment to the endothelium creating a pro-thrombotic vascular microenvironment which serve as a bridge between innate immunity and hemostasis.
Collapse
Affiliation(s)
- Soumya Panigrahi
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, OH, United States
- *Correspondence: Soumya Panigrahi, ; Scott F. Sieg,
| | - Santosh K. Ghosh
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Brian Ferrari
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, OH, United States
| | - Jonathan M. Wyrick
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, OH, United States
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Eugene A Podrez
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Scott F. Sieg
- Case Western Reserve School of Medicine, Division of Infectious Diseases and HIV Medicine, Cleveland, OH, United States
- *Correspondence: Soumya Panigrahi, ; Scott F. Sieg,
| |
Collapse
|
24
|
Alatawi KA, Ravishankar D, Patra PH, Bye AP, Stainer AR, Patel K, Widera D, Vaiyapuri S. 1,8-Cineole Affects Agonists-Induced Platelet Activation, Thrombus Formation and Haemostasis. Cells 2021; 10:2616. [PMID: 34685597 PMCID: PMC8533741 DOI: 10.3390/cells10102616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
1,8-cineole, a monoterpenoid is a major component of eucalyptus oil and has been proven to possess numerous beneficial effects in humans. Notably, 1,8-cineole is the primary active ingredient of a clinically approved drug, Soledum® which is being mainly used for the maintenance of sinus and respiratory health. Due to its clinically valuable properties, 1,8-cineole has gained significant scientific interest over the recent years specifically to investigate its anti-inflammatory and antioxidant effects. However, the impact of 1,8-cineole on the modulation of platelet activation, thrombosis and haemostasis was not fully established. Therefore, in this study, we demonstrate the effects of 1,8-cineole on agonists-induced platelet activation, thrombus formation under arterial flow conditions and haemostasis in mice. 1,8-cineole largely inhibits platelet activation stimulated by glycoprotein VI (GPVI) agonists such as collagen and cross-linked collagen-related peptide (CRP-XL), while it displays minimal inhibitory effects on thrombin or ADP-induced platelet aggregation. It inhibited inside-out signalling to integrin αIIbβ3 and outside-in signalling triggered by the same integrin as well as granule secretion and intracellular calcium mobilisation in platelets. 1,8-cineole affected thrombus formation on collagen-coated surface under arterial flow conditions and displayed a minimal effect on haemostasis of mice at a lower concentration of 6.25 µM. Notably, 1,8-cineole was found to be non-toxic to platelets up to 50 µM concentration. The investigation on the molecular mechanisms through which 1,8-cineole inhibits platelet function suggests that this compound affects signalling mediated by various molecules such as AKT, Syk, LAT, and cAMP in platelets. Based on these results, we conclude that 1,8-cineole may act as a potential therapeutic agent to control unwarranted platelet reactivity under various pathophysiological settings.
Collapse
Affiliation(s)
- Kahdr A. Alatawi
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Divyashree Ravishankar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Pabitra H. Patra
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Alexander P. Bye
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.P.B.); (A.R.S.); (K.P.)
| | - Alexander R. Stainer
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.P.B.); (A.R.S.); (K.P.)
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.P.B.); (A.R.S.); (K.P.)
| | - Darius Widera
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| |
Collapse
|
25
|
Recent Advances in the Discovery and Function of Antimicrobial Molecules in Platelets. Int J Mol Sci 2021; 22:ijms221910230. [PMID: 34638568 PMCID: PMC8508203 DOI: 10.3390/ijms221910230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022] Open
Abstract
The conventional function described for platelets is maintaining vascular integrity. Nevertheless, increasing evidence reveals that platelets can additionally play a crucial role in responding against microorganisms. Activated platelets release molecules with antimicrobial activity. This ability was first demonstrated in rabbit serum after coagulation and later in rabbit platelets stimulated with thrombin. Currently, multiple discoveries have allowed the identification and characterization of PMPs (platelet microbicidal proteins) and opened the way to identify kinocidins and CHDPs (cationic host defense peptides) in human platelets. These molecules are endowed with microbicidal activity through different mechanisms that broaden the platelet participation in normal and pathologic conditions. Therefore, this review aims to integrate the currently described platelet molecules with antimicrobial properties by summarizing the pathways towards their identification, characterization, and functional evaluation that have promoted new avenues for studying platelets based on kinocidins and CHDPs secretion.
Collapse
|
26
|
Todorova VK, Wei JY, Makhoul I. Subclinical doxorubicin-induced cardiotoxicity update: role of neutrophils and endothelium. Am J Cancer Res 2021; 11:4070-4091. [PMID: 34659877 PMCID: PMC8493405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapy agent that often causes cardiotoxicity. Despite a number of extensive studies, the risk for DOX cardiotoxicity remains unpredictable. The majority of the studies on DOX-induced cardiotoxicity have been focused on the effects on cardiomyocytes that lead to contractile dysfunction. The roles of systemic inflammation, endothelial injury and neutrophil recruitment, all induced by the DOX, are increasingly recognized as the mechanisms that trigger the development and progression of DOX-induced cardiomyopathy. This review explores recent data regarding the possible mechanisms and biomarkers of early subclinical DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Valentina K Todorova
- Division of Medical Oncology/Department of Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
- Department of Geriatrics, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| | - Issam Makhoul
- Division of Medical Oncology/Department of Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, Arkansas, USA
| |
Collapse
|
27
|
Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol 2021; 41:253-274. [PMID: 34036897 DOI: 10.1080/08830185.2021.1921174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.
Collapse
Affiliation(s)
- Abraham U Morales-Primo
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Ingeborg Becker
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
28
|
Smith AJ, Alcock SG, Davidson LS, Emmins JH, Hiller Bardsley JC, Holloway P, Malfois M, Marshall AR, Pizzey CL, Rogers SE, Shebanova O, Snow T, Sutter JP, Williams EP, Terrill NJ. I22: SAXS/WAXS beamline at Diamond Light Source - an overview of 10 years operation. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:939-947. [PMID: 33950002 PMCID: PMC8127364 DOI: 10.1107/s1600577521002113] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/23/2021] [Indexed: 05/04/2023]
Abstract
Beamline I22 at Diamond Light Source is dedicated to the study of soft-matter systems from both biological and materials science. The beamline can operate in the range 3.7 keV to 22 keV for transmission SAXS and 14 keV to 20 keV for microfocus SAXS with beam sizes of 240 µm × 60 µm [full width half-maximum (FWHM) horizontal (H) × vertical (V)] at the sample for the main beamline, and approximately 10 µm × 10 µm for the dedicated microfocusing platform. There is a versatile sample platform for accommodating a range of facilities and user-developed sample environments. The high brilliance of the insertion device source on I22 allows structural investigation of materials under extreme environments (for example, fluid flow at high pressures and temperatures). I22 provides reliable access to millisecond data acquisition timescales, essential to understanding kinetic processes such as protein folding or structural evolution in polymers and colloids.
Collapse
Affiliation(s)
- A. J. Smith
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. G. Alcock
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - L. S. Davidson
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. H. Emmins
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. C. Hiller Bardsley
- King’s College London, Guy’s Campus, Great Maze Pond, London SE1 1UL, United Kingdom
| | - P. Holloway
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - M. Malfois
- ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - A. R. Marshall
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - C. L. Pizzey
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - S. E. Rogers
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - O. Shebanova
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - T. Snow
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J. P. Sutter
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - E. P. Williams
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - N. J. Terrill
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
29
|
Herster F, Karbach S, Chatterjee M, Weber ANR. Platelets: Underestimated Regulators of Autoinflammation in Psoriasis. J Invest Dermatol 2021; 141:1395-1403. [PMID: 33810836 DOI: 10.1016/j.jid.2020.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023]
Abstract
Platelets have long been known as mediators of hemostasis and, more recently, as mediators of thromboinflammation, although their physiopathological role has mostly been investigated in the context of disease of internal organs, such as liver and kidney, or systemic disorders. Of late, exciting recent data suggest that platelets may also play a role in inflammation at distal sites such as the skin: recent studies show that platelets, by engaging polymorphonuclear neutrophils (PMNs), contribute to local inflammation in the frequent skin disorder, psoriasis. In an experimental model, systemic depletion of platelets drastically attenuated skin inflammation by preventing PMN infiltration of the skin. A broader role of platelets in different types of skin inflammation is therefore likely, and in this paper, we specifically review recent advances in psoriasis. Special emphasis is given to the crosstalk with systemic platelet effects, which may be of interest in psoriasis-related cardiovascular comorbidities. Furthermore, we discuss the potential for platelet-centered interventions in the therapy for psoriasis.
Collapse
Affiliation(s)
- Franziska Herster
- Department of Immunology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany; Department of Molecular Oncology, Robert Bosch Centrum für Tumorerkrankungen (RBCT), Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Susanne Karbach
- Center for Cardiology - Cardiology I, University Medical Center Mainz and Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
30
|
Regulation of Inflammation and Oxidative Stress by Formyl Peptide Receptors in Cardiovascular Disease Progression. Life (Basel) 2021; 11:life11030243. [PMID: 33804219 PMCID: PMC7998928 DOI: 10.3390/life11030243] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 12/23/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the most important regulators of cardiac function and are commonly targeted for medical therapeutics. Formyl-Peptide Receptors (FPRs) are members of the GPCR superfamily and play an emerging role in cardiovascular pathologies. FPRs can modulate oxidative stress through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) production whose dysregulation has been observed in different cardiovascular diseases. Therefore, many studies are focused on identifying molecular mechanisms of the regulation of ROS production. FPR1, FPR2 and FPR3 belong to the FPRs family and their stimulation triggers phosphorylation of intracellular signaling molecules and nonsignaling proteins that are required for NADPH oxidase activation. Some FPR agonists trigger inflammatory processes, while other ligands activate proresolving or anti-inflammatory pathways, depending on the nature of the ligands. In general, bacterial and mitochondrial formylated peptides activate a proinflammatory cell response through FPR1, while Annexin A1 and Lipoxin A4 are anti-inflammatory FPR2 ligands. FPR2 can also trigger a proinflammatory pathway and the switch between FPR2-mediated pro- and anti-inflammatory cell responses depends on conformational changes of the receptor upon ligand binding. Here we describe the detrimental or beneficial effects of the main FPR agonists and their potential role as new therapeutic and diagnostic targets in the progression of cardiovascular diseases.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This review highlights recent insights into the role of platelets in acute inflammation and infection. RECENT FINDINGS Platelets exhibit intravascular crawling behavior and can collect and bundle bacteria. In addition, platelets are key in promoting intravascular thrombus formation in infection, a process termed 'immunothrombosis', which contributes to pathogen containment, but also potentially damages the host. Platelets are at the nexus of leukocyte recruitment and activation, yet they are at the same time crucial in preventing inflammation-associated hemorrhage and tissue damage. This multitasking requires specific receptors and pathways, depending on stimulus, organ and effector function. SUMMARY New findings highlight the complex interplay of innate immunity, coagulation and platelets in inflammation and infection, and unravel novel molecular pathways and effector functions. These offer new potential therapeutic approaches, but require further extensive research to distinguish treatable proinflammatory from host-protective pathways.
Collapse
|
32
|
Vallance TM, Sheard JJ, Meng Y, Torre EC, Patel K, Widera D, Vaiyapuri S. Development and characterization of a novel, megakaryocyte NF-κB reporter cell line for investigating inflammatory responses. J Thromb Haemost 2021; 19:107-120. [PMID: 33037735 DOI: 10.1111/jth.15118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 11/27/2022]
Abstract
Essentials An easily detectable readout in megakaryocyte cell lines will enhance inflammatory research in these cells. Here, we report the development and characterization of a novel megakaryocyte NF-κB-reporter cell line (Meg-01R). Multiple inflammatory molecules modulate NF-κB activity in Meg-01R cells. Meg-01R cells respond to small molecule inhibitors such as IMD0354 and C87 that are known to inhibit NF-κB activity upon stimulation with TNFα. ABSTRACT: Background Because of the difficulties in acquiring large numbers of megakaryocytes, the impact of inflammatory responses on these cells and their ability to produce fully functional platelets under various pathological conditions has not been investigated in detail. Objectives The primary objective of this study is to develop and functionally characterize a novel megakaryocyte nuclear factor κB (NF-κB) reporter cell line to determine the effects of various inflammatory molecules on megakaryocytes and their signalling pathways. Methods A Meg-01-NF-κB-GFP-Luc (Meg-01R) cell line was developed by inserting a reporter NF-κB-GFP-Luc cassette into normal Meg-01 cells to produce luciferase following activation of NF-κB to enable easy detection of pro-inflammatory and reparative signalling. Results and conclusions Meg-01 and Meg-01R cells have comparable characteristics, including the expression of both GPIbα and integrin β3 . Meg-01R cells responded to various inflammatory molecules as measured by NF-κB-dependent bioluminescence. For example, inflammatory molecules such as tumor necrosis factor-α and Pam3CSK4 increased NF-κB activity, whereas an antimicrobial peptide, LL37, reduced its activity. Meg-01R cells were also found to be sensitive to inhibitors (IMD0354 and C87) of inflammatory pathways. Notably, Meg-01R cells were able to respond to lipopolysaccharide (LPS; non-ultrapure), although it was not able to react to ultrapure LPS because of the lack of sufficient TLR4 molecules on their surface. For the first time, we report the development and characterization of a novel megakaryocyte NF-κB reporter cell line (Meg-01R) as a robust tool to study the inflammatory responses/signalling of megakaryocytes upon stimulation with a broad range of inflammatory molecules that can affect NF-κB activity.
Collapse
Affiliation(s)
| | | | - Yiming Meng
- School of Pharmacy, University of Reading, Reading, UK
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| | - Darius Widera
- School of Pharmacy, University of Reading, Reading, UK
| | | |
Collapse
|
33
|
Miller SW, Osterhoudt KC, Korenoski AS, Patel K, Vaiyapuri S. Exotic Snakebites Reported to Pennsylvania Poison Control Centers: Lessons Learned on the Demographics, Clinical Effects, and Treatment of These Cases. Toxins (Basel) 2020; 12:toxins12120755. [PMID: 33260454 PMCID: PMC7760318 DOI: 10.3390/toxins12120755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/27/2023] Open
Abstract
Exotic snakebites (i.e. from non-native species) are a rare occurrence, but they present a unique challenge to clinicians treating these patients. Poison control centers are often contacted to assist in the management and care of these medical emergencies. In this study, we analyzed case records of the two Pennsylvania poison control centers from 2004 to 2018 to describe clinical features reported as a result of exotic snakebite envenomation. For the 15-year period reviewed, 18 exotic snakebites were reported with effects ranging from mild local tissue injury to patients who were treated with mechanical ventilation due to respiratory failure. The mean age of the patients was 35 years and males accounted for 83% of the cases. Antivenom, the only specific treatment, was administered in seven of 18 patients within an average of four h of envenomation. The procurement of antivenom against these exotic species may require substantial logistical efforts due to limited stocking of this rarely used treatment. Newer, targeted, small molecule treatments that are being currently investigated may aid in the treatment of snakebites in general. However, people should be cautious when handling these exotic species, and clinicians should be aware of these bites and relevant clinical effects in order to manage these when reported.
Collapse
Affiliation(s)
- Stephen W. Miller
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
- The Poison Control Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Correspondence: (S.W.M.); (S.V.)
| | - Kevin C. Osterhoudt
- The Poison Control Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Amanda S. Korenoski
- Pittsburgh Poison Center, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK;
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
- Correspondence: (S.W.M.); (S.V.)
| |
Collapse
|
34
|
Chernomordik F, Cercek B, Lio WM, Mihailovic PM, Yano J, Herscovici R, Zhao X, Zhou J, Chyu KY, Shah PK, Dimayuga PC. The Role of T Cells Reactive to the Cathelicidin Antimicrobial Peptide LL-37 in Acute Coronary Syndrome and Plaque Calcification. Front Immunol 2020; 11:575577. [PMID: 33123157 PMCID: PMC7573569 DOI: 10.3389/fimmu.2020.575577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
The human cationic anti-microbial peptide LL-37 is a T cell self-antigen in patients with psoriasis, who have increased risk of cardiovascular events. However, the role of LL-37 as a T cell self-antigen in the context of atherosclerosis remains unclear. The objective of this study was to test for the presence of T cells reactive to LL-37 in patients with acute coronary syndrome (ACS). Furthermore, the role of T cells reactive to LL-37 in atherosclerosis was assessed using apoE-/- mice immunized with the LL-37 mouse ortholog, mCRAMP. Peripheral blood mononuclear cells (PBMCs) from patients with ACS were stimulated with LL-37. PBMCs from stable coronary artery disease (CAD) patients or self-reported subjects served as controls. T cell memory responses were analyzed with flow cytometry. Stimulation of PBMCs with LL-37 reduced CD8+ effector T cell responses in controls and patients with stable CAD but not in ACS and was associated with reduced programmed cell death protein 1 (PDCD1) mRNA expression. For the mouse studies, donor apoE-/- mice were immunized with mCRAMP or adjuvant as controls, then T cells were isolated and adoptively transferred into recipient apoE-/- mice fed a Western diet. Recipient mice were euthanized after 5 weeks. Whole aortas and hearts were collected for analysis of atherosclerotic plaques. Spleens were collected for flow cytometric and mRNA expression analysis. Adoptive transfer experiments in apoE-/- mice showed a 28% reduction in aortic plaque area in mCRAMP T cell recipient mice (P < 0.05). Fifty six percent of adjuvant T cell recipient mice showed calcification in atherosclerotic plaques, compared to none in the mCRAMP T cell recipient mice (Fisher's exact test P = 0.003). Recipients of T cells from mice immunized with mCRAMP had increased IL-10 and IFN-γ expression in CD8+ T cells compared to controls. In conclusion, the persistence of CD8+ effector T cell response in PBMCs from patients with ACS stimulated with LL-37 suggests that LL-37-reactive T cells may be involved in the acute event. Furthermore, studies in apoE-/- mice suggest that T cells reactive to mCRAMP are functionally active in atherosclerosis and may be involved in modulating plaque calcification.
Collapse
Affiliation(s)
- Fernando Chernomordik
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Bojan Cercek
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wai Man Lio
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Peter M Mihailovic
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Juliana Yano
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Romana Herscovici
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xiaoning Zhao
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jianchang Zhou
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kuang-Yuh Chyu
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Prediman K Shah
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Paul C Dimayuga
- Oppenheimer Atherosclerosis Research Center, Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
35
|
The Antimicrobial Cathelicidin CRAMP Augments Platelet Activation during Psoriasis in Mice. Biomolecules 2020; 10:biom10091267. [PMID: 32887440 PMCID: PMC7565973 DOI: 10.3390/biom10091267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Platelet-associated complications including thrombosis, thrombocytopenia, and haemorrhage are commonly observed during various inflammatory diseases such as psoriasis. Although several mechanisms that may contribute to the dysfunction of platelets during inflammatory diseases have been reported, knowledge on the primary molecules/mechanisms that underpin platelet-associated complications in such conditions is not fully established. Here, we report the significance of the mouse antimicrobial cathelicidin, mouse cathelicidin-related antimicrobial peptide (mCRAMP) (an orthologue of LL37 in humans), on the modulation of platelet reactivity during psoriasis using Imiquimod-induced psoriasis in mice as an inflammatory disease model for psoriasis vulgaris in humans. The activation of platelets during psoriasis is increased as evidenced by the elevated levels of fibrinogen binding and P-selectin exposure on the surface of platelets, and the level of soluble P-selectin in the plasma of psoriatic mice. The skin and plasma of psoriatic mice displayed increased levels of mCRAMP. Moreover, the plasma of psoriatic mice augmented the activation of platelets obtained from healthy mice. The effect of mCRAMP is partially mediated through formyl peptide receptor 2/3 (Fpr2/3, the orthologue to human FPR2/ALX) in platelets as a significant reduction in their activation was observed when FPR2/ALX-selective inhibitors such as WRW4 or Fpr2/3-deficient mouse platelets were used in these assays. Since the level of antimicrobial cathelicidin is increased in numerous inflammatory diseases such as psoriasis, atherosclerosis, and inflammatory bowel disease, the results of this study point towards a critical role for antimicrobial cathelicidin and FPR2/ALX in the development of platelet-related complications in such diseases.
Collapse
|
36
|
Liu L, Shao Z, Yu H, Zhang W, Wang H, Mei Z. Is the platelet to lymphocyte ratio a promising biomarker to distinguish acute appendicitis? Evidence from a systematic review with meta-analysis. PLoS One 2020; 15:e0233470. [PMID: 32442179 PMCID: PMC7244160 DOI: 10.1371/journal.pone.0233470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022] Open
Abstract
Background Although several previous studies have examined the association between the platelet to lymphocyte ratio (PLR) and acute appendicitis (AA), findings have been controversial. We aimed to systematically assess the available evidence to elucidate the overall relationship between the PLR and AA. Methods Pubmed and Embase databases were searched for all available published literature before August, 2019 by two independent investigators for observational studies reporting the association between the PLR and AA. Random effects models were applied for all meta-analyses. Pooled standardized mean difference (SMD) and 95% confidence interval (CI) were calculated as effect estimates. Results Eleven articles met the inclusion criteria and included in this study. Meta-analysis showed that the level of PLR in the AA group was significantly higher than that in the control group (SMD: 1.19, 95% CI: 0.75 to 1.62, P<0.001). A series of subgroup analyses were conducted to investigate the heterogeneity, showing a significant increase in PLV levels in adults with age ≥30 years (SMD: 1.46, 95% CI: 0.89 to 2.02),compared to those in adult <30 years(SMD: 0.58, 95% CI: 0.12 to 1.04) or in children (SMD: 1.03, 95% CI: 0.51 to 1.56). Compared to non-AA controls, a significant increased PLR level was also observed in non-perforated AA (SMD: 1.23, 95% CI: 0.88 to 1.59) and in AA patients during pregnancy (SMD: 0.70, 95% CI: 0.36 to 1.04), while not in perforated AA (SMD: 2.28, 95% CI: -1.72 to 6.28). Conclusions A significant increase in PLR level is found in patients with AA, indicating that PLR is a promising biomarker for AA. PLR provides a convenient option for emergency department to quickly screen for clinically or radiologically confirmed AA awaiting appendectomy, especially for pregnant women suspected of having AA. More high-quality evidence is needed to further confirm the diagnostic accuracy of PLR for AA.
Collapse
Affiliation(s)
- Lianjie Liu
- Department of Colorectal Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zhuo Shao
- Department of General Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hang Yu
- Emergency Department, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
- * E-mail:
| | - Hao Wang
- Department of Colorectal Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| |
Collapse
|
37
|
Zhou Q, Pan LL, Xue R, Ni G, Duan Y, Bai Y, Shi C, Ren Z, Wu C, Li G, Agerberth B, Sluijter JPG, Sun J, Xiao J. The anti-microbial peptide LL-37/CRAMP levels are associated with acute heart failure and can attenuate cardiac dysfunction in multiple preclinical models of heart failure. Am J Cancer Res 2020; 10:6167-6181. [PMID: 32483446 PMCID: PMC7255020 DOI: 10.7150/thno.46225] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Biomarkers for the diagnosis of heart failure (HF) are clinically essential. Circulating antimicrobial peptides LL-37 has emerged as a novel biomarker in cardiovascular disease, however, its relevance as a biomarker for acute HF are undetermined. Methods: Acute HF patients were enrolled in this study and the serum levels of LL-37/CRAMP (cathelicidin-related antimicrobial peptide) were measured by ELISA. The receiver-operator characteristic (ROC) curve was used to determine if serum LL-37 could be a biomarker for acute HF. Mouse CRAMP (mCRAMP, mouse homolog for human LL-37) was also determined in both heart and serum samples of, transverse aortic constriction (TAC)- and isoproterenol (ISO)-induced HF mice models, and phenylephrine (PE) and angiotensin II (AngII)-induced neonatal mouse cardiomyocytes (NMCMs) hypertrophic models, both intracellular and secreted, by ELISA. The protective effects of mCRAMP were determined in TAC, ISO, and AngII-induced HF in mice while whether HF was exacerbated in AngII-infused animals were checked in mCRAMP knockout mice. The underlying mechanism for protective effects of CARMP in pathological hypertrophy was determined by using a NF-κB agonist together with rCRAMP (rat homolog for human LL-37) in AngII or PE treated neonatal rat cardiomyocytes (NRCMs). Results: Serum levels of LL-37 were significantly decreased in acute HF patients (area under the curve (AUC) of 0.616), and negatively correlated with NT-proBNP. We further confirmed that mCRAMP was decreased in both heart and serum samples of TAC- and ISO-induced HF mice models. Moreover, in PE and AngII-induced NMCMs hypertrophic models, both intracellular and secreted mCRAMP levels were reduced. Functionally, mCRAMP could attenuate TAC, ISO, and AngII-induced HF in mice while CRAMP deficiency exacerbated HF. Mechanistically, the anti-hypertrophy effects of CRAMP were mediated by NF-κB signaling. Conclusions: Collectively, serum LL-37 is associated with acute HF and increasing CRAMP is protective against deleterious NF-κB signaling in the rodent.
Collapse
|
38
|
Wang X, Chen L, Zhao X, Xiao L, Yi S, Kong Y, Jiang Y, Zhang J. A cathelicidin-related antimicrobial peptide suppresses cardiac hypertrophy induced by pressure overload by regulating IGFR1/PI3K/AKT and TLR9/AMPKα. Cell Death Dis 2020; 11:96. [PMID: 32029708 PMCID: PMC7005284 DOI: 10.1038/s41419-020-2296-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 11/27/2022]
Abstract
Cathelicidin-related antimicrobial peptide (CRAMP), an antimicrobial peptide, was reported to protect against myocardial ischemia/reperfusion injury. However, the effect of CRAMP on pressure overload-induced cardiac hypertrophy was unknown. This study explored the role of CRAMP on cardiac hypertrophy. A cardiac hypertrophy mouse model was induced by aortic banding surgery. Seven days after surgery, mice were given mCRAMP by intraperitoneal injection (8 mg/kg/d) for 7 weeks. Cardiac hypertrophy was evaluated by the hypertrophic response and fibrosis level as well as cardiac function. Mice were also injected with AAV9-shCRAMP to knockdown CRAMP in the mouse heart. CRAMP levels first increased and then reduced in the remodeling heart, as well as in angiotensin II-stimulated endothelial cells but not in cardiomyocytes and fibroblasts. mCRAMP protected against the pressure overload-induced cardiac remodeling process, while CRAMP knockdown accelerated this process. mCRAMP reduced the inflammatory response and oxidative stress in the hypertrophic heart, while mCRAMP deficiency deteriorated the pressure overload-induced inflammatory response and oxidative stress. mCRAMP inhibited the angiotensin II-stimulated hypertrophic response and oxidative stress in neonatal rat cardiomyocytes, but mCRAMP did not help the angiotensin II-induced inflammatory response and oxidative stress in endothelial cells. Mechanistically, we found that mCRAMP suppressed the cardiac hypertrophic response by activating the IGFR1/PI3K/AKT pathway via directly binding to IGFR1. AKT knockout mice completely reversed the anti-hypertrophic effect of mCRAMP but not its anti-oxidative effect. We also found that mCRAMP ameliorated cardiac oxidative stress by activating the TLR9/AMPKa pathway. This was confirmed by a TLR9 knockout mouse experiment, in which a TLR9 knockout partly reversed the anti-hypertrophic effect of mCRAMP and completely counteracted the anti-oxidative effect of mCRAMP. In summary, mCRAMP protected against pressure overload-induced cardiac hypertrophy by activating both the IGFR1/PI3K/AKT and TLR9/AMPKa pathways in cardiomyocytes.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Chen
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Zhao
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Xiao
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanting Yi
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawei Kong
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Jiang
- Department of Neurology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jinying Zhang
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
39
|
Margraf A, Zarbock A. Platelets in Inflammation and Resolution. THE JOURNAL OF IMMUNOLOGY 2019; 203:2357-2367. [DOI: 10.4049/jimmunol.1900899] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
|
40
|
Felgueiras HP, Teixeira MA, Tavares TD, Homem NC, Zille A, Amorim MTP. Antimicrobial action and clotting time of thin, hydrated poly(vinyl alcohol)/cellulose acetate films functionalized with LL37 for prospective wound‐healing applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.48626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile EngineeringUniversity of Minho Campus de Azurém P.O. Box 4800‐058 Guimarães Portugal
| | - Marta A. Teixeira
- Centre for Textile Science and Technology (2C2T), Department of Textile EngineeringUniversity of Minho Campus de Azurém P.O. Box 4800‐058 Guimarães Portugal
| | - Tânia D. Tavares
- Centre for Textile Science and Technology (2C2T), Department of Textile EngineeringUniversity of Minho Campus de Azurém P.O. Box 4800‐058 Guimarães Portugal
| | - Natália C. Homem
- Centre for Textile Science and Technology (2C2T), Department of Textile EngineeringUniversity of Minho Campus de Azurém P.O. Box 4800‐058 Guimarães Portugal
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T), Department of Textile EngineeringUniversity of Minho Campus de Azurém P.O. Box 4800‐058 Guimarães Portugal
| | - M. Teresa P. Amorim
- Centre for Textile Science and Technology (2C2T), Department of Textile EngineeringUniversity of Minho Campus de Azurém P.O. Box 4800‐058 Guimarães Portugal
| |
Collapse
|
41
|
Platelets in Host Defense: Experimental and Clinical Insights. Trends Immunol 2019; 40:922-938. [PMID: 31601520 DOI: 10.1016/j.it.2019.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
Platelets are central players in thrombosis and hemostasis but are increasingly recognized as key components of the immune system. They shape ensuing immune responses by recruiting leukocytes, and support the development of adaptive immunity. Recent data shed new light on the complex role of platelets in immunity. Here, we summarize experimental and clinical data on the role of platelets in host defense against bacteria. Platelets bind, contain, and kill bacteria directly; however, platelet proinflammatory effector functions and cross-talk with the coagulation system, can also result in damage to the host (e.g., acute lung injury and sepsis). Novel clinical insights support this dichotomy: platelet inhibition/thrombocytopenia can be either harmful or protective, depending on pathophysiological context. Clinical studies are currently addressing this aspect in greater depth.
Collapse
|
42
|
Liu X, Gorzelanny C, Schneider SW. Platelets in Skin Autoimmune Diseases. Front Immunol 2019; 10:1453. [PMID: 31333641 PMCID: PMC6620619 DOI: 10.3389/fimmu.2019.01453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and small vessel vasculitis are three autoimmune diseases frequently manifested in the skin. They share common pathogenic features, including production of autoantibodies, loss of tolerance to self-antigens, tissue necrosis and fibrosis, vasculopathy and activation of the coagulation system. Platelets occupy a central part within the coagulation cascade and are well-recognized for their hemostatic role. However, recent cumulative evidence implicates their additional and multifaceted immunoregulatory functions. Platelets express immune receptors and they store growth factors, cytokines, and chemokines in their granules enabling a significant contribution to inflammation. A plethora of activating triggers such as damage associated molecular patterns (DAMPs) released from damaged endothelial cells, immune complexes, or complement effector molecules can mediate platelet activation. Activated platelets further foster an inflammatory environment and the crosstalk with the endothelium and leukocytes by the release of immunoactive molecules and microparticles. Further insight into the pathogenic implications of platelet activation will pave the way for new therapeutic strategies targeting autoimmune diseases. In this review, we discuss the inflammatory functions of platelets and their mechanistic contribution to the pathophysiology of SSc, ANCA associated small vessel vasculitis and other autoimmune diseases affecting the skin.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Salamah MF, Ravishankar D, Vaiyapuri R, Moraes LA, Patel K, Perretti M, Gibbins JM, Vaiyapuri S. The formyl peptide fMLF primes platelet activation and augments thrombus formation. J Thromb Haemost 2019; 17:1120-1133. [PMID: 31033193 PMCID: PMC6617722 DOI: 10.1111/jth.14466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/18/2019] [Indexed: 01/07/2023]
Abstract
Essentials The role of formyl peptide receptor 1 (FPR1) and its ligand, fMLF, in the regulation of platelet function, hemostasis, and thrombosis is largely unknown. Fpr1-deficient mice and selective inhibitors for FPR1 were used to investigate the function of fMLF and FPR1 in platelets. N-formyl-methionyl-leucyl-phenylalanine primes platelet activation and augments thrombus formation, mainly through FPR1 in platelets. Formyl peptide receptor 1 plays a pivotal role in the regulation of platelet function. BACKGROUND Formyl peptide receptors (FPRs) play pivotal roles in the regulation of innate immunity and host defense. The FPRs include three family members: FPR1, FPR2/ALX, and FPR3. The activation of FPR1 by its high-affinity ligand, N-formyl-methionyl-leucyl-phenylalanine (fMLF) (a bacterial chemoattractant peptide), triggers intracellular signaling in immune cells such as neutrophils and exacerbates inflammatory responses to accelerate the clearance of microbial infection. Notably, fMLF has been demonstrated to induce intracellular calcium mobilization and chemotaxis in platelets that are known to play significant roles in the regulation of innate immunity and inflammatory responses. Despite a plethora of research focused on the roles of FPR1 and its ligands such as fMLF on the modulation of immune responses, their impact on the regulation of hemostasis and thrombosis remains unexplored. OBJECTIVE To determine the effects of fMLF on the modulation of platelet reactivity, hemostasis, and thrombus formation. METHODS Selective inhibitors for FPR1 and Fpr1-deficient mice were used to determine the effects of fMLF and FPR1 on platelets using various platelet functional assays. RESULTS N-formyl-methionyl-leucyl-phenylalanine primes platelet activation through inducing distinctive functions and enhances thrombus formation under arterial flow conditions. Moreover, FPR1 regulates normal platelet function as its deficiency in mouse or blockade in human platelets using a pharmacological inhibitor resulted in diminished agonist-induced platelet activation. CONCLUSION Since FPR1 plays critical roles in numerous disease conditions, its influence on the modulation of platelet activation and thrombus formation may provide insights into the mechanisms that control platelet-mediated complications under diverse pathological settings.
Collapse
Affiliation(s)
| | | | | | | | - Ketan Patel
- School of Biological SciencesUniversity of ReadingReadingUK
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of LondonLondonUK
| | | | | |
Collapse
|